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Abstract. We formulate and solve a new supervisory control problem for discrete event systems, The objective 
is to design a logical controller--or supervisor--such that the discrete event system satisfies a given set of require- 
ments that involve event ordering, The controller must deal with a limited amount of controllability in the form 
of uncontrollable events. Our problem formulation considers that the requirements for the behavior (i.e., set of 
traces) of the controlled system are specified in terms of a "desired" behavior and a larger "tolerated" behavior. 
Due to the uncontrollabl, e events, one may wish to tolerate behavior that sometimes exceeds the ideal desired 
behavior if overall this results in achieving more of the desired behavior. The general solution of our problem 
is completely characterized. The nonblocking solution is also analyzed in detail. This solution requires the study 
of a new class of  controllable languages. Several results are proved about this class of languages. Algorithms 
to compute certain languages of interest within this class are also presented. 
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1. Introduction 

L1. Background 

The modeling of a discrete event system (DES) can be done at various complementary 
levels of abstraction. At the logical level, one is only concerned with the logical order 
of the events in the traces--the system's trajectories--and not with the time elapsed between 
two consecutive events. At the temporal level, time information is attached to events in 
the traces. At the stochastic level, the times of occurrence of the events are random variables. 
These levels also correspond to the usual methodology of analysis of a particular DES. 
In the first step, one undertakes a qualitative analysis of the system's properties at the logical 
level. Typically, this leads to the proposal of various logical controllers for the system in 
order to satisfy all the qualitative specifications that involve event ordering. Each logical 
controller leads to a much smaller set of traces for the closed-loop system for which one 
then undertakes a quantitative analysis at the temporal and stochastic levels. 

*Research supported in part by the National Science Foundation under grants ECS-8707671, ECS-9057967, and 
ECS-9008947. 
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In this paper we consider the design of a logical controller--or supervisor--for a given 
DES in order to satisfy a given set of qualitative specifications. This is usually referred 
to as the problem of "supervisory control ?, An important issue in that context is how to 
deal with the possibly limited amount of controllability available to the controller. A theory 
for the supervisory control of DESs that specifically addresses such controllability issues 
has been developed over the last 10 years by several researchers, most notably RJ. Rarnadge, 
W.M. Wonham, and E Lin (see the survey paper by Ramadge and Wonham [1989]). We will 
refer to this body of work as supervisory control theory (SCT) in the remainder of this 
paper. A brief review of the notation and main definitions of SCT is given in the appendix. 

In the paradigm of SCT, only a proper subset Zc of the set of events ~ is controllable, 
meaning that only the events in Zc can be disabled by the controller. The set Zu : = Z - ~2c 
is the set of uncontrollable events. There are essentially two reasons for an event to be 
uncontrollable. First, the event may be inherently uncontrollable because it models an un- 
preventable failure of the system; standard examples are "machine breakdown'' in manufac- 
turing, "packet lost" in networks, and so forth. Second, the event may be uncontrollable 
because it would be impractical or undesirable to make it controllable (i.e., to allow for 
its disablement) in an implementation of the control system. For example, one may not 
wish to allow for the disablement of the bottleneck machine in a manufacturing system; 
the events modeling the dynamical behavior of that machine would thus be uncontrollable. 
In a real-time computer system, operations that correspond to the execution of a task with 
a "hard" time constraint should never be disabled. From a different perspective, it may 
be undesirable to make an event controllable because of hardware limitations or costs. 

Consider a DES G whose behavior is specified in terms of the two (nonempty) languages 
Lm(G) and L(G); L(G) is the set of all traces that the uncontrolled system can generate, 
while L,~(G) is the subset of marked traces. As is standard in SCT we require the follow- 
ing condition: 

(HO) Lm(G) = L(G) c_ £,*. 

In their seminal paper, Ramadge and Wonham [1987], formulate the problem of super- 
visory control (SCP hereafter) in terms of two languages that are subsets of Lm(G). The 
first language, denoted Lmin, corresponds to the minimally acceptable behavior, and the 
second one, denoted Lain, corresponds to the legal or admissible behavior. The goal in SCP 
is to synthesize a controller such that the behavior of the controlled system, characterized 
by the two languages L,n(S/G) and L(S/G), satisfies the correctness condition 

Lmi n ~ L(S/G) ~ Lain 

and the "nonblocking" condition 

Lm(S/G) = L(S/G). 

The correctness condition is obvious. The nonblocking condition requires that the controlled 
DES never allows a trace that, albeit legal, cannot be extended to any member of the set 
of marked admissible traces Lain. Intuitively, the controlled system should not "deadlock." 
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More recently, Chen and Lafortune [1991] have considered a generalized version of SCP 
where the nonblocking condition is relaxed. In their formulation, there is no minimally 
acceptable behavior, but rather an admissible language Lain for the marked traces and an 
admissible language L~ for all traces (marked or unmarked); La = L~ c_ L(G). It is re- 
quired that L~ (7 Lr~(G) = L~,~, but in general L~,~ c_ L,. The control problem, termed 
supervisory control problem with blocking (SCPB), is to synthesize S such that 

L(S/G) c La, 

The performance of S is evaluated in terms of the trade-off between its satisficing measure, 
defined as the set Lm(S/G ) A Lain = Lm(S/G), and its blocking measure, defined as the 
set L(S/G) - Lm(S/G). The satisficing measure indicates how much of the admissible lan- 
guage Lain is allowed under control, while the blocking measure indicates how often the 
execution blocks due to the impossibility of continuing the execution within Lam. The moti- 
vation behind the formulation of SCPB is that a nonblocking controller may be too conser- 
vative in the sense that it must prevent all uncontrollable events that lead to blocking, a 
strategy that may considerably constrain the behavior of the system. SCPB does not have 
a unique solution, but rather a set of" solutions that can be compared in terms of their respec- 
tive satisficing and blocking measures. 

1.2. Our Approach 

We take a slightly different and somewhat more general approach than the work mentioned 
in the previous section. We assume that the qualitative specifications for the design of the 
logical controller are given in terms of two languages B1 and B2, with B1 c B2, where 
Bl represents the "desired" behavior and B2 represnts the "tolerated" behavior. We believe 
that in several applications, a problem formulation in terms of desired and tolerated behaviors 
is more appropriate than one in terms of minimally acceptable and admissible behaviors. 
B1 represents the ideal behavior of the controlled system, the type of behavior that one 
would require if all the events were controllable. B2 is determined from the collection of 
all "hard" requirements that are imposed on the controlled behavior. On the other hand, 
there may be "soft" requirements in B~ that one would like to satisfy but could relax if 
they prove too restrictive due to the limited amount of controllability. This is the excess 
of the desired behavior that is tolerated. In this sense, one would tolerate behavior that 
would violate some of the soft requirements, if that would help in achieving more of the 
desired behavior. 

For example, in a manufacturing system, there may be a set of desired maximum buffer 
occupancies and a larger set of tolerated maximum buffer occupancies if extra storage space 
is available nearby. In network protocols, it may be desired to never retransmit, but tolerated 
to retransmit a certain number of times. Finally, we mention that the recent work of Chen 
and Lafortune on SCPB [1991] is also relevant to our problem formulation if one selects 
B l = Lam and B2 =- La. 

The control problem that we consider is as follows. We are given a DES satisfying (H0). 
Our specifications are given in terms of the two languages B1 and B2. Since the desired 
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behavior is more naturally expressed in terms of marked traces, we assume that B~ c_ 
Lm(G). On the other hand, a prefix of a tolerable trace should also be tolerable. Hence 
we assume that the tolerated behavior is a closed sublanguage of L(G). In summary, our 
assumptions are as follows: 

m 

(H1) BI c Lm(G) and B~ = B1 (7 Lm(G ) (i.e., B1 is Lm(G)-closed). 
(H2) Bz c_ L(G) and B2 = B2. 
(H3) Bi c_ B2. 

Informally, the objective is to design a controller such that the controlled system 

1. Never goes beyond the tolerated behavior 
2. Achieves as much as possible of the desired behavior under 1 
3. Achieves 2 with the smallest possible solution. 

All comparisons are with respect to (w.r.t.) set inclusion. Conditions 1 and 2 are natural, 
while condition 3 is to ensure that as few as possible of the soft requirements are relaxed. 
We call this control problem supervisory control problem with tolerance (SCPT). It may 
or may not be required that the controller be nonblocking; both cases will be studied. 

A precise formulation of SCPT is given in Section 2, But one can already observe that 
the trade-off inherent in SCPB is absent in SCPT because condition 2 is enforced before 
condition 3. In contrast to SCPB, one can therefore talk of the solution of SCPT. It should 
also be pointed out that it is not required that B 2 (7 Lm(G ) = BI. In this sense SCPT is 
more general than SCPB, where as we said earlier it is assumed that La (7 Lm(G) = Lain. 

1.3. Specifying Desired and Tolerated Behaviors 

B1 and B2 are in effect the design parameters associated with the control problem. Although 
their precise form is dependent on the particular problem considered, some general cases 
are worthy of mention. 

Blocking and Recovery. There are several situations in computer systems (e.g., operating 
systems, database systems) where deadlock detection and recovery schemes perform better 
than deadlock prevention schemes. (Recovery refers to the process of resolving a deadlock.) 
When recovery is not explicitly modeled in the uncontrolled discrete event process--and 
this is usually desirable for the sake of simplicty--deadlock corresponds to blocking in 
the framework of SCT (see, e.g., [Lafortune 1988]). Typically, there are some deadlock 
situations that can be viewed as "soft" in the sense that they are considered recoverable. 
Let B r be the (closed) set of traces corresponding to such situations. Then for a given B1, 
one could take 

m 

B2 = B1 U Br. 
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Rare Uncontrollable Events. Certain uncontrollable events may have a very low probability 
of occurrence. If  some of these events lead to undesirable, yet tolerable, behavior, then 
one may be willing to take a chance with them. Let Zi - Zu be the set of "rare" and toler- 
able uncontrollable events. One could define 

One may also wish to consider the more general case 

B2 = BI K (7 L(G), 

where K is a tolerated set of suffixes that go beyond the desired B1. 

Language Enlargement. In the same vein, one could be more formal than above and pre- 
cisely quantify the probabilities of events in given states. This is the approach first presented 
by Lin [1989]. This leads to the definition of an e-enlargement of a given language, where e 
is the degree of tolerance tbr the enlargement. There are several ways to define e-enlargement; 
one possible general definition is 

(E)~ := E U {st E L(G): Prob(slCD) < e}, 

where Prob(sl CD) is the probability that trace s occurs under condition CD. For example, 
by defining CD = (s' ~ E has occurred), one could enlarge E to include traces st of the 
form s'at, with a E E,, such that the first event a that takes the traces outside of E occurs 
with probability less than e in state 6(s', qo). In our context, one could take 

m 

BE = (B1)~ 

for any appropriate definition of e-enlargement. 

1.4. Organization and Contribution of  Paper 

The previous sections have motivated the formulation of the new supervisory control prob- 
lem SCPT. The remainder of this paper is devoted to the solution of SCPT. The general 
case is considered in Section 2, the nonblocking case in Section 3. While the general solu- 
tion is straightforward, the nonblocking solution poses technical difficulties, since an opti- 
mal solution may not exist. Several new results are developed for the study of that case. 

Nonblocking solutions of SCPT depend upon the following operation on languages: 

Given L c M _ Lm(G), find a minimal superlanguage of L that is (i) contained in 
M, (ii) controllaNe, and (iii) M-closed. 

This operation is studied in detail in Section 4. The main results that we prove about it 
are: (i) there is a nonempty set of minimal controllable and M-closed superlanguages, but, 
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in general, no infimal superlanguage; (ii) some minimal superlanguages need not be regular; 
and (iii) there may be an infinite number of regular minimal superlanguages. In addition, 
we present an algorithm (on languages) that generates all minimal superlanguages. An im- 
plementation of the algorithm based on finite state machines is described in Section 5. That 
implementation generates a subset of the regular minimal superlanguages. 

Section 6 concludes the paper, while some useful definitions and technical results are 

collected in appendix. 

Remark L1. Notation: In the development that follows, we will often be doing operations 
on one language that will result in a set of languages. Let L be the given language and 
let op denote the given operation. Then the set of resulting languages will be denoted by 
L °p , while L °p will denote any element of L °p . 

2. General Solution of SCPT 

2.1. Problem Formulation 

Formally, we state SCPT as follows: 

Supervisory Control Problem with Tolerance (SCt~). Consider languages Lm(G), L(G), 
B~, and Bz satisfying (H0)-(H3). Synthesize a controller S such that 

1. US~G) c_ B2. 
2. (VK c_ L(G))K = K = K ~ c_ Bz = K O B~ c_ L(S/G) n B~. 
3. (¥K c L(G))[(K = I~ = K ~ c B2) A (K n B~ = L(S/G) N B~)] = L(S/G) c K. 

The first condition requires that the language generated by S/G be tolerable. The second 
condition requires that the language generated by S/G contain the largest possible part of 
the desired behavior under the first condition. The third condition requires that the language 
generated by S/G be smallest under the first two conditions. 

In this section, we do not restrict ourselves to nonblocking solutions. Hence, the con- 
troller synthesized may block; i.e., Lm(S/G) ~ L(S/G). Nonblocking solutions will be dis- 
cussed in Section 3. It turns out that general solutions are much simpler than nonblocking 

solutions. 

2.2. General Solution 

The solution of SCPT is unique, as shown in the following theorem. 

q~EOREr~ 2.1. The unique solution of SCPT is given by 

L(S/G) = (B~ n B~) ~. 
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Proof. We prove that the three conditions in the problem statement are satisfied. 

1. L(S/G) = (B, n 

= L(S/G) ~ (B~) ~ 

= Bi  2 

c__2 B2. 

2. (¥K G 

:=~ 

:=:¢, 

=:,. 

:=~ 

3. (vK c_ 

(since the operation ('); is monotonic) 

(since B~ is closed and controllable) 

L(G))K = ~2 = K t G Bz 

K ___ B~2 (since K is controllable) 

K n B1 ~ B~ n B1 

K n B1 G (B~ n B1) ~ 

K n B1 G (B~ n B~) ~ n BI 

K n B~ _c L(S/G) n Bl. 

L(G))[(K = [( = K t c_ B2) /x (K n B~ = L(S/G) n B0] 

K D K N  B1 

= ( B I n  B~) + n B~ (by hypothesis) 

_D B l n  Bt2 n BI 

= B l n  B~. 

Also, K is closed and controllable. Therefore, by the minimality of (B 10 B~) ~, 

L(S/G) = (B~ n B~) ~ c K. 

Since (B, n B~) ~ uniquely exists, the solution of SCPT is unique. Q.E.D. 

For a closed language L c_ L(G), a formula to calculate L r is [Bran& et al. 1991] 

L* = L - [(L(G) - L)/~]~*,  

where / denotes the quotient operation on languages. For a language L c_ Lm(G), a for- 
mula to calculate L ~ is [Lafortune and Chen 1990; Lin and Wonham 1988] 

L ~ = £Z~, n L(G). 

Combining these two formulas, we get a formula to calculate (B~ n B~)*: 

(B, n = (8, n n L ( G )  

= B1 n (B2 - [(L(G) - B2)/E:]E*)Z~* n L(G). (1) 

The following example illustrates the above results. 
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2.3. Example 

Consider a system consisting of two parallel processes, G = G~ t[ G2, as shown in Figure 
1. Assume that c~ i is controllable and ~i is uncontrollable. The desired behavior is that ~ 
and/32 occur alternately, beginning with ~ .  Therefore, B~ is generated by the generator 
in Figure 2. The tolerated behavior is that after an occurrence of/31, ~1 cannot occur again 
until/~2 occurs at least once. Therefore B2 is generated by the generator in Figure 3. 

(Z 1 

F~ure 1. 

O~ 1 . . . ~  ~1 0~1 
r ,  ~t 

o~ 2 

O~ 1 

-7 
Figure 2. 
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Figure 3. (All the states are marked.) 
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To find the solution of SCPT, (B~ O B*) ~ is calculated; a generator of that language 2 
is shown in Figure 4. Observe that the controlled system (B~ n Bz*) ~ may block because 
azf32 E L(S/G), but o~2t32 ~ L(S/G) n Lm(G ). Nonblocking solutions of this problem are 
discussed in Section 3.3. 
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Figure 4. (All the states are marked.) 
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3. Nonblocking Solution of SCIW 

3.1. Problem Formulation 

As shown in the above example, there is 11o guarantee that the general solution of the previous 
section is nonblocking. But in some applications, nonblocking solutions may be required. 
In this section, we discuss nonblocking solutions of SCPT. We first need to introduce a 
definition and a new assumption. 

Let us define a language to be livetock-free if continuations of any trace of the language 
cannot remain unmarked for arbitrarily long suffixes in E*. Formally, we have 

DEFINITION 3.1. A language L c_ E* is said to be livelock-free if 

(Vs fi £)(3n E PC)(qt E E*)[tl -- n A st E [~ = (3 u ~ Z*)(s <_ u <_ st A u ~ L), 

where P¢ is the set of natural numbers, Itl is the length of t, and s _< u denotes that s 
is a prefix of u. 

If  a language L is regular, then it will be livelock-free iff each directed cycle in the directed 
graph representaion of any finite-state generator of L touches at least one marked state. 
Indeed, any n >_ IILII will work in Definition 3.1. 

As will become apparent in Section 4, in order to guarantee the existence of "interesting" 
nonblocking solutions of SCPT (cf. Theorem 4.2), we have to introduce further assump- 
tions. These assumptions involve regularity and livelock-free conditions. More precisely, 
we add the following condition to our list of hypotheses: 

(I-14) B, and Lm(G) are regular. Lm(G) is livelock-free. 

[Observe that it is not necessary fbr B1 to be regular. Regularity of B1 need only be intro- 
duced when one is interested in finite-step computations (see Section 5).] 

Supervisory Control Problem with Tolerance-Nonblocking Case (SCPT-NB). Consider 
languages Lm(G), L(G), B1, and B2 satisfying (H0)-(H4). Synthesize a nonblocking con- 
troller S such that 

1. Lm(S/G ) ~ B2. 
2. (VK ~ Lm(G))[(K = R n L,n(G) = K ~) A (K c B2)] = K N Bx c Lm(S/G) n B,. 
3. (VK ~ Lm(G))[(K = f~ n Lm(G ) = K ¢) A (I~ ~ B2) A (K n B, = Lm(S/G ) n B0] 

= K ¢ Lm(S/G). 

The first condition is to ensure that the language generated by the nonblocking controlled 
process S/G is tolerable. The second condition requires that this language contain the largest 
possible part of the desired behavior under the first condition. The third condition says 
that in addition to satisfying the first two conditions, a solution should also be minimal 
with respect to set inclusion. 
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Let 

B2m : =  B2 n Lm(G), (2) 

Blmax " =  O 1 n O~m. (3) 

The following properties of B~m and Blmax will be used. 

LEMMA 3.1. 

i) B~2m is Lm(G)-closed. 
ii) B~2m is livelock-free. 
iii) Blmax is Lm(G)-closed. 
iv)  Blmax is B2~m-Closed. 
v) (Btmax) J" n Lm(G ) = (Blmax) ~ n B~2m. 

Proof (i) B2m is Lm(G)-closed by definition and Lemma B.1. Thus B~m is Lm(G)-closed 
from Proposition 6.1 in [Wonham and Ramadge 1988]. 

(ii) The result follows from (i) and Lemma B.3. 
(iii) It suffices to show that Blmax n Lm(G ) c_ Blmax. But 

Blmax n Lm(C) = B~ n B~2m n Lm(G) 

B 1 n B~m n Zm(G ) 

= (B, N Lm(G)) n n Lm(G)) 

= B1 O B~m 

= : Blmax, 

where the next-to-last equality follows by (Hi) and (i). 
(iv) Again, it suffices to show that Blmax n B~2m c Blmax. 

B, N B~ ABe,no_B, ABe,. M B~ 

= B 1 n B~2m 

: n n L,.(G) 

= B1 n Bt2m 

= : Blmax 
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(v) The result follows by observing that 

(Blmax) ~ N Zm(G ) = ( n  I [7 B~2m)~ (7 Zm(a  ) 

: ( n  1 (7 n~2m (7 tra(a))  "~ (7 Zm(a  ) 

: (B, n n Lm(G ) 

=_ n L , . (G)  

: n~2m . Q.E.D. 

From (2) and Lemma 3.t(i), the largest tolerable nonblocking solution is I,m(S/G ) = B~,,. 
This solution achieves B ~ x  in the desired behavior. We would like to achieve the same 
B~ax but with a smaller nonblocking solution than Lm(S/G) = B~zm. From Theorem A.l(ii), 
the language marked by such a solution must be controllable and Lm(G)-closed. In order 
to find a solution of SCPT-NB, we thus need to introduce the concept of controllable and 
Lm(G)-closed superlanguages of Blmax that are contained in B~2m . Therefore, define 

CM(Blrnax, B~2m , Lm(G)) : =  {K c_ Z*: (Blmax c K c_ B~2m) 

A (R~u (7 Lm(G ) ~ K) A (K = R f l  Lm(G)) }. (4) 

The class of languages CM(Blmax , B2m,* Lm(G)) is not closed under intersection. As will 
be shown in Section 4, the infimal element of CM(Blmax, B~m, Lm(G)) may not exist, but 
there exists at least one minimal element. We denote the set of minimal elements of 
CM(nlmax , n~m , Zm(G)) by (Blmax) CM and a minimal element by (Blmax) cM. The following 
results are immediate from (2)-(4) and Lemma 3.1(i). 

LE~MA 3.2. 

i) (nlmax) CM ~ n~2m . 
ii) (Blmax) cM 17 B 1 = Blmax. 

The (.)CM operation is studied in detail in Section 4. Lemmas 3.1 and 3.2 together with 
the existence of (B~ax) cM, a minimal controllable and Lm(G)-closed superlanguage of B~n,x 
(to be formally established in Theorem 4.2), are sufficient for our present purposes. 

3.2. Nonblocking Solution 

The following theorem shows that SCPT-NB can be solved, but that it does not have a 
unique solution in general. 
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THEOREM 3.1. A solution of SCPT-NB is given by 

Lm(S/G ) = (Blmax) CM. 

Proof Since (B~a~ax) cM is controllable and Lm( G)-closed, the solution Lm(S/G ) = (Blmax) CM 
is nonblocking. We prove that the three conditions in the problem statement are satisfied. 

1. Lm(S/G) = (B~ n (B2 O Lm(G))~) cM 

= Lm(S/G) ~ (B2 n Lm(G)) ~ (by Lemma 3.2) 

c B2 n Lm(G ) 

c_ B2 

92, 

2. (vK ~_ Lm(G))E(K = [~ N Lm(G) = K *) A (~" c B2)], 

I£ ~ B2 

= [( n L,,(G) c_ B2 n Lm(G) 

= [~ O Lm(G) c (B2 O Lm(G)) ~ (since K n Lm(G) is controllable) 

= K O B1 ~ (B2 n Lm(G)) ~ O B~ 

= k N BI c_ (B 1 n (B 2 n Lm(G))~) CM 

= k n B~ c_ (B~ n (B2 O Lm(G))¢) CM n B1 

n L,n(G) n B, c (B~ n n CM n 

= K n B~ c (Bx n (Bz n Lm(G))~) cM n B~ (since K is Lm(G)-closed) 

= K n B l c  Lm(S/G ) n B1. 

3. (vK ___ Lm(G))[(K = K n Zm(G ) ---- g t) A (/r~ c B2 ) A (K n B, = Lm(S/G ) O nl)],  

k c  B~ 

= K n L,n(G) c ez  n Lm(G ) 

= K c_ B2 n Lm(G ) (since K is Lm(G)-ctosed ) 

K c (B2 n Lm(G)) ~ (since K is controllable) 
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and 

B1 n (B2 n Lm(G)) ~ = B~ n (B2 n Lm(G)) ~ n B~ 

c_ (B~ n (B2 n Lm(G))t) cM n B~ 

= K n B~ (by hypothesis) 

c K .  

These results show that K E CM(Blmax, t B2m , Lm(G)) since, by hypothesis, K is control- 
lable w.r.t. Lm(G) and is Lm(G)-closed. Therefore, by minimality of (B1 n (B2 n 
Lm( G) ) *) cM, 

K ~ (B~ n (B z n Zm(G))~) CM = Lm(S/G). Q.E.D. 

In view of Theorem 3.1 and Lemma 3.2(ii), it should now be clear to the reader why 
the language B~ O B~2m is denoted Blmax. I f  the solution of SCPT is not required to be 
nonblocking, then (B~ n B2~) s n B~ is the maximum achievable part of the desired behav- 
ior B1. On the other hand, when the nonblocking condition is enforced, the maximum achiev- 
able part of the desired behavior is reduced to Blm, x. Moreover, in contrast to the unique 
general solution (B~ n B~) ~, several incomparable solutions of SCPT-NB can achieve 
Blmax. These solutions are the elements of the set (Blrnax) TM. Sections 4 and 5 are devoted 
to the computation of these solutions. 

We conclude this section with some remarks on special cases. (Remark 4.1 is also a 
special case of interest.) 

Remark 3.1. If  Lm(G ) is closed, then a sublanguage of Lm(G ) is Lm(G)-closed iff it is 
closed. Therefore, 

(Blmax) CM = (Blraax) + 

= (BI n [by (H2)] 

and SCPT and SCPT-NB have the same (unique) solution. 

Remark 3.2. Of course, ifL(S/G) = ( B I n  B~) ~ is nonblocking, then it is the unique solu- 
tion of SCPT-NB. It can be shown that a (rather strong) sufficient condition for this to 
be true is that the two languages Lm(G) and B~ n B~ ~ are nonconflicting. 

3.3. Example 

Take the same B1, B2, and Lm(G) as in Section 2.3. We will find a nonblocking solution 
of SCPT. The first step is to calculate Blmax = B1 n (B2 n Lm(G)) ~, which is generated 
by the generator in Figure 5. The next step is to calculate (Blmax) CM (an algorithm will 
be given in Section 5), which is generated by the generator in Figure 6. 
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Figure 5. 
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4. Minimal Controllable and Lm(G)-Closed Superlanguages of a Given Language 

4.1. Preliminaries 

In order to find minimal nonblocking solutions of SCPT, we must find minimal elements 
of the class CM(Blm~, B~2m, Lm(G)). This is the class that we study in this section. For 
the sake of generality, we write 

CM(B, B~2m , Lm(G)) :=  {K _ ~*: (B~ K ~ Bt2m) 

^ (k~. n Lm(V~ -~ ~') ^ (K = k O Lm(G)) } (5) 

when B is a given language satisfying B c n~2m and B = / }  n Lm(G). Observe that Blmax 
satisfies these conditions. It is convenient to define the new class of languages 

CMR(B, B~m ) "= {K _ ~*: (B ___ K ~ B~)  A ( / ~  n B2~ m ~ K) 

A (K = [i n B~m)} (6) 

for a given language B such that B c B~m and B = /}  n B~2m . Once again, Blmax satisfies 
all conditions. Observe also that n~2m is livelock-free by Lemma 3.1(ii). 

THEOREM 4.1. Given B c B~ m such that B = /}  O Lm(G ) and B = / }  n B~2m , CM(B, B~2m , 
Lm(G)) = CMR(B, B~m ). 

Proof (i) CMR(B, B~m) c_ CM(B, B~m, Lm(G)). First, observe that CMR and CM are defin- 
ed within the same range B c K c_ Bt2m" Second, if K is controllable w.r.t. /i2~ m, then 
K is also controllable w.r.t. Lm(G) since Bt2m is controllable w.r.t. Lm(G) (Lemma B.2). 
Third, K = k O B2~,~ and B~,~ = B~2m O Lm(G) [Lemma 3.1(i)] imply that 

g = i: n B 2m n Lm(G ) = K n Lm(G ). 

(ii) CM(B, B~2m , Lm(G)) c CMR(B, Bt2m ) . This time, K~u n B2~m C__ K~u n Lm(G) ~ ~2, 
and thus K is controllable w.r.t. B~m. Similarly,/( O B~m ~ K O Lm(G ) = K, and thus K 
is also B~m-Closed. Q.E.D. 

In view of Theorem 4.1 and for the sake of generality, in the remainder of this section 
we will consider the class 

CMR(L, M) :=  {K ___ ~*: (L _c K ~ M) A (/C~u n / ~ / c  K) A (K = /C n M)}, 
(7) 

where L and M are two given languages over r. satisfying the following properties: (i) L c M; 
(ii) L = L n M; and (iii) M is regular and livelock-free. Controllability will always be 
defined w.r.t. Mand w.r.t, the fixed E~ ~ E. All the results obtained will thus be directly 
applicable to the nonblocking solution of SCPT when L = Blrnax and M = B2~m • 
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The following subclass of minimal elements of CMR(L, M) plays a crucial role: 

L TM :=  {K E CMR(L, m): YK' E CMR(L, m) ,  K'  c2 K}.  

THEOREM 4.2. ]LCMI --> 1. 

(8) 

Proof First, it is clear that M E CMR(L, M). We argue that CMR(L, M) possesses at least 
one minimal element. By contradiction, suppose that L TM is empty. This means that there 
exists (Ki, i > 0), Ki E CMR(L, M) for all i, such that 

M D K 1 D  Kz D K3 D . . .  D_ L. 

In other words, an arbitrarily large number of traces can be removed from M. Since M 
is regular, any finite-state generator of M must therefore contain at least one cycle in its 
digraph representation. An arbitrarily large number of the traces that are removed must 
be traces that pass through one particular cycle. Let t E ~* be the subtrace corresponding 
to that cycle. Without loss of generality, we can write 

Ki =/~i_~ - {s.}, 

g i +  1 -~ g i - -  {s tbt} .  

But K i is M-closed. Thus if su < v < stu, then v ~ M. In other words, the cycle does 
not touch any marked states in the digraph generating M. This however implies that M 
is not livelock-free and we have a contradiction. 

Finally, CMR(L, M) is not closed under set intersection and thus does not possess, in 
general, a unique infimal element. This is shown by the following example. Let Zu = {s}, 
E = {~, s, h, t2}, m = {a, o~Stl, ash}, andL = {a}. Then K1 = {a, c~sh} E CMR(L, M) 
and K2 = {a, ast2} E CMR(L, M). But 1(1 71 Kz = L and L f! CMR(L, M) since L ~ L *. 
Consequently, CMR(L, M) may possess more than one minimal element. Q.E.D. 

COROLLARY 4.1. Given any K E CMR(L, M), there exists L TM E L TM such that L TM c K. 

Proof By contradiction, suppose that no such L cM exists. Then we can construct a strictly 
decreasing sequence of sets (K i, i > 0), K i E CMR(L, M) for all i such that 

MD_ K D K~ D Kz D . . .  D_ L. 

But by the same argument as in the proof of Theorem 4.2, this contradicts the assumption 
that M is livelock-free. Q.E.D. 

Example 4.1. To illustrate that if M is not livelock-free, then L TM could be empty, consider 

M = {a, abc(uc)*f} and L = {a} 
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with ~,  = {b, u}. Then we can construct the sequence in CMR(L, M): 

Ko = M, 

Ki = M -  {abc(uc)if} U {a}. 

For any K E CMR(L, M), there exists i E gV such that K / C  K, and consequently L TM = 0. 

The following result provides a sufficient condition for CMR(L, M) to possess a unique 
infimal element. 

THEOREM 4.3. If L ~ N M is controllable, then I LCMI -- 1 and L cM = L; O M. 

Proof First, by hypothesis and by Lemma B.1, L ~ n M ~ CMR(L, M). Next, suppose 
that there exists K ~ CMR(L, M) such that L s n M ~ K. Then 

L* n M ~ K N M ~ L; 9~ K = L ~ f£ K + = L ~ K, 

and the last statement contradicts K E CMR(L, M). Q.E.D. 

Remark 4.1. When applied to SCPT-NB, Theorem 4.3 implies that if (Blmax)Eu n Bt2m is 
controllable w.r.t. B t then 2m' 

(Blmax) CM ---- (Blmax)~ ~ O Bt2m , 

and thus SCPT-NB has a unique solution. Translating back to controllability w.r.t. Lm(G), 
Lemmas 3.1(v) and B.2 can be used to reformulate this result as follows: if (Blmax) J" n 
Lm(G) is controllable, then 

(Blrnax) C M =  (Blmax) ¢ n Lm(G), 

where ~ is w.r.t. L,,,(G) this time. 

In the following sections we discuss the properties of L TM and find algorithms to com- 
pute its elements. Recall that L cM denotes any element of L TM. 

4.2. Constructive Algorithm 

Our objective is to develop an algorithmic procedure to construct all the elements of L TM. 
Intuitively, the task consists of extending the traces of L by all possible suffixes of uncon- 
trollable events in order to get a controllable language, and ttien extending again the traces 
in order that they all be part of M. The resulting language can be made M-closed, but 
the last extension may destroy controllability, and, consequently, the procedure must be 
reapplied. Observe that this last extension is nonunique, even if it is minimal (cf. proof 
of Theorem 4.2), which is the reason why the infimal controllable and M-closed super- 
language need not exist. 
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We have found that after the extension of the traces of L with suffixes of uncontrollable 
events has been performed, it suffices to extend all those traces that are not in M (and 
that have no continuation in the new L) by one controllable event, rather than by a longer 
suffix, before reapplying the procedure. This motivates the following definitions. 

Let K = K _~ M, We wish to identify which traces of K should be extended in order for 
the new language to be contained in M. These traces constitute the set TBE(K) defined as 

TBE(K) : =  {s E K - M: (qa E E)(scr ¢ /~)}. (9) 

Let I be an index set for TBE(K); i.e., TBE(K) = U ie~{si}. For each si E TBE(K), 
define the set of  events 

~(Si) :-~ {0" E ~" SiO ~ /~}.  (10) 

We wish to choose one extension sia, ~r E ~(Si), for each s i E TBE(K) and thus create the 
new set K ~. K e is called and e-extension of K. All the possible combinations of extensions 
of traces in TBE(K) give rise to the class of languages KL Formally, we form the cartesian 
product 

ES(K) '= X E(si) 
iE1 

and define the composition operation o between TBE(K) and an element ~r t of ZX(K) as 

TBE(K) o e l . =  U {si~ri: si E TBE(K) A ~r i = ~rzli}, (11) 
iEl 

where fflli denotes the ith component of ~r ~. Finally, we let 

K e "= {K e ~ ~i: K e = K U (TBE(K) o cJ) for some o r E ~I(K)}. (12) 

Clearly, K ~ = K ~ for all K ~ E K e. Observe that each K e contains a single extended trace 
scr for each trace in TBE(K). 

DEFlr~ITION 4,1. An extension sequence (Di, i _> 0) is a monotonically increasing sequence 
of closed languages such that 

Do = £ and Di+l E (D~) e for all i > 0. 

The derived extension sequence of an extension sequence (Di, i _> 0) is the sequence 
(C/, i _> 0) such that Ci :=  Di 0 M for all i >_ O. 

For all extension sequences (Oi, i _> 0), we have that O i c 1(4 for all i _> 0 (by defini- 
tion of  the $ and e operators). Thus each extension sequence converges to a limit D~ :=  
limi._,~ D i. Clearly, DR = D~. The same is true for the corresponding derived extension 
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Figure 7. 

sequence (Q, i _> 0), whose limit is denoted C~ := limi_~ Q = limi_~ (Di O M). 
Clearly, we have that Coo = D= n M. We define the set of limits 

Coo :=  {Coo: C~ = D~ n M for some extension sequence (D i, i >- 0)}. (13) 

The following result will be used in Section 4.3. 

LEMMA 4.1. Consider the limit D~ of an extension sequence (Di, i > 0) and its 
corresponding C~¢ = D~ n M. Then D~ c_ C~. 

Proof Since D~ = lim;_~ Di, then it can be proved by contradiction that TBE(D=) = 0. 
Thus (i) all the traces in D~ that have no continuation are in D~ n M, and, on the other 
hand, (ii) all the traces in D~ - M have a continuation in D~¢ c_ M. But such continua- 
tions cannot remain in D~ - M for arbitrarily long suffixes because this would contradict 
the fact that M is livelock-free. (See Figure 7.) Thus any trace in D~ - M has a continua- 
tion in D= n M. In conclusion, D~ ~ D~ n M. Q.E.D. 

4.3. Main Results 

The first important result of this section is that C= = L TM. Three intermediate results 
need to be established first. 

PROPOSmON 4.1. Given any L cM E L TM, there exists an extension sequence (Di, i >_ O) 
for which C~ c_ L cM. 
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Proof We will prove the result by induction on the extension sequence (Di, i _> 0) to be 
constructed. First, Do = £ _ L cM. Thus Co = £ N M = L c_ L TM. Next, let D i c L CM. 
This implies that 

q :=  n M c_ L TM N M = L cM 

by definition of CMR(L, M). If we can construct Di+ 1 c L CM, then the proposition will 
be proved because the corresponding derived extension sequence (Ci, i > 0) will satisfy 
Ci c L TM Yi > O. But D i ~_ L TM implies that D~ c_ L cM, since L cM is controllable by 
definition. Since L TM c_ M and L cM is M-closed, we can choose a~ ~ ZI(D)) such that 
TBE(DSi ) o al c -i'f cTM c_ ~4. This results in Di+~ := D~ U (TBE(D~) o a~) c L cM. 

Q.E.D. 

PROPOSITION 4.2. Given any C~ fi Coo, there exists L CM E L TM such that L CM ~ Co. 

Proof In view of Corollary 4.1, it suffices to show that the given Co~ E CMR(L, M). Let 
(Di, i _> 0) be an extension sequence that yields Co--i.e.,  for which Do n M = C~. 
First, £ c_ D= c_ M since L c Di c_ M for all i _> 0. Thus 

[ , N M C _  Do N M C _ M n M = L c _  C~ c_M. 

Second, Co is M-closed by construction (cf. Lemma B.1). Hence, it remains to show that 
C~ is controllable (w.r.t. M and Zu)- Since Do is the limit point of (Di, i > 0), the proof 
of its controllability is straightforward. But then C~ = D~ O M is also controllable 
because 

(D~ N M ) E  u n M C. (D~ n t (4)~ u N 

=_D= n i4 

= Do 

D~ AM, 

where the last inequality follows from Lemma 4.1. Q.E,D. 

PROPOSITION 4.3. For all distinct Ck and C~ in Coo, Ck ~Z C~. 

Proof Consider two distinct extension sequences (D], i >_ 0) and (D~, i _> 0). Definition 
4.1 and (12) imply that there exists i _> 0 such that D) = Dj z, 0 _< j _< i, but D]+~ and 
D~i+l are incomparable. More precisely, without loss of generality we can write 

DJ+ 1 = (D]) ~ tJ {s~rl} U KI, 

D2+1 = (D~) ~ U {sa2} U K2, 
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where so 2 ~ K~ and sol ~ K2. (tO denotes disjoint union.) Observe that K1 or/£2 could 
be empty. Since the e-extension is done after the $ operation, al ~ Ec and o- 2 ~ ~C" We 
can thus conclude that sa~ ~ D~+ k and saz ~ D]+k vk _> 1, since subsequent elements of 
the extension sequences only differ from previous ones by the addition of suffixes to cer- 
tain traces (as a consequence of the $ and e-extension operations on closed languages). 
After step i, trace s will no longer be a member of TBE(D~+k), k >_ 1. 

Consequently, SOl ~ D~,  sa~ ¢. D~ and sa2 E D~,  so 2 ~. DR; the two sets D~ and D~ 
are thus incomparable. By Lemma 4.1, there exist suffixes t~ and tz in ~* such that salq 

C~ and sa2t2 ~ CZ~. On the other hand, sa2 ~ D 1 implies that sa2t ~ D~ for any t ~ ~*, 
and thus sa2t ~ C~ either. Similarly, sag ¢ C~ for any t ~ ~*. We conclude from these 
observations that C~ and C2oo are also incomparable. Q.E.D. 

THEOREM 4.4. C= = L TM. 

Proof (i) C¢o c L TM. We must show that vC= e Coo, 3L CM E L TM such that Coo = L CM. 
Given Coo, there exists L CM c_ Coo by Proposition 4.2. But from Proposition 4.1, 3C~ 
Coo such that C "  c_ L TM. Thus C£ c L CM c Coo. But from Proposition 4.3, we must 
have that C~ = L CM = Coo. 

(ii) L TM _ Coo. We must show that vL  CM E L TM, 3C~¢ E Coo such that L CM = Coo. 
Again, Propositions 4.1 and 4.2 imply that given an L cM, we can find C~ in Coo and LCl M 
in L TM such that L cM ~ C~ c_ L cM. But by definition of L TM, we must have that L cM = 

C~ = L cM, which proves the result. Q.E.D. 

The following example will serve to establish some interesting properties of the set L CM. 
Let ~ = {c, d, u}, ~u = {u} and consider the languages 

M = (c + d)[u(c + d)]* and L = {c}. 

(Refer to Figure 8.) An extension sequence could be 

Do = {c}, 

DI = {cud} ,  

D2 = {cuduc},  

D3 = {cuducud},  

D4 = {cuduc(ud)2}, 

Dk = {cuduc(ud)Zuc(ud)3 . . .  uc(ud)"},  
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U 
Figure 8. 

where 

n 2 + 3n 2 
k = 2 ~ i  + ( n  - 1) - 

" 2 
i=1 

and so forth. 
Let 6t denote the class of regular languages over ~. Then the above extension sequence 

leads to Coo ~ 61, which shows that Coo ~ 61 even though L E 61. 
On the other hand, we can get a regular C~ if the previous extension sequence is modi- 

fied to (/)i, i _> 0), where 

L)j = Dj, 0 <_ j <_ k = ~  i + (n - 1), 
i=1 

Dk+ 1 = { c u d u c ( u d ) Z  . . .  ( u d ) n u c } ,  

Dk+ 2 = { c u d u c ( u d ) 2  . . . ( u d ) n ( u c ) Z }  , 

D~+m = { c u d u c ( u d )  2 . . .  ( u d ) n ( u c ) m } ,  

and so forth. For any fixed k, the extension sequence yields C,= E 61. Since k can be 
chosen arbitrarily large, the set Coo O 6l is infinite. 

We group these two important results in the following theorem 

T~EOREM 4.5. Let L be regular. In general, 

i) L TM (Z 61. 
ii) I L TM (1 611 ~: c~. 

In the next section, we present an algorithm based on finite-state machines that can 
generate some languages in L TM f3 6t when L is assumed to be regular. 
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5. Generating Regular Languages in L TM 

Based on the discussion of the previous section, we now propose the following algorithm 
to calculate a minimal controllable and M-closed superlanguage of a regular language L 
when finite-state generators G and F of the languages M and L, respectively, are given. 
The algorithm converges in finite steps. 

5.1 Algorithm 

Input. G = (Q, ~, 6, qo, Qm) and F = (X, ~, ~, Xo, Xm) such that Lm(G) = M and 
Lm(F) = L. 

Step 1. Determine the map h: X ~ Q such that 

(¥ s E ~,*)~(s, xo) = x = 6(s, qo) = h(x)? 

Step 2. For all q E Q such that there are controllable events defined by 6 at q. 

select(q) :=  a controllable event defined at  q 2  

Step 3. For all q ~ Q, compute G q as follows: 

Q~ :=  {q}; 

6~ :=  O; 3 

i := - 1 ;  

repeat 

i * - i + 1 ;  

Q~l/2 : =  Qiq U {q' E Q: (3q" ~ Q;)(3s 6 r.2)6(s, q") = q'}; 

~+1/2 . =  ~qi U (~l(F-,u X ~qO i+1/2 X 0~+I/2)); 
i+1 . =  6iq+u2 U {(select(q'), q', 6(select(q'), q')): 6q 

q' f- Qm A (Va E P,)(Vq" ~ Q)(a, q', q") f. 6~+1/2}; 

* i+ 0 i+1 :=  {q' ~ Q: (~s fi ~ )3q ~(s, qo) = q'}" 

until 0 i+1 = Qiq; ~q 
Qq := Qq; 

i. ~q := ~q, 

G q :=  (Qq, ~,, ¢~q, q, oq). 

Step 4. For all x E X, paste G h(x) to F as follows: 

J := I X U U Qh(x)' p'' ~ U U (6h(x) x~X {(e' x'  h(x))})' x°' X U Uxex Qh(X~ . 
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Step 5. Transform J to a deterministic (finite-state) generator. 
S t e p 6  H : =  J x G. 
Output. Lm(H) = L cM E L TM. 

Remark 5.1. If  B1 is regular, then by (H4) Btmax is also regular, and thus the above algo- 
rithm can be applied to construct a solution of SCPT-NB by setting L = Blmax and 
M = B~m and by choosing a function select for Step 2. 

5. 2. Proof o f  the Algorithm 

Let L cM be the element of L TM such that the operation (.)~ in the extension sequence that 
produces L cM always extends s to s(select(6(s, qo))). We prove that the above algorithm 
indeed calculates LCM; i.e., Lm(H) = L cM. 

From the construction of H, it is clear that L TM c_ Lm(H). Let us now prove that Lm(H) 
c L cM. Let 

E : =  L(2) - L(F).  

Then 

Lm(H) = (L(F) U E) 71 M. 

From the previous section, 

L cM = Do~ f7 M. 

Therefore, 

Lm(H) ~ L cM 

= (Ss ~ ~*)s E Lm(H ) A s • L cM 

= (Ss E Z*)(s ~ L(F) V s E E) A s E M A  (s ~Doo V s  ~ M)  

= (ss E E*)(s EL(F)  v s  E E) A s  E M A s ~ D o ~  

= (Is E E*)s E M A s E E A s ~ Doo since L(F) c D~o. 

Since D~ is closed, 

(]tcr <_ s)ta ~ E A t E Do~ A ta ~ Do~ 

= (] to  <_ s ) ( ] i  >_ 1)t~ E E A t ~ D i _  1 A t E D i A to ~ Do~ 

= ( ] to  <_ s ) ( ] i  ~ 1)t~ E E A t ¢ Di_ 1 A t E D i A to ~ D i +  1. 
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Let us consider two possibilities. If cr E ~,, then 

ta E E = to E 1(/1= to ~ D~ , 

which contradicts ta ~ D i +  1 . If o ~ Ec, then 

ta ~ E = t ~ M A (¥a' ~ E.)ta' ~ M = t ~ TBE(D~i) = to E (D~)~, 

which contradicts to ¢ D i +  1 . Therefore, 

Lm(H ) c L cM. 

Let us illustrate this algorithm by the following example. 

5.3. Example 

Take the same B~, Bz, and Lm(G ) as in Section 2.3. Blmax and B~m are generated by the 
generators F and G and Figures 5 and 9, respectively. We apply the algorithm to calculate 
(Blmax) cM. 

Step 1. The map h is defined as h(xi) = qi. 
Step 2. select(q) is chosen as 

q select(q) 
qo c~2 
ql c~2 
qz o~2 
q3 o4 
q4 undefined 
q5 undefined 

Figure 9. 

~1 ~1 
m 

q l  q2 

~2  

q3 q4 q5 
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Step 3. Compute Gq: G qi, i = 0, . . . ,  5, are shown in Figures 10-15, respectively. 
Step 4. Paste G h°° to E 
Step 5. Transform the resulting generator to a deterministic one. 
Step 6. The generator H :=  J x G is shown in Figure 6. 

Figure 10. 
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Figure 13. 
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Figure 14. 
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6. Conclusion 

, /  
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We have proposed a new approach to supervisory control problems Ibr which a formulation 
in terms of an ideal desired behavior and a larger tolerated behavior is appropriate. It turns 
out that this supervisory control problem with tolerance does not, in general, have an optimal 
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nonblocking solution in the presence of uncontrollable events. In order to characterize its 
incomparable minimal nonblocking solutions, we have developed some new results on con- 
trollable and Lm(G)-closed superlanguages of a given language. These results are also of 
independent interest. 
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Appendix 

A. Background Material on Supervisory Control Theory 

tn this appendix, we summarize some concepts and results from supervisory control theory. 
Let Z be a nonempty finite alphabet (i.e., set of "events"), and denote by E* the set 

of all finite traces (strings) of elements of ~, including the empty trace e (* is called the 
Kleene closure). A subset L _ ~* is a language over ~. If s, s ', t ~ P.* with s 't = s, then 
s '  is aprefix ofs.  The closure [~ of L is the language consisting of all the prefixes of traces 
in L. L is closed if L = £. Two languages LI and L2 are said to be nonconflicting (see 
[Wonham and Ramadge 1988]) ilL1 N L2 = L1 I"1 L2. Closed languages are nonconflicting. 

Let M be a fixed language over r., and let ~, be a fixed subset of E denoting the set 
of uncontrollable events. A language K c_ Z* is said to be controllable w:r.t M and ~,, 
if KE, I"t M c k [Ramadge and Wonham 1987]. The set ~c = Z - ~u is the set of con- 
trollable events. 

An uncontrolled DES is modeled by a generator [Ramadge and Wonham 1987], which 
is a deterministic automaton G = (Q, ~, 6, qo, Qm), where Q is the state space, E is the 
set of events, ~: ~* x Q --, Q is the transition function (a partial function), q0 is the ini- 
tial state, and Qm c_ Q is the set of marked states. The closed language generated by G 
is L(G) := {s E ~*: 6(s, q) is defined}. The language marked by G is Lm(G ) := {s E L(G): 

b(s, qo) E Om}. 
A language K is said to be L~(G)-closed if K = K I"1 Lm(G). A language is regular 

iff it is marked by a finite state generator. In that case, ]IL [[ denotes the minimum number 
of states among all generators that mark L. 

The basic problem in supervisory control is to design a controller (or supervisor) whose 
task is to enable and disable the controllable events such that the resulting closed-loop system 
obeys some prespecified operating rules. Formally, a controller is a pair S = (R, ~), where 
R = (X, ~, ~, xo, X) is a generator called a recognizer and ~: ~ × X ~ {0, 1} is the 
feedback map satisfying 

¢(a, x) = 1 i f a E  ~u ,x  E X, 

,p(a,x) E {0, 1} i f a  E E c ,x  6 X. 
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R is considered to be driven externally by the stream of event symbols generated by G, 
while in turn, with R in state x, the transitions a of G are subject to the control ~(a, x). 
If ~(a, x) = O, then a is "disabled" (prohibited from occurring); if p(a, x) = 1, then a 
is "enabled" (permitted but not forced to occur). In this way, there results a closed-loop 
feedback structure S/G, called the supervised DES. (See [Ramadge and Wonham 1987] for 
further details on the definition of S/G.) The behavior of the supervised DES is described 
by the languages L(S/G) and Lm(S/G ) := L(S/G) O Lm(G). In general, Lm(S/G) ~ L(S/G). 
S is said to be nonblocking if Lm(S/G ) = L(S/G). 

The following important results are proved in [Ramadge and Wonham 1987]: 

THEOREM A.1 

i) Let L be a nonempty sublanguage of L(G). There exists a controller S such that L(S/G) 
= L iff L is closed and controllable. 

ii) Let L be a nonempty sublanguage of Lm(G ). There exists a nonblocking controller S 
such that Lm(S/G ) = L iff L is controllable and Lm(G)-closed. 

If a given language L c M is not controllable, one may calculate the unique largest 
controllable sublanguage of L. This supremal controllable sublanguage of L is denoted L ~ 
and is defined by 

L* :=  U {K: ( K _ L )  A (K~u N M = K)}. 

On the other hand, one may also calculate the infimal closed controllable superlanguage 
of L, denoted L; and defined by 

L ~ := n {K: ([, G K G M) A (K = K) A (~SEu n M = K)}. 

Both L ~ and L + exist and can be computed in finite steps in the regular case. Brandt 
et al. [1991], Lafortune and Chen [1990], and Ramadge and Wonham [1989] can be con- 
suited for more details on these two important concepts. 

Let L~ and Lz be two sublanguages of M. The following results are proved in [Wonham 
and Ramadge 1988] and [Lafortune and Chen 1990]. 

(L, U L2)* - L~ U L~; (L1 N L2) ~ _ L~ n L~; 

(L, U L2) ~ = L~ U L2 ~ but (L, n L2) ~ G L~ n L~. 

When Lt and L2 are nonconflicting, then 

(L~ n L2) * = L~ n L~. 

Similarly, when L~ and L~ are nonconflicting, then 

(L, n L j  = LI n 
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B. Some Technical Results 

LEMMA B.1. Let  K = / (  c_ y*. Then K n L~(G) is L, ,(G)-closed. 

Proof Clearly, K O Lm(G) c_ K O Lm(G) n Lm(G). For the reverse inclusion,  

K n Lm(G ) (1 Lm(G) c_ k n Lm(G ) n Lm(G ) 

= K n Lm(G). 

LEMMA B.2. Let A c B _c C ~ ~*. I f  A is control lable w.r.t. B and B is controllable 
w.r.t. C, then A is control lable  w . r . t .C .  

Proof 

c_~.. 

LEMMA B.3. Let M be livelock-free and let L c_ M be M-closed.  Then  L is livelock-free. 

Proof By contradict ion,  let us assume that L is not livelock-free. This means  that 

(3 s e £)(Vn a LW)(3t e r.*)(lt t >_ n A st E £ A (Vu ~ ~*)(s <_ u <_ st = u ~ L)). 

Let s be the trace that satisfies the above condit ion.  Since s E M and M is livelock-free, 

we can find k(s) ~ hV such that the livelock-free condi t ion for s ~ M is satisfied; i.e., 

(¥t ~ ~*)Itl ~ k(s) h st E 1(/I = (3u ~ 12")(s <_ u <- st A u E m) .  

Now, return to the above assumpt ion concern ing  s E/~, take n >_ k(s) there, and let t 
be  the appropriate suffix that works with n. We have that st ~ [, = st ~ M, but for all 

u such that s <_ u <_ st, u ff L. However, since M is livelock-free and since we chose 

n >_ k(s), 3u' C E* such that s <_ u'  <_ st and u '  E M. Moreover, u '  E /~. Since L is 
M-closed,  u '  ~ L. This yields a contradiction.  Thus  L is livelock-free. 

Notes 

1. If necessary, this can be done by taking the new F as the product of F and G: F := F x G. For the new 
F, states are pairs (x, q). h is then defined as h((x, q)) = q. 

2. If there is more than one controllable event defined at q, arbitrarily select one. 
3. We can also view a transition function as a relation; i.e., 3(a, q) = q' iff (a, q, q') ~ & 
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