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This report considers the application of  the W'agner-Nelson method to both one- and two-compart- 
ment open model data when there is no competing reaction at the absorption site. Equations are 
derived which show that application of  the Wagner-Nelson method to data which obey the two- 
compartment open model with first-order absorption allows accurate estimation of  not only the 
rate constant k, but also the parameters of  the two-compartment open model, namely k~2, k21 , 
and ket. In the example given, this new method was more accurate than the classical "feathering" 
or "back-projection" method. The appropriate criterion for "collapsing" the two- to the one- 
compartment open model is given. In cases where the one-compartment open model applies, and 
absorption is first order but abruptly ceases after some time, it is shown that k a may be accurately 
estimated by application of  the Guggenheim method to the A r / V  values calculated for the absorption 
phase. 

KEY WORDS: Wagner-Nelson method; absorption rate constant; one-compartment open 
model; Loo-Riegelman method; two-compartment open model; competing reactions at 
absorption site. 

I N T R O D U C T I O N  

The method of Wagner and Nelson (1,2) as originally published, 
appeared to provide (a) plots of amount  of drug absorbed per unit volume 
of distribution vs. time and (b) plots of percent of drug absorbed vs. time. 
The method was not designed or claimed to be a method to determine an 
"absorpt ion rate cons t an t . "  Wagner  and Nelson (1) stated: "When the 
cumulative percentages absorbed are plotted against time, the resulting 
plots may contain linear segments ; the slope of such a linear segment is the 
absorption rate in percent/hour. If the plot is curved, or contains curved or 
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linear segments, it may often be resolved to yield the components of the 
rate d %At~dr." Notari et al. (3), Perrier and Gibaldi (4), and Leeson and 
Weintraub (5) have discussed problems that arise in estimating "absorption 
rate constants" when the drug is absorbed and also simultaneously lost to 
an extravascular compartment via either a parallel first-order or a zero-order 
process. Loo and Riegelman (6) applied the Wagner-Nelson method (1) 
to data which obviously obeyed the two-compartment open model with 
both first-order and zero-order input to the central compartment and stated : 
"It appears that both the bi-exponential and the occasional appearance of 
maxima are artifacts of the numerical method." 

The method of Loo and Riegelman (6) requires that the drug be adminis- 
tered intravenously before plasma concentration data obtained following 
oral administration may be evaluated. The method of Wagner and Nelson 
(1) does not require such intravenous data. Since, intravenous data are 
frequently not available, the use of the Wagner-Nelson method becomes 
attractive. It is shown that in the special case where data obey the two- 
compartment open model with first-order absorption (without a parallel 
competing reaction), application of the Wagner-Nelson method allows 
estimation of all the parameters of the two-compartment model. 

In resolving Wagner-Nelson "absorption" plots, the original numerical 
values obtained by the method should be utilized. The values should not be 
converted to "percentage absorbed" values as originally published (1). 
This is important since if absorption abruptly ceases because of a "window 
effect" at the absorption site, the wrong asymptote would be used if the 

conversion to percentages were made. 

THEORETICAL 

Relative Magnitude of Asymptotes by Wagner-Nelson (1) and Loo-Riegelman 
Methods 

If it is assumed that data obey the two-compartment open model, then 
the asymptote obtained by application of the Loo-Riegelman method (6) to 
the oral data is given by equation 1 : 

A+/V~ = ke, C~(t) dt (1) 

where Ao~ is the amount of drug absorbed to infinite time (which is equal to 
FD where F is the fraction of the doses, D, which is absorbed), 1"1 is the volume 
of the inner (central) compartment of the two-compartment model shown in 
Scheme I below, kel is the elimination rate constant, and the integral is the 



Application of the Wagner-Nelson Absorption Method 471 

total area under the plasma concentration-time curve (taken as representa- 
tive of the area under the concentration-time curve of the central compart- 
ment). 

Under the same assumptions, the asymptote obtained by application of 
the Wagner-Nelson method (1) to the oral data is given by equation 2: 

A ~ / V a  . . . .  = fl Cl ( t )  dt (2) 

In equation 2, V~ .... and fl are given by equations 3 and 4, respectively: 

V d . . . .  = (a/k21)V 1 = (kev/fl)V~ (3) 

fl = �89 + k2~ + ka)  - [(k~2 + k2~ + ko,) 2 , -  4k21ka3 t/2} (4) 

From equations 1, 2, and 3, one obtains the relationship given in equation 5 : 

Asymptote obtained by Loo-Riegelman method 
= ~ t k ~  = koJ/~ (5) Asymptote obtained by Wagner-Nelson method 

Equation 5 will hold when there is no competing reaction at the absorption 
site, and for all cases of the two-compartment open model i.e., when 
absorption is nonuniform, or when absorption obeys uniform kinetics such 
as first order. 

It follows that if one compares two oral treatments (e.g., two different 
tablets or tablet vs. solution of the drug) and performs only the Wagner- 
Nelson method, then the ratio of the asymptotes obtained by means of 
equation 2 is the ratio of the relative amounts of drug absorbed following the 
two treatments, provided that kd/ f l  remains constant for the subject. 

The Two-Compartment Open Model with First-Order Absorption 

If data obey this model (shown in Scheme I), then the "K"  in the original 
Wagner-Nelson paper (1) becomes equivalent to "fl," as defined by equation 
4, since an estimate of "fl" is obtained from the terminal oral plasma con- 
centration data. 

The model is 

H 

C1 

Scheme I 
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For the model shown in Scheme I, C1 is given by equation 6, where C O = 
absorbed / lY 

dose/r  1 �9 

(k21 - ~) e- , t  (k21 - fl) 
C l ( t )  = k . C o  ( k .  a)( f l  - a) + (k .  - f l )(a - fl) e - ~ '  

(k21 - -  k.) ] 
+ (a - k . ) ( f i  - k . ) e - k . ' j  (6) 

By algebraic manipulation it may be shown that 

f ;  {ka(~ - k21) e -~T 
[k21 1 

F ( T )  = C I ( T  ) + fl Cl(t )dt = C o [  a + .(ks - ~) 

- ~(k~ - k21)e-k"r}] (7) 

A plot of F ( T )  vs. T is equivalent to a "Wagner-Nelson" plot. 3 
The following is a method for obtaining preliminary estimates of all 

parameters of the model : 

Let A s = the asymptote of the F ( T ) , T  plot. Then 

A s = C t ( t )  dt  = Co(k21/cO 

If k a > e > fl, and since c~ > k21 ,  equation 7 may be written 4 as 

F ( T )  = A s + I~ e - ~ r  - 12 e - k ~  

where 

and 

= C ~ka(O~ -- k21) ' [  

(8) 

(9) 

(10) 

C ~(k. - kzt)~ (11,) 

In application of the Wagner-Nelson method, the terminal C1, t data 
are fitted to the equation 

C l ( t )  = A2  e -p t  (12) 

3Equation 7 indicates what would be obtained if a Wagner -Nelson  calculation (assuming a 
one-compartment  open model) were applied to data  generated from equation 6. 

4The alternative case for ~ > k. > fi is treated in the Appendix. 
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where 

k .Co(k21  . fl) 
A 2 = (13) 

( k .  - B)(~ - B) 

After combining equations 8 and 13, one obtains 

flA2(a - fl) 
k .  = - -  ( 1 4 )  

(a  - -  f l ) A  2 + f i r  0 - o~A s 

After combining equations 8 and 10, one obtains 

k~ = ~ I1 / ( I  1 + A s - Co) (,15) 

By equating the right-hand sides of equations 14 and 15, one obtains 

f lAz (a  - f l)(I1 + As) + ~ I i [ a A s  -- (~ -- fl)A2] 
Co = af l I1  + f lAz (a  - fl) (16) 

Rearrangement of equation 8 gives 

k2a = ~ A J C o  (17) 

Also, 

kol= o~B/k;l ( 1 8 )  

k12 = �9 + fl - k2! - kel (19) 

The estimates of a and I1 needed to utilize equations 16-19 are obtained from 
the least-squares line for In [F(T) - A s ] , T  values where the F ( T )  values are 
past the peak of the F ( T ) , T  plot. This line is 

In If(T) - As] = In 11 - aT (20) 

which may be written as 

IF(T) - A s ]  = 11 e - ~ T  (21) 

This may be seen from equation 9 where e-k~ _ 0. Note also that F ( T )  is a 
maximum when d F ( T ) / d T  = 0. Differentiating equation 7 gives : 

_ -- k~(k a - k2~ ) d F ( T )  k . (a  k21) e _ ~ r  + e -k"T (22) 
d T  (k .  - a) (k .  - a) 

When d F ( T ) / d T  = O, then 

k.(a - k21)e_~T~,,. = k . ( k .  - k21)e_k~ (23) 
(ko  - ~ )  ( k ~  - ~) 
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Rearrangement of equation 23, followed by taking natural logarithms of 
both sides, gives 

1 ln [_a -~  k2' ] 
Tmax -- ( k . -  [k~ - k21 j (24) 

Collapsing of the Two-Compartment Open Model to the One-Compartment 
Open Model 

For the case of bolus intravenous injection, the model shown in Scheme I 
has no input "k.  step," but rather the dose, D, is introduced into the central 
compartment at t = 0. The equation for C ~ as a function of time in this case 
is equation 25 : 

D 
Cl(t)  = Vl(a _ fl)[(k21 - f l )e  -~'  - (k21 - a)e - ' ' ]  (25) 

Equation 25 may be written as equation 26: 

Cl( t )  = A e - , t  + B e - '  t 

Also, 

Hence, 

In the above, 

Hence, 

(26) 

C o = A + B (27) 

C1/C ~ = { A / ( A  + B)} e -~t + {B/ (A  + B)} e -g' (28) 

D(~z - k21 ) 
A - (29) 

Vs(~ - /~)  

B -=- D ( k 2 1  - fl) 
v~(~ - /~ )  (30) 

B/ (A  + B) = (k21 - fl)/(a - f l ) =  VI /V  n . . . . . .  (31) 

where 
I'd . . . . . .  = D / B  (32) 

The two-compartment open model "collapses" to the one-compartment open 
model as B/(A + B) ~ 1, or a s  ( k 2 1  - fl)/(o~ - f l )  ~ 1, or as V 1 ~ V d ..... p- 
This is also clarified by writing equation 28 as equation 33. 

C1/C ~ = (1 - V J V  a . . . . . .  ) e-~ '  + (VI/VrJ . . . . .  p) e-a'  (33) 

Hence the ratio a/fl  is not the determining factor in "collapsing" but rather 
the relative magnitudes of kzl , a, and fl, and particularly of k21 and a. If 
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B/(A + B) has a numerical value equal to or greater than about  0.9, then 
the one-compartment open model will be a reasonable approximation even 
though the data actually obey the two-compartment open model. The 
author believes that the two-compartment open model is the actual "mini- 
mum "  model for linear systems in pharmacokinetics, but under the above 
conditions the one-compartment open model becomes a good approximation 
and is useful because of its greater simplicity. In the next section, it is assumed 
that the one-compartment open model applies; hence K~ replaces fl, since 
when "collapsing" occurs completely then KE = ko~ =/?.  It should be noted 
that if "collapsing" occurs, and the Wagner-Nelson method is applied to 
such data, F(T) will not reach a maximum value and then decrease beyond 
the maximum, but, instead, the F(T),T plot will slowly approach an asymp- 
tote. 

Case Where Absorption Abruptly Ceases 

Perrier and Gibaldi (4) also considered their "all or none"  phenomenon, 
where drug is being absorbed at a first-order rate from a timed-release or 
other dosage form, but at some time the drug passes the absorption site and 
absorption abruptly ceases. They stated that "if the drug is less than fully 
available due to an all or none phenomenon, the percent of drug absorbed 
can be calculated relative to the total dose administered rather than relative 
to the total amount  of drug eventually absorbed, A~."  It is shown in the 
Experimental and Results section that the Wagner-Nelson method does 
give the correct bioavailability estimate, and the correct first-order rate 
constant for absorption in such a case can be calculated without knowing 
the total amount  absorbed per milliliter of the volume of distribution. 

EXPERIMENTAL AND RESULTS 

Simulation Example No. 1 in Which Equations 6-39 Are Applied 

A simulation was performed with k a = 2, c~ = 0.5, [3 = 0.1, k21 = 0.25, 
and C o = 100. Using equation 6, one obtains equation 34 for these values 
of the constants : 

Cl(t) = 83.3333e -~ + 39.4737e -~ + 122.8070e -2~ (34) 

Using equation 7, one obtains equation 35 : 

F(T) = 50 + 66.6666e - ~  - 116.6666e - z r  (35) 

Values of error-free C 1,t and F(T) obtained with equations 34 and 35 are 
shown in columns 2 and 3, respectively, in Table I. Values of F(T) obtained 
by applying the Wagner-Nelson method, using the estimated fl(/~) from the 
terminal Cl , t  data and the trapezoidal rule for the areas, are shown in the 
fifth column of Table I. 
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Table 1. Simulation Example No. 1 

t (hr) CI(T) 
Trape- F ( T ) - A  s F (T) -As  

F(T) zoidal F~r)" = F ( T ) -  = F ( T ) -  
area 50 50.234 

T s , x  = 

0 0 0 0 0 
0.1 17,804 17.897 0.8902 17.893 
0.2 31.775 32.118 3 .3692  32.112 
0.4 50.973 52.160 11.6440 52.137 
0.6 61.921 64.249 22 .933  64.214 
0.8 67.504 71,133 38 .876  71.392 
1.0 69.641 74.646 45.590 74,200 
1.29726 69.063 76,138 70 .206  76.054 
1.4 68.231 76.011 77 .259  76.957 
1.6 66.075 75,200 90 .689  75.144 
1.8 63.496 73.917 103.646 73.861 
2.0 60.726 72.388 116.069 72.333 
2.4 55.140 69.119 139.242 69.064 
2.8 49.929 66.008 160,256 65.955 
3.2 45.284 63.266 179.298 63.214 
4.0 37.697 58.983 212.491 58.846 
6.0 25.812 53.318 276.000 53.412 
8.0 19.263 51.221 321,075 51,371 

10.0 15,083 50.449 355.421 50.625 
12.0 12.096 50.165 383.600 50,456 
14.0 9.810] 50 .061  404.506 50,261] 
16.0 7.998| 50 .022  422.314 50.229 / 
18.0 6.535~b 50.008 436,847 50.220~c 
20,0 5.346~ 50 .003 448.728 50.2~9| 
24.0 3,581J 50 .000  466.582 50,239) 

16,008 15.721 ) 
13.266 12.980[ d 
8,983 8.612f 
3.318 3.178 
1.221 1.137 
0.449 0.391 
0.165 0.222 

"F'~I") = CI(T) + (/~) (trapezoidal area). 
bin C1 = 3.6915 - 0.100712t (r = -0.99999) or C1 = 40.103e -~176 hence /~ = 0.1 and 

A2 = 40.103. 
CA s = average value of F(T) for points used to estimate fl = 50,234. 
d " ~  In [F(T) - As] = 4.1756 - 0.5051t(r = -1.0000) or F~F) - .~ = 65.076e -~176 hence 
l~ = 65.076 and a = 0.5051. Only the points which were randomly distributed about the 
apparent straight line were used--which explains the omission of the last two points. 

Table II. Results of Simulation Example No. 1 Using Equations 15-19 Based on 
the Wagner-Nelson Method 

Parameter Real value Estimated value Estimated value calculated with 

Co 100 99.22 Equation 16 
0.5 0.5051 See footnote d of Table I 

fl 0.1 0.1 See footnote b of Table I 
k12 0.150 0,152 Equation 19 
k21 0.250 0.256 Equation 17 
ke~ 0.200 0.197 Equation 18 
ko 2.00 2.04 Equation 15 
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Applying equations 15-19 with the constants estimated by the Wagner- 
Nelson method gave the values shown in column 3 of Table II. 

Using the "feathering" or "back-projection" technique, shown in 
Fig. 1 and Table III, the final equation 36 was obtained. Using equations 
36-39 to obtain estimates of C O and k 21, respectively, and equations 18 and 19 
to obtain estimates of kel and k12 , respectively, this method gave the results 
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Fig. 1. "Feather ing"  method  used in simulation example No. 1 to obtain 
equation 36. The line labeled "A"  is a plot of R 1, and the line labeled "B"  
is a plot of  R 2 . Numerical  values and details are given in Table III. 
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Table lII.  Estimation of Parameters for Simulation Example No. 1 by "Feathering" or "Back- 
Projection" 

t C 1 40.103e -~176176 R1 a 95.34e -~ R2 b 

0 0 40.103 -40.103 95.34 135.44 ~ 
0.1 17.804 39.7010 -21.8971 90.36 112.3 
0.2 31.775 39.3033 - 7.5283 85.64 93.17 
0.4 50.973 38.5196 12.4534 76.93 64.48 
0.6 61.921 37.7515 24.1695 69.10 44.93 
0.8 67.504 36.9987 30.5053 62.07 31.56 
1.0 69.641 36.2609 33.3801 55.76 22.38 
1.29726 69.063 35.1914 33.8716 47.54 13.67 
1.4 68.231 34.8291 31.4019 44.99 13.59 
1.6 66.075 34.1346 31.9404 40.42 8.48 
1.8 63.496 33.4539 30.0421 36.30 6.26 
2.0 60.726 32.7868 27.9392 32.61 4.67 
2.4 55.140 31.4923 23.6477 26.31 2.66 
2.8 49.929 30.2488 19.6802 21.23 1.55 
3.2 45.284 29.0545 16.2295 17.13 0.90 
4.0 37.697 26.8054 10.8916] 
6.0 25.812 21.9152 3.8968 / In R 1 = 4.5574 - 0.5364t 
8.0 19.263 17.9171 1.3459~ (r = -0.9998) 

10.0 15.083 14.6484 0.4346[ or 
12.0 12.096 11.9760 0.1200) R1 = 95"34e-~ 

14.0 9.810) Hence ~t = 0.5364 
16.0 7.998[ln C1 = 3.6915 - 0.100712t (r = -0.99999) 
18.0 6.535)or 
20.0 5.346|C 1 = 40.103e -~176176 
24.0 3.581)Hence/~ = 0.100712 and A 2 = 40.103 

aR 1 = C t - 40.103e-OAOOT12r. 
bR 2 = 95.34e -o.5364t _ R 1. 

Cln R 2 = 4.8354 - 1.651t (r = -0.9988), hence R 2 = 125.89e- 1.65toz 

s u m m a r i z e d  in Tab le  IV. 

Cl(t)  = 95.34e -~ + 40.103e -~176176 - 125.89e -1"651t (36) 

c o r r e spond ing  to  

Cl( t )  = A l e  - ' t  + A2 e-at  - A3 e-kat (37) 

where  A 1 = 95.34, A 2 = 40.103, a n d  A 3 = 125.89. Based on these equat ions ,  
one ob ta ins  the  es t imates  of  Co a n d  k21 with equa t ions  38 and  39: 

A l(ka - a) + A2(k . - [3) 
Co --- (38) 

k,  

A l f l k ,  + A2~k ,  + A3o~fl 
k21 = (39) 

A t ( k  ~ - a )  + A 2 ( k o  - fl) 
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Table IV. Results of Simulation Example No. 1 Using Equations 36-39 Based 
on "Feathering" or "Back-Projection" 

Parameter Real value Estimated value Estimated value calculated with 

C O I00 102.0 Equation 38 
ct 0.5 0.5364 See Table III and Fig. 1 
fl 0.1 0.1 See Table III and Fig. 1 
k12 0.150 0.169 Equation 19 
k21 0.250 0.264 Equation 39 
ke~ 0.200 0.203 Equation 18 
k. 2.00 1.65 See Table III and Fig. i 

It  is interesting that the estimated parameters  shown in Table II, obtained 
by the Wagner-Nelson  method (at least in this case), are closer to the real 
values than those obtained via the usual "feathering" or "back-project ion"  
technique shown in Table IV. This is particularly true for the estimate of k,, 
where the Wagner-Nelson method gave almost the exact value whereas the 
"feathering" method gave an estimate that  was 17.5 % low. 

Simulation Example No. 2 for Abrupt Cessation of Absorption 

KA 

V 

Scheme II 

In Scheme II, K A and K~ are the first-order rate constants for absorpt ion 
and elimination, respectively. Assume that the model shown in Scheme II  
applies, and that Ao/V = 100 units for one dosage form and 50 units for 
another dosage form. Assume that K A = 1.0455hr -1 and K e = 0.17425 
h r -  1. Then we can write equations 40 and 41 for the two cases : 

AT/V = 100(1 - e-  1.0455t) (40) 

Ar/V = 50(1 - e-1"~ (41) 

Let us assume that absorpt ion ceases when 70 % of the dose is absorbed. 
One can then readily calculate that this would occur at 1.15158 hr, and at 
this time the value of C would be 62.183 units when Ao/V = 100 units. In 
the interval 0 _< t _< 1.15158 hr, C, in the 100-unit case, would be given by 
equation 42 : 

C = 120(e -~ - e -1.~ (42) 
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In the interval t _ 1.15158 hr, C would be given by equation 43 in the 100- 
Unit case: 

C = (62.183)e- o. 17425(,- 1.151 s8) (43) 

C,t data were generated by use of equations 42 and 43, and analogous 
equations for the 50-unit case, for various values of t up to 15 hr. Then the 
Wagner-Nelson method was applied to the simulated data. The results are 
shown in Table V and the plots of C r + K~(. r C.  dt Vs. T are shown in 
Fig. 2. From Table V, One can see that the values of the function, F(T), are 
identical, within the error of the trapezoidal rule and round-off, to the exact 
values of Ar /V  obtained from equations 40 and zll. In Fig. 2, it should be 
noted that the asymptotes are abruptly reached, rather than approached 
Slowly as would be expected for a completed first-order reaction. Thus, in this 
case, the asymptotes of approximately 70 and 35 are not the same as the 
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Fig. 2. Application of the Wagner -Nelson  method in simulation example No. 2. 
See details in Table V. 
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Table VI. Application of the Guggenheim Method (7) to the 
eCr/VValues Shown in Table V 

C o = 1130 C o = 50 

A; /V  ~X(A'~/V) o A'~/V A(A'~/V) ~ 

�9 40 9 ~ 
ii 01  64;0  049 

aLeast-squares regression of In [A(A~/V)] vs. tl gave 

In [A(.~r/V)] = 3.1351 - 1.0467t x 

or A(A~r/V) = 22.99e-1.o467tl, hence ~ = 1.0467 (actual value 
was 1.0455). Hence C~ = 22.99/[1 - e - ( 1 ' 0 4 " 6 7 ) ( 0 " 2 5 ) ]  = 99.9 
(actual value was 100). 

bLeast-squares gave In [A(A'~/V)] = 2.4421 -- 1.0470t 1 or 

A(AT/V) = 11.50e- 1.o47tl, 

hence ~ = 1.047 (actual value was 1.0455). Hence 

Co = 11.50/[1 - e - ( 1 ' 0 4 7 ) ( 0 " 2 5 ) ]  = 49.9 

(actual value was 50). 

coefficients 100 and 50 of  equat ions  40 and  41, respectively. When  one does 
no t  know the actual  a sympto te  of  a first-order process, one can calculate the 
rate constant  by  the me thod  of  Guggenhe im (7). Applicat ion of  this method,  
shown in Table  VI, to  the AT/V values at 0, 0.25, 0.5, 0.75, and 1.0 hr  gave 
est imated KA values of  1.0467 and  1.047 h r -  x, which are essentially identical 
to  the actual value of  1.0455-1. Thus  the W a g n e r - N e l s o n  method,  followed 
by appropr ia te  analysis .of  the AT/V vs. T plot, gives the correct  estimate of  
the first-order absorp t ion  rate constant  in the case where absorp t ion  abrupt ly  
ceases and availability is less than 100 7o. 

Ignor ing  the shape of  the plots shown in Fig. 2, and calculating values 
of percent remaining unabsorbed  by using the asymptotes  70.50 and  35.25 
in the denomina tors  when the percentages absorbed  are calculated, leads to 
the same values for bo th  sets of  data. These percentages are plot ted in 
Fig. 3. It  is obvious  that  the points  form a curved line and that  one should  not  
estimate a first-order rate constant  f rom such data. This type of  error, where 
the wrong  asympto te  is used in est imating a first-order rate constant ,  was 
discussed by Wagner  (8) in 1963. Thus  Perrier  and Gibaldi  (4) are correct  
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Fig. 3. Plot of percent remaining unabsorbed on logarithmic scale 
against time when wrong asymptote is used in simulation example 
No. 2. 

that if one makes this error biased first-order absorption rate constants are 
obtained. Use of the Guggenheim method, or any alternative method not 
involving the asymptote, circumvents the problem. 

DISCUSSION 

The Wagner-Nelson (1) and Loo-Riegelman (6) methods were derived 
for models not involving competing reactions at the absorption site. The 
functions obtained by these methods are exactly equal to Ar/V or Ar/V 1, 
respectively, in the case where there is no competing reaction at the absorp- 
tion site. The functions obtained by these methods are also exactly equal to 
Ar/V oi" Ar/V 1 respectively, in the case where there is first-order absorption 
which abruptly ceases after some time and before the entire dose is absorbed. 
It was shown that in the latter case the correct absorption rate constant may 
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be estimated by applying the Guggenheim method to the Ar/V values rather 
than the usual a-minus plot. It must be remembered that the Guggenheim 
method requires that the Ar /V  values be obtained at equally spaced time 
intervals during the major portion of the absorption phase. 

A competing reaction at the absorption site due to chemical degradation 
of a drug in the gastrointestinal fluids, such as discussed by Notari et al. (3), 
would cause considerable problems in the interpretation of absorption 
plots obtained by both the Loo-Riegelman (6) and Wagner-Nelson (1) 
methods. One of the models discussed by Perrier and Gibaldi (4) is shown as 
Scheme III: 

A K~ ~ V K~ 
C K[ 

Scheme III 

It should be noted that this model assumes that every molecule of 
A is in solution at t = 0, or, after some lag time, to, and that all are simul- 
taneously acted on by two first-order processes with rate constants K a and K. 
Hence such a model applies to the chemical degradation case as discussed by 
Notari et al. (3). However, the author does not believe that the model shown 
in Scheme III can be applied to the case where there is an "absorption 
window" in the upper gastrointestinal tract and the rate constant " K "  
refers to gastrointestinal transit of the solution of the drug, such as discussed 
by Perrier and Gibaldi (4). When the rate constant "K"  describes the 
physical process of removal of drug from the absorption site by gastroin- 
testinal transit, we should not write a single model such as shown in Scheme 
III, but rather sequential models as shown in Schemes IVa and IVb : 

A 

Scheme IVa 

A 
KA V ) 

C 

Scheme IVb 

Before the drug reaches the "window" and past the "window," the model 
shown in Scheme IVa applies. In the window, the model shown in Scheme IVb 
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applies when the disposition model is the one-compartment open model. 
In the window, the initial driving force (Ao) would be the amount  of drug 
which has reached the solution state prior to the window. Also, since first- 
order kinetics are independent of the initial amount  or concentration, the 
same Ka will be measured for a fixed window but different A o values. The 
observed K A will depend on the size of the window (as it always does), since 
KA incorporates the area of the membrane. Thus the problem posed by 
Perrier and Gibaldi (4) may be overcome by using the consecutive model 
approach. 

APPENDIX 

Equation 7 may also be written as equation 7a. 

f ~  {e(k~ - kal)e  -k"T 
Vk21 1 

F ( T )  = C I ( T  ) + fl C l ( t ) d t  = Co L c~ + ~(c~ - k,)  

- k,(~ - k 2 O e - ' T } J  (7a) 

In the following, alternative equations (with numbers followed by "a")  
replace previous equations with the same numbers (but without the "a")  
for the case when ~ > k~ > ft. 

where 

and 

F ( T )  = A s + I l e  -k"t - 12 e-~T 

I I  = C o ( k a  - k 2 1 ) / ( ~  - k . )  

12 -= C o k a ( ~  - k21)/~(~ - ka) 

(9a) 

(lOa) 

( l ta)  

After combining equations 8 and 10a, one obtains 

ka = ~(I1 + As)/(Co + 11) (15a) 

By equating the right-hand sides of equations 14 and 15a, one obtains 

f lA2(a - fl)I 1 + {e2A s - ~(~ - fl)A2} {I1 + As} 
Co = (16a) 

afl(I1 + As) - flAz(cr - fi) 

Equations 8, 12-14, and 17-19 are valid for this alternative case. 
Example: Let ka = 0.5, a = 2, fl = 0.1, k21 = 0.25, and C o = 100. Sub- 

stitution into equation 6 gives equation 34a: 

Cl( t )  = 20.8333e -~ + 9.868421e -~  - 30.7018e -2t (34a) 
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Subst i tu t ion  in to  equa t ions  8, 10a, and  1 l a  gives equa t ion  9b from 9a: 

F ( T )  = 12.5 + 16.6666e -~ - 29.1666e -2T (9b) 

Thus  A2 = 9.868421, As = 12.5, and  11 = 16.6666. Subs t i tu t ion  of these 
values in to  equa t ion  16a yields the expected value of 100 for Co. It  should 

be no ted  that  in  apply ing  the a l ternat ive  equat ions  above  ka replaces a in 

equa t ion  20. 
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