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Optimizing Management Functions
in Distributed Systems

Hasina Abdu,® Hanan Lutfiyya,? and Michael A. Bauer?

With the increased availability and complexity of distributed systems comes a greater
need for solutions to assist in the management of distributed systems. Despite the sig-
nificant contributions made towards the development of management tools that monitor
and control distributed systems, little has been done to address issues such as optimizing
the execution of management functions with respect to system and management require-
ments. This paper presents a management optimization model in which management
agents and managed objects are efficiently configured on the basis of a set of system
and management requirements. We illustrate our model and describe its implementation
through a Branch- and Bound-based algorithm and a web-based interface. The latter en-
ables users to specify the requirements used by the optimization algorithm to determine
efficient management configurations. It also includes an XML-based interface through
which management agents can be started independent of the underlying platforms. Per-
formance characteristics of the proposed algorithm as well as experimental results to
illustrate the validity of the model are also described.

KEY WORDS: Distributed systems management; management agents; management
configuration; management policies; optimization.

1. INTRODUCTION

The primary goal of distributed systems management is to ensure efficient use
of resources and provide timely service to users. Management has evolved from
simple centralized static solutions to dynamic web-based solutions involving het-
erogeneous computing systems. Playing a central role in such systems are entities
referred to agnanagement agent®#anagement agents carry out management
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activities by interacting withmanaged objects.e., abstractions of the managed
components in a distributed systérnm monitortheir behavior and perforeontrol
actionson them. Agents may vary from a collection of management interface rou-
tines used to instrument managed applications, to active, independent processes
such as SNMP [1] or CMIP [2] agents. Some agents may possess the capabili-
ties of both monitoring and controlling functions. Other agents may also possess
some analysis capabilities, which allow them to analyze and determine any needed
control actions. Agents also vary in their implementation and the platforms they
execute. For example, with the advent of mobile agent platforms, agents can also
be transported across the network instead of transferring the data itself (e.g., [3]).
Web-based management (e.g., [4]), management environment under CORBA (e.g.,
[5]), and message-oriented middleware are other examples of possible frameworks.
We do not assume any specific implementation or agent framework, thus focusing
on a generic solution.

1.1. Management Policies and Management Configurations

We use the ternrmanagement poliéyto refer to the specification of one or
more operations on a set of attributes of one or more managed objects. A manage-
ment policy will, therefore, determine what agents are needed for management,
based on the data it specifies. In addition, it specifies where agents should col-
lect the data from and what operation to execute on such data. For example, if a
management policy specifies the monitoring of the packets transmitted by a given
host in the system, the agent(s) deployed for management must be “equipped” to
collect such data. In addition, if policies specify a specific analysis operation (e.g.,
standard deviation), only agents that can execute such operations can be deployed.

For each management policy there will be different ways in which agents can
be instantiated, as well as different ways in which agents can communicate with
each other and with managed objects. We use therreanagement configurations
torefertothe different “arrangements” of management agents and managed objects
that correspond to a given set of management policies. For example, consider a
management policy that requires the average of the CPU loads of four hosts.
Figure 1 illustrates different management configurations. Managed objects are in
different hosts and are represented by circles and the cubes represent management
agents. The arrows illustrate the flow of information between the different agents
and between managed objects and management agents. In Fig. 1(a), a single agent

4In this paper, we adopt an interchangeable use of the term managed objects to refer to both the
abstractions of managed components as well as the actual managed components.

50ur definition of policy differs from the traditional definitions found in Ref. [6, 7]. We focus on the
information representing the attributes of managed objects and the analysis operations to be executed
on a set of monitored data.
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Fig. 1. Different configurations for a sample management policy.

collects the CPU load from each host and determines the average CPU load. In
Fig. 1(b), the collection and analysis are done by separate agents. An agent extracts
the CPU load from a host and sends the CPU information to an agent that performs
the average computation. In Fig. 1(c), agents are arranged such that partial average
values are obtained in parallel. In Fig. 1(d) agents are arranged such that partial
sums are obtained in parallel and the average is obtained by a single agent. Unlike
Fig. 1(c), where an agent either collects or analyzes data, in Fig. 1(d) agents collect
and analyze data.

Itis not obvious which management configuration to use. For example, in the
management configuration in Fig. 1(a), the time to determine the average CPU load
is high if the number of managed objects is high. The single agent is a bottleneck.
The management configurations represented in Figs. 1(b)—(d) illustrate different
amounts of parallelism that can be used to reduce the amount of time to determine
the average CPU load.

Increased parallelism usually means more resource consumption. For exam-
ple, it is obvious that the management configuration in Fig. 1(b) uses more CPU
cycles than does the management configuration in Fig. 1(a). In addition, if all the
agents are started on different hosts in the system, more network bandwidth is
needed. The management configuration in Fig. 1(c) uses more CPU cycles and
generates more network traffic (depending on the location of agents) than do the
configurations in Figs. 1(a) and (b), but it may deliver a faster response for a larger
number of managed objects.

The configurations in Fig. 1 differ in resource usage and the time to collect and
analyze the data. There is a trade-off in the consumption of system resources, i.e.,
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some configurations consume fewer resources, but may result in slower execution
of management functions. The choice of a management configuration partially
depends on the priorities of the managers.

It should be noted that this example is very simplistic and is used for illus-
tration purposes. Additional complexity and diversity is to be expected from the
mapping of a more realistic set of management policies to a set of management
configurations.

1.2. Problem Statement

As illustrated earlier, there is a trade-off between resource consumption by
agents and managed objects (referred tmasagement overhepdnd the time it
takes for a result to be returned. Ideally, we would like to minimize resource con-
sumption. In Section 1.1, this would mean choosing the management configuration
in Fig. 1(a). However, this may be too slow. If we minimize response time with-
out considering the management overhead, then the management configuration
in Fig. 1(c) may be a better choice. On the other hand, this may be unaccept-
able in that it may generate too much network traffic or consume too many CPU
cycles.

We have yet to consider the trade-off between the consumption of the different
resources in the system. For example, in Fig. 1, having an agent on each of the
hosts from which the CPU load is to be collected reduces network traffic, but the
memory usage and CPU load on that host increases. A consideration in choosing
a management configuration is based on which resource usage is to be minimized.

In addition to requirements on resource usage, managers may impose other
restrictions that must be satisfied by management configurations. For example, it
may be that no agent must be started on the same host as the web server or that
an agent must not be started unless it collects data from at least three managed
objects.

Because of the dynamic nature of distributed systems, the management re-
quirements, the requirements defined on resource usage, and the specified manage-
ment policies may change with time. It is essential that the configuration of agents
adjust to these changes so as to satisfy the new requirements. Reconfiguration must
also be done without affecting system performance.

We can thus state the problem as follows: Given a set of management policies,
requirements on resource consumption, and requirements about the properties that
management configurations should have, how do we determine a configuration of
agents that best satisfies the set of requirements and minimizes management over-
head (where the management overhead may be defined based on the requirements
on resource consumption). In addition, how can agents be efficiently reconfigured
with changes in requirements and management policies. We refer to this as the
problem of optimizing the execution of management functions.
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1.3. Focus of the Paper

This paper proposes an approach for optimizing the execution of manage-
ment functions in distributed systems. This was based on formally modeling man-
agement configurations, quantifying resource usage so that it takes into account
management requirements on the resource consumption to be minimized and mod-
eling other requirements that impact the choice of a management configuration.
We designed, implemented, and evaluated an algorithm based on the modeling.

The importance of a model is that it allows us to address the challenge of
understanding how various factors affect the distribution of management functions
in distributed systems. This, first, provides the means to formulate the questions
of interest, e.g., to identify the key factors to consider in optimizing management
function. Second, it forms a basis to consider alternatives in a systematic fashion—
this is especially critical in considering the impact of alternative cost functions and
alternative computation approaches.

The rest of this paper is organized as follows. Section 2 reviews existing work.
Section 3 describes our model and illustrates how differentinstances of the problem
can be modeled. Section 4 describes the main steps of our algorithm. We describe
the scalability of our approach in Section 5. Section 6 describes our prototype
and experiments that illustrate the validity of our approach. We summarize our
contributions and future research in Section 7.

2. RELATED WORK

Despite the extensive work and contributions that have been made towards the
management of networks and systems [3, 8—12], none of the existing approaches
propose a single model that captures the need for minimizing management over-
head, satisfying management requirements and enabling efficient reconfiguration
of agents. For example, Ref. [9] proposes the use of mobile agents to reduce net-
work traffic by transferring the agent across the network instead of transferring the
actual data to be managed. Despite being dynamic, this approach does not model
requirements that may specify where agents must or must not be started. Reduction
of network traffic is also addressed in Ref. [12] where caching coherence mod-
els are used instead of copying management information at different parts of the
management architecture.

The need for efficient management is also the focus in Ref. [13], where the
trade-offs of distributed network management are modeled and analyzed. The large
amount of managementtraffic, large load on management stations, and long execu-
tion times for management operations, especially in large networks, are singled out
as the limitations of existing management models and the reasons for their lack of
scalability. This work does not address modeling requirements that are basically re-
strictions imposed by managers to be satisfied by management configurations, nor
do they seem to address issues related to reconfiguration. Reference [14] models
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the problem of minimizing the costs imposed by probing during fault localization.
An algorithm to determine optimal collection of probes for a given set of require-
ments is proposed, thus focusing on a very specifc type of management agent (one
that deals with probes). Neither the trade-off between consumption of different
resources in the system (e.g., CPU vs. network traffic), nor the need for reconfig-
uration is addressed in this work. Finally, in Ref. [15], code mobility is proposed
as an alternative to the rigid client—server model for management. Despite being
a different approach from the one described in this paper (i.e., code mobility),
Ref. [15] also proposes a model that captures parameters/requirements of different
network management applications.

Reference [16] proposes a model similar to ours in that it defines cost and
weight function to model requirements on resource usage, as proposed in Section 3,
in addition to the 0—1 Integer Linear Programming (ILP) problem formulation. It
does not, however, support reconfiguration and system and application require-
ments are not included in the model.

Our approach, therefore, differs from existing work in distributed systems
management and in other optimization problems by addressing the need for effi-
cientresource usage, the need to satisfy requirements defined by the underlying sys-
tem and applications, and the need to efficiently adapt to dynamic changes in system
components, resource availability, and system and application requirements.

3. MODEL

This section gives an informal description of our model, followed by two
examples that illustrate its application.

We model a management configuration as a directed graph where the nodes
are instances of management agents or managed objects, and the edges represent
the communication between nodes. An example of a management configuration
graphis illustrated in Fig. 2. The circles represent managed objects and the cubes

ag
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N

Fig. 2. A management configuration graph.
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Fig. 3. The model.

represent agents. The edges in the graph represent the communication between
different agents (to analyze management data) and between agents and managed
objects (to collect management data).

For a given set of management agents and managed objects, requirements on
where and how agents can be started, as well as constraints on how much resources
can be allocated for management, there will be numerous ways to configure agents
and managed objects, resulting in different management configuration graphs. We
associate binary variables (i.e., 0 or 1) with the possible edges and nodes of a
management configuration. Figure 3 illustrates our model for an example with
four managed objects and four possible management agents. The variables in the
MO axis in Fig. 3 represent all managed objects specified by users. The variables
in the AG axis represent management agents that can be started in different hosts.
The variables in the AG MO plane represent possible edges between agents
and managed objects. The variables in the ABG plane represent possible
edges between agents. Thug,= 1 indicates that agent agollects data from
managed object moresulting in an edge between the two nodes in the management
configuration graph. On the other hamxd6 = 0 indicates that agent agvill not
be part of the management configuration.

The problem of determining efficient management configuration consists
therefore on determining the values of gl that satisfy a given set of require-
ments and consumes the least amount of resources. This problem was shown to
be an NP-complete [17] combinatorial optimization problem. We draw upon op-
timisation problems similar to ours [16] and model the problem as a 0-1 ILP [18]
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problem ([19]):

minimize  c¢x

subjectto Ax<b 3.1

wherex = [XoX1 - - - Xn_1] IS the vector ofn variables, such that = 0, 1. Each
variablex; is associated with a cost, resulting inc = [coCy - - Ch_1]. Ais an

m x nmatrix, andois anm-dimensional column vector, representimgonstraints

to be satisfied. Each elementAfs represented bg;j, and an element dd, by b;.

The variables inx correspond to the possible nodes and edges of a management
configuration. The cost coefficients @result from a linear function of cost and
weight functions assigned to the variables, representing resource consumption and
requirements on resource consumption, respectivelyaif tlandb; coefficients in

A andb result from the constraints resulting from requirements on the topology
and configuration of agents.

It should be noted that the requirements resulting in ve&aadb, as well
as the weights assigned to the cost of the various resources are specified by users or
system administrators, based on management/user requirements, and constraints
on the resources availability. We assume, however, that the actual costs of the
resources are provided by the underlying system.

The 0-1 ILP format allows us to consider existing algorithms for standard
combinatorial optimization problems. We henceforth use the tast-cosman-
agement configuration to refer to the solution of a given 0—1 ILP problem. We are
also interested in algorithms that, having determinbdst-costnanagement con-
figuration, compute a new management configuration for a given set of changes
in requirements, cost of resources of management policies, in such a way that
computation is minimized. Because of space limitations, this paper does not in-
clude formal details of the model. We do, however, give examples that better
illustrate it.

3.1. lllustrating the Model

Consider the system in Fig. 4. The run-time view of this system includes
OSF/DCE (Distributed Computing Environment) [20] based distributed applica-
tion processes. The sample application consists of two server processes (running
on hostxdadaandspud and three client processes running on hepisd dada
andsushi

We assume the following management polidyind the average number of
messages sent by clientl, client2, client3, serverl and setvEn2 following
management agent classes are required to execute the specified operations (i.e.,
the averageoperation and collecting the number of messages sent by managed
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Fig. 4. Hardware and processes in a sample system.

objects):

e DCE.MA: This is a management agent class for DCE application pro-
cesses.

e STATS MA: Thisis an analysis management agent class identifiediby
max total, andaverageoperations.

We now describe two applications of our model that differ in management
requirements and requirements in resource consumption.

Example 3.1. We would like to find the management configuration that executes
the specified management policy by generating the least amount of network traffic
(arequirement on resource consumption). We assume that data is collected through
polling, with a frequency of 5 s. The managed objects in Fig. 4 (i.e., client and
server processes), the possible instances of the management age4A4Cie
STATS MA and the possible ways in which agents communicate with managed
objects and with other agents are mapped into the variables of our model, as
illustrated in Fig. 5. The variableg—Xes in the planes (AG< MO) and (AG x AG)
represent the possible edges in a management configuration. The vatightes
representthe nodes that result from starting instances of IBE&ANd STATSMA

agents on hostdada spud andsushi

Xe6 = dcema = (DCE.MA®, dada)
xs7 = dcema, = (DCE.MA?, spud
Xeg = dcema, = (DCE_.MA?, sush))
Xe9 = Statsmay = (STATSMA?, dada)
X70 = Statsma, = (STATSMA?L, spud
X71 = statsma = (STATSMAZ, sushj

We note that no variables are associated with the managed objects on the MO
axis. This is because they have been specified by management policies, thus do
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Fig. 5. Mapping requirements to variables of the management optimization
problem.

not have to be determined. In addition, since we are only interested in reducing the

network traffic generated by management, we do not consider the cost of nodes in

the total management configuration costs, only the cost of edges. The requirements
that must be satisfied by management configurations are defined as follows:

* Because of memory constraints no more than one agent can gpudn
This is mapped to the constraixg; + X70 < 1.

* There must be at least one incoming edge into each managed object, i.e., if
there are no incoming edges to a managed object, no data can be collected
from it. This is mapped to the following constraints:

Xo+ X1+ X2+ Xg+Xa+ X5 > 1

Xg + X7+ Xg + Xg + X310+ X311 > 1
X12 + X13 + X4 + X15 + Xg6 + X37 > 1
X18 + X19 + X20 + X21 + Xo2 + X3 > 1
X4 + Xo5 + Xo6 + Xo7 + Xog + X9 > 1

The following cost function is given (we assume that the coefficients have
been determined based on specific features of the system and on the defined re-
quirements, e.g., minimize network traffic and polling frequency):

cost= 125xg 4+ 125¢; + - - - + 125%g5 + OXge + - - - + OX71
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Here, the 0 coefficients are assigned to the nodes and the nonzero coefficients
assigned to the edges. The coefficients represent a weighting based on the require-
ment that the network traffic is to be minimized, i.e., only edges are associated with
network traffic; nodes are associated with other resources such as CPU, disk, and
memory, thus can be ignored in this example. We note that all edges have the same
coefficient (i.e., 125), thus a uniform cost function. This may not necessarily be
the case in all systems, as illustrated in the next example. O

Example 3.2. We would like to determine the management configuration that
executes the specified management policy and that has requirements on CPU and
memory consumption in addition to network bandwidth requirements. We assume
that asynchronous event notification is used, instead of synchronous polling.

The variables in this case are the same as in Example 3.1, however, the man-
aged objects in the MO axis are now associated with additional variablem
X76. These variables are associated with costs that represent the CPU and memory
consumed by managed objects, when providing agents with management informa-
tion. The requirements that must be satisfied by management configurations are
defined as follows:

* Due to constraints on network bandwidth, a manager may require that
management agents must not communicate with more than two managed
objects ormanagement agents. This is mapped to the following constraints:

X0 + Xg + X12 + X18 + X24 + X30 + X314 - - 4 X35 < 2
X1+ X7 + X13 + X19 + Xo5 + Xz6 + Xg7 + - - + Xa1 < 2
X2 + Xg + X14 + Xo0 + Xo6 + Xa2 + Xaz + - -+ + Xa7 < 2
X3 + Xo + X15 + Xo1 + Xo7 + Xag + Xag + - - - + X53 < 2
X4+ X10 + X16 + X22 + X2 + X54 + X55 + - - - + X59 < 2
X5 + X11 + X17 4 X23 + X290 + X0 + Xe1 + - - - + Xp5 < 2

e The CPU and memory available gpudare half of what is available on
other hosts. In addition, we are assuming that management agents consume
more resources than managed objects. On the basis of these requirements
on resource consumption, we assume the following cost function:

cost= 75Xg + - - - + 75X + 57Xes + 114Xg7 + 57Xgg + 57Xs9 + 114X79
+ 57X71 + 2072 + 40x73 + 40X74 + 20%X75 + 20%76

where the ratio between the coefficient of variables representing the agents
running onspudand the coefficient of variables representing the agents
running ondadaandsushi(i.e., 11457 = 2) reflects the resource con-
straint onspud The same ratio can be observed between the coefficients
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of variables representing managed objects. In addition, the lower costs
assigned to managed objects, compared to management agents, reflect the
assumption that agents consume more resources than managed objects. We
note that all the other variables, representing edges, have a cost less then
the cost in the previous example, reflecting the fact that event notification
generates less network traffic than polling. ad

In both the above examples, there are other constraints on the values of
variables, resulting from implicit requirements. For example, if a management
agent is not equipped to collect data from a managed object, the corresponding
variables are set to 0. This would be the case of the instances of SV &yent,
which only collect data from other agents, but not from managed objects, resulting
in the following constraints:

X3, X4, X5, X9, X10, X11, X15, X16, X17, X21, X22, X23, X27, X28, X290 = 0

We also note that the coefficients of the cost functions in the examples above
derive from applying weight functions to the cost representing the resource con-
sumption of each edge and node. We assume that these costs are provided by the
underlying system.

It is important to note that the above examples were kept simple to illustrate
the operation of our model. Thus, the model does not prevent the mapping of a
more diverse set of requirements that may be defined under different management
frameworks and middleware.

4. ALGORITHM

We chose to base our initial algorithm for solving the 0-1 ILP on Branch and
Bound. There were a number of different approaches that we could have based our
algorithm on, including simulated annealing [21], genetic algorithms [22], Branch
and Bound [18, 23], and cutting plane [23]. Simulated annealing and genetic
algorithms are randomized methods based on analogies to natural processes (i.e.,
annealing of metals and natural selection), which makes it harder to verify the
quality of their solutions. In addition, it has been shown that the basic genetic
algorithms cannot be efficiently applied to constraint optimization problems [24]
such as ours.

In the case of Branch and Bound and cutting plane algorithms, known func-
tions of constraint and objective function coefficients are used during the search
for an optimal solution. The cutting plane method, however, does not allow the use
of an initial feasible solution; the search always starts from an infeasible solution.
This is the main reason we opt for the Branch and Bound method: an initial feasible
configuration of agents accelerates the search time for the optimal solution, i.e.,
thebest-costonfiguration.
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Given a problem wit variables, the general Branch and Bound algorithm
consists opruning (or fathoming portions of the search tree (where each leaf of
the tree represents one of possiblesdlutions). The pruned subtree contains all
solutions that will not be examined by the algorithm. Thus, the earlier pruning is
done, the more computation can be saved.

Once afeasible solution is obtained the algorithm gsesch methodsuch as
backtrackingo find a solution with less cost. Backtracking consists of searching for
other combinationsin the tree that were not considered during the initial search. The
process is repeated until all combinations have been considered, either explicitly
or implicitly, i.e., by pruning the corresponding subtree.

4.1. Use of Branch and Bound

We developed bounding and search methods based on the structure of our
model, so that early fathoming can take place. These methods are described below:

¢ Bounding MethodsNe developed three bounding methods [17] that were
used in combination with the basic bounding method typically described
for Branch and Bound. This combination enabled the algorithm to fathom
solutions at a much earlier stage compared to the generic bounding method
[23].

e Search MethodsWe adopted a depth first approach mainly because it
facilitates the reuse of an existing solution during reconfiguration. This
method can be compared to existingal improvementnethods, in which
the algorithm proceeds from a feasible solutidhattempting to improve
x* by looking for a better solution in an appropriateighborhoodiround
x*. An appropriate discretgeighborhoodnust be large enough to include
some discrete variants of the current solution and small enough to be
surveyed within practical computation. In the case of the depth first search
method we use the concept ohit neighborhoodthe one formed by
complementing components &f one at a time, which is equivalent to
going up one node in the branching tree. Other neighborhoods that were
considered includediChange neighborhoggairwise interchangandt-
Interchange neighborhodd8]. They were added to the depth first method,
resulting in different types of backtracking, as opposed to always going
one node up in the branching tree.

The formal details of the above methods can be found in Ref. [17, 19]. We
compared the efficiency of the algorithm when using the new bounding and search
methods, with the efficiency of the generic Branch and Bound in which only the
basic bound is used. In all the cases we examined, the tailored algorithm resulted
in much less computation [17].



518 Abdu, Lutfiyya, and Bauer

Itisimportant to note that our bounding methods accelerate the search without
affecting the final result of the algorithm. The modified search methods, on the
other hand, despite resulting in optimal solutions in most cases, does not guarantee
optimality. To guarantee optimal results, the combination of search and bounding
methods must be carefully applied, based on the requirements of the problem,
location of the given managed objects and the number of variables.

4.2. Reconfiguration

We are interested in reconfiguring agents and managed objects because of
changes in the underlying system. Changes in the the managed objects specified by
management policies (e.g., increase in the number of managed objects), changesin
data collection mode (e.g., change in the frequency of polling or the load generated
by event notifications due to unexpected failures in the system), changes in the
resources to be minimized (e.g., reflected by changes in the 0O—1 ILP cost functions)
and the addition or removal of management agents are examples of changes that
may require reconfiguration. Our main approach is to reuse the existisg
costmanagement configuration, so that a new configuration does not have to be
determined from scratch, thus saving computation.

We also reduce the backtracking performed by the algorithm. Backtracking
can be time-consuming since it traverses the search tree, from the leaves towards
the root, in search of a better solution. Thus, the more variables involved, the longer
the process can take. Our approach was to identify the cases in which backtracking
is not required or only partially required. This is the case when reconfiguring a
set of agents due to very minor changes, resulting in a new configuration very
similar to the previous one. For example, when adding a managed object to a host
from which agents already collect data, the new management configuration can be
obtained just by adding one or more edges to the previous one.

Figure 6 illustrates the addition of a managed object to the example system
and modeling illustrated in Figs. 4 and 5. When reusing the current solution, the
vectorx is updated to accomodate the addition of new variables or the deletion
of existing variables. New variables are initialized on the basis of the new set of
requirements. Values of old variables are maintained. The above steps result, in
most of the cases, in fewer candidate problems explored by the algorithm [25], as
illustrated in the next section.

5. COMPUTATIONAL STUDIES

It is difficult to determine the average case complexity of our final algo-
rithm, due to the different factors affecting its performance. We examined the
following factors and the way in which they affect performance [17, 26]: num-
ber of variables, requirements on the structure of the management configuration,
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Fig. 6. Sample reconfiguration: Adding a managed object.

cost and weight functions, location of managed objects, and the initial solution
given to the algorithm. We also analyzed the scalability of our algorithm, by
examining the growth in computation as a result of the increasing number of
variables.

We illustrate how our approach reduces the number of management configu-
rations that have to be considered by enabling the mapping of the restrictions given
by the environment into constraints of the optimization problem (the constraints
allow for the algorithm to prune the combinations of variables corresponding to
“nonpractical” management configurations). This is done by comparing the scal-
ability and computation required in two situations, an unconstrained scenario and
a constrained one.

5.1. The Unconstrained Problem

The unconstrained version of the problem is defined by the following:

* There are two types of management agents: collector agents and analysis
agents. The collector agents communicate with managed objects to col-
lect management information. Analysis agents collect data from collector
agents and from each other to execute analysis operations.

¢ There are no constraints as to where the agents must or must not be started,
i.e., they can be started on any of the given set of hosts. In addition, agents
can communicate with any managed object and any other management
agent.
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Fig. 7. The effect of the location of management agents.

* No costs are assigned to the nodes in a management configuration, i.e., the
cost of execution resources is not taken into consideration. In addition, all
edges are assigned the same weight.

We analyze the scalability by executing the algorithm on anincreasing number
of variables and determining the growth in the number of candidate problems,
i.e., the different combinations of management configurations examined by the
algorithm to find thebest-cossolution.

We start by executing the algorithm on two managed objects located in the
same host and two possible hosts on which agents can be started, resulting in
56 variables. We then increase the number of variables by increasing the number
of managed objects to 4, 8, 16, 32, 64, 128, 256, 512, 1024, and®2D4i8.is
repeated for different numbers of hosts on which managed objects and management
agents can be started, as illustrated in Fig. 7.

The graphin Fig. 7 illustrates how the number of candidate problems explored
by the algorithm increases with the number of managed objects and with the
number of hosts on which management agents can be started. We increase the
number of managed objects in three different settings: 2, 3, and 4 hosts on which
management agents can be started. In all three cases, the number of possible hosts
on which managed objects are located is fixed to two.

As we can see, the number of candidate problems grows rapidly with the
number of hosts on which management agents can be started. This was expected,
as different hosts resultin larger number of possible configurations to be examined
by the algorithm.

We note that the efficiency of the algorithm is measured by the number of
candidate problems and the computation needed for each candidate problem. It
is expected that the time taken by the algorithm to determine the best solution

6This upper limit on the number of managed objects was due to constraints in the experimental envi-
ronment used by the authors.
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increases with a larger number of variables and generated candidate problems.
In Fig. 7, the time taken to find thHeest-costonfiguration varied from less than

a second to more than 30 min. The worst time was in the case of 512 managed
objects and four possible hosts for management agents, where no solution was
found even after one hour. It is obvious that the time for each iteration of the
algorithm depends on the type of machine on which the algorithm is executed,
thus not solely determined by the number of iterations and the computation needed
per iteration of the algorithm. We focus on the number of candidate problems as
the measure of the algorithm’s performance, acknowledging that there is room for
improving the time taken to find dest-cossolution.

We also note that the graph in Fig. 7 illustrates the complexity of the algo-
rithm as a function of the number of managed objects. However, the total number
of variables in the problem is the main factor affecting the number of candidate
problems generated and explored by the algorithm. Table | gives the number of
variables resulting from the different combinations of managed objects and pos-
sible location for management agents. For example, the first row in Table | shows
that 30, 56, and 90 variables result from two managed objects and 2, 3, and 4
possible locations for management agents, respectively. The table also shows that
the maximum number of variables examined by the algorithm was 18,504.

5.2. A Constrained Example

We will now consider a more realistic scenario, i.e., a system in which re-
guirements are defined on the allowed management configurations:

¢ Collectoragents collect data from managed objects located in the same host.
If no agents can be started on a hbsall the managed objects located in
h communicate with an agent on any other host.

Table I. Number of Variables for Different Number of Managed
Objects and Agent Location

#MO # VAR-2AG # VAR-3AG # VAR-4AG

2 30 56 90

4c 40 70 108

8 60 98 144

16 100 154 216
32 180 266 360
64 340 490 704
128 660 938 1224
256 1300 1834 2376
512 2560 3626 4680
1024 5140 7210 9288

2048 10260 14378 18504
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¢ A maximum of four managed objects per host.
* The weight assigned to edges is 1.5 times the weight assigned to nodes.

The algorithm must determine the best way to start management agents such
that the sum of execution (i.e., cost of nodes) and communication costs (i.e., cost
of edges) is minimized.

We illustrate the growth in the number of candidate problems explored by
the algorithm with the increasing number of managed objects. We start with the
following basic case:

* Four managed objects located on the same host
¢ Two possible hosts on which collector and analysis agents can be started

After running the algorithm with the basic input we increase the number of
variables by increasing the number of managed objects to 4, 8, 16, 32, 64, 128.
This is repeated for different number of hosts on which management agents can
be started, as illustrated in Fig. 8.

The graphin Fig. 8 illustrates how the number of candidate problems explored
by the algorithm increases with the number of managed objects and with the
number of hosts on which management agents can be started. We increase the
number of managed objects in three different settings: 2, 5, and 10 hosts on which
management agents can be started. These are represented by th2 Amiss
5 Agentsand10 Agentsn Fig. 8.

As we can see, the number of candidate problems explored by the algorithm
grows at a much slower rate compared to the unconstrained case. This is also
expected, as the requirements result in reducing the choices given to the algorithm.

5.3. Complexity of Reconfiguration

To illustrate the efficiency of reconfiguration we use the constrained scenario
described above. For every managed object added, we compare two situations:
in the first one the algorithm starts from scratch for the new number of variables

1000

* max. of 4 managed
objects per host

/ ° me= 1-She
* uniform weights

assigned to nodes
* uniform weight
assigned to edges

4 8 16 32 64 128
#MO

10

1

#Candidate problems (log)

|—0—2 Agents —5—5 Agents —<—10 Agents I

Fig. 8. The effect of the number of possible locations of management agents.



Optimizing Management Functions in Distributed Systems 523

1000

/ —— From Scratch

/ —o— Reconfiguration

4 8 16 32 64 128
#MO

100

10

#Candidate problems (log)

Fig. 9. Efficiency of reconfiguration by reusing existing best-cost manage-
ment configuration.

that result from adding managed objects; in the second case the algorithm reuses
the previous solution to find the ndvest-costonfiguration. The graph in Fig. 9
illustrates the comparison. Note how the number of candidates explored by the
algorithm decreases as solutions are reused and complete backtracking is avoided.

Despite illustrating the case of a change that occurs frequently, Fig. 9 is not
the case for all reconfigurations. The type of change taking place, the number of
variables and the location of the managed objects or agents being added or deleted,
are factors that can have a significant effect on the amount of computation saved
during reconfiguration. Our experiments showed that in some types of topology
changes (e.g., changing requirements from a centralized configuration to a binary-
tree configuration of agents) no computation is saved by our approach. This is
not a bad result, as this type of change does not occur as often as more common
changes such as adding and deleting managed objects. We do not expect drastic
changes in the system, thus the new configuration is expected to be similar to the
previous one, justifying the reuse of the existing solution.

6. PROTOTYPE AND EXPERIMENTS

From a theoretical point of view, our model formalizes many aspects of prac-
tical environments. However, the deployment and use of the model can be diffi-
cult without a tool support through which users/managers can specify the input
to the model (i.e., management requests, requirements, managed objects, etc.).
We have extended our prototype of the proposed model to include a tool sup-
port that (1) can communicate with agents from a variety of platforms, (2) can
be used in a web-based management framework, (3) provides the user interface
through which management requests, management requirements, managed ob-
jects and cost functions can be easily specified, (4) maps the specified information
into the variables, numerical constraints and cost function of the 0-1 ILP prob-
lem, (5) invokes the optimization algorithm and starts agents based on its result.
Figure 10 illustrates the main options provided by the tool. Hostsoptions
(Fig. 11) enables users to select potential hosts on which management agents can
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be started. In thlanagement Policpption, users can specifpanaged objects
(i.e., which hardware/software components should be managedjath¢o be
collected from these managed objects as well as the collection mode (e.g., polling
vs. asynchronous event notification) and #malysisoperations to be executed
on the collected data. Resource requirements and constraints on the location of
agents can be specified under fRResource Requirementption. Finally, topo-
logical constraints on nodes and edges of the management configuration can be
specified undefopology and Configuration Requirements

All the specified requirements are mapped into the corresponding 0-1 ILP
problem’s variables and constraints. The optimization algorithm is invoked to
determine thdest-costnanagement configuration, based on which management
agents are started, and communication between the different agents, as well as
between agents and managed objects are established. We are currently working on
an XML-based middleware that will provide a generic way to start and configure
management agents under heterogeneous computing platforms.

6.1. Experiments

To illustrate the validity of our model, we designed experiments that compare
the resource consumption of the configuration returned by our algorithm with the
resource consumption of other possible configurations. We present the results of
one of our experiments.

Our experimental environment is based on the OSI Management Framework,
where the CMIP protocol is used for agent-to-agent communications. We have
two types of agents: a DCE Collector Agent and a CMIP Statistics Agent. The
DCE Agent is used to collect information from DCE application processes (we
use a sample OSF DCE based distributétear Programmingapplication). It
has a CMIP Interface to communicate with the OSI environment and a DCE
Knowledge Source that enables the use of DCE RPC to communicate with DCE
application processes. It can be deployed both in event-driven management as well
as synchronous polling of managed objects. The Statistics Agent analyses the data
collected by DCE agents. Currently, statistics agents support four operations: max,
min, avg, and total. Agents and managed objects (DCE application processes) can
run in threeR 6000 machines (dada, kimchi and spud). These are configuration
constraints set by the system.

We ran the algorithm with the management policies specifying that the data
to be collected is the number of messages sent by each process (which is to
be collected evgr2 s by polling), a requirement that states that there should
be at most one analysis agent and at most one collector agent per host and
a uniform cost function where only the cost of the edges is considered (i.e.,
resource constraints call for minimizing the network traffic generated during
management).
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We compared the network traffic generated by the configuration returned by
our algorithm with the network traffic generated by three other configurations:
single agent, “expensive,” and binary configuration. The comparison was repeated
for different number of managed objects (i.e. 2, 4, 6, 8, and 10), resulting in 20
different management configurations.

In the single agent configuration, one centralized agent collects information
from all the managed objects. In the “expensive” configuration, all the edges in
the graph are between agents and managed objects in different hosts. The binary
configuration has the feature of limiting the number of outgoing edges from an
analysis agent to a maximum of two.

For example, the 4 configurations for 10 managed objects are illustrated in
Fig. 12. The main difference between Fig. 12(b) and (d) is that, in Fig. 12(d),
the managed objects located in a given host send their information to a collector
agent located in a remote host, as opposed to an agent in the same host (as in
Fig. 12(b)).

The network traffic produced by hosts was measured using the Wiiia€at
utility. The comparison was done using the number of packets remotely transmitted
during management. Results are shown in Fig. 13(a).

The graph also shows that the network traffic was affected by simply switch-
ing the location of agents from theptimal’ configuration in Fig. 12(b) to the
“expensiveconfiguration in (c).

The measured network traffic in Fig. 13(a) was not only due to management,
but also due to the managed application itself, and other activities in the system.

lanaged Application Process O- DCE Management Agent Statistics Management Agent
Q9  Kimchi Spud (@ -Dada
(a) ‘“single agent’’ (b) ““optimal’’ @

@@@@@ @m0 W ww W

Fig. 12. Different configurations with 10 managed objects.
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Fig. 13. Comparing network traffic and results of factorial analysis.

To verify the actual contribution of management to the variability in the generated
network traffic, we performed a factorial analysis on the data. The two main factors
were number of managed objects and the management configuration. The results
are shown in Fig. 13(b): up to 50% of the variability in network traffic is due to
management, thus confirming the need for efficient management configurations.
The errors represent fluctuations in network traffic, and contribution from other
activities in the system. Because of the dynamic nature of distributed systems, there
are constant fluctuations in network traffic values and other resources, resulting in
outliers that affect measurements.

7. DISCUSSION

This paper has proposed a model to optimize the execution of management
functions in distributed systems. We modeled management configurations, quanti-
fied resource usage to accommodate management requirements and modeled other
requirements that impact the choice of a management configuration. The model
was implemented through a Branch- and Bound-based algorithm and a tool sup-
port that enables users to specify management requirements and policies without
the mathematical details of the model.

It is crucial to note the generality of our approach. Our model allows for the
definition of generic constraints on the topology and configuration of agents, with-
out making any assumptions about the underlying framework. The modeling of
constraints reduces the number of configurations to be examined by the algorithm.
In addition, the linear combination of weights and cost functions accommodates a
variety of requirements on resource usage that are also independent of the manage-
ment framework in question. With the increasing deployment of middleware-based
management, such as CORBA, that interconnect with heterogeneous systems, an
approach towards a generic solution is an important contribution. Our model and
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algorithm easily handles system evolution in that it is not necessary to start the
algorithm from scratch to adapt to changes in the system [19].

Our current work on an XML-based middleware adds to the generic feature of
our approach, i.e., system administrators can remotely start and configure hetero-
geneous management agents by taking into account the specific requirements of the
systems in which they are located, in addition to other management requirements.

Despite addressing the specific case of distributed systems management, our
model can be easily extended to a wider range of problems in the area of distributed
systems management, as well as in other areas. For example, client/server based
distributed applications can be configured based on system constraints and in such
away as to minimize the resource usage. The location of client and server processes
can be determined according to the type of application, frequency in which remote
procedure calls are invoked by clients, and the amount of data returned by servers.
Server processes can be dynamically reconfigured as changes occur in clients and
other system components.

There are, however, important points that still need to be addressed. These
include

1. We illustrated how computation is saved by modeling requirements. We
also saved computation by defining bounding and search methods based
on the structure of our model. There are still more improvements to be
done. How can we further improve the performance of the algorithm?

2. How would this solution be applied to larger systems? Currently, our work
has been applied to relatively small systems. We must examine larger sys-
tems where constraints include organizational boundaries or technological
constraints in the model. In addition, practical work in different platforms
and different agents is needed (e.qg., distributed object-based systems such
as CORBA and Java RMI), along with more complex requirements.

3. How can we determine the need for reconfiguration? How much change is
required for a system to be reconfigured? How would we use our model to
dynamically reconfigure a management configuration in such a way that
the cost of reconfiguration is minimized? For example, there are cases in
which agents my have to be migrated from a b a hosh;j, to reduce
the overall cost of the management configuration. The migration, however,
involves the cost of transporting the agent frbpto h;, which, in many
cases, may cost more than the cost saved by the new configuration. In such
situations, our approach should opt for not reconfiguring the system.
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