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Abstract. We consider a generalized form of the conventional decentralized control architecture for discrete-
event systems where the control actions of a set of supervisors can be ‘‘fused’’ using both union and intersection
of enabled events. Namely, the supervisors agree a priori on choosing ‘‘fusion by union’’ for certain controllable
events and ‘‘fusion by intersection’” for certain other controllable events. We show that under this architecture, a
larger class of languages can be achieved than before since a relaxed version of the notion of co-observability
appears in the necessary and sufficient conditions for the existence of supervisors. The computational complexity
of verifying these new conditions is studied. A method of partitioning the controllable events between ‘fusion by
union’’ and ‘‘fusion by intersection’’ is presented. The algebraic properties of co-observability in the context of
this architecture are presented. We show that appropriate combinations of fusion rules with corresponding
decoupled local decision rules guarantee the safety of the closed-loop behavior with respect to a given
specification that is not co-observable. We characterize an ‘‘optimal’’ combination of fusion rules among those
combinations guaranteeing the safety of the closed-loop behavior. In addition, a simple supervisor synthesis
technique generating the infimal prefix-closed controllable and co-observable superlanguage is presented.
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1. Introduction

We consider control problems for discrete-event systems where a set of ‘‘local”
supervisors, each with its own sensing and actuation capabilities, cooperate in order to
achieve a given desired controlled behavior. Such decentralized control architectures are
of considerable interest as they arise in a large variety of networked systems. Mobile ad
hoc communication networks, integrated sensor networks, networked control systems, and
automated vehicular systems are all examples of networked systems. Networked systems
are informationally-decentralized and event-driven dynamic systems where groups of
individual ‘‘agents’’ (i.e., local supervisors) interact in order to accomplish a common set
of objectives.

Our control problems for networked systems are posed in the framework of the theory of
supervisory control of discrete-event systems (cf. Ramadge and Wonham, 1989) and
Chapter 3 in Cassandras and Lafortune, 1999). In the conventional decentralized control
architecture studied in supervisory control (Cieslak et al., 1988; Rudie and Wonham,
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1992), the control actions of the local supervisors are fused using intersection of locally
enabled events. We will refer to this architecture as the conjunctive architecture.

Most of the results on decentralized supervisory control are based on the conjunctive
architecture (Barrett, 1999; Cieslak et al., 1988; Jiang and Kumar, 2000; Kozak and
Wonham, 1995; Kumar and Shayman, 1997; 1998; Lin and Wonham, 1988; Ricker, 1999;
Rudie and Willems, 1995; Rudie and Wonham, 1992; Takai, 1998; Takai and Kodama,
1994; Willner and Heymann, 1991). A notable exception is the work in Prosser (1996),
where decentralized supervision with different fusion rules is considered. In that work,
new event fusion rules are introduced and a synthesis technique guaranteeing the safety of
the supervised language under various event fusion rules is developed.

In this paper, we go beyond the approach of Prosser (1996) and consider a generalized
form of the conjunctive architecture where the control actions of a set of supervisors can
be fused using both union and intersection of enabled events. Under this general
architecture, the local supervisors decide a priori that some controllable events are
processed by ‘‘fusion by union’’ (of enabled events) and other controllable events are
handled by ‘‘fusion by intersection’’ (of enabled events).

The contributions of this paper are as follows.

1. Necessary and sufficient conditions for the existence of a set of local supervisors that
achieve a given legal language are given in Section 3. These conditions characterize
the class of languages achievable under the general architecture and introduce a
generalized version of the notion of co-observability of Rudie and Wonham (1992).

2. In Section 4, we compare the classes of languages achievable under the conjunctive,
disjunctive, and general architectures. (When the decision fusion rule is ‘‘fusion by
union’’ (of enabled events), the resulting architecture is called ‘‘disjunctive’’.) The
class of languages achievable under the general architecture strictly includes those of
the conjunctive and disjunctive architectures.

3. Section 5 presents computational complexity results. We show that the existence con-
ditions of Section 3 can be verified in polynomial time. Moreover, a polynomial time
technique to partition the set of controllable events in the general architecture is given.

4. The algebraic properties of co-observability (as defined in Section 3) are presented in
Section 6. These properties show that the supremal and infimal co-observable
elements of a class of languages need not exist, in general.

5. A simple decentralized supervisor synthesis technique decoupling the synthesis of
local supervisors is developed under the general architecture. Because of the
intentional separation of the design of the local decision rules, this technique
circumvents the difficulties caused by the dependency of local decision rules in the
design of decentralized supervisors.

6. Equipped with the above synthesis technique, we present in Section 7.1 a rule for
partitioning the set of controllable events (between ‘fusion by union’’ and *‘fusion by
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intersection’’) that guarantees the safety of the closed-loop behavior with respect to a
given specification that is not co-observable. We also characterize an ‘‘optimal’’
partitioning rule of the set of controllable events among the partitions guaranteeing
the safety of the closed-loop behavior.

7. Several properties of the closed-loop behavior generated by the above synthesis
technique are presented in Section 7.2.

8. We also present a simple supervisor synthesis procedure that results in the infimal
prefix-closed controllable and co-observable (in the sense of Rudie and Wonham,
1992) superlanguage in Section 7.2. The local supervisors are separately synthesized
in a direct manner that avoids the explicit computation of the infimal prefix-closed
controllable and co-observable superlanguage.

General knowledge of supervisory control and its most common notations is assumed. For
introductory material, the reader is directed to Chapter 3 of Cassandras and Lafortune
(1999).

2. Problem Formulation
2.1. The Conjunctive Architecture

The problem of decentralized supervision is formalized as follows. Each local decision site
(supervisor) has its own sensors (Z,;) and controllers (X, ;). Collectively, the sites can
observe ¥,=%,,U...UZ,, and control X, = Y 4U...UZ . We denote by
,=2\Z, and £, =2X\X, the unobservable and uncontrollable event sets,
respectively. A priori information available to each local site includes the uncontrolled
behavior, the desired behavior, and the decision fusion rule to form a global decision. The
conventional decentralized architecture shown here in Figure 1 employs the conjunctive
fusion rule for enabled events, thus requiring unanimous enabling of events in local

Conjunctive Fusion | And

Local Decisions| Sp, Sp, Sp

G System

i ] ]
P, P, P
i ] ]

Figure 1. The conjunctive architecture.



338 YOO AND LAFORTUNE

decisions for global enablement; we also call this rule ‘‘fusion by intersection’’ (of
enabled events). Formally, a local decision rule is a function

Sp. (P(ZF) T i={ye2*:3,. =9}

where P; is the usual projection mapping : P; : £ — X, ;. For the conjunctive architecture, a
local decision rule enables .\ X ; by default:

Sp i Pi(E¥) > T = {ye2*: L\ L, =7}

The conjunctive supervisor, denoted by A ;Sp, is defined as follows:
A iSp,(s) := 0721 Sp,(Pi(s))

The prefix-closed language generated by the conjunctive supervisor can be expressed as
follows:

l. eeZ(n;Sp/G);
2. [s€eL(ASp/G)|A[sceL(G)|AVi,aeSp (Pi(s))] & sae L(A;Sp/G)
Moreover, the marked language is defined as follows:

L (A iSP[/G) =Z(A iSP,-/G> NZ,(G)

In prior work on the conjunctive architecture, the default control action for a supervisor
under insufficient information is to ‘‘enable’’ an event; this is termed the ‘‘pass the buck’’
policy in Rudie and Wonham (1992). We will refer to this default policy as the
“‘permissive’’ local decision rule. The permissive local decision rule over X, is formally
described as follows: For all ie {1,...,n},

Sp,(Pi(s)) ={oe€X.;: P 'Pi(s)oNK # 0} UZ\ 2 (1)
where K is the given desired language.

In the conjunctive architecture, co-observability is the key property for the existence of
a set of local supervisors controlling a given desired language. This property was
introduced in Cieslak et al. (1988) and Rudie and Wonham (1992). Since we shall present a
relaxed version of ‘‘co-observability’’, we rename the conventional notion of co-
observability as C&P co-observability. C refers to the ‘‘conjunctive’” fusion rule for
controllable events, while P refers to the ‘‘permissive’’ local decision rule. For two sites,
the definition of C&P co-observability is as follows.

DEFINITION 1 A language K =€ M = M is said to be C&P co-observable w.r.t. M, Zo,l,
Z:c,l! z:(),2’ Z("Zr lf
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(Vs,5',5" €K)[[P1(s) = P (s)] A [Po(s) = Pa(s")]] =
Conjunct 1: [0€Z, NZ. ) A[sceM|A[saeK]A[s"ceK]
=soeK
Conjunct 2: [0€Z,; \Z ] A[sceM|A[s'ceK|=soeK
Conjunct 3: [0€Z.,\Z. ] A[sceM|n[s"ceK]=s0eK

We also recall an equivalent definition that is presented in Barrett (1999) and Cassandras
and Lafortune (1999) for further arguments. We state this definition for n local sites.

DEFINITION 2 A language K = M = M is said to be C&P co-observable wr.t. M, X, ,,
Tt Zgps Zep if VseK andVoeX, = Ul_ | X, ; s.t. soeM\ K,

(Fie{l,...,n})[[P; 'Pi(s)oNK =] AloeX,,]]

2.2. The Disjunctive Architecture
Consider an architecture where ‘‘fusion by union’’ (of enabled events) is employed, as
depicted in Figure 2; let us call the resulting (global) supervisor a ‘‘disjunctive

supervisor’’. For the disjunctive architecture, a local decision rule disables by default
>\ X, that is controllable by other local supervisors:

SP,- Pt(z*) -I':= {yezz : (Zc \ Zc,i) N Y= Q)vzuc = V}
The disjunctive supervisor v ;Sp_is defined as follows:

vV iSp,(s) = U= 1Sp,(P(s))

Disjunctive Fusion Or

Local Decisions| Sp, Sp, Sp,

G System

} f
P, P, P
! f

Figure 2. The disjunctive architecture.
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The prefix-closed language generated by the disjunctive fusion is described recursively as
follows:

l. eeZ(vSp/G);
2. [s€eZL(vSp/G)|A[sceL(G)|A[Fi,aeSp (Pi(s))] & sae L(vSp/G)

Analogously, the marked language is Z,,( v ;Sp /G) = L(V ;Sp /G) N Z,,(G).

It is easy to see that the definitions of #( A ;Sp /G) and (v ;Sp /G) depend on both
the local decision rules and the fusion policy. For the conjunctive architecture, the default
for controllable events is enablement and local supervisors directly disable the locally
controllable events. The disablement default for controllable events should be employed
for the disjunctive architecture as local supervisors directly enable the locally controllable
events.

2.3. The General Architecture

The general architecture investigated in this paper is now described. The set of
controllable events, X, is partitioned into 2., and X ;:

Zc = Zc,e U Z(f,d

2. . is the set of controllable events for which the default setting is enablement while %, ,
is the set of controllable events for which the default setting is disablement. The local
decisions over X, are processed by the conjunctive fusion rule while the local decisions
over X ; are processed by the disjunctive fusion rule. Figure 3 is a conceptual diagram of
the general architecture. For the general architecture, a local decision rule disables by

Combined Fusion ;ﬂd }?:1
e &,
e
Local Decisions| Sp, Sp, Sp, G System
P, P, P,

Figure 3. The general architecture.
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default .\ X.; in X, that is controllable by other local supervisors and enables by
default X\ Z.;in Z_,:

SP,v : Pl(z*) -1 = {yezZ : (Zc,d \ Zc,i) N Y= mazc,e \ Z(\,i = Vazuc = V}

Let us define a generalized decentralized supervisor (generalized supervisor for the sake of

brevity) with combined fusion rule, denoted by S, as

Sedec(s) == Pz(,,g[/\iSP,. (s)] UPZL.’d[ViSP, (SNUZ,.

where Py and Py_, are projection mappings: Py X —>X ,and Py X —>X ;. The
prefix- closed language L (Sgdec/G) generated in the context of the general architecture is
defined in the usual manner:

L. Seg(sgdec/G);
2. [SE g(sgdec/G)] A [SGE f(G)] A [Gesgdec(s)] < SOE g(sgdec/G)

The marked language is defined as usual: Z,,(Sy40./G) = L (S44ec/G) N L, (G).

It should be clear that if the sets X ; are mutually disjoint, then the three architectures
(general, disjunctive, conjunctive) are one and the same. This is because each controllable
event is controlled by only one supervisor, and therefore the fusion rule is of no
consequence: the controllable event is enabled iff the corresponding supervisor enables it.
The interest of the general architecture arises when there are controllable events that can
be controlled by more than one supervisors. We therefore assume in the sequel the
presence of such controllable events.

2.4. Problem Statement

The first fundamental question to consider for the previously-described general
architecture is that of the existence of a generalized supervisor achieving a given legal
language. Unlike the conjunctive and disjunctive architectures, the general architecture
requires partitioning X_.. This requirement is reflected in the existence problem (P):

(P) Given automaton G, modeling the uncontrolled behavior, automaton H,
representing the desired behavior, and local supervisors equipped with ~.;,, X ;,
ie{l,...,n}, respectively, find necessary and sufficient conditions for the existence of a
partition of X_. = Z(,_VGL'JZ“, and of a nonblocking generalized supervisor controlling
&,,(H) under the partition, that is,

gm(sgdec/G) = gm(H) and g(sgdec/G) = gm(H)
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3. Existence Result for Fixed Partition of X,

In this section, we fix the partition of 2. and investigate the problem of the existence of a
generalized supervisor. This partly answers the question posed in (P). In Section 5, we
explore the issue of partitioning X into £, and X_, and complete the answer for (P).
Unlike the conjunctive architecture, the conjimctive and disjunctive fusion rules coexist in
the general architecture. Let us focus on the disjunctive fusion rule at first. We define D&A
co-observability for the disjunctive architecture, the analogue of C&P co-observability for
the conjunctive architecture.

DEFINITION 3 A language K € M = M is said to be D&A co-observable w.r.t. M, 2,0
Tty Zop Ze if VseK and Vo eZ, = U'_ X, ; s.t. s6 €K,

(Fie{l,...,n})[[(P7'Pi(s) NK)e "M S K] A[seX,]]

The term ‘‘D&A’’ stands for disjunctive and antipermissive. The reason for this term is
that this property is for the disjunctive architecture and the antipermissive decision
strategy should be applied at local supervisors. We say that the decision strategy at a local
supervisor is ‘‘antipermissive’’ if the default control action for controllable events is
disablement. The antipermissive local decision rule over X. is formally described as
follows: For all ie {1, ...,n},

Sp,(Pi(s)) = {o€Z; : (P 'Pi(s)NK)eaNM = K} UZ, (2)

i

The intuitive meaning of the antipermissive rule is to permit the occurrence of a
controllable continuation after observable trace P;(s) only if the local supervisor has
sufficient information to determine with certainty, namely based on its ‘‘estimate’’
P 'P,(s) N K, that enabling the controllable event will not cause any violation of legality.
Before the existence result is stated, we present an equivalent statement of D&A co-
observability for the convenience of further arguments. We restrict the attention to two
local supervisors without loss of generality.

PROPOSITION 1 A language K <M =M is D&A co-observable wr.t. M, X
z“(),27 Z(LZY lﬁc

z“c’,l )

0,1

(¥5,5,5" €R)[IP1(5) = P, (5] A [Po(s) = Po(s" )] =
Conjunct I: [ceX,  NZ ) AlsceM|A[s'ceM\K|A[s'oeM\ K]
=soeM\ K
Conjunct 2: [geZ,  \Z ] A[sceM|A[soeM\K]=soeM\ K
Conjunct 3: [6eZ 5, \Z. | A[sceM|A[s"ceM \K]=soeM\ K

Proof: The proof can be found in Yoo (2002). |
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The centralized architecture is a special case of the decentralized architectures. Under the
centralized architecture, the two notions of co-observabilities can be related as follows:

PROPOSITION 2 C&P co-observability is equivalent to D&A co-observability under the
centralized architecture.

Proof: We restrict the attention to two local supervisors without loss of generality. Since
we are considering the centralized architecture, C&P co-observability is reduced to
observability. That is, for all 5,5’ €K such that P(s) = P(s'),

geX,

TEZ,

[
[ .
[c€Z,
[ ,
[

|A[sSceM] A [sceK]=[sceK]
|Vv[sogK]|v|saéM]v|saekK]
|visoéK]|v|sagM\ K]
cEZ. V]
GEX]A

sagM|v[s'cdM\ K|V [sceM\K|
[sceM|A[sceM\ K]=[sceM\ K]

(R

which is the statement of D&A co-observability in the centralized architecture. |

Let us define the following sets of events: Forie {1,...,n},

Zc,e.i = 2('.1’ N Ec,e (3)
2“c,d.i = z“c.i N Z“(:,d (4)

% . is the set of locally controllable events whose default setting is enablement while
Zc;d,i is the set of locally controllable events whose default setting is disablement. We
generalize C&P and D&A co-observability to embrace the partition of X_; we call this
generalized notion ‘‘co-observability’’ for the sake of simplicity.

DEFINITION 4 A language K = M = M is said to be co-observable w.r.t. M, =
z“(‘A,e,la z:0,27 z:c,d,2r zv,e,Za s vzo.m z(ﬁ.d,nv Zc,e,n’ lf

2(7,(1,15

0,1

z DINDY

cels o ns“cen

1. K is C&P co-observable w.r.t. M, %

0,1

2. K is D&A co-observable w.r.t. M,Z, |, 2 4153 2o Zean-

0,1» o,n»

With this generalized notion of co-observability, the existence result of the general
architecture can be presented.

THEOREM 1 Consider a language K = %,,(G) where K # 0 and consider a fixed
partition of X, such that . =X, UZ.,. There exists a nonblocking generalized
SUpervisor Sy, such that L ,,(S y40c/G) = K and L(Sgae/G) = K iff the three following
conditions hold:
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1. K is controllable w.r.t. ¥(G) and Z,,.

2. K is co-observable w.r.t. £(G),Z, 1, Zc g1 Zcets - Zon Zedns Seen

3. Kis %, (G)-closed.

Proof: (=) Suppose that there exists a generalized supervisor such that
gnz(Sgdec/G> =K and g(Sgdec/G> =K.

(Z,,(G)-closure): Then, by the definition of &,,(S,,/G),

gm(sgdec/G) = Z(Sgdec/G) N gm(G)
=K=KnN%,(G)
which is the Z,,(G)-closed condition.

(Controllability): Let se K, 6€X,,., and so € £ (G). Then, g€ S
of S,4ec(s). Now, by the definition of Z(S,,,./G), we have that

dec(s) by the definition

[SEK = g(Sgdec/G)] A [SO'GQ(G)] A [O-ESgdeC(s)]
= [s0€ L (S440/G) = K]
or, in terms of languages,
K, NZ(G) =K

which is controllability condition.
(Co-observability): Assume that K is not co-observable wr.t. Z(G),

1 Zed 1y Beels 1 Zons Zedn 2een Lhis implies that K is not C&P co-observable
W.r.t. ,SJP(G),ZOYI,ZCN', ey 2y Zeen, OF K is not D&A co-observable w.r.t.
IZ(G),ZUJ,ZC’(“,...V,ZO,H,ZC’d‘n. Assume that K is not C&P co-observable w.r.t.
L(G),Zy1,Zcen ..720",,,26’6;,1. This implies that there exist seK and ge€X,, such

that so€ Z(G) \ K and, for all i {1,...,n},

[P 'Pi(s)oNK # 0] v o EZ il (5)
For the sake of contradiction, let us assume that ¢ & S,,,.(s). Since ceX ,, we get
o & Py, [AiSp,(s)]. This implies that there exists j€ {1,...,n} such that o ¢ Sp (P;(s))
and o€ 2676 - From (5), we know that there exists s’ €K such that

[Pi(s) =P,(s)] A [s'aeK]

which implies that c€Sy(s') and ceX., ;. This implies that seX., and
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g€Py_[ASp(s")]. Then we get o€Sp (P;(s")) = Sp (P;(s)), which is a contradiction.
Therefore, we have

[0€S40c(5)] A [seK| A [soe Z(G) \ K]
This contradicts the hypothesis that there exists a generalized supervisor such that

C'(fm(Sgdec/G) =K and 'ff(Sgdec/G) = k
Now assume that K is not D&A co-observable w.r.t. Z(G), Z, 1, X, g1» - - > Zpps =

- 0,1 on> “cdn
This implies that there exist s€K and o € X ; such that sc €K and, for all ie {1,...,n},
(P 'Pi(s)NK)o N Z(G) /= K]V [o Z2c.q,] (6)

For the sake of contradiction, let us assume that o €S,,,.(s). Since ceX,,;, we get
oePy, d[ V iSp.(s)]. This implies that there existsje ={1,...,n} suchthatg€Sp, ( .(s)) and
ceX 4 From (6), we know that there exists s’ € K such that

[P,(s') = Pi(s)] A [ o€ 2(G) \ K]

which implies that ¢ & S,.(s') and o X,
o &Py ,[VviSp(s")]. Then we geta ¢&,Sp (P i(s)
Therefore, we have

This implies that ¢ ¢ X., and

Jr
=Sp, (P;(s)), which is a contradiction.

[0 &S,uec(8)] A [s€K] A [s0€K]

This contradicts the hypothesis that there exists a generalized supervisor such that
& ( gdec /G) K and ’g)( gdec /G)
(<) For se Z*, define the local dec181on rules as follows: For all ie {1,...,n},

Sp(Pi(s)) ={0€Z.4; : (P 'P;(s) NK)o N £(G) = K}
U {O’GZ( eit (PT'Pi(s))oNK # 0}
ce \ Zeei U Zye ™)
We now prove that, with these Sp , £(S,4,./G) = K. Then, the &,,(G)-closure condition
will imply that &,,(Sy4../G) = K

The proof is done by induction on the length of the traces in the two languages K and

( gdec /G)

(Base of induction): The base case is for € X™. By definition of £(S dec/ G)s
£€ L (S4ec/G)- Since K # ) by the assumption, ¢€K. Thus the base case holds.

(Induction hypothesis): Assume for all traces such that |s| < n,

S€ L (Seaec/G) iff seK
(Induction step): We now prove that for all e X,

56€ L(Syq/G) iff soeK where |s|=n
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Let so € £ (S 4./ G)- By the definition of #(S,,,./G), this implies that
[s€ L (Sgaec/ G) A [0 €S gaec(8)] A [s0€ Z(G)]
which in turn implies that
[s€K| A [0 €S e (5)] A [s5€ L(G)] (8)

using the induction hypothesis. We examine the three following cases.
Case 1: (6e€X,,) Controllability immediately yields so €K from (8).
Case 2: (6€X,,) Assume so ¢ K. This implies that soe #(G)\ K. By C&P co-

observability of K w.r.t. L(G), Z, 1, Z o 15+ -5 Zpps Lo there exists ie {1,...,n} such
that

[(P7'Pi(s))e NK = 0] Alo€Z,, ]

By the local decision rule (7), we get o & Sp (P;(s)). This implies that ¢ & A Sp (s).
Hence, we get ¢ & Sy4,.(s). It is a contradiction.

Case 3: (6€X, ) Then, (8) becomes
[seK]Anloe vSp (s)]A[soe Z(G)] 9)
Using (7) and (9), we get

seR| A [Gie(l,...,n ) (P 'Pi(s) NK)o N 2(G) < K] Alsoe £(G)]
=s0ek

This completes the proof that sc e K.
Let s €K. Then, sc € Z(G) since K < Z,,(G) < Z(G) by the assumption. Similarly,
we examine three cases.

Case 1: (0€Z,.) 0ES,4.(s) by definition. Then it immediately yields so € (S, /G).

Case 2: (c€Z,,) Assume that s6 & L(S,4,./G). This implies
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o ¢Sgdec<s)
=0 & ASp(s)
= (3ie{l,...,n})[o ¢Sp (P;(s))]
= (Fie{l,...,n})[(P; 'P,(s))e NK = 0)
=sc ¢ K

It is a contradiction.

Case 3: (c€Z, ;) By the definition of Sp and D&A co-observability,

soeK = (Jie{l,....n)[(P; 'P;(s) NK)o N L(G) = K]
= (Jie{l,...,n})[oeSp (P;(s))]
= ae VvSp(s)

= € Sggec(5)
Overall, we have that
[s€K| A [0 €S o0 (5)] A [s5€ L(G))
which in turns implies that
[S€ L (Sgtec/G)] A [0 ESpec (8)] A [s0€ Z(G)]

using the induction hypothesis. It then immediately follows that so € £(S,,../G). This
completes the proof of the induction step and K = Z(S,,./G). |

We note that there are four parts in the decision rule (7). The first part is for the locally
controllable events processed disjunctively. The antipermissive rule is applied to this set of
events. For the second part, the permissive rule is employed for the locally controllable
events forwarded to the conjunctive fusion rule. It is interesting to note the difference of
the default control actions of the permissive and antipermissive rules for . \ X ;. For the
antipermissive rule with disjunctive fusion, the default control action over X, \ Z.;in X,
is disablement. Under disjunctive fusion, not locally controllable implies that the local
supervisor cannot enable X \ X ; globally. Therefore, . \ ¥ ; which are to be processed
by disjunctive fusion should not appear in the decision rule (7).

Equipped with the above theorem, we have an immediate corollary revealing the
solvability condition of the disjunctive architecture.

COROLLARY 1 Consider a language K = #,,(G) where K # (). There exist a nonblocking
disjunctive supervisor such that £ ,,(v ;Sp /G) = K and L (v ;Sp /G) = K iff the three
following conditions hold:
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1. K is controllable w.r.t. ¥(G) and Z,,.

2. K is D&A co-observable writ L(G),Z, 1,21, Zpp 2

0,1» o.ny “~cn-

3. Kis %, (G)-closed.

3.1. Realization of Supervisors

Let us recall the local decision rule (7). One can see that the local decision rules are
decoupled from each other even though they work together in the context of the
generalized architecture of Figure 3. In addition to the decoupling of the local decision
rules, the information state (P;”'P;(s) N K) used in (7) is also independent of the decision
rule (7). These observations lead us to propose the following approach to supervisor
synthesis. Assume that the automaton describing the desired language is a strict
subautomaton of the automaton generating the uncontrolled language. When the desired
language is achievable (namely, it satisfies the conditions in Theorem 1), it is possible to
design the estimator and control actions sequentially. That is, we can:

1. Build the local observers (estimators) of the automaton corresponding to the desired
language.

2. Find the local control action for each local observer state according to the decision
rule (7).

Moreover, supervision can be conducted in an on-line manner, if so desired. The next local
observer state of the desired language can be found on-line upon the occurrence of a
locally observable event and the local decision for this local observer state can be
calculated once the local observer state is known. Note that the computation of the new
observer state only requires the previous observer state and the current control action can
be computed based on the current observer state only. For more details on the realization of
supervisors, the reader is directed to Chapter 3 of Cassandras and Lafortune (1999).

4. Properties of the Architectures

Let us define the following classes of languages where M is assumed to be prefix-closed:

cen(K) ={L = K : L is observable w.r.t. M, X, X }
Zpa(K) ={L =K : L is D&A co-observable w.rt. M,Z, |, X 1,%,5, 2.5}
Lcp(K) ={L =K :L is C&P co-observable w.rt. M,%, |, X.|,Z,5, %}
cggd‘,_,c(Kv) = {L < K . 32(.7(1 and Z(.7e S.t. Z(‘A,d M ZC‘,L’ = @, ZC,d U ZC,(Z = ZL"

L is co-observable w.rt. M, X, 1, Z. 41,2001, 2025 Ze a2 Zeen )
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Figure 4. System model and specification.

Since the controllability of the desired language is a common required condition for the

existence of supervisors among all architectures, the classes of languages defined above

determine the performance (the class of achievable languages) of the architectures.
First, we claim that the conjunctive and the disjunctive architectures are incomparable.

PROPOSITION 3 In general, Lps(K) & Lep(K) and L cp(K) ¢ Lps(K).

Proof: We prove this by finding elements in Zp,(K)\ Lep(K) and
PLep(K)\ Lcus(K). First we present an element in Zp, (K) \ L ¢p(K). Figure 4 depicts
the specification and system model where K =%, ,(H)=%(H) and
M= 2,G)=%(G) (marking is omitted for all states). We set X, = {a,7},
2,2 =1{B7}, Z.1 = X5 = {7} Then it is easy to see that, for ye Z(G) \ Z(H),

{B7} =Py (Py(e))y N Z(H) and {op} = P7 '(P(e))y N L (H)

Since ¢ € Z(H), we conclude that # (H) is not C&P co-observable w.r.t. Z(G), X, |, Z, |,
2,25 Z.o- This implies that both supervisors cannot prevent y from occurring without
sacrificing some legal behavior. Hence, there does not exist a set of local supervisors
generating the desired language ¥ (H) conjunctively.

The only two controllable legal traces of . (H) are iy and ay. Moreover, it is easy to
verify that

(P (Py() NZL(H))yN Z(G) = {oy} € L(H)
(Py '(Po(B)) N Z(H)y N Z(G) = {Br} € Z(H)

Therefore, #(H) is D&A co-observable w.r.t. £(G), 2, 1, Z. 1, Z, 1, Z. 5. This proves that

ZLpa(K) & L cp(K).
Moreover, it is easy to verify the controllability (the illegal continuation is with the
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Figure 5. Disjunctive supervisor.

controllable event y) and %,,(G)-closure (language specifications are prefix-closed) of
Z(H). By following the antipermissive local decision rule in (2), we can construct local
supervisors and their disjunction (global control action is the union of each local
supervisor’s decision) as in Figure 5 by following the method presented in Section 3.1.
With this disjunctive supervisor, the desired language % (H) can be achieved. We may
verify that Z(Sp v Sp /G) = L (H) by adding self-loops for enabled unobservable
events at each disjunctive supervisor state and executing the product the disjunctive
supervisor with G.

Next, we present an example of an element in Zp(K) \ Zp,(K). Let us change the
desired behavior as shown in Figure 6. It is easy to see that, for ye ¥ (H),

(P (P () N Z(H))y NL(G) = {Br} & Z(H)
(Py '(Py(e)) N L(H))y N L (G) = {op} & L (H)

This implies that #(H) is not D&A co-observable w.r.t. Z(G), Z,,, Z.1, Z,2, Z. 5.
Therefore, there is no disjunctive supervisor that can achieve .#(H). However,

Py (Py(w)y N Z(H) =0 and Py '(Py(B))y N L (H) =0

implying that Z(H) is C&P co-observable w.rt. Z(G), Z,;, Z.1, Z,2, Z.o-

H

Figure 6. Desired behavior.
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Figure 7. Conjunctive supervisor.

Controllability and &,,(G)-closure hold as before. Therefore, the conjunctive supervisor
can be constructed by following the permissive local decision rule in (1). Figure 7 is the
realization of local supervisors and their conjunction. We may verify that
L (Sp, ASp,/G) = L (H) as well. |

PROPOSITION 4 In general, Lps(K) U L cp(K) S L o (K).

Proof: It is easy to see that the general architecture is reduced to the conjunctive
(disjunctive) architecture when X ; = ()(Z., = 0). This implies that, with the freedom of
selection of X , and X, the class of languages supervisable under the general
architecture includes those of the conjunctive and the disjunctive architectures. There are
instances where inclusion is proper. We present an example that demonstrates the
existence of an element in & ;,.(K) \ (£pa(K) U ZLcp(K)). Consider the automata G
and H shown in Figure 8(a) and 8(b), respectively. We set X, ; = {o, 7,0},
Z,2=1{p,7,0}, X, =Z.,=1{y,6}. Observe that K=, (H)=%(H) and
M= 2,(G) = Z(G) (i.e., marking is omitted for all states). It is easy to see that, for
ye 2(G)\ Z(H),

{By} € Pr(Py(2)y N L (H) and {oy} C P5 ' (Pa(e))y N £ (H)

Since ¢ € £ (H), we conclude that #(H) is not C&P co-observable w.r.t. Z(G), X
z“0,2’ ZC,Z'
We can also see that for fyoe ¥ (H),

Zc,l’

0,1

{ByBo} < (P (P (B) N L (H))d N L (G), {Brpo} & £ (H)
{Byed} < (P ' (Po(By)) N ZL(H))d N Z(G),{Byad} & L (H)

This implies that £ (H) is not D&A co-observable w.r.t. Z(G), Z, |, Z. 1, Z, 2, Zc -
Letusset X, , = {0} and ., = {y}. The controllable legal traces of £ (H) terminating
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(a) Uncontrolled behavior (b) Desired behavior

Figure 8. System model and specification.

with the event in X ; are fy and ay. By (3), we have X, = X4, = {7} as well. The
following inclusions can be shown:

(Py'(Py(0) NZ(H))y N Z(G) = {oy} € Z(H)
(Py '(Py(B) N Z(H)y N Z(G) = {Br} € Z(H)

Therefore, we conclude that & (H) is D&A co-observable w.r.t. Z(G),
z:c,d,2'

On the other hand, fyfd and fyaxd are the only illegal controllable continuations
terminating with the event in X_,. Furthermore, X ,, =X, ,, = {6} by (3). The
following equalities can be verified:

z“c,le? 20,2’

0,1>

P (Py(By))o N L (H) = 0,P5 ' (P,(ByB))o N L (H) =0

This implies that £ (H) is C&P co-observable w.r.t. Z(G), Z,1, Z..1, Z,2; Zepn-
Collectively, Z(H) is co-observable w.r.t. Z(G), Z, 1, Z,2, a1 Zed2s Zeels Seen-
Moreover, the controllability of .#(H) is easily verified (the 'illegal continuations are with
the controllable events y and 0) and .%,,(G)-closure is trivial. Therefore, we can construct
a generalized supervisor controlling #,,(H). By following the combined local decision
rule in (7), local supervisors Sp , Sp, (Figure 9), and their fusion S, (Figure 10) are
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Figure 9. Local supervisors.

constructed. Note that ., = {6} is fused by the intersection of local decisions while
Z.4 = {7} is fused by the union of local decisions. More detailed construction procedure
is described in Section 3.1. With this generalized supervisor, the desired language ¥ (H)
can be achieved. |

It is well known that the centralized architecture outperforms the conjunctive
architecture; there are observable languages that are not C&P co-observable. It turns
out that the centralized architecture also outperforms the general architecture: there are
observable languages that are not co-observable.

Proposition 2 reveals that the centralized version of D&A co-observability is another
equivalent statement of observability. With this, it is straightforward to see that
observability w.r.t. #(G), X,, X, implies D&A co-observability w.r.t. Z(G), X

2071, AU Zoln, Zm. This leads us to the following result. o
ag. | @B
N
Y57y | ehon 198 | teBm
133?8 {o, B} 3456?99 (0. B. 7} 429 (. .7}

/

Figure 10. Generalized supervisor.
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(a) Uncontrolled behavior (b) Desired behavior

Figure 11. System model and specification.

PROPOSITION 5 & o4, (K) & & (0 (K).

Proof: Observability w.r.t. M, X, 2. implies C&P and D&A co-observability w.r.t. M,
Z 1 Ze1s s Doy 2ey- C&Pand D&A co-observability w.rt. M, X, ;, X e s Zen
implies co-observability w.r.t. M, 1 Bed 1 Zeelr s Do Zedns Z'L._e’n, for any partition
of X. Therefore, we get £ ,,,.(K) € £ wen(K). Inclusion is proper, in general. We present
an example to demonstrate this. Consider the uncontrolled and the desired behaviors in
Figure 11(a) and Figure 11(b), respectively. With X, | = {a, 7}, 2., = {7}, Z,, = {B,7},
and ., = {y}, it is straightforward to show that K = #(H) is observable w.rt. M =
ZL(G), 2, =2, UX,,, Z.=2Z., UZ,,. Since . = {y}, two partitions, X, = {7},
Y.,=0 and ch.e =0, Xea= {y} are possible. It can be shown that neither partition
satisfies the co-observability of (H). Details are straightforward and omitted. |

c,ly -

The relation between the classes of languages defined at the beginning of this section are
summarized in Figure 12.
5. Polynomial Test for Co-observability

In this section, we investigate the computational complexity of testing co-observability.
First, we present a polynomial time algorithm for testing D&A co-observability. One



DECENTRALIZED SUPERVISORY CONTROL OF DISCRETE-EVENT SYSTEMS 355

ﬁcen K
( ) fl,gdec(K)

Figure 12. Performance comparison.

obvious way of testing D&A co-observability is to construct local supervisors with the
antipermissive rule and see if the disjunctively generated language is the given desired
language or not.' However, the computational complexity of constructing a partial-
observation supervisor is exponential in the worst case (Tsitsiklis, 1989). Following the
method of Tsitsiklis (1989) (for observability) and Rudie and Willems (1995) (for C&P
co-observability), we present two ways of verifying D&A co-observability. These results
indicate that testing the solvability of the disjunctive architecture can be done in
polynomial time. The results are stated for two local supervisors. However, the extension
to any finite number of local supervisors is straightforward.

First, we present a language formula for D&A co-observability that can be verified in
polynomial time.

THEOREM 2 A language K = M = M is D&A co-observable w.r.t. M, o Ze, o0 X
iff

{ U {ﬁ(f’iI[Pi{Fam(M\E)}]mfg)}

ceX, N, Vi=1

u |J @r'P{Ken(M\K)} NKo)
0eZe 1\Zc2

v U (PZI[PZ{Fm(M\E)}]m?a)}

oeX o\Z¢ |
NMcM\K (10)
Proof: The proof can be found in Yoo (2002). |

The following facts from Hopcroft (1979) are stated for the justification of the
polynomial complexity of the verification of D&A co-observability.
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FACT 1 Language intersection can be done in polynomial time w.r.t. the product of the
sizes of the state sets of the automata involved (these automata can be non-deterministic).

FACT 2 Language containment K = M can be tested in polynomial time if the automaton
recognizing M is deterministic.

FACT 3 If the automaton recognizing M is deterministic, its complement can be computed
in polynomial time.

FACT 4 Since Z(G)\ Z(H) = ZL(G)N (L (H))", Facts 1 and 3 imply the polynomial
computational complexity of set difference if H is deterministic. Also, the resulting
automaton is deterministic if all the involved automata are deterministic.

The projection operation can be realized by replacing unobservable transitions in the finite
state machine with the null string ¢, thus creating a non-deterministic automaton.
Exponential complexity would arise if we converted this non-deterministic automaton into
a deterministic one. However, this conversion is not needed to perform the operations in
the set inclusion (10). Using this observation and the above facts, the following result
holds.

THEOREM 3 Given two (deterministic) automata H and G, D&A co-observability of
Z,,(H) can be checked in polynomial time w.r.t. |Q%| and |Q"|, where |Q¢| and |Q"| are
the sizes of the state sets of automata G and H, respectively.

Another approach for proving that D&A co-observability is verifiable in polynomial
time is to construct a special nondeterministic automaton, denoted by M,(X,).
This approach is based on the construction of the automaton M(X.) in Rudie and
Willems (1995) for the property of C&P co-observability. Automaton M,(Z.) is built as
follows:

Md(zc) = (QMd(ZC'>7 z, 5Md(2(')7 qu(zc)’ QA”/IIME(-))
where

QMrI(ZC) — QG % QH % QG X QH X QH U {d}
a0 = (4§ .4t .45 ql q}). and
Q%d(i(-) .= {d}

Before the nondeterministic transition rule for M (X.) is defined, let us define the
following set of conditions.
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ForoeZX,,
8%(gy,0) s defined if ceX_
ot (¢2,0) is not defined if ce X,
89(gs,0) s defined if c€ X, (*)
ot (94,0) is not defined if ce X, ,
0" (qs,0) is defined

357

Following the approach in Rudie and Willems (1995), it can be verified that conditions (*)

imply a violation of D&A co-observability. The transition relation oMa(Z

follows.
Foro ¢%,, and o ¢%,,,

M= (g1, 42, 43,04, 45), 0) =

For o ¢2071 and 0'6204’2,

5M”(2C)((51176h,C]3a61476]5)a0) =

ForoeXZ,, ando ¢% ,,

ME (g1, 40, 43,04, 45), 0) =

ForoceZX,, and geX ,,

3" (g1, 2,43, 94:45),0) = {

ForoeX, Ma(Ze

¢) is defined as

(5G(Q1» 0),0 (5127‘7)a‘137614,615)

(41:92:0 (‘137 )aéH(%a(’)aCIs)

(¢ 17%»@3#]4»5 (gs:0))
(6%(q1,0),6"(g2,0),6%(g3,0), 6" (q4,0), 6" (g5, 0))
d if (¥)

(6%(91,0),6" (42,0), a3, 44, a5)

(91,92, 6 (437 )75H(614a0')»5H(457‘7))

(6 (‘h» 0),6 (‘12a0)75G(43,0)a5H(51470)a5H(45,0))
d if (*)

(56(‘117 0),0 (flzao')afl37Q4:5H(‘157U))
(1+92,0%(93,0),6" (44, 9), ¢5)
(6%(91,0),6"(42,0),6%(93,0),6" (44, 0), 6" (g5, 9))

d if (¥)

(56((]1 ’ O-)a 5[{(6127 G)a 56((]33 6); 5[{(6147 G)v 5H(q53 U))

d if (¥)

<)(d, o) is undefined.
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The following two results show that D&A co-observability is verifiable in polynomial
time.

THEOREM 4 Given two deterministic automata H and G, the construction of My(Z,.) takes
polynomial time in |Q°| and |Q"|.

THEOREM 5 Given two deterministic automata H and G, ¥,,(H) is not D&A co-
observable iff £,,(M,(Z,)) # 0.

The proofs of Theorems 4 and 5 are similar to those of Proposition 3.1 and Proposition 3.2
in Rudie and Willems (1993), respectively. Roughly, in that reference authors construct the
automaton M (X,) tracking the traces s, s',s” € #(H) such that

P(s) =P (s"),Py(s) = Py(s"),s'ce L(H),s"ce X(H),s6€ £(G) \ Z(H)

where o € 2. These traces and event ¢ characterize the violation of C&P co-observability.
Similarly, the automaton M (X.) tracks s, s',s” € #(H) such that

P (s) =P,(s"),Py(s) = Py(s"),s'0e L(G)\ L (H),s"ce L(G)\ L (H),sce L (H)

where g € X .. These traces and event ¢ characterize the violation of D&A co-observability.
Note the difference between M,(X.) and M(X,).” The state space of M,(Z,) is
09 x Q" x Q9 x O x Q" U {d} instead of Q" x Q" x Q" x Q% U {d} for M(Z.). The
state spaces Q' x Q" x 0" x Q¢ for M and QY x Q" x Q% x Q"' x Q"' for M,(Z,) are
merely for tracking all traces s, s, s” € #(H) such that

Pi(s) = P(s') and P,(s) = P,(s")

Automaton M,(X,) requires the product space of five automata because the
characterization of the violation of D&A co-observability demands to track two illegal
traces (this is done by two pairs of G and H) and one legal trace (the last product of H
tracks this). Analogous reasoning can be applied for the automaton M(Z,) tracking two
legal traces and one illegal trace. The violation condition (*) of M;(X.) characterizes the
failures of D&A co-observability and results in the marking of those continuations. We
present an illustrative example of the verification of D&A co-observability using the
automaton M (X,).

Example 1: We showed that % ,,(H) depicted in Figure 6 is not D& A co-observable w.r.t.
L(G), Z,1, Ze1s Zpas X, defined earlier. We show this result by constructing the
automaton M,(X,); the relevant part of M,(Z,) is shown in Figure 13. Recall that
Zoa ={7}, 2o ={B,7},and Z. | = Z., = {7}. Let us look at the following traces:

veZL(H), pye Z(G)\ Z(H),aye Z(G) \ Z(H) (11)
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Figure 13. My (%,).
Since
Pi(e) = Py(f),Py(e) = Pr(2), and yeX NI,

the traces in (11) prevent < (H) from being D&A co-observable w.r.t. Z(G), Z,, Z, 1,
2,2, Z.2- Now we construct the automaton M,(X.). From the initial state, all events are
active transitions. Let us follow the transition f8. Since f€X,, \ Z, ;, there are up to four

possible transitions, but only three of them can be executed since condition () does not
hold:

(3737 17 17 1)
MaE((1,1,1,1,1),p) =< (1,1,3,3,3)
(3,3,3,3,3)

These states are reached by the following set of traces;

(373717171)95285 S, :ﬁa S” =¢,
(1,1,3,33)cs=8, s =& 5" =P,
(3,3,3,3,3)<—S:ﬁ, s/:ﬂa S//:ﬁ

Next, we do transition o from state (3,3, 1,1, 1). Sincexe X, ; \ £, », up to four transitions
are possible. However, we only have one executable transition, namely

5Md(zc)((3737 17 17 1),0() = (37374747 1)
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and the corresponding traces are:
(3,3,4,41)—s=¢5 =p,5" =a

Finally, we execute the transition y from (3,3,4,4,1). Since yeX,; NX,,, up to two
transitions are possible. However, (3, 3,4, 4, 1) has only one executable transition, namely

M= ((3,3,4,4,1),9) = d
The corresponding traces are
des=7y,s =pps" =ay

We can see that marked state d is reached by the set of traces that violate D&A co-
observability.

In Tsitsiklis (1989), it is shown that the computational complexity of constructing a partial
observation supervisor is exponential in the worst case even though solvability (namely,
controllability and observability) can be checked in polynomial time. This is caused by the
fact that supervisor construction has the same computational complexity as that of
observer construction, which is exponential in the worst case. This negative result is
inherited in decentralized architectures.

To verify the existence of a nonblocking supervisor such that £, (S 4../G) = £, (H)
for the general architecture, we need to determine the existence of a partition of X into
%, qand £, that satisfies co-observability. Given a partition of £, namely X, , and X ;, it
is straightforward to see (from the definition of co-observability) that co-observability
with respect to this partition can be verified by constructing M,(X, ;) and M(Z.,) and
checking &, (My(Z.,4)) = &,,(M(Z.,)) = (. A brute force way of finding X, ; and X,
that satisfies co-observability is to test C&P and D&A co-observability (by constructing
My(%.,) and M(Z.,) and checking Z,(M,(Z. ;) =<,MZ.))=0) for all
combinations of 2., and X ,. The number of combinations is exponential w.r.t. m, the
number of controllable events. Here we propose a polynomial time algorithm to find a
partition satisfying co-observability. This algorithm exploits the properties of the automata
M(Z,) and M,(X,). We define the set of terminal events:

2, (K):={0:50eK}

%,.-(K) collects the events terminating the traces in K. The following theorem provides an
algorithm to search for a partition of X satisfying co-observability.

THEOREM 6 There exist %, , and X 4, a partition of X, such that & ,,(H) is co-observable
w.r.t. g(G)’ 20,1’ z“z?.,d,l’ Ec,e,lr 2“o,2’ z“c,d,Z’ 26‘,8,2’ lﬁc

2“ter(<fm([u(z“c'))) n zter(gm(Md(z(:))) = @
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Proof: (=) Let there exist £., and X ,, a partition of X, such that &, (H) is co-

observable w.r.t. Z(G), Z, 1, Zo g1, Zeelr Zo2s Zed2r 2een- This implies that
[VO’EEC’E,O' ¢ z“ter(”gm(]w(z‘ )))] [VGEZL a0 ¢2m( (Md(zc)))]

Since %, (ZL,,(M(Z,))), Z;0r (L n(M4(Z,))) < X, we get the following set inclusions:
z:ter(=gm (M(Zc))) S Zc \ Zr,e = Zc,d
Zter(gm(Md(zc))) = Zc \ ZC,d = Zc,e (12)

Since X, and X, , are a partition of X, with (12), we get
Zter(gm(M(zr))) N z"ter(°‘g (Md(z ))) = ZL d N zz:,e = @
:>Zru( ( ( c))) rer( (Md( ))) - @
(<) Suppose that ., (Z,,(M(E,))) N E, (£,,(My(E,))) = 0. We st
(=

Z(',d = tu( (M c))) and Z = Zc \ z:cnd (13)

Then
Zo U E(,,e =2, and Ec,d N Zc,e =0
Moreover,
i (LnMEZ)) NEc =0 and 2, (L, (My(2))) N Ze g = 0 (14)

This implies that for all ceX, , = X, (c€X., S X.), no violation of C&P (D&A) co-
observability occurs. Therefore, we can conclude that #,,(H) is co-observable w.r.t.
ff(G), z“0,1; Zc,d,l? Zc,e,l’ z:0,27 Zc,d,Za Zc,e,Z- u

The setting utilized in (13) is one of the partitions satisfying co-observability. Since
2o (LM Z))) and Z,,.(Z,,(M4(Z.))) can be determined in polynomial time, this
provides a polynomial time algorithm for finding a partition meeting the requirements of
co-observability. Even though Theorem 6 is stated for two local supervisors, M(X,) and
M,(Z,) can be straightforwardly extended to any finite number of local supervisors while
still keeping polynomial complexity.® Provided with these M(Z,) and M,(Z,), Theorem 6
is generalized to any finite number of local supervisors as well. Consequently, the
following theorem can be stated.

THEOREM 7 Given two deterministic automata H and G, the existence of a partition of 2.,
.. and X4, satisfying co-observability of £,(H) wrt ZL(G), Z,;, Z. 41,

Zieds 1 Do Bedn Leen Can be verified in polynomial time with respect to |o"| and
Gl, if such a partition exists, it can be found in polynomial time with respect to |Q"
14 poly P
| as well.

Now we state the result that completes the answer to problem (P) posed in Section 2.4.
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Figure 14. M(X.).

THEOREM 8 Let K be controllable and ¥ ,,(G)-closed. There exist a partition of . and a
corresponding nonblocking generalized supervisor Sy, such that L(S,4,./G) = K and

gnz(Sgde(‘/G) =K lﬁc

ztel(gm(M(Zc))) N zmr(gm(Md(zc))) = (Z)

gdec

Proof: Direct consequence of Theorem 1 and Theorem 6. |

For a language K satisfying the conditions stated in Theorem 8, the synthesis of local
supervisors achieving K can be done by following the partition rule (13) and the local
decision rule (7). However, it is easy to observe that the partition of 2, may not be unique.
All partitions satisfying (14) meet the co-observability condition. We present an example
to illustrate the partitioning algorithm.

Example 2: We showed that % ,,(H) depicted in Figure 8(b) is not C&P and D&A co-
observable wr.t. 4(G), 2,1, 2.1, Z,,, Z., but co-observable wr.t. (G), Z,, Z. 41,
Zeedr Zoas Zedns Zeens where L.q=1{y} and L. =10} The two corresponding
automata M(Z,) and My(X,) are shown in Figure 14 and Figure 15, respectively. We
can see that %,(Z,(M(E)) = {3} and 5, (L,(My(Z,)) = {6}, Since
(L aMEN))NE, (L (M (Z,.))) =0, there exists a partition of Z, satisfying co-
observability by Theorem 6. By following the partition rule (13), we get

Zc,d = Zter(gm(M(zc))) = {V} and 2:c.,e = Zc \ Zc,d = {5}
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Figure 15. M4(%,).

With this configuration, %,,(H) is co-observable w.r.t. Z(G), Z, 1, Z. 415 Zee1r Zp2s
Zc,d,% Zc,e,Z'

The objective of the following sections is to investigate how to deal with the situation
where co-observability fails to hold. For this objective, we examine the algebraic properties
of co-observability. These properties show that the supremal and infimal elements of the
class of co-observable languages need not exist, in general. Based on these results, some
supervisor design issues under the general architecture are then discussed in Section 7.

6. Algebraic Properties of Co-observability

Supremal sublanguages (with respect to a given property) play a key role in supervisory
control problems, since they provide the least restrictive solutions when the desired
languages are not achievable under control (because they do not possess the property
under consideration). Infimal superlanguages are also important (see, e.g., the range
problem in Lin and Wonham, 1988; Rudie and Wonham, 1992). The existence of supremal
and infimal languages can be verified by checking the closure under algebraic operations
(union and intersection) of classes of languages. We present several algebraic properties of
co-observability that are relevant in this regard.
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PROPOSITION 6 D&A co-observability and co-observability are not preserved under
union of languages.

Proof: It is proved in Proposition 2 that C&P co-observability, D&A co-observability
and observability are all equivalent in the context of the centralized control
architecture. Given the fact that observability is not preserved under union, the result is
immediate. |

It is shown in Rudie and Wonham (1992) that C&P co-observability is preserved under
intersection when prefix-closed languages are considered. However, the following
proposition shows that this is not true for D&A co-observability.

PROPOSITION 7 D&A co-observability and co-observability are not preserved under
intersection of languages.

Proof: Let X, ={«}, £,, ={p}, and £, =% ; =X ., = {y} for the languages
shown in Figure 16. #(G) is the uncontrolled language and % (H,) and % (H,) are the
desired languages. The only traces terminated with a controllable event in ¥ (H,) are y
and f3y. For these traces, it is easy to see that

That is, & (H,) is D&A co-observable w.r.t. Z(G), Z, 1, Z, 1, Z, 7, X . Similarly, £ (H,)
is D&A co-observable w.rt. Z(G), Z,,, X1, Z,5, Z.,. However, it is shown in
Proposition 3 that % (H,) N % (H,) is not D&A co-observable w.rt. Z(G), Z, , et
X,2, X, Since D&A co-observability is a special case of co-observability, co-
observability is not preserved under intersection of languages as well. |
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Finally, we focus on the class of languages #,,(K) N % ¢p(K). Let us pick two elements
in Zps(K) N Zp(K). Does the intersection of these two elements preserve C&P and
D&A co-observability?

PROPOSITION 8 (i) Lps(K) N L p(K) is not closed under intersection of its elements. (ii)
ZLpaK) N ZLep(K) is not closed under union of its elements.

Proof: Let us return to Figure 16. We showed in the proof of Proposition 7 that & (H)
and ¥ (H,) are D&A co-observable. Since

Pi ! (Py(0)y N Z(Hy) = 0 and Py ' (Py(B))y N & (H,) =0

& (H,) and ¥ (H,) are C&P co-observable as well. Since ¥ (H,), ¥(H,) = Z(G), these
are elements of %, (ZL(G)) N Lp(ZL(G)). But as was seen earlier, ¥ (H,) N L (H,) is
not D&A co-observable. Therefore, ¥ (H,) N L (H,) € Lps(ZL(G))NLp(Z(G)).
Hence, we conclude that %, (L (G)) N Lcp(L(G)) is not closed under intersection of
languages.

By Proposition 2, observability is equivalent to C&P and D&A co-observability in the
context of a centralized architecture. Moreover, observability is not preserved under union
of languages. Therefore we conclude that %, (K) N % ¢p(K) is not closed under union, in
general. |

Properties 6, 7, and 8 are disappointing in the sense that the notion of co-observability,
which is key to the generalized architecture of Figure 3, does not enjoy any of the algebraic
properties that would be useful to address supervisor synthesis problems for desired
behaviors that are not co-observable. For this reason, a different approach is necessary to
tackle such problems. The next section presents new results in this regard.

7. Synthesis Results
7.1. Design of Safe Generalized Supervisors

In supervisory control problem, the desired language is not achievable, one may want to
synthesize a safe supervisor that guarantees that the closed-loop behavior stays within the
desired language. We call this the inclusion problem and define it as follows:

Inclusion Problem Given uncontrolled system G over the set of events £ and legal
language K, find a nontrivial supervisor S such that #(S/G) < K.

Note that this Inclusion Problem does not consider blocking/nonblocking of solutions. It
has recently been shown in Lamouchi and Thistle (2000) and Tripakis (2001) that the
inclusion problem for safe and nonblocking decentralized supervisors is undecidable when
the specification is expressed in terms of %,,(S/G) < K.

For the perfect observation case (X = X)), the supremal controllable sublanguage of the
desired language K, (K)1(©), is computable and provides the least restrictive solution to the
inclusion problem. Due to the lack of existence of supremal observable sublanguages,



366 YOO AND LAFORTUNE

several approaches have been developed for control under imperfect observation. For
centralized architectures, the property of normality has been suggested in order to compute
a ‘‘suboptimal’’ solution to the inclusion problem (Cho and Marcus, 1989a; Lin and
Wonham, 1988). To improve upon this solution, other safe supervisor synthesis techniques
were developed. Most of the efforts (Hadj-Alouane et al., 1996; Heymann and Lin, 1994)
were devoted to the centralized architecture. There are very few results on the synthesis of
safe supervisors in the context of decentralized architectures. One of the obstacles to the
design of safe decentralized supervisors may be the mutual dependency of local decisions.
To circumvent the dependency of local decisions,an intentional ‘‘decoupling’’ of the
design of the local decision rules was suggested in Prosser and Kam (1997) and Prosser
(1996). The idea is to design local supervisors separately by following the antipermissive
rule and fuse them through various fusion rules. Even though the performance of the
supervisor may be degraded due to the separation of local supervisor design, the simplicity
of this approach circumvents the mutual dependency of local decision rules. However, a
drawback of the approach in Prosser and Kam (1997) and Prosser (1996) is that local
supervisors do not exploit the structure of the fusion rule that is a priori known to each
local supervisor. In the approach that we propose, we also decouple the design of local
supervisors. However, the fusion rule and the local decision rules are accounted for in this
design in order to enrich the closed-loop behavior.

Assume that the desired language K is controllable.* Let us denote by S adec the
supervisor obtained following the decision rule given in (7) with a given partition ¥, , and
% q- In some sense, this means that S, pretends that K is controllable and co-observable.
We also build the automaton M(X.) and determine X,.(%,,(M(Z.))). Since the
controllable events in X, (%, (M(Z.))) may cause a violation of safety (illegal
continuation) if we follow the permissive rule for X,,,.(%,,(M(Z.))), we should use the
antipermissive rule for these events.

The nature of the permissive rule is to enable events when there is insufficient
information. This rule can cause a violation of safety unless other local supervisors disable
the events that would lead to illegal behavior. In contrast, the antipermissive rule disables
events when there is insufficient information. This conservative approach prevents the
closed-loop behavior from being illegal. We have the following theorem providing a
procedure for the synthesis of a safe supervisor under the general architecture.

THEOREM 9 If X, (Z,,(M(Z,))) < X, 4, then synthesizing S
g(Sgdec/G) = 1?

dec according to (7) leads to

Proof: The proof is done by induction on the length of traces.

(Base of the induction) Since K is nonempty, &€ #(S,4,./G) and e€K.

(Induction hypothesis) Suppose that for all s€ £(S,,,./G) such that |s| = n, se K.

(Inductive step) Assume that there exist s€ Z(S,4./G) and o€ such that |s| =n,
50 € L (Sgqec/G), and so & K. Since L (S5, /G) = L(G), we get sa€ Z(G). By the
controllability of K,

[sce Z(G)|A[sc & K| A[seK]
= [sce Z(G)\ K| n[oeZ]
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Case 1: (0€X. , NZ.,) Since X, (Z,M(Z.))) <X, this implies that
o (Zn(M(Z.)) NZ,, = 0. Therefore, K is C&P co-observable w.r.t. Z(G), Z,,,
2,2 Zeels Zeen and we have the following:

seK|Alsc ¢K]=[Qie{l,2})[(P; 'P,(s))s K = 0]
= [G ¢Sgdec(s)]
= [SG ¢g(sgdec/G)}

This contradicts the assumption that 56 € (S, /G).
The Cases 2 and 3 where ceX,,; \ X ,,andceX, ,, \ X, can be argued similarly
with appropriate modifications.

Case 4: (6€2,.4,NZ, ;) Since seK and so ¢ K,

[(Yie {1,2})[(P7 'Pi(s) NK)o N Z(G) £ K]]
= [0 ¢ Sgdec]
= [SG ¢$(Sgdec/G)]

This contradicts the assumption that 56 € £ (Sy4,./G).
The Cases 5 and 6 where 6€ X, 4, \ Z. o and 6€ X, 4, \ Z. 4 can be argued similarly
with appropriate modifications. |

Theorem 9 implies that every partition of the set of controllable events satisfying
2 (Z,(M(Z,.))) € 2,4, together with the corresponding local decision rules given in
(7), guarantees a safe closed-loop behavior when S,,,. controls G, even if K is not co-
observable.

In view of Theorem 9, one may wish to compare the closed-loop behaviors
corresponding to different partitions. Let 2(1.‘0,, Zid, z! 23’66226. Suppose that

c.e’

o (LaME))) = Z(l,’d, >2 , and the following partition conditions hold:

gdec

T,Uzl, =%, and 37,03, =%,
Let us denote the generalized supervisors following the supervision rule (7) with the above
two partitions by Si,de(? and Sﬁdﬂ‘, respectively. Then we have the following theorem
demonstrating the monotonicity of the closed-loop behaviors w.r.t. partitions.

THEOREM 10 IfEter(gm(M(zc))) < Zz,d S zcl‘.d’ then g(sgrdec/G) S g(séde(/G)

Proof: We argue this with induction.
(Base of the induction) Since K is nonempty, c€ £ (S!,./G) and e€ Z(S2,,./G).

gdec gdec
(Induction hypothesis) Suppose that for all se.& (S;,dec/G) such that |[s| =n,
sef(Szd“/G).
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(Inductive step) We now prove that for all 6 € X and s€ £ (S} ,,./G) such that |s| = n,

gdec
So€ g(S;dezr/G) =s0€ g(sédec/G)
Case 1: (6€X,,)

[GGZ ] [SGE g(sédec/c)] [SE g(SZdec/G)]
[SE g(szde(‘/G)] [SO'G g(G)] [Gesgdec( )]
[SUE g( gdec/G)]

Case 2: (ceX{,) Since I}, = X7

c,e — c.e’

it is obvious that for all se X,
0 €S yec(5) = T€ 2y (5)

Case 3: (o€ Zi.d) For o e E}ﬁd N Ef’d,
7€) = 0€ S 5)

By Theorem 9, we know that s eK.Foroe Z Nnx?

c,e’

[seK] A [s6€ L (Sysee/G)]
= [seK| A [s0€ L(G)] A [0ES e (s)]
= [seK]A[sae Z(G)| A[Fie{1,2})[(P; 'P(s)NK)o N L(G) S K] A[oeX,]]
= [seK| A [so€K]
= [seK|A[sceK] A[(Yie{1,2)[(P; 'P;(s))c NK # 0]]
= [seK| A [s0€ L(G)] A [0€Sry(s)
=sge L (S gdeC/G) |

Combining Theorems 9 and 10 leads to the following result.
COROLLARY 2 Ifztei( m(M(Zc))) < 212 = Zc d> then g( gdec /G) ( gdec /G)

One may be tempted to infer that the condition Z,,.(Z,,(M(Z,))) < X, , is necessary
for safety. However, the following result demonstrates that it is not the case.

PROPOSITION 9 #(S,4../G) < K does not imply Z,,,(Z,,(M(Z.))) S Z 4
Proof: Figure 17(a) and Figure 17(b) represent the uncontrolled behavior and the

desired behavior, respectively. Let X. =X, =X, =X ={o,f} and £, = X, =
Z,» = 0. The controllability of #(H) is trivial. Since af and fo violate C&P co-
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(@G (b) H (© H (d) H?

Figure 17. Safety example to illustrate Proposition 9.

observability, the automaton M(X,) returns X,.(%,(M(Z.))) = Z.. However, the
settings X, = {f}, X, ={a} and X ., ={a},XZ., = {B}, with the corresponding
decoupled local rules given in (7), produce the safe closed-loop languages #(H') and
#(H?*) shown in Figure 17(c) and Figure 17(d), respectively. |

However, the condition X, (Z,,(M(Z,))) < X, , is critical to guarantee the safety of
the closed-loop behavior in the sense that if this condition is violated, the closed-loop
behavior may not be safe.

PROPOSITION 10 If Z,,.(Z,,(M(X,))) & Z. 4, then the closed-loop behavior may not be
safe.

Proof: Consider again Figure 17(a) and Figure 17(b) representing the uncontrolled
behavior and the desired behavior, respectively, with the same event settings as in the
proof of Proposition 9. We know that X,,.(%,,(M(X,))) = Z.. By setting ., = X, it is
obvious that X, (%, (M(Z,))) & Z., = 0. It is also easy to see that the closed-loop
language is .Z(G). Therefore, we can'say that the closed-loop behavior is not guaranteed
to be safe if Z,,. (L, (M(Z.))) & Z.,. |

In view of the above results, we conclude that X, (%,(M(X,))) =Z., is the
“‘optimal’’ partition, in the sense that it generates the largest safe closed-loop behavior
among all the partitions guaranteeing the safety of the closed-loop behavior. Roughly
speaking, the intuition behind Theorem 10 is that as the local decisions become
““aggressive”’ (even though their fusion rule is conservative),” the closed-loop behavior
becomes larger. Corollary 2 and Proposition 10 set a limit on ‘‘how aggressive’’ local
decisions can be in order to guarantee the safety of the closed-loop behavior.

7.2.  Properties of the Synthesized Language

Consider S, defined in Section 7.1 with a partition of X, guaranteeing the safety of the
closed-loop behavior. Since the local decision rules are decoupled intentionally, it is
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natural to expect that the closed-loop behavior may not be maximally permissive when
Sedec 18 used. We have the following result.

PROPOSITION 11 (Non-maximality) In general, &L (S,q4../G) with the “‘optimal’ parti-
tioning is not a maximal controllable and co-observable sublanguage of K.

Proof: Consider Figure 17(a) and Figure 17(b) representing the uncontrolled behavior
and the desired behavior, respectively. Let X . =ZX., =2, =2X={o,f} and
¥,=2%,, =2,, = (. The controllability of #(H) is trivial. Since o8 and fo violate
C&P co-observability, the automaton M(Z,) returns X, (%, (M(Z.))) =2.. By
following the ‘‘optimal’’ partition strategy X, (<, (M(Z,))) = Z.4 we get Z_; = X,.
With this strategy, the generated language % (Sy4,./G) is {&}. However, there are two
maximal controllable and co-observable languages which are generated by the two
automata shown in Figure 17(c) and Figure 17(d). Therefore, it can be concluded that
L (S44ec/G) with the “‘optimal’” partitioning is not maximal, in general. |

Since the local decision rule (7) does not consider marking, the following can be
demonstrated.

PROPOSITION 12 (Blocking) In general, L (S y4ec/G) 7 £ (Sguec/G)-

Proof: Consider the automata G and H shown in Figure 18, representing the uncontrolled
behavior and the desired behavior, respectively. Let X, =ZX., =X, = {«} and
X, =2X,; = X,, = (). The controllability of #(H) is trivial. We can see that £, (H) is
&Z,,(G)-closed as well. Since yao violates C&P co-observability, the automaton M(Z.)
returns %, (Z,,(M(X,))) = {o}. Therefore, £(S,./G) = {7} with the partition where
Zc'.d = {O(} ObViOllSly, "g)m (Sgdec/G) 7é g(Sgdec/G)' u

v v Y

G H E(Sgdec/G)

Figure 18. Blocking example.



DECENTRALIZED SUPERVISORY CONTROL OF DISCRETE-EVENT SYSTEMS 371

In the remainder of this section, we consider the properties of two versions of S
where the local decision rules are either always antipermissive or always permissive.
A language K is called strongly decomposable if

gdec

[Pr'P(K)UPy 'Py(K)U---UP, 'P,(K)|NZ(G) =K

This property has been considered as a decentralized version of normality in the sense that
it is preserved under union and is a stronger condition than C&P co-observability (Rudie
and Wonham, 1992). Since controllability is also preserved under union, the supremal
controllable and strongly decomposable sublanguage, denoted by KT(€P), exists. Let us
denote by K'(V) the supremal controllable and normal sublanguage of K, where
controllability is w.r.t. #(G) and Z,. and normality is w.r.t. #(G) and Z_; (hence the
superscript ““i”” in K1), We have the following result. '

PROPOSITION 13 For all i, K1(€D) < g1(CNi)

Proof: Since strong decomposability implies normality w.r.t. £ (G) and Z,;, for all
i, K1(CP) = K1(END) follows immediately. [ |

Letus set ¥, = X, and denote the supervisor following the decision rule (7) with this
partition as S%, adec- This is the most conservative partition according to Corollary 2 and
every local decmon is based on the antipermissive local decision rule (hence the

superscript ‘“‘ap’’ in S gZe[) We have the following inclusion.

PROPOSITION 14 For all i, (K)!) = (5%, /G).

Proof: We only prove that (K)'“VV < (¢ /G) without loss of generality. If
(K)MCND) is empty, inclusion is trivial. Let us suppose that (K)'(C¥) is not empty.

(Base of induction) Then ce (K)'N) and g€ Z(Sg,,./G) by the definition of

2(s,[G).

(Inductlon hypothesis) Suppose that for all se(K)"YD such that |s| =n,
S€ j( gdec /G)

(Induction step) For a contradiction, assume that there exist s € (K)"““!) and ¢ € T such
that |s| = n, sa e (K)' (M), and so ¢ $(S“Ze( /G). Since (K)!N) = K < #(G), we get
sa € Z(G). By the controllability of #(S¢,./G) and the definition of £(S¢/,./G),

soe Z(G)| A lso & L(Sg../G)]

i[GGZ(,}/\[ViE{l,z},O’&(SP( (S))]
= [oeX ] [(Vie{1,2})[(P; 'Pi(s) NK)o N Z(G) £ K]

This implies that there exist s', s €K such that

[Py(s) = P\(),P2(s) = Pr(s")] A [f o€ Z(G) \ K] A [s"0 € £(G) \ K]
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However, by normality w.r.t. £(G) and X, ;, we get

soeP'P,(s0) N L(G) = (K)N) =K
This is the contradiction. |

In Prosser (1996), the inclusions (K)'?) < & (Sgrec/G) € K were proved. Note that
(K )NCN"> is a suboptimal solution where all control authorities are given to the i-th local
supervisor.® From Propositions 13 and 14, we see that (_)NCN"> provides a tighter lower
bound than (K )T(CD). Moreover, Corollary 2 states that (Sg,./G) is the most
conservative language guaranteed to be safe given that the decoupled local control
actions following the decision rule (7) are applied.

7.3. Synthesis of the Infimal Controllable and C&P Co-observable Superlanguage

We conclude this section with one last result when the local decision rule is always
permissive. A formula for the infimal prefix-closed controllable and C&P co-observable
superlanguage is known (Kumar and Shayman, 1998; Rudie and Wonham, 1992). One of
the purposes of the computation of this infimal superlanguage, denoted by (K )l(cco) is to
realize a supervisor generating this language. We present a simple algorithm synthesizing
directly the decoupled local supervisors that result in this language without having to
explicitly compute the infimal prefix-closed controllable and C&P co-observable
superlanguage. We set ., = X, and denote the supervisor following the decision rule
(7) with this partition as S" edec- This implies the architecture is the conjunctive one and
every decision is based on the permissive decision rule. We need following proposition for
further argument.

PROPOSITION 15 K © Z(Sp,,./G).

Proof: (Base of the induction) Since K is a nonempty set, €K and ¢€ & ( dec/ G)-
(Induction hypothesis) Suppose that for all s€ K such that |s| = n, se Z(S" dec/ G)-
(Inductive step) We now prove that for all ¢ € X and se K such that |s| = n,

soeK = soe L(8%,,./G)
Case 1: (6€X,,)

[0eX,] A [soeK] A lse L (S} /G)]

[ceX, ]nlsoe L(G)|Alse L (Sg./G)]
[(Vie{1,2})[ceSp (Pi(s)]| A lso e Z(G)] A [s€ (S /G)]
[s0€ L (St4ee/G)]
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Case 2: (c€X,. 1 NZ,,) Itis easy to see that

(¥ie {1,2})[s0e P [Pi(s)]o NK]| A ls€ L (S}, /G)]
=[(vie{1,2})[oeSp, (Pi(s)]] A [s€ L (Sgaec/G)]

With so €K = (G) and the definition of £ (S},,./G), s0€ L (Sh4,./G)

The cases where geX ;\X ., and geX ,\ X ; can be argued similarly with
appropriate modifications. |

We have the following theorem. Note that the controllability assumption on K is not
needed for this theorem.

THEOREM 11 Z(S},,./G) = (K K)(cco),

Proof: (2) Since K = Z(S" %iec/ G) by Proposition 15 and £(S},,./G) is controllable

and C&P co-observable, (K)! 1(eco) ¢ @ (S%4ec/G) by the 1nﬁmahty of (K)l(cco),

(=) Since (K)*“) is controllable and C&P co-observable, there exist Sp and Sp_
such that Z(Sp A Sp,/G) = (K K)4(CCO) with local decision rules, for all ie {1, 2}, seZ*

Sp,(Pi(s)) = E\Z; U {yeZy; : P 'Pi(s)y N (K)N D # 0}

Moreover, by denoting the local decision rule of S7,,. as Sp :

S’;,i(Pi(s)) =X\Z ,U{yeZ,  : P/ 'Pi(s)y N K # 0}
It is easy to see that for all ie {1,2},5€X*, g€ X,

P,-”P,-(S)G NK < P[lP,-(s)(rﬁ (I?)i(cco)
= S (Pi(s)) = Sp,(Pi(s))

= L(S4./G) S L(Sp, ASp,/G) = (K)HCO)
Therefore, £ (S g,da/G) (K)¥cco), -

Theorem 11 can be interpreted as another characterization of (K)““9), namely, as the
closed-loop behavior that results from Sp . The discussion in Sectlon 3.1 is directly
applicable for the realization of the local superv1sors By adding self-loops for enabled
unobservable events at each estimator state, the automata representing the local
supervisors can be realized. The automaton generating (K)'€€?) can be constructed by
forming the product of these automata with the system model. This method of building a
generator of (E)“CCO> is closely related to the modular approach in Kumar and Shayman
(1998), since the combination of permissive supervisors by conjunction in the context of
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SZ Jec 15 equivalent to the intersection of languages in Theorem 3 of Kumar and Shayman

(1998).

8. Conclusion

In this paper, a generalized form of the conventional decentralized control architecture for
discrete-event systems is considered. The general architecture allows combinations
between ‘‘fusion by intersection’’ and ‘‘fusion by union’’. It is shown that a proper
combination of fusion rules with corresponding local decision rules (the permissive rule
for “‘fusion by intersection’” and the antipermissive rule for ‘‘fusion by union’’) results in
a larger class of achievable languages than those of the conjunctive and disjunctive
architectures. A polynomial time verification method of the necessary and sufficient
conditions for the existence of supervisors under the general architecture is given. A
polynomial time technique for finding an appropriate combination of fusion rules is also
presented. Furthermore, we have presented simple ‘‘decoupled’ control policies for the
local supervisors and studied their properties. The design of these local supervisors is
carried out as if the local supervisors were capable of achieving the desired behavior,
namely, as if the desired language were co-observable. Under this technique, we found the
“‘optimal’’ partition of the set of controllable events guaranteeing the safety of the closed-
loop behavior. This simple supervisor synthesis technique can also be applied to
synthesize local supervisors generating the infimal prefix-closed controllable and C&P co-
observable superlanguage.

Appendix

We recall the transition relation of automaton M(Z.) in Rudie and Wonham (1992).
M(Z) AM(Z,
M(ZL) = (QM(ZC)v 27 5M(ZC)7 q() ( >7 Qm< ))
where

OME) .= o 5 0" x 0" x G° U {d}
ay ™ = (gt qtl . qll 45)
O™ = {a}

Let us define the set of conditions implying the violation of C&P co-observability. Note
that these conditions are only defined for the controllable events. For c€X,,’
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) is defined if c€X,
¢, 0) is defined if c€X_, )
)
)

q3,0

0%(q4,0) is defined

is not defined

The transition relation 8¢ is defined as follows.
Foro ¢%,, and o ;éZO’z,

5H(q1, 0),42:93:94)
41,"(42,0), 43, 44)
‘I17QZa (‘hv )>5G(Q47O-))

5H(Q1’ )a <q270—)’5H(Q3’6)a5G(q476))
d if (*)

(
(
M=) (g1, 42, q3.44),0) = < (
(

Foro ¢%,, and 0€X,,,

(511(‘117 0),42: 43, 44)
(C] (q27 )5 (6]3,0'),50(614,0'))
©

5M(ZC)((qlch27Q37 q4)7 G) =
(qh )7 (QZ7G)>5H(q37O-)756(‘]470_))

d if (*)
ForoeZXZ, and o ¢%,,,
(q 75H(q27 ) q31q4)
‘ §"(q1,0),42,0" (43,0),8%q4,0
S (g1, g2, ), 0) = {0 D P2 0L Z, : )G)
(5 (QIv )7 (Q27G)75 (CI3,O'),5 ((I4,O'))

d if (*)

ForoeX,;and oeX,,,

(5H(ql ) 6)7 5H(Q27 O-)’ 5H(q3v 6)7 56(‘]47 J))

5M(2L) b) b ) b) =
((91,92,93:94),0) d if (%)

For 0%, 8"*I(d, ¢) is undefined.
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Notes

1. The controllability of %,,(H) is assumed. This does not affect the polynomial test of solvability since control-
lability can be verified in polynomial time. We also assume that % ,,(H) = % (H).

2. The transition relation and the violation condition (*) of the automaton M(X,) are recalled, in Appendix.

3. Given that the number of local supervisors is fixed, the result provides the polynomial test. However, it should
be noted that the computational complexity of constructing M(X,) and M,(X,.) is exponential in the number of
local supervisors, n.

4. This assumption is not restrictive since it is always possible to find the supremal element, (?)T(C). Moreover, it

is not possible to find any closed-loop language which is in between (K) and (K)T(C) due to the supremality of
(E)T(C).

5. Note that ‘‘aggressive’” (permissive) local decision rules are matched with intersection (conservative fusion)
and that ‘‘conservative’’ (antipermissive) local decision rules are matched with union (aggressive fusion).

6. Note that the control authorities are distributed throughout the local supervisors under decentralization. The
purpose of Proposition 14 is to illustrate the properties of the language ¥ (SZZ[,C /G).

7. This condition is not mentioned in Rudie and Wonham (1992).

References

Barrett, G. 1999. Modeling, analysis and control of centralized and decentralized logical discrete-event systems.
PhD thesis, The University of Michigan.

Cassandras, C. G., and Lafortune, S. 1999. Introduction to Discrete Event Systems. Kluwer Academic Publishers.

Cho, H., and Marcus, S. I. 1989a. On supremal languages of classes of sublanguages that arise in supervisor
synthesis problems with partial observation. Math. Control Signals Systems 2: 47-69.

Cieslak, R., Desclaux, C., Fawaz, A. and Varaiya, P. 1988. Supervisory control of discrete event processes with
partial observation. /[EEE Trans. on Automat. Contr. 33(3): 249-260.

Hadj-Alouane, N. B., Lafortune, S., and Lin, F. 1996. Centralized and distributed algorithm for on-line synthesis
of maximal control policies under partial observation. Discrete Event Dynamic Systems: Theory and
Applications 6(41): 379-427.

Heymann, M., and Lin, E 1994. On-line control of partially observed discrete event systems. Discrete Event
Dynamic Systems: Theory and Applications 4(3): 221-236.

Hopcroft, J. E. 1979. Introduction to automata theory, languages, and computation. Addison-Wesley.

Jiang, S., and Kumar, R. 2000. Decentralized control of discrete event systems with specializations to local
control and concurrent systems. [EEE Transactions on Systems, Man and Cybernetics, Part B 30(5): 653—660.

Kozak, P., and Wonham, W. M. 1995. Fully decentralized solutions of supervisory control problems. /EEE Trans.
on Automat. Contr. 40(12): 2094-2097.

Kumar, R., and Shayman, M. A. March 1997. Centralized and decentralized supervisory control of non-
deterministic systems under partial observation. SIAM J. Control Optim. 35(2): 363-383.

Kumar, R., and Shayman, M. A. 1998. Formulae relating controllability, observability, and co-observability.
Automatica 34(2): 211-215.



DECENTRALIZED SUPERVISORY CONTROL OF DISCRETE-EVENT SYSTEMS 377

Lamouchi, H., and Thistle, J. 2000. Control of infinite behavior of discrete event systems under partial
observations. In Proc. of CDC 2000, IEEE Conference on Decision and Control 22-28.

Lin, F, and Wonham, W. M. 1988. Decentralized supervisory control of discrete event systems. Information
Sciences 44: 199-224.

Lin, F. and Wonham, W. M. 1988. On observability of discrete-event systems. Information Sciences 44(3): 173—
198.

Prosser, J. H., Kam, M., and Kwatny, H. G. June 1997. Decision fusion and supervisor synthesis in decentralized
discrete-event systems. In Proc. 1997 Ameri. Contr. Conf. 2251-2255.

Prosser, J. 1996. Supervisor Synthesis for Partially Observed Discrete-Event Systems. Ph.D. thesis, Drexel
University.

Ramadge, P. J., and Wonham W. M. 1989. The control of discrete event systems. Proc. of the IEEE 77(1): 81-98.

Ricker, S. L. 1999. Knowledge and Communication in Decentralized Discrete-Event Control. Ph.D. thesis,
Queen’s University.

Rudie, K., and Willems, J. C. 1995. The computational complexity of decentralized discrete-event control
problems. IEEE Trans. on Automat. Contr. 40(7): 1313-1318.

Rudie, K., and Willems, W. 1993. IMA preprint series 1105: The computational complexity of decentralized
discrete-event control problems. Institute for Mathematics and its Application, www.ima.umn.edu/preprints/
MARCH1993/1105.ps.

Rudie, K., and Wonham, W. M. November 1992. Think globally, act locally: Decentralized supervisory control.
IEEE Trans. on Automat. Contr. 37(11): 1692-1708.

Takai, S. 1998. On the languages generated under fully decentralized supervision. /[EEE Trans. on Automat.
Contr. 43(9): 1253-1256.

Takai, S., and Kodama, S. 1994. Decentralized state feedback control of discrete event systems. Systems and
Control Letters 22(5): 369-375.

Tripakis, S. 2001. Undecidable problems of decentralized observation and control. In Proc. of CDC 2001, IEEE
Conference on Decision and Control.

Tsitsiklis, J. N. 1989. On the control of discrete event dynamical systems. Math. Control Signals Systems 2(2):
95-107.

Willner, Y., and Heymann, M. 1991. Supervisory control of concurrent discrete-event systems. International
Journal of Control 54(5): 1143-1169.

Yoo, T.-S. 2002. Monitoring and Control of Centralized and Decentralized Partially-Observed Discrete-Event
Systems. Ph.D. thesis, The University of Michigan.



