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A modern view of pharmacokinetics must include both linear and nonlinear systems. Evidence of 
nonlinearities in pharmacokinetics go back to the early 1930's with the origination of the concept 
that ethyl alcohol is eliminated at a fixed rate independent of its concentration in the body. This 
paper contains references to over 160 articles which suggest evidence on nonlinearities in drug 
absorption, distribution, metabolism and excretion, and the pharmaeokinetics of drug action. These 
works are reviewed in a jormat of six tables: Evidence for Nonlinearities in Drug Absorption; 
Drug Distribution ; Drug Metabolism ; Renal Excretion of Drugs and Metabolites ; Biliary Excre- 
tion of Drugs ; and Pharmacokinetics of Drug Action. Special attention is given to the equations 
used to describe nonlinear kinetics, the recognition of nonlinearities, nonlinear models, and the 
ftting of data. Seven guidelines are presented for use in possible future pharmacokinetic studies 
involving drug kinetics. 

KEY WORDS: linear pharmacokinetics; nonlinear pharmacokinetics; plasma protein binding; 
tissue binding; Michaelis-Menten kinetics; nonlinear absorption; nonlinear distribution; 
nonlinear metabolism ; nonlinear renal excretion ; nonlinear biliary excretion. 

I N T R O D U C T I O N  

Publication of the mathematics of accumulation in the one-compartment 
open model by Widmark and Tandberg (1) and the two papers on the two- 
compartment open model by the organizer of this conference, Professor 
Torsten Teorell (2,3), were the origins of pharmacokineties. Many of us 
who have studied the literature of pharmacokinetics have been amazed at 
the insight and foresight embodied in Professor Teorell's two papers. The 
classical one- and two-compartment open linear models have withstood 
the test of time, have achieved accurate assessment of rates of absorption, 
metabolism, and excretion when applied to certain specific drugs, and have 
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been very useful for predictive purposes. Undoubtedly in the future these 
classical models will continue to be as useful as they have in the the past. 
These classical pharmacokinetics models are based on systems of linear 
differential equations, which may conveniently be integrated by the use of 
Laplace transforms. Kinetic linearity was defined by Kriiger-Thiemer (4) as 
direct proportionality of transfer rates to concentrations or concentration 
differences. 

A modern view of pharmacokinetics must include both linear and non- 
linear systems. For many years in the linear pharmacokinetic area authors 
spent a great deal of time and journal space deriving the equations they 
needed to interpret data. Recently, Benet and Turi (5) and Benet (6) made 
significant contributions in the linear pharmacokinetic area. The Benet 
method (6) allows one to write the Laplace transform for the amount of drug 
in any compartment of a mammillary model and to obtain the inverse 
Laplace transform (i.e., the final integrated equation) consisting of a sum of 
exponential terms. The method is highly recommended for those not familiar 
with the technique. Since Dr. Garrett has reviewed classical pharmaco- 
kinetics, I will spend most of my time comparing linear and nonlinear 
pharmacokinetics and discussing nonlinear pharmacokinetics. 

HISTORICAL 

Evidence of nonlinearities in pharmacokinetics goes back almost as far 
as the theory of linear pharmacokinetics. Widmark (7,8) in the early 1930s 
originated the concept that ethyl alcohol is eliminated at a fixed rate inde- 
pendent of its concentration in the body. After an oral dose of ethyl alcohol, 
a certain range of alcohol blood concentrations appear to give a straight line 
when the data are plotted on cartesian coordinate graph paper, but a line 
with concave decreasing curvature when plotted on semilogarithmic graph 
paper. Although Widmark's concept is still widely accepted and taught, it is 
really incorrect, as discussed in a paper by Wagner and Patel (9). 

In performing the literature search for this review, I was rather amazed 
to find in my files over 160 articles which contained evidence of nonlinearities 
in drug absorption, distribution, metabolism, and excretion, and in the 
pharmacokinetics of drug action. This review is not intended to be an 
exhaustive search. In the area of pharmacokinetics of drug action, only 
reviews, and not original literature, are cited. Much of the literature has been 
summarized in a series of tables. Table 1 lists the evidence for nonlinearities 
in drug absorption, Table II the evidence for nonlinearities in drug distribu- 
tion, Table III the evidence for nonlinearities in drug metabolism, Table IV 
the evidence for nonlinearities in renal excretion of drugs and metabolites, 
Table V the evidence for nonlinearities in biliary excretion of drugs, and 
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Table I. Evidence for Nonlinearities in Drug Absorption 

Drug Comments Reference 

Several 

Several 

Riboflavin 

Antipyrine-C14 

Griseofulvin 
Folic acid and 
5-methyltetrahydro 

folate 

Convallotoxin 

Barbiturates 

Acidic and basic 
drugs 

Sulfaethidole 

Several 

Several 
Guanethidine 

p-Substituted 
acetanilide 

Indomethacin 

Pentobarbital 
Acidic and basic 

drugs 
SMicylamide 

Mathematical description of carrier- 
mediated transport across a membrane 

Mathematical aspects of effects of drugs on 
active transport systems 

Saturable absorption process evident in 
fasted subjects not evident when subjects 
fed 

Change in absorption rate with change in 
intestinal blood flow rate 

Nonlinear absorption curves in man 
Absorption obeyed Michaelis-Menten 

kinetics 
No evidence of saturable absorption 

process 
In  v i t ro  studies indicated active transport 

mechanism for absorption 
Absorption rates correlated with binding 

to mucosal tissue 
Theoretical models for drug absorption 

involving stagnant water layer 
Change in slope of first-order plot for 

disappearance from intestinal lumen of 
dog with change in intestinal blood flow 
rate 

Kinetics of absorption related to intestinal 
blood flow rate 

Kinetics of carrier-mediated ion transport 
Percent of dose absorbed decreased with 

increasing dose in man 
Hypothesized that tissue binding caused 

nonlinearity of first-order plots in buccal 
absorption test 

Drug strongly bound to intestinal tissue 
during absorption and binding was 
dependent on pH 

Delay in gastric emptying 
Theoretical models for drug absorption 

which ignore stagnant water layer 
Rate of appearance of glucuronide in 

plasma, subsequent to intestinal wall 
metabolism, rate-limited by transport 
across the basal barrier rather than by 
metabolism 

Wilbrandt and 
Rosenberg (10) 

Patlack (11) 

Levy and Jusko (12) 

Ochsenfahrt and 
Winne (13) 

Rowland e ta l .  (14) 
Hepner et  al. (15) 

Strum et  al. (16) 

Lauterback (17) 

Kakemi et  aI. (18) 

Suzuki et aL (19) 

Crouthamel et  al. (20) 

Winne (2t) 

Lauger and Stark (22) 
McMartin and 

Simpson (23) 
Dearden and 

Tomlinson (24) 

Fuwa et  al. (25) 

Smith et  al. (26) 
Wagner and Sedman 

(27) 
Barrr and Riegelman 

(28, 29) 
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Table II. Evidence for Nonlinearities in Drug Distribution 

Drug Comments Reference 

Several Mathematical description of drug Jacquez et al. (30) 
distribution 

Kinetics of elimination from bloodstream Fat emulsions and 
chylomicrons 

Sulfobromophthalein 

Ouabain-H 3 

Guanethidine 

Methotrexate 

Kanamycin 

Aspirin 

Bishydroxycoumarin 

Selenite-Se 75 

Thiopental 

Benzylpeniciltin 
Digoxin 

lndocyanine green 
Diphenhydramine 
Benzopyrene 

Methacycline 
Methylene blue 

Erythromycin acid 
erythromycin-2'- 
propionate ester 

Duanomycin 

Several 

Distribution and rate of uptake by liver 

Day-to-day variation in elimination curves 

Distribution in plasma and uptake by 
heart 

Time course in plasma and tissues of rat 

Distribution in mice, rats, dogs, and 
monkeys 

Time- and dose-dependent tissue levels 
Flow-rate-limited model for distribution in 

mice 
Nonlinear kinetics in perilymph from 

scala vestibuli of guinea pigs 
Time courses in plasma and synovial fluid 

different 
Unusual interaction with plasma proteins 
Liver-plasma distribution affecting rate of 

metabolism 
Three-compartment open model 
Effect of plasma protein binding on 

distribution and elimination in rats 
Dose dependence of rapid disappearance 

from blood 
Flow-rate-limited model for thiopental 

pharmacokinetics 
Active transport from CSF to blood 
Atrial tissue concentrations and plasma 

concentrations 
Rapid and saturable uptake by liver 
Very rapid tissue binding in rhesus monkey 
Exponential relationship between tissue 

concentrations and oral dose 
Lung tissue and serum concentrations 
Tissue levels in rat as function of dose 

showed saturation effects 
Blood levels in dog as function of dose 

showed nonlinearities 
Most drug bound to tissues and only about 

1 ~o bound to plasma proteins 

Rapidly taken up and tenaciously held by 
tissues 

Effect of perfusion rate and distribution 
factors on elimination kinetics in a 
perfused organ system 

Hallberg et al. (31-33) 

Andersson et al. (34), 
Goresky (35) 

Winkler and Tygstrup 
(36) 

Marks et aL (37} 

Schanker and 
Morrison (38) 

Henderson et al. (39) 

Zaharko et al. (40) 
Bischoff et  al. (41) 

Stupp et al. (42) 

Sholkoff er al. (43) 

Nagashima et al. (44) 
Nagashima et al. (45) 

Nagashima et al. (46) 
Levy and Nagashima 

(47) 
Oldendorf (48) 

Bischoff and Dedrick 
(49) 

Dixon et al. (50) 
Binnion er at. (51) 

Paumgartner et al. (52) 
Darch et al. (53) 
Rees et al. (54) 

Timmes et al. (55) 
DiSanto and Wagner 

(56,57) 
DiSanto and Wagner 

(57) 
Wiegand and Chun 

(58) 

Alberts et al. (59) 

Nagashima and Levy 
(60) 
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Drug Comments Reference 

Salicylate 

Secobarbital 

Griseofulvin 

Bupivacaine 

Methylhydroxy- 
coumarin 

Decreasing blood pH in rats associated 
with increasing tissue concentrations 

Tissue and blood levels did not obey zero- 
or first-order kinetics 

Dose-dependent kinetics in some dogs 
attributed to changes in tissue 
distribution 

Semilogarithmic plasma concentration 
plots showed continual curvature 

Tissue and plasma levels in the rat 

Hill (61) 

Somani et  al. (62) 

Chiou and Riegelman 
(63) 

Mather et  al. (64) 

Tomura and Akera 
(65) 

Table IlL Evidence for Nonlinearities in Drug Metabolism 

Drug Comments Reference 

Ethyl alcohol 

Benzoic acid 

Salicylic acid 

Salicylsalicylic acid, 
aspirin, salicylic 
acid 

Originated idea of fixed rate of 
elimination-independent concentration 
in body 

Showed that apparently linear decline of 
plasma alcohol concentration (k0) 
increased with increase in both dose of 
alcohol and initial concentration (Co) 

Showed that serum alcohol concentration, 
time data fit the integrated form of the 
Michaelis-Menten equation 

Showed mathematically that 1/k  o should 
be linearly related to l / C o ,  but V,, and 
K,, change in same subject from day to 
day 

Conjugation with glycine limited by 
availability of glycine 

Evidence of saturation effects in formation 
and active tubular secretion of salicylurate 
and salicylphenolic glucuronide following 
4-g oral dose of sodium salicylate in 
man ; evidence of active tubular 
secretion of salicylate and salicyl acyl 
glucuronide 

Intensive investigation of capacity-limited 
formation of salicylurate 

Capacity-limited formation of salicyl 
phenolic glucuronide 

Competitive inhibition of salicylic acid 
conjugation with glycine and mutual 
inhibition in gtucuronide formation 

Completed model to explain salicylate 
pharmacokinetics 

Metabolic kinetics 

Widmark (7,8) 

Eggleton (66) 

Lundquist and 
Wolthers (67) 

Wagner and Patel (9) 

Bray et  al. (68) 

Schachter and Manis 
(69) 

Levy et  al. (70-77) 

Levy et  al. (78 80) 

Levy et  al. (77,81-83) 

Levy et  al. (80) 

Nordquist et  al. (84) 



~ 8  Wa~er 

Table III. Continued 

Drug Comments Reference 

Salicylamide Conjugation with sulfate limited by Levy and Matsuzawa 
availability of sulfate (85) 

Pharmacokinetics of elimination in man Levy and Matsuzawa 
(86) 

Barr and Riegelman 
(87) 

Levy and Procknal 
(82) 

Amsel and Levy (83) 

Salicyclic acid and 
salicylamide 

Benzoic acid and 
salicylic acid 

Acetaminophen and 
salicylamide or 
salicylic acid 

Isoniazid 

p-Aminobenzoic acid 

Diphenythydrantoin, 
phenylbutazone, 
biscoumacetate, 
probenecid 

Bishydroxycoumarin 
Warfarin 

Novobiocin 

2-Pyridinealdoxime 
methochloride 

Heparin 

Tetracycline 

Acetanilide 

Diphenylhydantoin 

Several 

Amylobarbitone 

Effect of capacity-limited metabolism on 
plasma levels of unchanged drug 

Mutual inhibition in glucuronide formation 

Simultaneous.conjugation with glycine 

Biotransformation interaction 

Inhibition of acetylation by p-amino- 
benzaldehyde 

Percent acetylation related to dose, rate of 
administration, and nutritional factors 

Changes fin elimination half-life and 
apparent volume of distribution with 
dose 

Elimination kinetics in several species 
Elimination kinetics in several species 

Elimination half-life dependent on dose in 
adults and children 

Log log relationship between peak plasma 
concentration and dose 

Change in elimination half-life and 
apparent volume of distribution with dose 

Area under serum concentration curve at 
equilibrium state averaged twice the 
area from 0 to ~ after single dose 

Apparent increase in elimination half-life 
after multiple dosing 

Formation of 4-hydroxyacetanilide shown 
to obey Michaelis Menten kinetics 

Plasma levels following IV administration 
in man 

IV administration in man indicated dose- 
dependent kinetics did not  occur 

Oral administration in man indicated dose- 
dependent kinetics did occur 

Studies in mice and rats indicated dose- 
dependent kinetics did occur 

Human and rat data fit with integrated 
form of Michaelis-Menten equation 

Properties of the Michaelis-Menten 
equation and its integrated form which are 
useful in pharmacokineties 

Influence of dose on distribution and 
elimination kinetics 

Levy and Yamada (88), 
Levy and Regardh 
(89) 

Kakemi et al. (90) 

Drucker et al. (91) 

Dayton et al. (92) 

Nagashima et al. (93) 
Nagashima and Levy 

(94) 
Wagner and 

Damiano (95) 
Kondritzer et al. (96) 

Sidell et aL (97) 
Estes et at. (98) 

Wagner (99) 

Doluisio and Dittert 
(lO0) 

Shibasaki et al. (lOl) 

Glazko et al. (102) 

Suzuki et al. (103), 
Blum et al. (104) 

Arnold and Gerber 
(105) 

Gerber et al. (106, 107) 

Gerber and Wagner 
(I08) 

Wagner (109) 

Balasubramaniam 
et  al. (110) 
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Table IV. Evidence for Nonlinearities in Renal Excretion of Drugs and Metabolites 

Drug Comments Reference 

Renal excretion of weak organic acids and Weiner et al. (111-113) 
bases 

Saturable reabsorptive process 
Rhythmic urinary excretion due to variable 

urine pH 
Kinetic studies on transport in isolated 

renal tubules 
Saturable reabsorptive process 
Diurnal variations in elimination rate 

Use of analog computer to predict 
reabsorption and excretion 

Periodic excretion peaks 

Several 

Bile acids 
Amphetamine 

PAH and other 
organic acids 

Riboflavin 
Sulfonamides 

Basic and acidic 
drugs 

Anisotropine 
methylbromide 
and 
propantheline 

Several 

Acetaminophen 

Methylene blue 

p-Methyl mandelic 
acid 

Simultaneous chemical reaction and 
diffusion model for uphill renal transport 

Formation of metabolite more rapid than 
excretion of metabolite 

Periodic excretion peaks in man 

Michaelis-Menten kinetics of renal tubular 
secretion 

Weiner et al. (114) 
Beckett and Rowland 

(115) 
Huang and Lin (116) 

Jusko et al. (1179118) 
Dettti and Spring (119) 
Beckett et al. (120,121) 

Pfeffer et  al. (122) 

Shibasaki et  al. (123) 

Shibasaki et  al. (124) 

DiSanto and Wagner 
(125) 

Nagwekar and 
Unnikrishnan (126) 

Table V. Evidence for Nonlinearities in Biliary Excretion of Drugs 

Drug Comments Reference 

Several Concentrative transfer from blood to bile Schanker (127) 
Sulfobromophthalein Transport maximum Schoenfield et  aL (128) 
Several Influence of enterohepatic circulation on Williams et al. (129) 

toxicity of drugs 
Active transport into bile 
Role of enterohepatic circulation 
Successive demethylation and biliary 

secretion 
Two nonlinear processes work in opposite 

directions ; biliary excretion in rat 

Tetracycline 
Indomethacin 
Methyl orange 

Riboflavin 

Lanman et  al. (130) 
Yesair et al. (131) 
O'Reilly et  al. (132) 

Axelson and Gibaldi 
(133) 

increases disproportionately with increasing 
body levels ; tissue binding also nonlinear 



370 Wagner 

Table VI. Evidence for Nonlinearities in Pharmacokinetics of Drug Action 

Subject matter Reference 

Nonlinear equation for relating response to drug concentration 
Nonlinear equation relating turnover time of goldfish to 

ethanol concentration in bathing fluid 
Dose-dependent decline of pharmacological effects of drugs 

with linear pharmacokinetic characteristics 
Relationships between drug concentration and response 
Pharmacokinetics of drug action 
Relationship between dose and plateau levels of drugs 

eliminated by parallel first-order and capacity-limited kinetics 

Wagner (134) 
DiSanto and Wagner (135) 

Gibaldi and Levy (136) 

Wagner (137) 
Levy and Gibaldi (138) 
Tsuchiya and Levy (139) 

Table VI the evidence for nonlinearites in pharmacokinetics of drug action. 
It may be well that I have missed some significant references, and to the 
authors of those papers I apologize. However, Tables I VI summarize the 
references I could readily find. 

C O M P A R I S O N  OF LINEAR AND N O N L I N E A R  
P H A R M A C O K I N E T I C S  

Drug Absorption 

In linear pharmacokinetics, the process of drug absorption has usually 
been described mathematically by one or two first-order processes. Krfiger- 
Thiemer (4,140,141) stated that deviations from linear drug absorption 
kinetics may result from low solubility of the drug, from a low rate of dissolu- 
tion, from many different types of sustained release preparations, and from 
saturable active absorption processes. In addition, one may add the following : 
fluctuations and changes in intestinal blood flow rate, as result of the work of 
Ochsenfahrt and Winne (13), Crouthamel et al. (20), and Winne (21); the 
change in pH of luminal contents as a basic, acidic, or amphoteric drug moves 
down the gastrointestinal tract, as the result of the work of Shore et al. 

(142) and Hogben et al. (143) and the theoretical papers of Suzuki et al. (19,144) 
and Wagner and Sedman (27) ; and the possible effects of binding of drugs to 
mucosal tissue, as a result of the work of Kakemi et al. (18), Dearden and 
Tomlinson (24), and Fuwa et  al. (25). Delay in gastric emptying, such as 
caused by food in the stomach, enteric-coated tablets, sustained-release 
preparations, anticholinergic agents, etc., will also cause nonlinearities in the 
absorption process. The work of Rowland et al. (14) with griseofulvin in man 
illustrates, that administration of even a micronized drug powder yields 
absorption data which cannot be fitted well by simple first-order kinetics. 
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Metabolism and Active Tubular Secretion in the Kidney 

Figure 1 compares linear and nonlinear pharmacokinetics with respect 
to metabolism and active tubular secretion in the kidney. At the top, a plot 
of - d C / d t  vs. C is linear, in conformity with the first-order rate equation 
- d C / d t  = KC. At the bottom, a plot of - d C / d t  vs. C gives a curved line, 
which approaches an asymptote ( - d C / d t  ~ Vm as C ~ oe), in conformity 
with the equation of Michaelis and Menten (145), shown inset in the figure. 
It should be noted that the K = 2.2 line at the top is really the tangent line to 
the - dC/dt vs. C plot at the bottom, since Vm/K m ~ acontan t  (2.2) as C ~ 0. 

0 , 2 0  

0.15 

dC 
-Zi- 

0,10 

0.05 

LINEAR PHARMACONINETICS 

K= 2 .2  K : 1 . 1  K =0.55 

dC 

. . . . . . .  5 
C 

NONLINEAR PHARMACOKINETICS 

0.15 

dC 
- ~- 

Co~1 .0 ,  Vrn~0.22, Km~O.T 

0.05 Vm 

~-m = 2.2 

0.05 O.lO 0.15 0 .20  0 .25  0 .30  O.35 
C 

Fig. 1. Compar ison  of linear and nonlinear pharmaco-  
kinetics with respect to metabolism and active tubular 
secretion. See text for explanation. 
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If Michaelis-Menten kinetics are obeyed, the percent saturation of the 
enzyme is given by 

dC/dt C 
- - -  x 1 0 0 -  x 100 (1) 

Vr,, K m + C  

It is the relative values of K m and C which determine whether the Michaelis- 
Menten equation should be "'collapsed" to a zero-order or first-order rate 
expression. The fundamental assumptions behind linear pharmacokinetics 
are that (a) saturable rate processes may be "collapsed" to first-order rate 
equations, and (b) saturable binding processes may be "'collapsed" to the 
equation of a straight line. In actual practice, these both involve the approxi- 
mation of a segment of a gently curving line by a straight line. The data in 
Table VII, calculated using equation 1 and literature values of K,~, suggest 
that the Michaelis-Menten equation should not be "'collapsed" to a zero- 
order rate expression at least for salicylate, blood alcohol, and diphenyl- 
hydantoin. The computer simulation of salicylate urinary excretion data by 
Levy et al. (80), the computer fitting of whole capillary blood alcohol con- 
centrations by Wagner and Patel (9), and the plasma diphenylhydantoin 
concentration data by Gerber and Wagner (108) support this statement. The 
estimation of the V m and Km of the Michaelis-Menten equation from blood 
concentration or urinary excretion data is about as easy with a modern 
computer as the estimation of a first-order rate constant. Since the K,, and 
Vm values obtained will usually provide an adequate description of the 
kinetics at all dose levels, pharmacokineticists in the future may wish to use 
this approach rather than report a series of rate constants or half-lives of 
elimination which vary with the dose administered. 

Uptake of Drug by Tissues 

Figure 2 compares linear and nonlinear pharmacokinetics with respect 
to the uptake of drugs by tissues. At the top is the theoretical prediction of 
the amount of drug in the tissues as a function of dose for the two-compart- 
ment open model with rapid intravenous injection. The appropriate equation 
from which the lines were drawn is shown inset in the figure. The model 
predicts that the amount of drug in tissues, A2, will be a linear function of dose 
administered, for a fixed value of time, t. The types of curves one expects in 
nonlinear pharmacokinetics is indicated at the bottom of the figure. The 
asymptotic nature of the curves results from the assumption that there is a 
limiting amount of drug that can be taken up by the tissues. This appears 
reasonable since there is obviously only a certain amount of each kind of 
tissue in the body. The curves shown in Fig. 2 were generated as follows: 
Values of A = 10, B = 1, and K = 2.75 were assigned, and equation 2 of 
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Table VII. Calculation of Percent Saturation of "Enzyme System" 
from Available Literature Values of K,. of the Michaelis Menten 

Equation" 

Dose of salicylate 

(rag) 

Percent saturation of "~enzyme system" if 
entire dose were made available to the 

enzyme 

Salicylurate b Phenolic glucuronide c 

300 46.9 35.6 
600 63.8 52.5 

1000 74.6 64.9 
2000 85.5 78.7 
4O00 92.2 88.1 

Percent 
saturation of 

Blood alcohol "enzyme system" 
concentration metabolizing 

(mg/ml) ethyl alcohol a 

Plasma 
concentration of 

diphenylhydantoin 
(pg/ml) 

0.1 50-0 
0.2 66.7 
0.3 75.0 
0.4 80.0 
0.5 83.3 
0.75 88.2 
1.0 90.9 
1.5 93.75 
2.0 95.2 
3.0 96.8 

Percent saturation of "enzyme system" 
metabolizing diphenylhydantoin e 

50 88 1 ) 
85157 Toxic range 40 

J 

3o 81,6) 
20 74.6)Therapeut ic  range 
10 59.6) 

5 42.5 Subtherapeutic 

aCalculated from equation 1 in text. 
bBased on the K,, value of 340 mg of Levy et al. (80) for subject A. 
CBased on the K,, value of 542 mg of Levy et el. (80) for subject A. 
dBased on the K m value of 0.1 mg/ml of Goldstein (146). 
~Based on the Km value of 6.77 pg/ml of Gerber and Wagner (108). 
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E 

3 

2 

o 

LINEAR PHARMACOKINETIr 

, / 0 5 f ,  
2 = ~ B - 0.25 fir 

k 1 2 = l  hr -1, o = 4 h r  -1 ,  l?=1.25 hr -1 

1 t r  

/ 2 krs 

4 hr$ 

5 10 15 20 25 30 

DOSE I m g / K l )  

NONLINEAR PHARMACOKIRETICS 
5 

3 

2 

5 10 15 20 25 30 

NOSE ~ m g / K g )  

Fig. 2. Comparison of linear and nonlinear pharmaco- 
kinetics with respect to uptake of drug by tissues. See 
text for explanation. 

Wagner (147) and DiSanto and Wagner (148) was numerically integrated 
for C o values of 0.5, 2, 5, 10, 20, and 50, corresponding to doses of 1.917, 4.33, 
6.67, 9.55, 14.76, and 29.9 mg/kg, based on an assumed volume of distribution, 
V, of 0.5 liter/kg. Hence the C,t data generated fit the integrated form of 
equation 2, shown as equation 3. The amount 

dC/dt = -KC/[1 + AB/(B + C)23 (2) 

of drug in the tissue, T, was 

t =  l k I ( l + A )  l n ( ? ) + ; l n {  -B+-CB+Coj ~ + A { ( B  C-+~7~B+Co)}IC~ 

(3) 
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calculated from a given value of C by means of 

T' = A'C/(B + C) (4) 

In equation 4, the value of A' employed was A' = A V = 10 x 0.5 = 5 mg/kg. 
In the simulation, A' represented the maximum amount of drug, with di- 
mensions of mg/kg body weight, which could be taken up by tissues. 

There is very little literature concerning the measurement of drug in 
various tissues of the body as a function of both time and dose. Recently, my 
coworkers have been generating such data. Figure 3 shows the data of 
DiSanto and Wagner (57) on the uptake of methylene blue in four tissues of 
the rat, presented differently than in the original paper. These are preliminary 
data since only one rat was studied at each dose. However, nonlinearity is 
very evident. Dr. Robert N. Smith, while at The Upjohn Center for Clinical 
Pharmacology, University of Michigan Medical School, administered 
diphenhydramin e in doses of 4, 6, 8, 12, and 16 mg/kg by rapid intravenous 
injection and killed the rats at 1, 5, 15, 30, 60, 120, 180, and 240min after 
injection. Diphenhydramine was measured by a fluorometric method in 
brain, lung, heart, spleen, liver, and plasma of four rats at each time and each 
dose level. The tissue concentration and plasma concentration vs. time plots 
showed marked nonlinearties. The data will be published in the British 
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Journal of Pharmacology in the future. Figures 4 and 5 illustrate a small 
amount of the data collected. In Fig. 4, the brain concentration of diphenhy- 
dramine is plotted as a function of dose administered. Each point represents 
a separate rat. Only the l-rain and 2-hr data have been plotted. Figure 5 
shows the lung (at the top) and heart (at the bottom) concentration data as a 
function of dose. It is noteworthy that these data show the nonlinear asymp- 
totic curvature analogous to the curves generated with the simulation example 
shown in Fig. 2. 

Methylene blue is completely ionized at physiological pH values and 
hence is analogous to a quaternary ammonium compound. Diphenhydra- 
mine is a typical weakly basic amine. Both of these drugs were taken up by 
tissues extremely rapidly; with diphenhydramine, the tissue concentration 
measured l rain after injection was usually the highest concentration 
observed. With methylene blue, an average of 27% of the dose (range 
20-32 %) was accounted for in only four tissues (liver, kidney, heart, and lung) 
3 rain after the intravenous dose. Currently Theodore Benya, one of my 
graduate students, is studying the tissue distribution of warfarin, an acidic 
drug, in the rat. The same picture is emerging. After intravenous injection, the 
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intravenous injection. Data generated by Dr. Robert N. Smith. 

uptake of warfarin in tissues is extremely rapid and the disappearance 
exceedingly slow. The general picture emerging from these studies is that 
tissue uptake of drug is extremely rapid--much more rapid than one would 
usually predict from two-compartment analysis--and liberation of the 
tissue-bound drug is a slow process. Kinetic nonlinearity is very evident. 
The often repeated statement that highly plasma protein-bound drugs do 
not get into tissues is apparently incorrect since warfarin is about 97 ~o bound 
to plasma proteins. 
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A CURRENT AND FUTURE PROBLEM IN PHARMACOKINETICS 

It is exceedingly difficult, if not impossible, to determine if a given set 
of whole blood, plasma, or serum concentrations of a drug measured after 
one dose is best described by a classical linear or nonlinear mathematical 
model. The problem is even more difficult with urinary data. Obtaining data 
after only one or two doses of a drug is usually insufficient to deduce the 
appropriate model. It is feasible for known nonlinear data to appear to be 
linear pharmacokinetic data when only one dose of a drug is studied. This is 
so even when the drug is administered by rapid intravenous injection. This 
concept is illustrated by two simulations below. 

Example 1 

The data points in Fig. 6 obey equation 3 and were generated both by 
numerical integration of equation 2 and by use of equation 3 and a digital 
computer. The points in the concentration range 104).05/~g/ml and in the 
time range 0-9 hr were fitted essentially perfectly by the equations appropriate 
to the classical two-compartment open model shown as equations 5 and 6. 

The solid line through the points 

C = [Co/(~ - fl)]E(k21 - fi) e -;` - ( k 2 ,  - ~)e -~'] (5) 

ceil = �89 + k2, + kel ) -}- ~/(k12 + k2, + ke,) 2 - 4k2,ke, ] 

where ~ > fl (6) 

in the indicated ranges are the model-predicted concentrations for the two- 
compartment open model. The dotted line in the figure is the extrapolated 
two-compartment model prediction. The points deviate from the line beyond 
9 hr. However, if these were real data, and if one only had an assay sensitive 
to 0.05 pg/ml, then one could not decide on these basis o f  these data only 
whether equation 3 or equations 5 and 6 were the appropriate mathematical 
mode]. This example was published by DiSanto and Wagner (148). If data 
were available from several simulations with different C o values (or real data 
were available following administration of several different doses), then a 
distinction between linear and nonlinear pharmacokinetics could be made. 

Example 2 

The data points for curve A of Fig. 7 are the same as those in Example 1 
and Fig. 6. However, in Fig. 7 the least-squares log Ct line was drawn through 
the points in the 5- to 9-hr time region. The dotted line indicates the extra- 
polation of the least-squares line. Hence only terminal points, in somewhat 
less than one log cycle, were linear on the semilogarithmic graph paper. The 
data points for curve B of Fig. 7 were obtained by numerical integration of 
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e q u a t i o n  8 : 

dC/dt = [-VmC/(K= + C)]/[1 + AB/(B + C) 2] (7) 
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Fig. 6. Solid points are data simulated with equation 3. Solid 
line is from least-squares fit of 0- to 9-hr points to equations 5 
and 6, based on the two-compartment open model. The following 
values were used in the simulation: C o = 10, B = 1.0, A = 
10 #g/ml, K = 2.75 h r -  1, and V = 0.5 l/kg+ Dotted line indicates 
extrapolation according to the two compartment analysis. 
From DiSanto and Wagner (148) with permission of copyright 
owner. 
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Fig. 7. Solid points are data simulated with equation 3 and are 
same points as in Fig. 6. Solid line is least-squares log C,t line 
based on 5- to 9-hr points and lower dotted line is extrapolation 
of this line. Open points were simulated with equation 8 using 
V = 1.375, K~ = 0.5~ A = 10, B = 1, and C O = 10. Line drawn 
through the points from 5 to 28 hr is the least-squares log C,t line 
indicating apparent first-order elimination, yet data were really 
generated from a model involving Michaelis-Menten kinetics and 
Langmuir-type tissue binding. 

T h e  l ine d r a w n  t h r o u g h  the  data  po in t s  f r o m  5 to 28 hr is the least - squares  
log  C, t l ine  a n d  suggests  s i m p l e  f irst-order e l i m i n a t i o n .  Yet  the e q u a t i o n  
f r o m  w h i c h  the  data po in t s  were  der ived  i n v o l v e d  a m o d e l  w i th  M i c h a e l i s -  
M e n t e n  e l i m i n a t i o n  k inet ics  and  L a n g m u i r - t y p e  b i n d i n g  of  drug  to t issues.  
T h e  part icular  set o f  p a r a m e t e r  va lues  used  in the  s i m u l a t i o n  were  Vm = 1.375, 
K m = 0.5, A = 10, B = 1, a n d  C o = 10. M i c h a e l i s - M e n t e n  kinet ics  a l o n e  
causes  c o n c a v e  decreas ing  curvature  w h e n  the C,t data  are p lo t t ed  on  s emi -  
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logarithmic graph paper. Langmuir-type tissue binding causes convex 
decreasing curvature when the C,t data are plotted on semilogarithmic 
graph paper. A judicious mixture of Michaelis-Menten elimination kinetics 
and Langmuir-type tissue binding (i.e., the parameters are in a certain 
"space") yields the result shown as line B in Fig. 7. In a modern view of 
pharmacokinetics, we must be aware that such things can happen and, 
perhaps, not be as sure as we have in the past that fitting data to a model 
proves that the model is correct. 

Three "real-world" examples along the same lines will be discussed. 

Salicylate 

As indicated in Table III, Schachter and Manis (69) published evidence 
of saturation effects in the formation and active tubular secretion of salicylu- 
rate and salicyl phenolic glucuronide from salicylate following an oral dose 
of 4 g of sodium salicylate in man. They also reported evidence of active 
tubular secretion of salicylate and salicyl acyl glucuronide. During the 
period 1965-1972, Dr. Levy, who is with us today, intensively studied the 
aspirin-salicylate problem (see citations in Table III under salicylic acid). He 
tackled the problem many ways and has certainly shown, at least to my 
satisfaction, that one must use Michaelis-Menten kinetics to elucidate the 
formation of salicylurate and salicyl phenolic glucuronide from salicylate. 
Rowland and Riegelman (149) and Rowland et al. (150) evaluated the 
pharmacokinetics of acetylsalicylic acid in man following intravenous 
administration by means of the classical two-compartment model for a drug 
and its metabolite. Wagner (151) showed that approximately 50% of a 
metabolite excreted in the urine may be excreted at such rates that the 
cumulative urinary excretion plot would appear to be nearly linear when 
the model is a catenary chain with parallel paths involving only first-order 
rate constants. In a review as late as 1968, Wagner (152) supported the first- 
order elimination kinetics of salicylate. However, currently I agree with 
Dr. Levy's interpretation. It was undoubtedly Dr. Levy's and Dr. Krtiger- 
Thiemer's papers which first stimulated my interest in nonlinear pharmaco- 
kinetics. I am sure we have all learned a great deal from the saga of salicylate. 
In case the point is lost, I wish to reiterate that individual sets of nonlinear 
data can be fitted by linear pharmacokinetic equations and therein lies the 
real problem. 

Diphenylhydantoin 

Dayton et aI. (92) published data which indicated that the elimination 
half-life of diphenylhydantoin in the dog apparently increased when the 
dose was raised from 20 to 50 mg/kg. Analysis of diphenylhydantoin plasma 
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concentration data, obtained following intravenous administration to man, 
by Suzuki et al. (103) and Blum et al. (104) indicated that dose-dependent 
kinetics did not occur. Plasma concentration data obtained following oral 
administration of diphenylhydantoin to man, published by Arnold and 
Gerber (105), indicated that dose-dependent kinetics did occur. Studies in 
mice (106) and in rats (107) also indicated marked nonlinearity. Recently, 
Gerber and Wagner (108) fitted sets of diphenylhydantoin plasma concentra- 
tion data in man, and whole blood diphenylhydantoin concentration data in 
the rat, to the integrated form of the Michaelis-Menten equation : 

C O - C + Kmln (Co/C) = Vmt (9) 

Although evaluated by the authors according to first-order kinetics, the 
diphenylhydantoin plasma concentration data of Glazko et al. (102) exhibit 
concave decreasing curvature on semilogarithmic graph paper, as expected 
for Michaelis-Menten kinetics. Based on the data published by Suzuki et al. 

(103) and Blum et al. (104), I, personally, would accept them as conventional 
two-compartment open model data. However, the data I evaluated with 
Dr. Gerber obviously are fitted very well by equation 9. I have no further 
explanation of the discrepancy in the observed data at the present time. 

Riboflavin in the Rat 

Axelson and Gibaldi (133) discussed an unusual example of nonlinear 
pharmacokinetics. Estimation of the availability of riboflavin-Y-phosphate 
after oral administration to the rat is greatly complicated because of the 
occurrence of a complex and markedly nonlinear dose-dependent excretion 
of the vitamin. The elimination of the vitamin involves at least two nonlinear 
processes occurring simultaneously and having opposite ~ffects on the 
dose-total urinary recovery relationship. One process involves biliary 
excretion which increases disproportionately with increasing body levels of 
riboflavin. The other process appears to be a binding of the vitamin to tissues 
which function kinetically as deep compartments. Apparently, the higher 
the body level of the vitamin, the smaller the fraction that can be "immobili- 
lized'" in the compartment and the larger the fraction that can be detected 
in the urine. The latter is another way of stating in words what is implied by 
equation 4. 

Recognition of Nonlinearities 

1. Administer the drug intravenously at several different doses and 
obtain whole blood or plasma concentrations as a function of time. The entire 
curve must be defined including samples as early as 1 and 3 rain after in- 
jection. Estimate the Co value of each curve by fitting the equation In C = 
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In C O - K t  to only the first two points of each set of data. Calculate the values 
of the ratios C / C  o and plot vs. time. Put all sets for all doses on the same piece 
of semilogarithmic graph paper. If each set forms its own curve and the data 
are not superimposable, then some type of nonlinearity exists. If the curves 
are superimposable, then the data are linear. 

2. Fit each set of data (one dose per set) to the equations appropriate 
to the two-compartment open model, i.e., equations 5 and 6. If the estimated 
parameters change in a uniform manner with dose, then this is a strong 
evidence of a nonlinear system. 

3. If drug is administered orally or intramuscularly, then divide each 
plasma concentration by the dose, or the normalized dose, and plot the ratios 
vs. time. If the curves are not superimposable, then some type of nonlinearity 
exists. 

4. Measure tissue concentrations of unchanged drug as a function of 
both time and dose. If one obtains curves such as shown at the bottom of 
Fig. 2 and in Figs. 3 and 5, then nonlinear tissue binding exists. 

5. Administer a metabolizable drug in a readily available form such as 
an aqueous solution at several dose levels. Collect the urine until essentially all 
of the metabolite(s) is excreted. Plot the amount  of each metabolite excreted 
as a percentage of the total urinary excretion against the dose. If the percentage 
decreases uniformly as the dose increases, then Michaelis-Menten kinetics 
should be suspected. 

6. Administer the drug on a multiple dose regimen at several dose 
levels, establish an equilibrium state, then measure the metabolite con- 
centration in the whole blood or plasma in a dosage interval at the equilibrium 
state. If the areas under the metabolite concentration curves at the equilibrium 
state are not a linear function of dose, but rather a curvilinear function of dose, 
then this is excellent evidence for the operation of Michaelis-Menten 
kinetics in the formation of the metabolite. One must be careful to insure 
that excretion is rate-limited by formation of the metabolite and that one is 
not dealing with a case such as acetaminophen, where the formation step of 
conjugation proceeds much more rapidly than the subsequent excretion step 
(124). 

NONLINEAR M O D E L S  AND THE FITTING OF-DATA 

Plasma Protein Binding 

The effects of plasma protein binding of drugs on drug distribution and 
elimination are still controversial. One type of deviation from first-order 
elimination kinetics from the human body is characterized by a diminishing 
steepness of the slope of the total plasma concentration vs. time curve on 
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semilogarithmic graph paper (i.e., convex decreasing curvature). This type of 
deviation exists for some sulfonamides which show a high degree of binding 
to plasma proteins and was discussed and referenced by Krtiger-Thiemer (4). 
The higher the affinity for protein binding, the greater will be the bending of 
the log concentration vs. time curve. This is just the opposite behavior to that 
Martin (153) predicted from a judgment of the same problem. Krtiger-Thiemer 
(4) published a mathematical model which could explain such deviations. 
In the conclusion of a review on the binding of drugs by plasma proteins, 
Meyer and Guttman (154) stated: 

An impression, gained from the literature, is that there appears to be a tendency 
to overemphasize the general importance of the binding phenomenon in the behavior 
of drugs in the body. Evidence exists that only in the case of highly bound agents wilt 
binding be important in a practical sense. Many workers, in attempting to extrapolate 
in vitro data to in vivo expectations, tend to lose sight of the fact that the plasma com- 
prises a relatively small fraction of the total volume available for drug distribution 
and that protein~drug complexes of rather extraordinary stability must be formed to 
substantially reduce the amount of drug that exists in the body in the active, diffusible, 
unbound form. A number of important drugs do, however, fall in the category of 
"'strongly bound" and these serve as examples which emphasize the need to at least 
consider protein binding as a necessary parameter in the characterization of drug 
behavior. 

Coffey et al. (155) described numerical methods for the solution of 
differential equations arising from nonlinear binding of drugs to plasma 
proteins, assuming one- and two-compartment pharmacokinetic models. 
The results suggested that binding of drugs to plasma proteins should cause 
detectable nonlinearity in the log C vs. t plot only if doses are sufficiently high 
to approach saturation of binding sites, or if the number of binding sites in 
plasma is small. The effect of competition for binding sites in plasma was also 
studied by the same authors. They reported: "It appears that, unless the 
tissue distribution volume is quite small, competition for binding sites would 
not be expected to have a large effect." Curry (156) also studied this problem, 
but his results are discussed under tissue binding. 

During his lifetime, Dr. E. Krtiger-Thiemer contributed a great deal to 
pharmacokinetics. Only a few of his many papers are cited in this review 
(4,140,141,157), but the cited papers contain many references to his work. He 
was mainly concerned with the problem of accumulation of drugs, the 
pharmacokinetics of suitable dosage requirements for individual patients, 
and the establishment of sufficient plasma concentration of free (unbound) 
drug, once the parameters of binding of the specific drug to plasma proteins 
were known. He developed and applied many mathematical models to 
reach these objectives. He developed many digital computer programs to 
allow the fitting of observed data to a specific mathematical model. 

For a 70-kg man, total plasma albumin is about 120 g and total inter- 
stitial albumin is about 156g (158). Hence total body albumin is about 
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0.276 kg or about 0.4 ~o of body weight. If total body water is taken as 60 % 
of body weight, the "total tissue" expressed as dry weight is 28 kg or 40 % 
of body weight. Thus the ratio of total dry tissue mass to total albumin mass 
is about 100: 1. Since there are about 70 cardiac passes of blood per minute, 
and the dissociation of plasma protein-drug complexes, where it has been 
measured, is an exceeding rapid process, with a half-life of the order of 
20 mseconds (159), it is not difficult to see that in most cases the binding of 
drugs to tissues will be kinetically much more important than the binding 
of drugs to albumin. This was pointed out also by Gillette (160). It is perhaps 
fortuitous, but Wiegand and Chun (58), after studying the serum protein 
and tissue binding of erythromycin and erythromycin-2'-propionate ester, 
calculated that drug bound to serum proteins is only about 1 70 of the dose 
and that most of the drug is bound to tissues. 

Tissue Binding 

In the light of the discussion above, it is amazing that so little experi- 
mental investigation has been conducted on the measurement of tissue 
concentrations of drug as a jhnction of both time and dose. Most "distribution" 
data of specific drugs in animals and man have resulted from measurement 
of tissue concentrations at only one or two times after administration and 
usually following only one specific dose of drug. Such data give no insight into 
the kinetics of drug distribution. Recently, some investigators have measured 
tissue and plasma or whole blood concentrations as a function of tissue and 
dose. Drs. Bischoff and Dedrick, who reviewed other topics during this 
conference, have reported such data and developed pharmacokinetic models 
to explain such data. Dedrick and Bischoff (161) discussed pharmacokinetics 
in application to the artificial kidney: Bischoff and Dedrick (49) described 
thiopental pharmacokinetics ; Zaharko et al. (40) reported on time- and dose- 
dependent tissue concentrations of methotrexate ; and Bischoff et al. (41,162) 
described methotrexate pharmacokinetics. Dr. Bischoff won the 1972 
Ebert Prize for his 1971 article "Methotrexate Pharmacokinetics,'" which 
was published in the Journal of Pharmaceutical Sciences (41). The flow-rate- 
limited model, described in that paper, incorporated compartments for the 
gastrointestinal tract, the liver and enterohepatic circulation, plasma, kidney, 
and muscle. Three compartments in series were used to simulate bile forma- 
tion and secretion time in the liver. Transit of drug down the gastrointestinal 
tract was handled similarly, except that provision was made for transport 
through the intestinal wall. Tissue binding was assumed to be the sum of a 
linear nonspecific binding and a strong binding, presumed to be associated 
with dihydrofolate reductase, in conformity with equation 10: 

Cti .... = R .  Cp + (a. Cp)/(e + Cp) (10) 
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The model predicted the time courses of methotrexate in luminal contents of 
small intestine, liver, kidney, muscle, and plasma of mice, rats, and dogs with 
reasonable accuracy. As part of the model for thiopental pharmacokinetics, 
Bischoff and Dedrick (49) used two-term equations, such as equation 11, to 
estimate the bound concentration, x, of thiopental in tissues and in plasma : 

x = B1KIC/(1 + K I C  ) + B2K2C/(1 + K2C ) (11) 

In equation 11, C represents the free (unbound) concentration of drug. 
Curry (156) reported that concentrations of chlorpromazine fluctuate 

in the plasma of dogs and man after intravenous doses. He examined the 
possibility that the fluctuations could arise from movement of the drug be- 
tween tissue and plasma stores by performing simulations. His calculations 
showed that small changes in protein binding of drugs in plasma and tissues 
could cause redistribution of highly bound drugs between tissues and 
plasma. Also, redistribution would be greatest after changes in tissue binding 
of highly bound drugs. He hypothesized that fluctuations in chlorpromazine 
plasma concentrations could be caused this way. 

A generalized nonlinear pharmacokinetic model was elaborated by 
DiSanto (163) and Wagner (147). The model takes into account the nonlinear 
tissue binding of drug to one or more tissues associated with one or more 
fluid compartments. Dose-dependent metabolism or urinary excretion may 
be incorporated into the generalized model by replacing the first-order 
elimination constant by an expression of the Michaelis-Menten type. Several 
specific applications of the general theory were discussed. The chapter (147) 
contains 126 equations, hence is too extensive to be reviewed here. Equations 
2 and 3, above, result from the simplest specific application of the generalized 
model and were employed by DiSanto and Wagner (148) in simulations and 
by DiSanto and Wagner (125) in interpreting whole blood concentrations 
obtained following rapid intravenous injection of five different doses of 
methylene blue in a dog. Figure 8 shows the results of a simultaneous fit of 
the whole blood concentration data, obtained following the five different 
doses of methylene blue, to equation 3 ; only one value of each of the para- 
meters A, B, and K and five different C o values were estimated during the 
digital computer fitting with Dr. Metzler's program NONLIN, modified 
by addition of a rootfinder subroutine. It is feasible that such an approach, 
with the same or alternate mathematical models, may yield valuable in- 
formation for studies in comparative pharmacology. In such a case, the 
number of parameters estimated is small, and comparison of the values 
obtained from one species of animal to another with those estimated from 
human data may be a useful clue as to the appropriate species of animal for 
long-term toxicological studies. 



A Modern View o( Pharmacokinetics 387 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.I 

0 

0.941at(Paragneters: A = 12.2, B = 0.046, g = 8.D0] 

1.046 hr 2.8 �9 

2 r r~ /k  9 

< 
o>--- 

0 0 

[ 2 3 4 5 
i0 

2.4 

2.0 

1.6 

i.2 

0.8 

0.4 

0 

5 ~/~' .9 

I 2 3 4 5 6 

40 

36 

32 

28 

24 

20 

16 

12 

8 

4 

0 

4 

0 

7.5 mg/kg 

,3 0 
2 ; 4 

40 

36 
10 ~ A q  

32 

28 

24 

2O 
I 

~6 4 

12 

I 

i 2 3 4 5 e 7 i 2 3 4 5 

1.5 r~g/q~q 

Fig. 8. Results of simultaneous nonlinear least-squares fitting of five sets 
of methylene blue whole blood concentrations to equation 3. Data from 
DiSanto and Wagner (57). 

Metabol ism 

Lundquist  and Wolthers  (67) were the first to use the integrated form 
of the M i c h a e l i s - M e n t e n  equation,  shown as equation 9, to explain blood 
concentrat ion data. They fitted terminal serum concentrat ions  of ethyl 
a lcohol  in man to the equation.  The parameters,  Kin, Vm, and C o for the 
fitting were obtained by graphic methods.  The differential form, that is, the 
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Michaelis-Menten equation itself, was used by Bischoff, Dedrick, and 
coworkers in their thiopental (49) and methotrexate (41) pharmacokinetic 
models. Levy et al. (80) simulated the time courses of the urinary excretion 
rate of total salicylic acid and metabolites, salicyluric acid, salicyl acyl 
glucuronide, salicyl phenolic glucuronide, gentisic acid, and salicylic acid in 
four subjects following a 3-g oral dose of salicylic acid as sodium salicylate in 
aqueous solution. In order to do this, it was necessary to determine the values 
of 14 individually determined constants (79). The formidable technical 
effort required an average of over 400 analyses per dose per subject. The 
constants estimated following the 3-g dose allowed excellent predictions 
following 1- and 0.19-g doses. The model equations employed involved 
Michaelis-Menten equations for the formation of salicylurate and salicyl 
phenolic glucuronide and first-order equations for formation of salicyl acyl 
glucuronide and gentisic acid and for excretion of unchanged salicylic acid and 
its absorption from the gut. 

Figure 9 is taken from the paper of Wagner and Patel (9). The points are 
whole capillary blood ethanol concentrations measured in the same subject 
at different times. Two of the curves resulted from 60-ml, two of the curves 
resulted from 30-ml, and one curve resulted from 15-ml oral doses of 95 ~o 
ethyl alcohol. The solid lines drawn through the terminal points are the 
model-predicted values, based on fitting to equation 9 by numerically 
integrating the Michaelis-Menten equation on the digital computer and the 
assignment of equal weights. It was found in this study that the absorption 
rate of ethanol, and the values ofK m and V,,, varied widely in the same subject 
and apparently in a random manner not related to dose or time of administra- 
tion. 

Figure 10 is taken from the paper of Gerber and Wagner (108). It shows 
the fit of plasma concentrations of diphenylhydantoin in a human subject to 
equation 9. The data were collected starting 12 hr after the last dose when 
doses of 2.3, 4.7, and 7.9 mg/kg of sodium diphenylhydantoin (as Dilantin) 
were administered daily for 3 days during different time periods. The V,, 
value estimated was 0.253/~g/(ml x hr) and the K,, value estimated was 
7.77/~g/ml. 

Krfiger-Thiemer and Levine (141) discussed several non-first-order models 
of drug metabolism including one which incorporated both capacity 
limitation and restricted availability of substrate. 

Miscellaneous Causes of Nonlinearities 

As summarized in Tables I, IV, and V, nonlinearities can result in drug 
absorption, in active tubular secretion and reabsorption in the kidney, and in 
biliary excretion of drugs and their metabolites. Circadian rhythm in 
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Fig. 9+ Whole blood concentrations in a single subject at 
different times. Doses were 15ml (| 30ml  (/X and O), 
and 60 ml (Q) and []) of 95 ~ ethanol. Solid lines are least- 
squares fits of terminal concentrations to equation 9. From 
Wagner and Patel (9). 

hepatic drug-metabolizing enzyme activity, as discussed by Civen et al. (164) 
and Radzialowski and Bousquet (165), will undoubtedly cause nonlinearites 
even though we may not be able to "see" them readily. Enzyme stimulation 
and inhibition (166) may also cause nonlinearities. 
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single subject at different times fitted to equation 9. '+Zero 
time" is 12 hr after the last of multiple doses of 2.3, 4.7, and 
7.9 mg/kg of diphenylhydantoin sodium. From Gerber and 
Wagner (108) with permission of the copyright owner. 

Data Fitting Aids 

The fitting shown in Fig. 10 was achieved by successive trials of numerical 
integration of the Michael is -Menten equat ion by the R u n g e - K u t t a  method 
using a simple electronic calculator. This is analogous to the use of an 
analog computer  and suffers from the fact that  no s tandard deviations of 
the estimated parameters,  or other  mathematical  and statistical information,  
are obtained along with the fitting. Usually one uses a high-speed digital 
computer  with a suitable nonlinear  least-squares estimation program. 
Dr. Berman 's  SAAM program,  Dr. Metzler 's  N O N L I N ,  and Contro l  Da ta ' s  
M I M I C  ate examples of successful programs which have been used widely for 
data-fitting and simulation purposes. Recently, Atkins (167,168) described a 
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new versatile digital computer program for nonlinear regression analysis. 
The iteration procedure used in this program possesses two important 
advantages over those used in the past, namely that second partial derivatives 
need not be calculated and convergence is guaranteed. Quasilinearization, 
discussed by Buell and Kalaba (169), may prove to be an aid in fitting of 
nonlinear models to e~'~perimental data. 

Pooling of F~rallel Paths 

If there are parallel first-order paths in classical linear pharmacokinetics, 
one can simply add the first-order rate constants to obtain the overall 
elimination rate constant. But can we pool parallel Michaelis-Menten paths 
and parallel Langmuir-type tissue binding equations justifiably? About a 
year ago, I gave this problem to one of my graduate students, Allen J. Sedman, 
and at the meeting of the A.Ph.A. Academy of Pharmaceutical Sciences in 
April 1972 we presented a paper entitled "Quantitative Pooling of Both 
Parallel Michaelis-Menten Formation Equations and Langmuir-Type 
Equations for Binding of Drugs to Tissues" (170). In the paper, we answered 
the above question with a qualified "yes." Sedman developed equations 
which allowed calculation of the pooled parameters, V~p and K~p, from the 
microscopic parameters Vml, V,,2, K,,1, and Km2 for parallel Michaelis- 
Menten paths and also for the Langmuir-type equations. The simulated data 
could always be fitted essentially exactly using the calculated pooled 
parameters. When the parameters have a certain relationship to each other, 
there is no problem in the sense that the pooled parameters need not change 
in dose. In certain cases, which are usually predictable, the pooled parameters 
will change with change in dose. The simulations suggested the appropriate 
experimentation with a given drug. One should study as low a dose as one 
can measure adequately and as high a dose as one may give safely, and see if 
the nonlinear parameters appear to change with dose. If they do not, then 
one is reasonably safe with the pooling concept within that dose range with 
that drug. In this rapidly moving field, one is never alone. When we returned 
from the Houston meeting, we found the paper by Spears et al. (171) and the 
paper of Neal (172) which treated the same problem, but in a different way 
than we tackled it. 

SOME COMMENTS ABOUT MICHAELIS MENTEN KINETICS 

In Wagner (109) and Wagner and Patel (9), the properties of the 
Michaelis-Menten equation and its integrated form are discussed extensively. 
We will not delve deeply into those papers at the present time~ However, 
one or two points are worthy of special consideration. As one can see in 
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Figs. 9 and 10, when equation 9 is obeyed (solid lines) there is initially an 
apparently linear segment and then a sharp break in the curve-- the whole 
curve taking on a "hockey stick" shape. The apparently linear segment has 
often been assumed to be linear, because the assumption has been made that 
the enzyme is saturated. But this is a poor assumption because independent 

of the initial Co value the integrated form of the Michaelis-Menten equation 
always gives a pseudolinear portion over about two-thirds of the range or 
more. It is only pseudolinear since the derivative changes when the con- 
centration changes, as evidenced by looking at the Michaelis-Menten 
equation itself. If one does assume that this pseudolinear segment is linear, 
and we symbolize the slope by k 0, then one can derive equation 12: 

1/k o = 1/V m + [Km/O.632Vm] x 1/C o (12) 

Equation 12 indicates that if Vm and K,, remain constant, then a plot of the 
reciprocal of the slope of the pseudolinear portion will be linearly related 
to the reciprocal of the initial concentration or C o value. This shows why the 
classical concept of ethanol metabolism in man and animals is really in- 
correct. The apparently linear decline of alcohol blood levels will vary with 
the dose administered even if K,, and V m remain constant, and the slope will 
also be a function of the volume of distribution and sometimes of the 
absorption rate. However, as stated previously, when five doses of ethanol 
were taken at different times the values of K,,, V,,, and k 0 varied widely. 
Hence the classical concept that alcohol in a given individual is eliminated at 
a fixed rate independent of its concentration in the body was not supported 
by our studies. Also, one the value of K,, for the particular system is known, 
one can use equation 1 to calculate the percent saturation of the "enzyme 
system" at different C values of interest. 

A CHECKLIST FOR POSSIBLE FUTURE P H A R M A C O K I N E T I C  
S TUDIES  

From my reading and experimental investigations, certain guidelines 
have emerged : 

1. Preferably do intensive sampling after intravenous administration 
of several (preferably five or six) doses in at least one species of animal. The 
data from such studies provide much more information, when only one or 
two rats or dogs are used per dose, than when five to ten rats or dogs are 
given with only one or two doses of a drug. 

2. After rapid intravenous injection, take initial samples very early 
after injection, such as at 1, 3, 5 min. Continue sampling until assay sensitivity 
is reached fol lowing all doses. Much of the apparent dose-dependent "first- 
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order" kinetics in the literature was caused by estimating the first-order rate 
constant in a different concentration region after each dose. Also, extremely 
rapid uptake of many drugs by tissues has been "missed" since the first 
tissue samples were taken at 1 or 2 hr after injection. 

3. Measure tissue levels as a function of both. time and dose in at 
least one species of animal such as the rat. The rapid intravenous route 
of administration is preferred and sampling should be as discussed 
above. 

4. After oral administration of many rapidly absorbed drugs, blood 
samples should be taken as early as 10--20 rain alter administration in order 
to obtain data on the "up part'" of the plasma or blood concentration curve. 
Some drugs are absorbed by passive d(.~i~sion extremely rapidly in Jasting 
subjects. We have a distorted view since in most human studies the first blood 
sample has been taken l hr or later after administration. Recently, we found 
that the first blood sample, taken at 20 min after oral administration of 
sodium p-aminosalicylate in an aqueous solution to a fasting human subject, 
gave the highest plasma concentration of PAS. 

5. To check quickly for tissue saturation effects, by measuring only 
plasma levels, perform a "'loading-dose'" experiment. Give, say, 5 mg/kg of 
drug by rapid intravenous injection and measure plasma concentrations of 
unchanged drug at 1, 5, and 10 min. Then give 10 mg/kg, and 1 hr later give 
5 mg/kg, and measure the plasma concentration again at 1, 5, and 10 min 
after the 5 mg/kg dose. If the plasma levels are appreciably higher in the 
loading-dose experiment, this constitutes good evidence of some saturation 
phenomenon and usually it will be saturable tissue binding. With some drugs, 
the cited doses obviously would have to be drastically altered. 

6. Be sure the analytical method used is specific for the unchanged 
drug and one or more metabolites and that the method has good sensitivity 
and reproducibility. After intravenous administration, it is preferable to be 
able to measure drug concentrations through at least two and preferably 
three or more log cycles on semilogarithmic graph paper. After oral ad- 
ministration, the assay method should be sensitive enough to follow the 
drug levels down to at least one-tenth or one-twentieth of the peak con- 
centration. Samples should be collected so that this criterion can be met after 
each treatment, if possible. The literature is replete with erroneous half-lives 
of drugs since plasma levels were not measured for a long enough period of 
time. In drug availability studies, the calculation of "bioavailabitity" from 
measurement of the area under only one-half or two-thirds of the plasma 
concentration curve is just plain misleading. 

7. Estimate elimination half-lives after different doses are adminis- 
tered to the same subject or animal in the same concentration range, not 
necessarily in the same time range. 
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