
Discrete Event Dynamic Systems: Theory and Applications 1, 61-92 (1991)
© 1991 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

On Tolerable and Desirable Behaviors in Supervisory
Control of Discrete Event Systems*

STEPHANE LAFORTUNE
Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, M1 48109-2122

FENG LIN
Department of Electrical and Computer Engineering, Wayne State University, Detroit, M1 48202

Received March 26, 1990; Revised October 8, 1990

Abstract. We formulate and solve a new supervisory control problem for discrete event systems, The objective
is to design a logical controller--or supervisor--such that the discrete event system satisfies a given set of require-
ments that involve event ordering, The controller must deal with a limited amount of controllability in the form
of uncontrollable events. Our problem formulation considers that the requirements for the behavior (i.e., set of
traces) of the controlled system are specified in terms of a "desired" behavior and a larger "tolerated" behavior.
Due to the uncontrollabl, e events, one may wish to tolerate behavior that sometimes exceeds the ideal desired
behavior if overall this results in achieving more of the desired behavior. The general solution of our problem
is completely characterized. The nonblocking solution is also analyzed in detail. This solution requires the study
of a new class of controllable languages. Several results are proved about this class of languages. Algorithms
to compute certain languages of interest within this class are also presented.

Key Vl,brds: discrete event systems, supervisory control, nonblocking controllers, controllable languages

1. Introduction

L1. Background

The modeling of a discrete event system (DES) can be done at various complementary
levels of abstraction. At the logical level, one is only concerned with the logical order
of the events in the traces--the system's trajectories--and not with the time elapsed between
two consecutive events. At the temporal level, time information is attached to events in
the traces. At the stochastic level, the times of occurrence of the events are random variables.
These levels also correspond to the usual methodology of analysis of a particular DES.
In the first step, one undertakes a qualitative analysis of the system's properties at the logical
level. Typically, this leads to the proposal of various logical controllers for the system in
order to satisfy all the qualitative specifications that involve event ordering. Each logical
controller leads to a much smaller set of traces for the closed-loop system for which one
then undertakes a quantitative analysis at the temporal and stochastic levels.

*Research supported in part by the National Science Foundation under grants ECS-8707671, ECS-9057967, and
ECS-9008947.

62 STI~PHANE LAFORTUNE AND FENG LIN

In this paper we consider the design of a logical controller--or supervisor--for a given
DES in order to satisfy a given set of qualitative specifications. This is usually referred
to as the problem of "supervisory control ?, An important issue in that context is how to
deal with the possibly limited amount of controllability available to the controller. A theory
for the supervisory control of DESs that specifically addresses such controllability issues
has been developed over the last 10 years by several researchers, most notably RJ. Rarnadge,
W.M. Wonham, and E Lin (see the survey paper by Ramadge and Wonham [1989]). We will
refer to this body of work as supervisory control theory (SCT) in the remainder of this
paper. A brief review of the notation and main definitions of SCT is given in the appendix.

In the paradigm of SCT, only a proper subset Zc of the set of events ~ is controllable,
meaning that only the events in Zc can be disabled by the controller. The set Zu : = Z - ~2c
is the set of uncontrollable events. There are essentially two reasons for an event to be
uncontrollable. First, the event may be inherently uncontrollable because it models an un-
preventable failure of the system; standard examples are "machine breakdown'' in manufac-
turing, "packet lost" in networks, and so forth. Second, the event may be uncontrollable
because it would be impractical or undesirable to make it controllable (i.e., to allow for
its disablement) in an implementation of the control system. For example, one may not
wish to allow for the disablement of the bottleneck machine in a manufacturing system;
the events modeling the dynamical behavior of that machine would thus be uncontrollable.
In a real-time computer system, operations that correspond to the execution of a task with
a "hard" time constraint should never be disabled. From a different perspective, it may
be undesirable to make an event controllable because of hardware limitations or costs.

Consider a DES G whose behavior is specified in terms of the two (nonempty) languages
Lm(G) and L(G); L(G) is the set of all traces that the uncontrolled system can generate,
while L,~(G) is the subset of marked traces. As is standard in SCT we require the follow-
ing condition:

(HO) Lm(G) = L(G) c_ £,*.

In their seminal paper, Ramadge and Wonham [1987], formulate the problem of super-
visory control (SCP hereafter) in terms of two languages that are subsets of Lm(G). The
first language, denoted Lmin, corresponds to the minimally acceptable behavior, and the
second one, denoted Lain, corresponds to the legal or admissible behavior. The goal in SCP
is to synthesize a controller such that the behavior of the controlled system, characterized
by the two languages L,n(S/G) and L(S/G), satisfies the correctness condition

Lmi n ~ L(S/G) ~ Lain

and the "nonblocking" condition

Lm(S/G) = L(S/G).

The correctness condition is obvious. The nonblocking condition requires that the controlled
DES never allows a trace that, albeit legal, cannot be extended to any member of the set
of marked admissible traces Lain. Intuitively, the controlled system should not "deadlock."

BEHAVIORS IN SUPERVISORY CONTROL OF DISCRETE EVENT SYSTEMS 63

More recently, Chen and Lafortune [1991] have considered a generalized version of SCP
where the nonblocking condition is relaxed. In their formulation, there is no minimally
acceptable behavior, but rather an admissible language Lain for the marked traces and an
admissible language L~ for all traces (marked or unmarked); La = L~ c_ L(G). It is re-
quired that L~ (7 Lr~(G) = L~,~, but in general L~,~ c_ L,. The control problem, termed
supervisory control problem with blocking (SCPB), is to synthesize S such that

L(S/G) c La,

The performance of S is evaluated in terms of the trade-off between its satisficing measure,
defined as the set Lm(S/G) A Lain = Lm(S/G), and its blocking measure, defined as the
set L(S/G) - Lm(S/G). The satisficing measure indicates how much of the admissible lan-
guage Lain is allowed under control, while the blocking measure indicates how often the
execution blocks due to the impossibility of continuing the execution within Lam. The moti-
vation behind the formulation of SCPB is that a nonblocking controller may be too conser-
vative in the sense that it must prevent all uncontrollable events that lead to blocking, a
strategy that may considerably constrain the behavior of the system. SCPB does not have
a unique solution, but rather a set of" solutions that can be compared in terms of their respec-
tive satisficing and blocking measures.

1.2. Our Approach

We take a slightly different and somewhat more general approach than the work mentioned
in the previous section. We assume that the qualitative specifications for the design of the
logical controller are given in terms of two languages B1 and B2, with B1 c B2, where
Bl represents the "desired" behavior and B2 represnts the "tolerated" behavior. We believe
that in several applications, a problem formulation in terms of desired and tolerated behaviors
is more appropriate than one in terms of minimally acceptable and admissible behaviors.
B1 represents the ideal behavior of the controlled system, the type of behavior that one
would require if all the events were controllable. B2 is determined from the collection of
all "hard" requirements that are imposed on the controlled behavior. On the other hand,
there may be "soft" requirements in B~ that one would like to satisfy but could relax if
they prove too restrictive due to the limited amount of controllability. This is the excess
of the desired behavior that is tolerated. In this sense, one would tolerate behavior that
would violate some of the soft requirements, if that would help in achieving more of the
desired behavior.

For example, in a manufacturing system, there may be a set of desired maximum buffer
occupancies and a larger set of tolerated maximum buffer occupancies if extra storage space
is available nearby. In network protocols, it may be desired to never retransmit, but tolerated
to retransmit a certain number of times. Finally, we mention that the recent work of Chen
and Lafortune on SCPB [1991] is also relevant to our problem formulation if one selects
B l = Lam and B2 =- La.

The control problem that we consider is as follows. We are given a DES satisfying (H0).
Our specifications are given in terms of the two languages B1 and B2. Since the desired

64 STt~PHANE LAFORTUNE AND FENG LIN

behavior is more naturally expressed in terms of marked traces, we assume that B~ c_
Lm(G). On the other hand, a prefix of a tolerable trace should also be tolerable. Hence
we assume that the tolerated behavior is a closed sublanguage of L(G). In summary, our
assumptions are as follows:

m

(H1) BI c Lm(G) and B~ = B1 (7 Lm(G) (i.e., B1 is Lm(G)-closed).
(H2) Bz c_ L(G) and B2 = B2.
(H3) Bi c_ B2.

Informally, the objective is to design a controller such that the controlled system

1. Never goes beyond the tolerated behavior
2. Achieves as much as possible of the desired behavior under 1
3. Achieves 2 with the smallest possible solution.

All comparisons are with respect to (w.r.t.) set inclusion. Conditions 1 and 2 are natural,
while condition 3 is to ensure that as few as possible of the soft requirements are relaxed.
We call this control problem supervisory control problem with tolerance (SCPT). It may
or may not be required that the controller be nonblocking; both cases will be studied.

A precise formulation of SCPT is given in Section 2, But one can already observe that
the trade-off inherent in SCPB is absent in SCPT because condition 2 is enforced before
condition 3. In contrast to SCPB, one can therefore talk of the solution of SCPT. It should
also be pointed out that it is not required that B 2 (7 Lm(G) = BI. In this sense SCPT is
more general than SCPB, where as we said earlier it is assumed that La (7 Lm(G) = Lain.

1.3. Specifying Desired and Tolerated Behaviors

B1 and B2 are in effect the design parameters associated with the control problem. Although
their precise form is dependent on the particular problem considered, some general cases
are worthy of mention.

Blocking and Recovery. There are several situations in computer systems (e.g., operating
systems, database systems) where deadlock detection and recovery schemes perform better
than deadlock prevention schemes. (Recovery refers to the process of resolving a deadlock.)
When recovery is not explicitly modeled in the uncontrolled discrete event process--and
this is usually desirable for the sake of simplicty--deadlock corresponds to blocking in
the framework of SCT (see, e.g., [Lafortune 1988]). Typically, there are some deadlock
situations that can be viewed as "soft" in the sense that they are considered recoverable.
Let B r be the (closed) set of traces corresponding to such situations. Then for a given B1,
one could take

m

B2 = B1 U Br.

BEHAVIORS IN SUPERVISORY CONTROL OF DISCRETE EVENT SYSTEMS 65

Rare Uncontrollable Events. Certain uncontrollable events may have a very low probability
of occurrence. If some of these events lead to undesirable, yet tolerable, behavior, then
one may be willing to take a chance with them. Let Zi - Zu be the set of "rare" and toler-
able uncontrollable events. One could define

One may also wish to consider the more general case

B2 = BI K (7 L(G),

where K is a tolerated set of suffixes that go beyond the desired B1.

Language Enlargement. In the same vein, one could be more formal than above and pre-
cisely quantify the probabilities of events in given states. This is the approach first presented
by Lin [1989]. This leads to the definition of an e-enlargement of a given language, where e
is the degree of tolerance tbr the enlargement. There are several ways to define e-enlargement;
one possible general definition is

(E)~ := E U {st E L(G): Prob(slCD) < e},

where Prob(sl CD) is the probability that trace s occurs under condition CD. For example,
by defining CD = (s' ~ E has occurred), one could enlarge E to include traces st of the
form s'at, with a E E,, such that the first event a that takes the traces outside of E occurs
with probability less than e in state 6(s', qo). In our context, one could take

m

BE = (B1)~

for any appropriate definition of e-enlargement.

1.4. Organization and Contribution of Paper

The previous sections have motivated the formulation of the new supervisory control prob-
lem SCPT. The remainder of this paper is devoted to the solution of SCPT. The general
case is considered in Section 2, the nonblocking case in Section 3. While the general solu-
tion is straightforward, the nonblocking solution poses technical difficulties, since an opti-
mal solution may not exist. Several new results are developed for the study of that case.

Nonblocking solutions of SCPT depend upon the following operation on languages:

Given L c M _ Lm(G), find a minimal superlanguage of L that is (i) contained in
M, (ii) controllaNe, and (iii) M-closed.

This operation is studied in detail in Section 4. The main results that we prove about it
are: (i) there is a nonempty set of minimal controllable and M-closed superlanguages, but,

66 STEPHANE LAFORTUNE AND FENG LIN

in general, no infimal superlanguage; (ii) some minimal superlanguages need not be regular;
and (iii) there may be an infinite number of regular minimal superlanguages. In addition,
we present an algorithm (on languages) that generates all minimal superlanguages. An im-
plementation of the algorithm based on finite state machines is described in Section 5. That
implementation generates a subset of the regular minimal superlanguages.

Section 6 concludes the paper, while some useful definitions and technical results are

collected in appendix.

Remark L1. Notation: In the development that follows, we will often be doing operations
on one language that will result in a set of languages. Let L be the given language and
let op denote the given operation. Then the set of resulting languages will be denoted by
L °p , while L °p will denote any element of L °p .

2. General Solution of SCPT

2.1. Problem Formulation

Formally, we state SCPT as follows:

Supervisory Control Problem with Tolerance (SCt~). Consider languages Lm(G), L(G),
B~, and Bz satisfying (H0)-(H3). Synthesize a controller S such that

1. US~G) c_ B2.
2. (VK c_ L(G))K = K = K ~ c_ Bz = K O B~ c_ L(S/G) n B~.
3. (¥K c L(G))[(K = I~ = K ~ c B2) A (K n B~ = L(S/G) N B~)] = L(S/G) c K.

The first condition requires that the language generated by S/G be tolerable. The second
condition requires that the language generated by S/G contain the largest possible part of
the desired behavior under the first condition. The third condition requires that the language
generated by S/G be smallest under the first two conditions.

In this section, we do not restrict ourselves to nonblocking solutions. Hence, the con-
troller synthesized may block; i.e., Lm(S/G) ~ L(S/G). Nonblocking solutions will be dis-
cussed in Section 3. It turns out that general solutions are much simpler than nonblocking

solutions.

2.2. General Solution

The solution of SCPT is unique, as shown in the following theorem.

q~EOREr~ 2.1. The unique solution of SCPT is given by

L(S/G) = (B~ n B~) ~.

BEHAVIORS IN SUPERVISORY CONTROL OF DISCRETE EVENT SYSTEMS 67

Proof. We prove that the three conditions in the problem statement are satisfied.

1. L(S/G) = (B, n

= L(S/G) ~ (B~) ~

= Bi 2

c__2 B2.

2. (¥K G

:=~

:=:¢,

=:,.

:=~

3. (vK c_

(since the operation ('); is monotonic)

(since B~ is closed and controllable)

L(G))K = ~2 = K t G Bz

K ___ B~2 (since K is controllable)

K n B1 ~ B~ n B1

K n B1 G (B~ n B1) ~

K n B1 G (B~ n B~) ~ n BI

K n B~ _c L(S/G) n Bl.

L(G))[(K = [(= K t c_ B2) /x (K n B~ = L(S/G) n B0]

K D K N B1

= (B I n B~) + n B~ (by hypothesis)

_D B l n Bt2 n BI

= B l n B~.

Also, K is closed and controllable. Therefore, by the minimality of (B 10 B~) ~,

L(S/G) = (B~ n B~) ~ c K.

Since (B, n B~) ~ uniquely exists, the solution of SCPT is unique. Q.E.D.

For a closed language L c_ L(G), a formula to calculate L r is [Bran& et al. 1991]

L* = L - [(L(G) - L)/~]~*,

where / denotes the quotient operation on languages. For a language L c_ Lm(G), a for-
mula to calculate L ~ is [Lafortune and Chen 1990; Lin and Wonham 1988]

L ~ = £Z~, n L(G).

Combining these two formulas, we get a formula to calculate (B~ n B~)*:

(B, n = (8, n n L (G)

= B1 n (B2 - [(L(G) - B2)/E:]E*)Z~* n L(G). (1)

The following example illustrates the above results.

68 STEPHANE LAFORTUNE AND FENG LIN

2.3. Example

Consider a system consisting of two parallel processes, G = G~ t[G2, as shown in Figure
1. Assume that c~ i is controllable and ~i is uncontrollable. The desired behavior is that ~
and/32 occur alternately, beginning with ~ . Therefore, B~ is generated by the generator
in Figure 2. The tolerated behavior is that after an occurrence of/31, ~1 cannot occur again
until/~2 occurs at least once. Therefore B2 is generated by the generator in Figure 3.

(Z 1

F~ure 1.

O~ 1 . . . ~ ~1 0~1
r , ~t

o~ 2

O~ 1

-7
Figure 2.

BEHAVIORS IN SUPERVISORY CONTROL OF DISCRETE EVENT SYSTEMS 69

132

O~ 1

132

1
mr--

IXl .J

~1 IXl

13 2 IX,

131 .J

13 2
Figure 3. (All the states are marked.)

r

Ixl

IX2

v

/

To find the solution of SCPT, (B~ O B*) ~ is calculated; a generator of that language 2
is shown in Figure 4. Observe that the controlled system (B~ n Bz*) ~ may block because
azf32 E L(S/G), but o~2t32 ~ L(S/G) n Lm(G). Nonblocking solutions of this problem are
discussed in Section 3.3.

>

Ix2

132

IXl

~2
131

IX2

Ixl

t ~ . d l

Ix2

131

132

131

Figure 4. (All the states are marked.)

70 STt~PHANE LAFORTUNE AND FENG LIN

3. Nonblocking Solution of SCIW

3.1. Problem Formulation

As shown in the above example, there is 11o guarantee that the general solution of the previous
section is nonblocking. But in some applications, nonblocking solutions may be required.
In this section, we discuss nonblocking solutions of SCPT. We first need to introduce a
definition and a new assumption.

Let us define a language to be livetock-free if continuations of any trace of the language
cannot remain unmarked for arbitrarily long suffixes in E*. Formally, we have

DEFINITION 3.1. A language L c_ E* is said to be livelock-free if

(Vs fi £)(3n E PC)(qt E E*)[tl -- n A st E [~ = (3 u ~ Z*)(s <_ u <_ st A u ~ L),

where P¢ is the set of natural numbers, Itl is the length of t, and s _< u denotes that s
is a prefix of u.

If a language L is regular, then it will be livelock-free iff each directed cycle in the directed
graph representaion of any finite-state generator of L touches at least one marked state.
Indeed, any n >_ IILII will work in Definition 3.1.

As will become apparent in Section 4, in order to guarantee the existence of "interesting"
nonblocking solutions of SCPT (cf. Theorem 4.2), we have to introduce further assump-
tions. These assumptions involve regularity and livelock-free conditions. More precisely,
we add the following condition to our list of hypotheses:

(I-14) B, and Lm(G) are regular. Lm(G) is livelock-free.

[Observe that it is not necessary fbr B1 to be regular. Regularity of B1 need only be intro-
duced when one is interested in finite-step computations (see Section 5).]

Supervisory Control Problem with Tolerance-Nonblocking Case (SCPT-NB). Consider
languages Lm(G), L(G), B1, and B2 satisfying (H0)-(H4). Synthesize a nonblocking con-
troller S such that

1. Lm(S/G) ~ B2.
2. (VK ~ Lm(G))[(K = R n L,n(G) = K ~) A (K c B2)] = K N Bx c Lm(S/G) n B,.
3. (VK ~ Lm(G))[(K = f~ n Lm(G) = K ¢) A (I~ ~ B2) A (K n B, = Lm(S/G) n B0]

= K ¢ Lm(S/G).

The first condition is to ensure that the language generated by the nonblocking controlled
process S/G is tolerable. The second condition requires that this language contain the largest
possible part of the desired behavior under the first condition. The third condition says
that in addition to satisfying the first two conditions, a solution should also be minimal
with respect to set inclusion.

BEHAVIORS IN SUPERVISORY CONTROL OF DISCRETE EVENT SYSTEMS 71

Let

B2m : = B2 n Lm(G), (2)

Blmax " = O 1 n O~m. (3)

The following properties of B~m and Blmax will be used.

LEMMA 3.1.

i) B~2m is Lm(G)-closed.
ii) B~2m is livelock-free.
iii) Blmax is Lm(G)-closed.
iv) Blmax is B2~m-Closed.
v) (Btmax) J" n Lm(G) = (Blmax) ~ n B~2m.

Proof (i) B2m is Lm(G)-closed by definition and Lemma B.1. Thus B~m is Lm(G)-closed
from Proposition 6.1 in [Wonham and Ramadge 1988].

(ii) The result follows from (i) and Lemma B.3.
(iii) It suffices to show that Blmax n Lm(G) c_ Blmax. But

Blmax n Lm(C) = B~ n B~2m n Lm(G)

B 1 n B~m n Zm(G)

= (B, N Lm(G)) n n Lm(G))

= B1 O B~m

= : Blmax,

where the next-to-last equality follows by (Hi) and (i).
(iv) Again, it suffices to show that Blmax n B~2m c Blmax.

B, N B~ ABe,no_B, ABe,. M B~

= B 1 n B~2m

: n n L,.(G)

= B1 n Bt2m

= : Blmax

72 STI~PHANE LAFORTUNE AND FENG LIN

(v) The result follows by observing that

(Blmax) ~ N Zm(G) = (n I [7 B~2m)~ (7 Zm(a)

: (n 1 (7 n~2m (7 tra(a)) "~ (7 Zm(a)

: (B, n n Lm(G)

=_ n L , . (G)

: n~2m . Q.E.D.

From (2) and Lemma 3.t(i), the largest tolerable nonblocking solution is I,m(S/G) = B~,,.
This solution achieves B ~ x in the desired behavior. We would like to achieve the same
B~ax but with a smaller nonblocking solution than Lm(S/G) = B~zm. From Theorem A.l(ii),
the language marked by such a solution must be controllable and Lm(G)-closed. In order
to find a solution of SCPT-NB, we thus need to introduce the concept of controllable and
Lm(G)-closed superlanguages of Blmax that are contained in B~2m . Therefore, define

CM(Blrnax, B~2m , Lm(G)) : = {K c_ Z*: (Blmax c K c_ B~2m)

A (R~u (7 Lm(G) ~ K) A (K = R f l Lm(G)) }. (4)

The class of languages CM(Blmax , B2m,* Lm(G)) is not closed under intersection. As will
be shown in Section 4, the infimal element of CM(Blmax, B~m, Lm(G)) may not exist, but
there exists at least one minimal element. We denote the set of minimal elements of
CM(nlmax , n~m , Zm(G)) by (Blmax) CM and a minimal element by (Blmax) cM. The following
results are immediate from (2)-(4) and Lemma 3.1(i).

LE~MA 3.2.

i) (nlmax) CM ~ n~2m .
ii) (Blmax) cM 17 B 1 = Blmax.

The (.)CM operation is studied in detail in Section 4. Lemmas 3.1 and 3.2 together with
the existence of (B~ax) cM, a minimal controllable and Lm(G)-closed superlanguage of B~n,x
(to be formally established in Theorem 4.2), are sufficient for our present purposes.

3.2. Nonblocking Solution

The following theorem shows that SCPT-NB can be solved, but that it does not have a
unique solution in general.

BEHAVIORS IN SUPERVISORY CONTROL OF DISCRETE EVENT SYSTEMS 73

THEOREM 3.1. A solution of SCPT-NB is given by

Lm(S/G) = (Blmax) CM.

Proof Since (B~a~ax) cM is controllable and Lm(G)-closed, the solution Lm(S/G) = (Blmax) CM
is nonblocking. We prove that the three conditions in the problem statement are satisfied.

1. Lm(S/G) = (B~ n (B2 O Lm(G))~) cM

= Lm(S/G) ~ (B2 n Lm(G)) ~ (by Lemma 3.2)

c B2 n Lm(G)

c_ B2

92,

2. (vK ~_ Lm(G))E(K = [~ N Lm(G) = K *) A (~" c B2)],

I£ ~ B2

= [(n L,,(G) c_ B2 n Lm(G)

= [~ O Lm(G) c (B2 O Lm(G)) ~ (since K n Lm(G) is controllable)

= K O B1 ~ (B2 n Lm(G)) ~ O B~

= k N BI c_ (B 1 n (B 2 n Lm(G))~) CM

= k n B~ c_ (B~ n (B2 O Lm(G))¢) CM n B1

n L,n(G) n B, c (B~ n n CM n

= K n B~ c (Bx n (Bz n Lm(G))~) cM n B~ (since K is Lm(G)-closed)

= K n B l c Lm(S/G) n B1.

3. (vK ___ Lm(G))[(K = K n Zm(G) ---- g t) A (/r~ c B2) A (K n B, = Lm(S/G) O nl)],

k c B~

= K n L,n(G) c ez n Lm(G)

= K c_ B2 n Lm(G) (since K is Lm(G)-ctosed)

K c (B2 n Lm(G)) ~ (since K is controllable)

74 STt~PHANE LAFORTUNE AND FENG LIN

and

B1 n (B2 n Lm(G)) ~ = B~ n (B2 n Lm(G)) ~ n B~

c_ (B~ n (B2 n Lm(G))t) cM n B~

= K n B~ (by hypothesis)

c K .

These results show that K E CM(Blmax, t B2m , Lm(G)) since, by hypothesis, K is control-
lable w.r.t. Lm(G) and is Lm(G)-closed. Therefore, by minimality of (B1 n (B2 n
Lm(G)) *) cM,

K ~ (B~ n (B z n Zm(G))~) CM = Lm(S/G). Q.E.D.

In view of Theorem 3.1 and Lemma 3.2(ii), it should now be clear to the reader why
the language B~ O B~2m is denoted Blmax. I f the solution of SCPT is not required to be
nonblocking, then (B~ n B2~) s n B~ is the maximum achievable part of the desired behav-
ior B1. On the other hand, when the nonblocking condition is enforced, the maximum achiev-
able part of the desired behavior is reduced to Blm, x. Moreover, in contrast to the unique
general solution (B~ n B~) ~, several incomparable solutions of SCPT-NB can achieve
Blmax. These solutions are the elements of the set (Blrnax) TM. Sections 4 and 5 are devoted
to the computation of these solutions.

We conclude this section with some remarks on special cases. (Remark 4.1 is also a
special case of interest.)

Remark 3.1. If Lm(G) is closed, then a sublanguage of Lm(G) is Lm(G)-closed iff it is
closed. Therefore,

(Blmax) CM = (Blraax) +

= (BI n [by (H2)]

and SCPT and SCPT-NB have the same (unique) solution.

Remark 3.2. Of course, ifL(S/G) = (B I n B~) ~ is nonblocking, then it is the unique solu-
tion of SCPT-NB. It can be shown that a (rather strong) sufficient condition for this to
be true is that the two languages Lm(G) and B~ n B~ ~ are nonconflicting.

3.3. Example

Take the same B1, B2, and Lm(G) as in Section 2.3. We will find a nonblocking solution
of SCPT. The first step is to calculate Blmax = B1 n (B2 n Lm(G)) ~, which is generated
by the generator in Figure 5. The next step is to calculate (Blmax) CM (an algorithm will
be given in Section 5), which is generated by the generator in Figure 6.

BEHAVIORS tN SUPERVISORY CONTROL OF DISCRETE EVENT SYSTEMS 75

Figure 5.

t~ 2

x 3

9z

~2

x 4

91

X 2

91

O~ 2

92

~2

92

c~ 1 91

91

°62

91
im

~2

92

Figure 6.

76 STt~PHANE LAFORTUNE AND FENG LIN

4. Minimal Controllable and Lm(G)-Closed Superlanguages of a Given Language

4.1. Preliminaries

In order to find minimal nonblocking solutions of SCPT, we must find minimal elements
of the class CM(Blm~, B~2m, Lm(G)). This is the class that we study in this section. For
the sake of generality, we write

CM(B, B~2m , Lm(G)) := {K _ ~*: (B~ K ~ Bt2m)

^ (k~. n Lm(V~ -~ ~') ^ (K = k O Lm(G)) } (5)

when B is a given language satisfying B c n~2m and B = / } n Lm(G). Observe that Blmax
satisfies these conditions. It is convenient to define the new class of languages

CMR(B, B~m) "= {K _ ~*: (B ___ K ~ B~) A (/ ~ n B2~ m ~ K)

A (K = [i n B~m)} (6)

for a given language B such that B c B~m and B = /} n B~2m . Once again, Blmax satisfies
all conditions. Observe also that n~2m is livelock-free by Lemma 3.1(ii).

THEOREM 4.1. Given B c B~ m such that B = /} O Lm(G) and B = / } n B~2m , CM(B, B~2m ,
Lm(G)) = CMR(B, B~m).

Proof (i) CMR(B, B~m) c_ CM(B, B~m, Lm(G)). First, observe that CMR and CM are defin-
ed within the same range B c K c_ Bt2m" Second, if K is controllable w.r.t. /i2~ m, then
K is also controllable w.r.t. Lm(G) since Bt2m is controllable w.r.t. Lm(G) (Lemma B.2).
Third, K = k O B2~,~ and B~,~ = B~2m O Lm(G) [Lemma 3.1(i)] imply that

g = i: n B 2m n Lm(G) = K n Lm(G).

(ii) CM(B, B~2m , Lm(G)) c CMR(B, Bt2m) . This time, K~u n B2~m C__ K~u n Lm(G) ~ ~2,
and thus K is controllable w.r.t. B~m. Similarly,/(O B~m ~ K O Lm(G) = K, and thus K
is also B~m-Closed. Q.E.D.

In view of Theorem 4.1 and for the sake of generality, in the remainder of this section
we will consider the class

CMR(L, M) := {K ___ ~*: (L _c K ~ M) A (/C~u n / ~ / c K) A (K = /C n M)},
(7)

where L and M are two given languages over r. satisfying the following properties: (i) L c M;
(ii) L = L n M; and (iii) M is regular and livelock-free. Controllability will always be
defined w.r.t. Mand w.r.t, the fixed E~ ~ E. All the results obtained will thus be directly
applicable to the nonblocking solution of SCPT when L = Blrnax and M = B2~m •

BEHAVIORS IN SUPERVISORY CONTROL OF DISCRETE EVENT SYSTEMS 77

The following subclass of minimal elements of CMR(L, M) plays a crucial role:

L TM := {K E CMR(L, m): YK' E CMR(L, m) , K' c2 K}.

THEOREM 4.2.]LCMI --> 1.

(8)

Proof First, it is clear that M E CMR(L, M). We argue that CMR(L, M) possesses at least
one minimal element. By contradiction, suppose that L TM is empty. This means that there
exists (Ki, i > 0), Ki E CMR(L, M) for all i, such that

M D K 1 D Kz D K3 D . . . D_ L.

In other words, an arbitrarily large number of traces can be removed from M. Since M
is regular, any finite-state generator of M must therefore contain at least one cycle in its
digraph representation. An arbitrarily large number of the traces that are removed must
be traces that pass through one particular cycle. Let t E ~* be the subtrace corresponding
to that cycle. Without loss of generality, we can write

Ki =/~i_~ - {s.},

g i + 1 -~ g i - - {s tbt} .

But K i is M-closed. Thus if su < v < stu, then v ~ M. In other words, the cycle does
not touch any marked states in the digraph generating M. This however implies that M
is not livelock-free and we have a contradiction.

Finally, CMR(L, M) is not closed under set intersection and thus does not possess, in
general, a unique infimal element. This is shown by the following example. Let Zu = {s},
E = {~, s, h, t2}, m = {a, o~Stl, ash}, andL = {a}. Then K1 = {a, c~sh} E CMR(L, M)
and K2 = {a, ast2} E CMR(L, M). But 1(1 71 Kz = L and L f! CMR(L, M) since L ~ L *.
Consequently, CMR(L, M) may possess more than one minimal element. Q.E.D.

COROLLARY 4.1. Given any K E CMR(L, M), there exists L TM E L TM such that L TM c K.

Proof By contradiction, suppose that no such L cM exists. Then we can construct a strictly
decreasing sequence of sets (K i, i > 0), K i E CMR(L, M) for all i such that

MD_ K D K~ D Kz D . . . D_ L.

But by the same argument as in the proof of Theorem 4.2, this contradicts the assumption
that M is livelock-free. Q.E.D.

Example 4.1. To illustrate that if M is not livelock-free, then L TM could be empty, consider

M = {a, abc(uc)*f} and L = {a}

78 STEPHANE LAFORTUNE AND FENG LIN

with ~, = {b, u}. Then we can construct the sequence in CMR(L, M):

Ko = M,

Ki = M - {abc(uc)if} U {a}.

For any K E CMR(L, M), there exists i E gV such that K / C K, and consequently L TM = 0.

The following result provides a sufficient condition for CMR(L, M) to possess a unique
infimal element.

THEOREM 4.3. If L ~ N M is controllable, then I LCMI -- 1 and L cM = L; O M.

Proof First, by hypothesis and by Lemma B.1, L ~ n M ~ CMR(L, M). Next, suppose
that there exists K ~ CMR(L, M) such that L s n M ~ K. Then

L* n M ~ K N M ~ L; 9~ K = L ~ f£ K + = L ~ K,

and the last statement contradicts K E CMR(L, M). Q.E.D.

Remark 4.1. When applied to SCPT-NB, Theorem 4.3 implies that if (Blmax)Eu n Bt2m is
controllable w.r.t. B t then 2m'

(Blmax) CM ---- (Blmax)~ ~ O Bt2m ,

and thus SCPT-NB has a unique solution. Translating back to controllability w.r.t. Lm(G),
Lemmas 3.1(v) and B.2 can be used to reformulate this result as follows: if (Blmax) J" n
Lm(G) is controllable, then

(Blrnax) C M = (Blmax) ¢ n Lm(G),

where ~ is w.r.t. L,,,(G) this time.

In the following sections we discuss the properties of L TM and find algorithms to com-
pute its elements. Recall that L cM denotes any element of L TM.

4.2. Constructive Algorithm

Our objective is to develop an algorithmic procedure to construct all the elements of L TM.
Intuitively, the task consists of extending the traces of L by all possible suffixes of uncon-
trollable events in order to get a controllable language, and ttien extending again the traces
in order that they all be part of M. The resulting language can be made M-closed, but
the last extension may destroy controllability, and, consequently, the procedure must be
reapplied. Observe that this last extension is nonunique, even if it is minimal (cf. proof
of Theorem 4.2), which is the reason why the infimal controllable and M-closed super-
language need not exist.

BEHAVIORS IN SUPERVISORY CONTROL OF DISCRETE EVENT SYSTEMS 79

We have found that after the extension of the traces of L with suffixes of uncontrollable
events has been performed, it suffices to extend all those traces that are not in M (and
that have no continuation in the new L) by one controllable event, rather than by a longer
suffix, before reapplying the procedure. This motivates the following definitions.

Let K = K _~ M, We wish to identify which traces of K should be extended in order for
the new language to be contained in M. These traces constitute the set TBE(K) defined as

TBE(K) : = {s E K - M: (qa E E)(scr ¢ /~)}. (9)

Let I be an index set for TBE(K); i.e., TBE(K) = U ie~{si}. For each si E TBE(K),
define the set of events

~(Si) :-~ {0" E ~" SiO ~ /~}. (10)

We wish to choose one extension sia, ~r E ~(Si), for each s i E TBE(K) and thus create the
new set K ~. K e is called and e-extension of K. All the possible combinations of extensions
of traces in TBE(K) give rise to the class of languages KL Formally, we form the cartesian
product

ES(K) '= X E(si)
iE1

and define the composition operation o between TBE(K) and an element ~r t of ZX(K) as

TBE(K) o e l . = U {si~ri: si E TBE(K) A ~r i = ~rzli}, (11)
iEl

where fflli denotes the ith component of ~r ~. Finally, we let

K e "= {K e ~ ~i: K e = K U (TBE(K) o cJ) for some o r E ~I(K)}. (12)

Clearly, K ~ = K ~ for all K ~ E K e. Observe that each K e contains a single extended trace
scr for each trace in TBE(K).

DEFlr~ITION 4,1. An extension sequence (Di, i _> 0) is a monotonically increasing sequence
of closed languages such that

Do = £ and Di+l E (D~) e for all i > 0.

The derived extension sequence of an extension sequence (Di, i _> 0) is the sequence
(C/, i _> 0) such that Ci := Di 0 M for all i >_ O.

For all extension sequences (Oi, i _> 0), we have that O i c 1(4 for all i _> 0 (by defini-
tion of the $ and e operators). Thus each extension sequence converges to a limit D~ :=
limi._,~ D i. Clearly, DR = D~. The same is true for the corresponding derived extension

80 ST]~PHANE LAFORTUNE AND FENG LIN

Figure 7.

sequence (Q, i _> 0), whose limit is denoted C~ := limi_~ Q = limi_~ (Di O M).
Clearly, we have that Coo = D= n M. We define the set of limits

Coo := {Coo: C~ = D~ n M for some extension sequence (D i, i >- 0)}. (13)

The following result will be used in Section 4.3.

LEMMA 4.1. Consider the limit D~ of an extension sequence (Di, i > 0) and its
corresponding C~¢ = D~ n M. Then D~ c_ C~.

Proof Since D~ = lim;_~ Di, then it can be proved by contradiction that TBE(D=) = 0.
Thus (i) all the traces in D~ that have no continuation are in D~ n M, and, on the other
hand, (ii) all the traces in D~ - M have a continuation in D~¢ c_ M. But such continua-
tions cannot remain in D~ - M for arbitrarily long suffixes because this would contradict
the fact that M is livelock-free. (See Figure 7.) Thus any trace in D~ - M has a continua-
tion in D= n M. In conclusion, D~ ~ D~ n M. Q.E.D.

4.3. Main Results

The first important result of this section is that C= = L TM. Three intermediate results
need to be established first.

PROPOSmON 4.1. Given any L cM E L TM, there exists an extension sequence (Di, i >_ O)
for which C~ c_ L cM.

BEHAVIORS IN SUPERVISORY CONTROL OF DISCRETE EVENT SYSTEMS 81

Proof We will prove the result by induction on the extension sequence (Di, i _> 0) to be
constructed. First, Do = £ _ L cM. Thus Co = £ N M = L c_ L TM. Next, let D i c L CM.
This implies that

q := n M c_ L TM N M = L cM

by definition of CMR(L, M). If we can construct Di+ 1 c L CM, then the proposition will
be proved because the corresponding derived extension sequence (Ci, i > 0) will satisfy
Ci c L TM Yi > O. But D i ~_ L TM implies that D~ c_ L cM, since L cM is controllable by
definition. Since L TM c_ M and L cM is M-closed, we can choose a~ ~ ZI(D)) such that
TBE(DSi) o al c -i'f cTM c_ ~4. This results in Di+~ := D~ U (TBE(D~) o a~) c L cM.

Q.E.D.

PROPOSITION 4.2. Given any C~ fi Coo, there exists L CM E L TM such that L CM ~ Co.

Proof In view of Corollary 4.1, it suffices to show that the given Co~ E CMR(L, M). Let
(Di, i _> 0) be an extension sequence that yields Co--i.e., for which Do n M = C~.
First, £ c_ D= c_ M since L c Di c_ M for all i _> 0. Thus

[, N M C _ Do N M C _ M n M = L c _ C~ c_M.

Second, Co is M-closed by construction (cf. Lemma B.1). Hence, it remains to show that
C~ is controllable (w.r.t. M and Zu)- Since Do is the limit point of (Di, i > 0), the proof
of its controllability is straightforward. But then C~ = D~ O M is also controllable
because

(D~ N M) E u n M C. (D~ n t (4)~ u N

=_D= n i4

= Do

D~ AM,

where the last inequality follows from Lemma 4.1. Q.E,D.

PROPOSITION 4.3. For all distinct Ck and C~ in Coo, Ck ~Z C~.

Proof Consider two distinct extension sequences (D], i >_ 0) and (D~, i _> 0). Definition
4.1 and (12) imply that there exists i _> 0 such that D) = Dj z, 0 _< j _< i, but D]+~ and
D~i+l are incomparable. More precisely, without loss of generality we can write

DJ+ 1 = (D]) ~ tJ {s~rl} U KI,

D2+1 = (D~) ~ U {sa2} U K2,

82 STI~PHANE LAFORTUNE AND FENG LIN

where so 2 ~ K~ and sol ~ K2. (tO denotes disjoint union.) Observe that K1 or/£2 could
be empty. Since the e-extension is done after the $ operation, al ~ Ec and o- 2 ~ ~C" We
can thus conclude that sa~ ~ D~+ k and saz ~ D]+k vk _> 1, since subsequent elements of
the extension sequences only differ from previous ones by the addition of suffixes to cer-
tain traces (as a consequence of the $ and e-extension operations on closed languages).
After step i, trace s will no longer be a member of TBE(D~+k), k >_ 1.

Consequently, SOl ~ D~, sa~ ¢. D~ and sa2 E D~, so 2 ~. DR; the two sets D~ and D~
are thus incomparable. By Lemma 4.1, there exist suffixes t~ and tz in ~* such that salq

C~ and sa2t2 ~ CZ~. On the other hand, sa2 ~ D 1 implies that sa2t ~ D~ for any t ~ ~*,
and thus sa2t ~ C~ either. Similarly, sag ¢ C~ for any t ~ ~*. We conclude from these
observations that C~ and C2oo are also incomparable. Q.E.D.

THEOREM 4.4. C= = L TM.

Proof (i) C¢o c L TM. We must show that vC= e Coo, 3L CM E L TM such that Coo = L CM.
Given Coo, there exists L CM c_ Coo by Proposition 4.2. But from Proposition 4.1, 3C~
Coo such that C " c_ L TM. Thus C£ c L CM c Coo. But from Proposition 4.3, we must
have that C~ = L CM = Coo.

(ii) L TM _ Coo. We must show that vL CM E L TM, 3C~¢ E Coo such that L CM = Coo.
Again, Propositions 4.1 and 4.2 imply that given an L cM, we can find C~ in Coo and LCl M
in L TM such that L cM ~ C~ c_ L cM. But by definition of L TM, we must have that L cM =

C~ = L cM, which proves the result. Q.E.D.

The following example will serve to establish some interesting properties of the set L CM.
Let ~ = {c, d, u}, ~u = {u} and consider the languages

M = (c + d)[u(c + d)]* and L = {c}.

(Refer to Figure 8.) An extension sequence could be

Do = {c},

DI = {cud} ,

D2 = {cuduc},

D3 = {cuducud},

D4 = {cuduc(ud)2},

Dk = {cuduc(ud)Zuc(ud)3 . . . uc(ud)"},

BEHAVIORS IN SUPERVISORY C O N T R O L OF D I S C R E T E E V E N T SYSTEMS 83

U
Figure 8.

where

n 2 + 3n 2
k = 2 ~ i + (n - 1) -

" 2
i=1

and so forth.
Let 6t denote the class of regular languages over ~. Then the above extension sequence

leads to Coo ~ 61, which shows that Coo ~ 61 even though L E 61.
On the other hand, we can get a regular C~ if the previous extension sequence is modi-

fied to (/)i, i _> 0), where

L)j = Dj, 0 <_ j <_ k = ~ i + (n - 1),
i=1

Dk+ 1 = { c u d u c (u d) Z . . . (u d) n u c } ,

Dk+ 2 = { c u d u c (u d) 2 . . . (u d) n (u c) Z } ,

D~+m = { c u d u c (u d) 2 . . . (u d) n (u c) m } ,

and so forth. For any fixed k, the extension sequence yields C,= E 61. Since k can be
chosen arbitrarily large, the set Coo O 6l is infinite.

We group these two important results in the following theorem

T~EOREM 4.5. Let L be regular. In general,

i) L TM (Z 61.
ii) I L TM (1 611 ~: c~.

In the next section, we present an algorithm based on finite-state machines that can
generate some languages in L TM f3 6t when L is assumed to be regular.

84 STt~PHANE LAFORTUNE AND FENG LIN

5. Generating Regular Languages in L TM

Based on the discussion of the previous section, we now propose the following algorithm
to calculate a minimal controllable and M-closed superlanguage of a regular language L
when finite-state generators G and F of the languages M and L, respectively, are given.
The algorithm converges in finite steps.

5.1 Algorithm

Input. G = (Q, ~, 6, qo, Qm) and F = (X, ~, ~, Xo, Xm) such that Lm(G) = M and
Lm(F) = L.

Step 1. Determine the map h: X ~ Q such that

(¥ s E ~,*)~(s, xo) = x = 6(s, qo) = h(x)?

Step 2. For all q E Q such that there are controllable events defined by 6 at q.

select(q) := a controllable event defined at q 2

Step 3. For all q ~ Q, compute G q as follows:

Q~ := {q};

6~ := O; 3

i := - 1 ;

repeat

i * - i + 1 ;

Q~l/2 : = Qiq U {q' E Q: (3q" ~ Q;)(3s 6 r.2)6(s, q") = q'};

~+1/2 . = ~qi U (~l(F-,u X ~qO i+1/2 X 0~+I/2));
i+1 . = 6iq+u2 U {(select(q'), q', 6(select(q'), q')): 6q

q' f- Qm A (Va E P,)(Vq" ~ Q)(a, q', q") f. 6~+1/2};

* i+ 0 i+1 := {q' ~ Q: (~s fi ~)3q ~(s, qo) = q'}"

until 0 i+1 = Qiq; ~q
Qq := Qq;

i. ~q := ~q,

G q := (Qq, ~,, ¢~q, q, oq).

Step 4. For all x E X, paste G h(x) to F as follows:

J := I X U U Qh(x)' p'' ~ U U (6h(x) x~X {(e' x' h(x))})' x°' X U Uxex Qh(X~ .

BEHAVIORS IN SUPERVISORY CONTROL OF DISCRETE EVENT SYSTEMS 85

Step 5. Transform J to a deterministic (finite-state) generator.
S t e p 6 H : = J x G.
Output. Lm(H) = L cM E L TM.

Remark 5.1. If B1 is regular, then by (H4) Btmax is also regular, and thus the above algo-
rithm can be applied to construct a solution of SCPT-NB by setting L = Blmax and
M = B~m and by choosing a function select for Step 2.

5. 2. Proof o f the Algorithm

Let L cM be the element of L TM such that the operation (.)~ in the extension sequence that
produces L cM always extends s to s(select(6(s, qo))). We prove that the above algorithm
indeed calculates LCM; i.e., Lm(H) = L cM.

From the construction of H, it is clear that L TM c_ Lm(H). Let us now prove that Lm(H)
c L cM. Let

E : = L(2) - L(F).

Then

Lm(H) = (L(F) U E) 71 M.

From the previous section,

L cM = Do~ f7 M.

Therefore,

Lm(H) ~ L cM

= (Ss ~ ~*)s E Lm(H) A s • L cM

= (Ss E Z*)(s ~ L(F) V s E E) A s E M A (s ~Doo V s ~ M)

= (ss E E*)(s EL(F) v s E E) A s E M A s ~ D o ~

= (Is E E*)s E M A s E E A s ~ Doo since L(F) c D~o.

Since D~ is closed,

(]tcr <_ s)ta ~ E A t E Do~ A ta ~ Do~

= (] to <_ s) (] i >_ 1)t~ E E A t ~ D i _ 1 A t E D i A to ~ Do~

= (] to <_ s) (] i ~ 1)t~ E E A t ¢ Di_ 1 A t E D i A to ~ D i + 1.

86 STt~PHANE LAFORTUNE AND FENG LIN

Let us consider two possibilities. If cr E ~,, then

ta E E = to E 1(/1= to ~ D~ ,

which contradicts ta ~ D i + 1 . If o ~ Ec, then

ta ~ E = t ~ M A (¥a' ~ E.)ta' ~ M = t ~ TBE(D~i) = to E (D~)~,

which contradicts to ¢ D i + 1 . Therefore,

Lm(H) c L cM.

Let us illustrate this algorithm by the following example.

5.3. Example

Take the same B~, Bz, and Lm(G) as in Section 2.3. Blmax and B~m are generated by the
generators F and G and Figures 5 and 9, respectively. We apply the algorithm to calculate
(Blmax) cM.

Step 1. The map h is defined as h(xi) = qi.
Step 2. select(q) is chosen as

q select(q)
qo c~2
ql c~2
qz o~2
q3 o4
q4 undefined
q5 undefined

Figure 9.

~1 ~1
m

q l q2

~2

q3 q4 q5

BEHAVIORS IN SUPERVISORY CONTROL OF DISCRETE EVENT SYSTEMS 87

Step 3. Compute Gq: G qi, i = 0, . . . , 5, are shown in Figures 10-15, respectively.
Step 4. Paste G h°° to E
Step 5. Transform the resulting generator to a deterministic one.
Step 6. The generator H := J x G is shown in Figure 6.

Figure 10.

ot 2 9 2

f i g u F e 1 I .

Ot 2

92

91
A

y

Ot 2

~Y
, h

Figure 12.

~2

92

>

O~ 2

88 STEPHANE LAFORTUNE AND FENG LIN

Figure 13.

eL2 f~2

Figure 14.

, /

1 ~2

~2

~2

O~ 2

F/gure /5,

6. Conclusion

, /

) ~2

~2

We have proposed a new approach to supervisory control problems Ibr which a formulation
in terms of an ideal desired behavior and a larger tolerated behavior is appropriate. It turns
out that this supervisory control problem with tolerance does not, in general, have an optimal

BEHAVIORS IN SUPERVISORY CONTROL OF DISCRETE EVENT SYSTEMS 89

nonblocking solution in the presence of uncontrollable events. In order to characterize its
incomparable minimal nonblocking solutions, we have developed some new results on con-
trollable and Lm(G)-closed superlanguages of a given language. These results are also of
independent interest.

Acknowledgment

The authors would like to acknowledge useful discussions with E. Chen and P. Ramadge.
They would also like to thank an anonymous referee for pointing out a mistake in Section 5.

Appendix

A. Background Material on Supervisory Control Theory

tn this appendix, we summarize some concepts and results from supervisory control theory.
Let Z be a nonempty finite alphabet (i.e., set of "events"), and denote by E* the set

of all finite traces (strings) of elements of ~, including the empty trace e (* is called the
Kleene closure). A subset L _ ~* is a language over ~. If s, s ', t ~ P.* with s 't = s, then
s ' is aprefix ofs. The closure [~ of L is the language consisting of all the prefixes of traces
in L. L is closed if L = £. Two languages LI and L2 are said to be nonconflicting (see
[Wonham and Ramadge 1988]) ilL1 N L2 = L1 I"1 L2. Closed languages are nonconflicting.

Let M be a fixed language over r., and let ~, be a fixed subset of E denoting the set
of uncontrollable events. A language K c_ Z* is said to be controllable w:r.t M and ~,,
if KE, I"t M c k [Ramadge and Wonham 1987]. The set ~c = Z - ~u is the set of con-
trollable events.

An uncontrolled DES is modeled by a generator [Ramadge and Wonham 1987], which
is a deterministic automaton G = (Q, ~, 6, qo, Qm), where Q is the state space, E is the
set of events, ~: ~* x Q --, Q is the transition function (a partial function), q0 is the ini-
tial state, and Qm c_ Q is the set of marked states. The closed language generated by G
is L(G) := {s E ~*: 6(s, q) is defined}. The language marked by G is Lm(G) := {s E L(G):

b(s, qo) E Om}.
A language K is said to be L~(G)-closed if K = K I"1 Lm(G). A language is regular

iff it is marked by a finite state generator. In that case,]IL [[denotes the minimum number
of states among all generators that mark L.

The basic problem in supervisory control is to design a controller (or supervisor) whose
task is to enable and disable the controllable events such that the resulting closed-loop system
obeys some prespecified operating rules. Formally, a controller is a pair S = (R, ~), where
R = (X, ~, ~, xo, X) is a generator called a recognizer and ~: ~ × X ~ {0, 1} is the
feedback map satisfying

¢(a, x) = 1 i f a E ~u ,x E X,

,p(a,x) E {0, 1} i f a E E c ,x 6 X.

90 STF~PHANE LAFORTUNE AND FENG LIN

R is considered to be driven externally by the stream of event symbols generated by G,
while in turn, with R in state x, the transitions a of G are subject to the control ~(a, x).
If ~(a, x) = O, then a is "disabled" (prohibited from occurring); if p(a, x) = 1, then a
is "enabled" (permitted but not forced to occur). In this way, there results a closed-loop
feedback structure S/G, called the supervised DES. (See [Ramadge and Wonham 1987] for
further details on the definition of S/G.) The behavior of the supervised DES is described
by the languages L(S/G) and Lm(S/G) := L(S/G) O Lm(G). In general, Lm(S/G) ~ L(S/G).
S is said to be nonblocking if Lm(S/G) = L(S/G).

The following important results are proved in [Ramadge and Wonham 1987]:

THEOREM A.1

i) Let L be a nonempty sublanguage of L(G). There exists a controller S such that L(S/G)
= L iff L is closed and controllable.

ii) Let L be a nonempty sublanguage of Lm(G). There exists a nonblocking controller S
such that Lm(S/G) = L iff L is controllable and Lm(G)-closed.

If a given language L c M is not controllable, one may calculate the unique largest
controllable sublanguage of L. This supremal controllable sublanguage of L is denoted L ~
and is defined by

L* := U {K: (K _ L) A (K~u N M = K)}.

On the other hand, one may also calculate the infimal closed controllable superlanguage
of L, denoted L; and defined by

L ~ := n {K: ([, G K G M) A (K = K) A (~SEu n M = K)}.

Both L ~ and L + exist and can be computed in finite steps in the regular case. Brandt
et al. [1991], Lafortune and Chen [1990], and Ramadge and Wonham [1989] can be con-
suited for more details on these two important concepts.

Let L~ and Lz be two sublanguages of M. The following results are proved in [Wonham
and Ramadge 1988] and [Lafortune and Chen 1990].

(L, U L2)* - L~ U L~; (L1 N L2) ~ _ L~ n L~;

(L, U L2) ~ = L~ U L2 ~ but (L, n L2) ~ G L~ n L~.

When Lt and L2 are nonconflicting, then

(L~ n L2) * = L~ n L~.

Similarly, when L~ and L~ are nonconflicting, then

(L, n L j = LI n

BEHAVIORS IN SUPERVISORY CONTROL OF DISCRETE EVENT SYSTEMS 91

B. Some Technical Results

LEMMA B.1. Let K = / (c_ y*. Then K n L~(G) is L, ,(G)-closed.

Proof Clearly, K O Lm(G) c_ K O Lm(G) n Lm(G). For the reverse inclusion,

K n Lm(G) (1 Lm(G) c_ k n Lm(G) n Lm(G)

= K n Lm(G).

LEMMA B.2. Let A c B _c C ~ ~*. I f A is control lable w.r.t. B and B is controllable
w.r.t. C, then A is control lable w . r . t .C .

Proof

c_~..

LEMMA B.3. Let M be livelock-free and let L c_ M be M-closed. Then L is livelock-free.

Proof By contradict ion, let us assume that L is not livelock-free. This means that

(3 s e £)(Vn a LW)(3t e r.*)(lt t >_ n A st E £ A (Vu ~ ~*)(s <_ u <_ st = u ~ L)).

Let s be the trace that satisfies the above condit ion. Since s E M and M is livelock-free,

we can find k(s) ~ hV such that the livelock-free condi t ion for s ~ M is satisfied; i.e.,

(¥t ~ ~*)Itl ~ k(s) h st E 1(/I = (3u ~ 12")(s <_ u <- st A u E m) .

Now, return to the above assumpt ion concern ing s E/~, take n >_ k(s) there, and let t
be the appropriate suffix that works with n. We have that st ~ [, = st ~ M, but for all

u such that s <_ u <_ st, u ff L. However, since M is livelock-free and since we chose

n >_ k(s), 3u' C E* such that s <_ u' <_ st and u ' E M. Moreover, u ' E /~. Since L is
M-closed, u ' ~ L. This yields a contradiction. Thus L is livelock-free.

Notes

1. If necessary, this can be done by taking the new F as the product of F and G: F := F x G. For the new
F, states are pairs (x, q). h is then defined as h((x, q)) = q.

2. If there is more than one controllable event defined at q, arbitrarily select one.
3. We can also view a transition function as a relation; i.e., 3(a, q) = q' iff (a, q, q') ~ &

92 STEPHANE LAFORTUNE AND FENG LIN

References

R.D. Brandt, V. Garg, R. Kumar, F. Lin, S.I. Marcus, and W:M. Wonham, "Formulas for calculating supremal
controllable and normal sublanguages" Systems Control Lett., vol. 15, pp. 111-1t7, 1990.

E. Chen and S. Lafortune, "Dealing with blocking in supervisory control of discrete event systems;' IEEE Trans.
Automat. Control, vol. 36, no. 6, 1991.

S. Lafortune, "Modeling and analysis of transaction execution in database systems," IEEE Trans. Automat. Control,
vol. 33, pp. 439-447, 1988.

S. Lafortune and E. Chen, "The infimal closed controllable superlanguage and its application in supervisory
control;' IEEE Trans. Automat. Control, vol. 35, pp. 398-405, 1990.

E Lin, "Supervisory control of stochastic discrete event systems," in Book of Abstracts, SIAM Conf. Control
in the 90's, San Francisco, 1989.

E Lin and W.M. Wonham, "On observability of discrete-event systems;' Inform. Sci., vol. 44, pp. 173-198, 1988.
RJ. Ramadge and W.M. Wonham, "Supervisory control of a class of discrete event systems;' SIAM J. Control

Optim., vol. 25, pp. 206-230, 1987.
RJ. Ramadge and W.M. Wonham, "The control of discrete event systems," Proc. IEEE, vol. 77, pp. 81-98, 1989.
W.M. Wonham and RJ. Ramadge, "Modular supervisory control of discrete-event systems," .Math. Control Signals

Syst., vol. 1, pp. 13-30, 1988.

