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A series of models more closely related than classical models to known facts aboutdrug absorption 
and disposition are presented. It is shown that mathematically such models require the same 
number of exponential terms in the equation describing the plasma concentration following 
intravenous administration as in that describing the plasma concentration following oral 
administration. However, it is also shown that one or two of the exponential terms of the 
intravenous, and sometimes the oral, equation often are relatively unimportant and appear to 
vanish on stripping or fitting of data. This phenomenon leads to ambiguity concerning which 
model to assign to one or more sets of data. The number of potential models in a given situation has 
now been greatly increased. It is also shown that if data obey these models then neither the 
Wagner-Nelson nor the Loo-Riegelman method provides estimates of absorption rate constants 
when the At/Vp, t data are analyzed by conventional methods. 

KEY WORDS: inseparable input and disposition portions of models; vanishing exponential 
terms; drug absorption and disposition models; absorption rate constants; model- independent  
pharmacokinetics; potyexponential computer fitting. 

I N T R O D U C ~ O N  

One method of classifying linear pharmacokinetic models is shown in 
Figs. 1 and 2. Figure 1 shows some classical linear pharmacokinetic models 
in which transfer from input to disposition compartments occurs in only one 
direction. This leads to a separation of input and disposition functions, and 
the Laplace transform methods of Benet (1) and Vaughan and Trainor (2) 
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rely on such a "separation." Figure 2 shows some nonclassical linear 
pharmacokinetic models in which there are reversible transfers between the 
terminal input compartment and one of the disposition compartments; the 
models shown also have reversible transfers between all input compart- 
ments, but these are not essential to produce the effects to be described. In 
models I-A and II-A, compartment 1 represents small intestinal contents as 
the absorption site; compartment 2 represents not only plasma but also 
tissues which bind the drug, such that the drug in tissue is in equilibrium with 
free drug in plasma water and there is a constant tissue concentration/free 
drug concentration in plasma water ratio (3); compartment 3 of model II-A 
represents tissues and/or other fluids of distribution and is analogous to the 
usual second compartment of the classical "two-compartment open model." 
In models I-B, I-C, II-B, and II-C, compartment 1 represents the stomach 
contents, and compartment 2 represents the small intestinal contents; 
compartment 3 in these models is analogous to compartment 2 in models 
I-A and II-A, and compartment 4 in these models is analogous to compart- 
ment 3 in model II-A. 

Thus ka2 for models I-A and II-A and k23 for models I-B, I-C, II-B, and 
II-C are intestinal absorption rate constants representing transfer of drug 

"One Ccmioartment Open 
Disposition Models" 
with Input 
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Disposition Mo~els" 
with Input 
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Fig. 1. Classical linear pharmacokinetic models. 
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Fig. 2. Nonclassical tinear pharmacokinetic models. 

from the intestinal fluids to the circulation. The k21 for models I-A and II-A 
and the k32 for models I-B, I-C, II-B, and II-C represent transfer of drug 
back from the circulation to the intestinal fluids (as, for example, by 
intestinal secretion). If models I-B, I-C, II-B, and II-C apply in the real 
world, one would usually expect k21 = 0, since it would seemingly require 
regurgitation to get drug from the intestinal contents back to stomach 
contents. However, even if k21 = 0 in these models, the net result is the same 
and the conclusions are the same; only the meanings of the Ei's and A/s 
change. 
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The k13 of models I-C and II-C represent gastric absorption rate 
constants. The k31 of these models represent transfer of drug from the 
circulation to stomach contents (i.e., gastric secretion), such as in pH 
partition (4). 

As in the classical models of Fig. 1, all rate constants in the models of 
Fig. 2 are first order. Models of both Figs. 1 and 2 are more rigorously 
applicable to real-life situations when oral dosing (i.e., placing the drug in 
compartment 1) with solutions of a drug. When oral dosing involves solid 
dosage forms, dissolution as well as absorption processes are involved and 
the situation is much more complicated. However, experience has shown 
that the equations derived from models such as shown in Fig. 1 have been 
successfully utilized in the fitting of whole blood (plasma or serum) 
concentration-time data following oral administration of solid dosage 
forms; there is no reason to believe that the same would not hold for the 
models of Fig. 2. For the nonclassical models (Fig. 2), bolus intravenous 
administration is simulated by putting the dose at zero time into compart- 
ment 2 of models I-A and II-A and into compartment 3 of models l-B, l-C, 
II-B, and II-C. 

The purpose of this article is n o t  to suggest that we should try to fit real 
data to equations appropriate for the schematic models shown in Fig. 2; in 
most cases, there would be insufficient information on blood concentration- 
time data alone to be able to do so. Rather, the purpose is to show that most 
of the time there is ambiguity concerning which model to assign to one or 
more sets of data. The models of Fig. 2 lead to cyclic phenomena with 
respect to the drug--i.e., drug at an absorption site is absorbed and reaches 
the circulation, but some drug is returned from the circulation to the 
absorption site or sites. The occurrence of processes contributing to such 
cyclic phenomena will be discussed first. Then the magnitude and possible 
importance of these phenomena with some drugs will be more explicitly 
discussed. 

Occurrence of Processes  

It is well known that (a) some drugs are absorbed from the stomach 
(5-11) as well as from the intestine; (b) acidic and basic drugs are secreted 
into gastric juice following intravenous (and oral) administration (4,5); (c) 
many drugs are secreted into the intestinal lumen (12, 13); (d) many drugs 
are secreted into saliva (14a, 15a), the saliva is swallowed, and the drug is 
available for both gastric and intestinal absorption; and (e) many drugs enter 
into an enterohepatic cycle in which the drug leaves the circulation and is 
concentrated in bile, the bile enters the intestinal lumen, and the drug is 
reabsorbed. The classical linear pharmacokinetic models of Fig. 1 ignore 
these facts. 
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Magnitude of the Effects 

One might be misled by attempting to predict the relative importance of 
gastric and intestinal absorption on the basis of the small percentage of the 
cardiac output delivered to the stomach relative to that delivered to the 
intestinal mucosa, the relative blood flow rates, and the relative absorbing 
surface areas of the stomach and small intestine. A most important factor is 
residence time in the stomach, which of course differs appreciably under 
fasting and nonfasting conditions, and may be altered by either the drug 
itself or a coadministered drug. 

Table I lists gastric and intestinal absorption rate constants of 13 
barbiturates in the rat reported by Kakemi et al. (11, 16). The fifth column of 
Table I lists the gastric absorption rate constant as a percentage of the 
intestinal absorption rate constant; these values range from 2.99 to 30.9%. 
There is a trend for these values to increase with increase in the logarithm of 
the chloroform/pH 1.1 aqueous buffer partition coefficient, which is shown 
in the last column of the table. The important point to be gained from these 
data is that one cannot always assume that the contribution of gastric 
absorption is very small; the contribution is different even for each drug in an 
analogue series, and with some members of such a series reaches a mag- 
nitude such that the contribution of gastric absorption should not be ignored 
pharmacokinetically. 

Hogben et aL (5) reported that 40% of ethanol was absorbed from the 
stomach of man in a 20-min period when gastric emptying was not impeded. 
Cooke and Birchall (6) administered 95 test meals to seven subjects. The test 
meals consisted of 350 ml of water containing phenol red as a marker, 35 g 
of glucose to delay gastric emptying and ensure a relatively constant volume 
remaining in the stomach at 30 min, and various concentrations of ethanol. 
The gastric contents were aspirated after 30 min; then another 250 ml of 
water was swallowed and the contents were aspirated to recover any residual 
gastric contents. From their data on seven subjects each given four different 
doses of ethanol, the authors calculated that the mean percentages of the 
doses of ethanol which were absorbed from the stomach were 30.7, 27.3, 
27.8, and 28.1% for concentrations of ethanol in the test meals of 7.9, 15.1, 
29.3, and 55.8%, respectively. 

The pH-partition hypothesis (4) assumes that only un-ionized 
molecules are absorbed. However, there is considerable evidence that drug 
ions are also absorbed. For example, Fiese and Perrin (17, 18) studied 
absorption of dextromethorphan, with reported pKa of 7.97 or 8.25, at 
pH 2.0 from rat stomach. They reported (17) that 25.3, 29.7, 28.7, 27.8, and 
24.0% of the dose was absorbed following doses of 0.15, 0.30, 0.60, 0.90, 
and 1.5 mg of dextromethorphan, respectively. In a later article (18), they 
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speculated that the protonated dextromethorphan concentrates on the 
stomach wall and that this surface 6oncentration accounts for the absorp- 
tion. Martin (19) also discussed the accumulation of drug anions in gastric 
mucosal cells and showed that such accumulation would be considerably 
greater with the stronger acids. 

Hellstr6m et al. (7) reported that an average of 11% of potassium 
35S-phenoxymethyl penicillin in nine subjects was absorbed from the 
stomach of man following oral administration of 15 ~C~ (3 g) of the salt in 
50 ml of water containing 5 g of polyethylene glycol as a marker. 

There is also the danger of extrapolating in situ absorption data. Taylor 
and Grundy (20) measured absorption of practolol, propranolol, and 
salicyclic acid by both in situ and in vivo methods in the rat. The most 
striking difference was with practolol, where absorption was not measurable 
at all by the in situ method, but the absorption half-life was 10 min by the in 
vivo method. With propranolol, absorption half-times were 15 and 5 rain by 
in situ and in vivo methods, respectively; for salicyclic acid, they were 8 and 
5 min. 

In pharmacokinetics we have usually only considered the unidirectional 
movement of drugs across the intestinal membrane and have ignored much 
of the literature (12, 13, 21, 22 a) indicating movement in both directions. In 
man, the minimum rate of water absorption in the small intestine averages 
200-400 ml/hr and the net flow of water across the intestinal membrane is 
equal to the difference between the unidirectional flux from intestinal lumen 
to interstitial fluid (and eventually into blood and lymph) and the opposite 
flux from the interstitial fluid to intestinal lumen; actually, net water 
absorption is the difference between two very rapid, oppositely oriented 
fluxes, and a small change in either individual flux can cause a large change in 
net flow (22a). A similar situation exists with respect to ions, such as Na +, 
CI-, and SO4 z-, and with sugars (22a). In the rat, absorption of xylose is 
proportional to water absorbed (22a), and the same has been reported for 
Na + in the rat (21). Thus there is often a linkage between water and solute 
movement in the intestinal tract (21). About 8.5 liters of fluid enters the 
upper small intestine of man per day (7 liters of digestive juices and 1.5 liters 
of oral intake) (21). Material emptied from the stomach of man is mixed with 
about 1500 ml of fluid in the upper small intestine (22a). On the other side of 
the membrane, an adult circulates about 3000 ml of plasma in about half a 

minute  (14b). Hence with respect to movement of the diffusible free 
(unbound) drug species it is doubtful that the relative volumes can be 
ignored. This is illustrated with a simulation example with model II-A later 
in the experimental section. 

Winne (23) discussed how intestinal blood flow may affect absorption 
and elaborated two types of models which incorporated the intestinal lumen, 
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the interstitial space, and the streaming blood; movement across the intesti- 
nal epithelium was assumed to occur in both directions, consistent with that 
above. However, Williams et al. (24) showed experimentally that exercise in 
the heat, which diminishes splanchnic blood flow, markedly reduced absorp- 
tion of the actively absorbed sugar 3-O-methyl-D-glucose but did not affect 
absorption of the passively absorbed sugar D-xylose in man. 

Crouthamel and Abolin (13) reported that after intravenous adminis- 
tration of tetracycline in the rat, duodenal concentrations were equal to 
serum concentrations in i hr with normal bile flow and in 2 hr with the bile 
duct ligated. They cortcluded that the return of tetracycline from blood to 
the intestine has a significant effect on tetracycline pharmacokinetics. Hol- 
land and Quay (25) showed that concentrations of erythromycin base in the 
intestinal lumen of the rabbit considerably exceeded concentrations in 
plasma from 80 min onward after initiation of intravenous infusions of 
erythromycin base. Preloading of the intestine with 5 and 20 times the 
plasma concentration did not diminish the intestinal secretion of erythromy- 
cin, suggesting that the secretion was active. Lauterbach (12) summarized 
his own and others' investigations on intestinal secretion. He reported that 
cardiac glycosides, quaternary ammonium compounds, and strongly acidic 
drugs have greater fluxes from serosal to mucosal sides than from mucosal to 
serosal sides. The apparently active secretory mechanisms for these classes 
of compounds were substantiated in vivo. After intravenous administration, 
cardiac glycosides and quaternary ammonium compounds were concen- 
trated in the intestinal lumen well above the serum level in the guinea pig 
and the rat. The establishment of an equilibrium between the concentrations 
in the blood and the intestinal lumen was demonstrated to be the cause of the 
previously observed standstill in the absorption of quaternary ammonium 
compounds despite considerable amounts of unabsorbed drug. These results 
reveal the intestine as the third excretory organ besides the liver and the 
kidney (12). 

The salivary glands of man secrete 1-2 liters of saliva per day (22b). The 
free drug concentration in plasma water appears to be the driving force for 
parotid and submaxillary secretion of drugs, but p Ka and molecular weight 
play roles in salivary secretion also (14a). The saliva/plasma concentration 
ratios vary from 0 to 1.0 (14a). The total volume of distribution of diffusible 
substances such as mannitol, inulin, and sucrose in man averages about 
15-18% of body weight, or about 10.5-12.6 liters for a 70-kg man. One 
might expect the volumes of distribution of many free (unbound) drugs to be 
similar, and calculations made by the author for warfarin agree with this. 
Hence, even when the saliva/plasma concentration ratio is unity, a relatively 
small pool of drug is involved in the saliva cycle relative to the total amount 
of drug in the body. However, this cycle is one mechanism which cause drug 
to be returned from the circulation to the gastrointestinal tract. 
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The enterohepatic cycle also contributes to return of drug from the 
circulation to the gastrointestinal tract. However, gallbladder emptying is a 
discontinuous process and to a large extent is stimulated by the eating of 
food. Thus one might not expect that drug involved in an enterohepatic cycle 
to be explicable on the basis of simple first-order kinetics as is assumed in the 
models of either Fig. 1 or Fig. 2. 

Models of Fig, 2 

Solutions for the models shown in Fig. 2 may readily be obtained by use 
of Laplace transforms. However, there is no separation of input and dis- 
position functions, and the general equations of Benet (1) and of Vaughan 
and Trainor (2) cannot be used. Mathematically, each of these models 
requires that the polyexponential equation describing the plasma concentra- 
tion curve following intravenous administration have the same number of 
exponential terms as the equation describing the plasma concentration 
curve following oral administration. It is the experience of this author, and 
many who have communicated with him, that in the evaluation of real data 
this observation is occasionally made and has not been explained to date. 
Such observations do not appear to have been reported in the literature 
since they do not agree with current theory, based on models such as shown 
in Fig. 1. Also, evaluation of data from panels of subjects or patients, given 
the same drug in the same dosage form by the same route of administration, 
often yields best-fit polyexponential equations with the number of terms 
varying from subject to subject. It is shown in this article that one and 
sometimes two of the polyexponential terms in the intravenous, but not the 
oral, equation essentially vanish and often cannot be "seen." Sometimes one 
of the terms in the oral equation also appears to vanish. A similar situation 
with classical linear pharmacokinetic equations is discussed by Ronfeld and 
Benet (37), but the phenomenon that they discuss applies to the oral 
equations and is different than that discussed in this article. 

The implications of the models shown in Fig. 2 and the vanishing 
exponential terms are important and far-reaching. Some of these are as 
follows. (a) It may be very difficult to determine whether one is dealing with a 
one- or two-compartment open disposition model in the classical sense. (b) It 
may be very difficult to determine whether one is dealing with a two- or 
three-compartment open disposition model in the classical sense. (c) The 
largest or second-largest rate parameter in the polyexponenfial equation 
obtained after oral administration may not be an "absorption rate constant" 
at all. For all models shown in Fig. 2, the observable rate parameters are 
eigenvalues and are a function of all microscopic rate constants in the 
system. For these models, the actual absorption rate constants are obtained 
from the coefficients, not the exponents, of the polyexponential equations. 
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(d) The Loo-Riegelman method (26) often may not yield "intrinsic absorp- 
tion rate constants" at all, but rather an eigenvalue which is a root of a 
polynomial equation and a function of several rate constants. 

Thus it appears to be more desirable to use so-called model- 
independent pharmacokinetic equations rather than to solve for micro- 
scopic rate constants for some assumed  specific model. One article (27) has 
emphasized some of these equations. The so-called model-independent 
methods are actually based on an "n"-compar tment  mammillary model 
with central compartment elimination only. When one equates plasma 
clearance with total body clearance one is making the same assumption with 
respect to such a general mammillary model. By fitting data to simple 
polyexponential equations and using the numerical values of the coefficients 
and exponents, one can obtain essentially all the same desired parameters 
and solve essentially the same problems as those obtained by the more 
laborious procedure of deriving microscopic rate constants for some 
assumed model. 

THEORETICAL 

Symbolism and Nomenclature 

Ai (i = 1 . . . . .  4) are eigenvalues and are the roots of a polynomial 
equation and a function of all or most of the microscopic rate 
constants in the model. Arbitrarily A4 >/~3 >/~ 2 >/~ 1, hence A 1 is the 
first rate parameter "peeled" from a set of Cp, t data, A2 is the second 
one, etc. 

Ii (i = 1 , . . . ,  4) is a symbol for the coefficient of the polyexponential 
equation, replacing the more complicated forms which are functions 
of the Ei's, Ai 's, and kq's. 11[ . refers to bolus intravenous administra- 
tion and I p ~  refers to oral administration. 

k,j is a first-order rate constant for transfer of drug from compartment i 
to compartment ]. 

E, (i = 1 . . . . .  4) is used to represent the sum of all exit microscopic rate 
constants from the ith compartment. 

Di.v. is the dose administered by bolus intravenous administration. 
Dp.o. is the dose administered orally. 
F* is the availability symbol used for the first-pass effect, such that 

1 -  F* is the portion of the available dose lost because of the first- 
pass effect following oral administration. For all models shown in 
Figs. 1 and 2, F*_< 1, and F*  is defined by equation 8 when F =  1. 
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F is the availability symbol used to represent the fraction of the dose 
which reaches the circulation after oral administration either in the 
absence of the first-pass effect (F*= 1) or after correction for the 
first-pass effect. 

Vp is the volume of the reference or "plasma compartment" where drug 
would be measured. 

(Vp) written below a compartment indicates which is the reference 
compartment. 

Co = Di.v./ Vp. 
C'o= FDp.o./ Vp. 
C~ v is the concentration of unchanged drug in the reference (plasma) 

compartment at time t following bolus intravenous injection. 
Cp p'~ is the concentration of unchanged drug in the reference (plasma) 

compartment at time t following oral administration. 
At/Vp is the cumulative amount of unchanged drug which has reached 

the reference (plasma) compartment in time t divided by the volume 
Vp. This is the quantity calculated by application of the Loo-  
Riegelman method. 

y, 8 are rate parameters appearing as exponents in the generalized 
equation obtained by resolving At/Vp data. 

Models 

The six nonclassical models considered are shown in Fig. 2. Possible 
physiological interpretation of the various compartments is discussed in the 
Introduction. 

Equations 

For each of the six models shown in Fig. 2, solutions for i.v. C~; and C~ ~ 
were obtained by use of Laplace transforms and the Heaviside expansion 
formula (1). For all of the Cp v" equations, feasible "collapsed equations" are 
also shown. The latter resulted from both the theoretical considerations and 
random number examples shown in the experimental sections. 

Model I -A 

(k12-al)  ~ , (k12-~2) -*2t 
e-  ~ + C o - - - -  e (1) v =  Co Ot - l) 

When k12 is large relative to k2a and/or k20, then A2~k12 and the 
second term of equation 1 essentially vanishes. Not only does the second 
coefficient become very small but also e -A2t will be small from some time 
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shortly after bolus injection of t~e dose. Hence the "collapsed equation" is 
shown in equation 2. 

(k12 - - 1 1 )  --A1 t 
G v'= Co (12-11) e (2) 

Also, 
( k , , ~  

C p~ = C ~ o ~ { e  -x='- e-X=] (3) 

In equations 1-3, A 1 and A 2 are roots of a quadratic equation such that 

Al +12=k12+k21+k2o (4) 

Al12 = k12k20 (5) 

Equations 2 and 3 may be written as equations 6 and 7. 

C~ v =  I~ v'. e -xl' (6) 

Cpp.o. = i~.O.{e-A 1,_ e -x =t} (7) 

If one obtained numerical forms of equations 6 and 7 by application of 
the back-projection technique (15b) or by the computer-fitting of data, one 
would usually assume that the model for oral administration was the 
one-compartment open model with first-order absorption (see first model in 
Fig. 1) in which 11 = k20, 12 = k12, and k21 -- 0. However, the actual model 
may be model I-A. 

Now, in general, 

FF*= Di.v." Io CP~ dt 
Op.o." Io C~ v dt (8) 

But, for model I-A, F * =  l,  3 hence equation 8 yields the value of F, 
which is also equal to C~/Co. 

Also, 

( 1 2 - - 1 1 ) I  p'~ 
k12 -- (9) G 

Hence if data obey model I-A one may obtain F and k12 if both 
intravenous and oral data are available. It should also be noted, however, 
that the absorption rate constant, k12, is obtained from the coefficient,/p.o., 
and that it is not equal to 12, which is the largest of the rate parameters 

3It is interesting that when compartment 2 of model I-A is the reference compartment there is 
+ no first-pass effect, but when compartmen~ 1 is the reference compartment there is a first-pass 

effect such that F* = k21/(k21 + k2o). 
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appearing as exponents in the polyexponential equation describing the 
plasma concentration after oral administration. 

Model I-B 

C~[=.v. C o [ ( k 1 2 - A I ) ( E 2 - A 1 ) - k 1 2 k 2 1 ]  e-air 
(a2-al)(a3-a0 

q Co[(k12-A2)(E2-A2)- k12k21] -~,  
e 

Co[ (k l2  - A3)(E2 - A 3 )  - k l ak21]  e-X3t (10) 
ff (a 1 --/~3)(/~2 -- a3)  

Under certain conditions, the third term of equation 10 can vanish to 
yield the "collapsed equation" 11. 

Cp v" Co[(k12-A1)(E2-A1)- k12k21] --~lt 

= (')t 2 --/~ 1)(/~ 3 --/~" 1) e 

_+ Co[(k12(Al-Ai)(Eg_Ag)(A3_Ae)-A2) - k12k21 ] e_A2 t (1 1) 

Also, 

kliki3C~e -alt k12ki3C~e -a2t  k12k23C~e -a3t 

C p ' ~  ( ~ 2 _ X l ) ( A 3 _ } t l )  ~ (/~l_/~.2)(,) t3_A2) ~ ( ,~1_~3)(/~2_/~.3) (12)  

Equations 10-12 may be written as equations 13 through 15. 

c;i'v' = ii/v. �9 ~-A it-l-/'i'v'/.t 2 " c~--a2t-l- Ti 'v '~  *3 " e-a3t (13) 

Cp v=  I~ v"  e-a~%I~ v" e -a2t (14) 

CP~ = I p~ e-a '%I2 p~ e - a J + g  ~  e -*J  (15) 

If one obtained numerical equations corresponding to equations 14 and 
15, one would usually assign the two-compartment open model with first- 
order absorption (i.e., the third model in Fig. 1), but the model may be model 
I - B .  

Now, for model I-B 

and equation 8 also applies. 

F * =  1 (16) 

F = C'o/Co (17) 

It should also be noted that model I-B is one of the 21 "three- 
compartment open models with bolus intravenous injection" in the classical 



4 ~  Wa~er 

sense if the numbering of the compartments is altered such that compart- 
ment 3 becomes compartment 1 and vice versa. 

In equations 10-15, A 1, A2, and A3 are the absolute values of the roots of 
a cubic equation, and thus are complex functions of all the microscopic rate 
constants k12, k21, k23, k32, and k30. If k21 = 0, the situation would be the 
same except that the meanings of the rate parameters A 1, A2, and A 3 would be 
different. 

By matching coefficients in equations 12 and 15, one may derive 
equation 18, which could provide a method of obtaining the absorption rate 
constant 

k12)(I1 +12 ) (k12-A1)(A2- p.o. p.o. 
k23 -- (18) 

kl2C~ 
if both intravenous and oral data were available and model I-B applied. 

Model I-C 

�9 .v._ ~ Co[ (E , -  A 1)(E2-A 1) - k12k2~] C~. - (  ~ } e-~lt 

[ Col(E1 - A2)(E2- A2) - k~2k2~]~ e-*2' + / 

Col (E1  - )t 3) (E2 - /~3)  - k12k21]~ e-Aft 
+ /  ( ~  J (19) 

where E1 = klz+k13, E2 = ka l+  k:3, and AI, A2, and A3 are roots of a cubic 
equation and a function of all the kq's. 

For the same reasons as given for model I-B, feasible "collapsed 
equations" are equations 20 and 21. 

i.v. [Co[(Ea-A1)(E2-A1)-k12k21]~ e-all 
c .  : / / 

{ Co[(E,-Az)(E2-A2)-k12k2131 e-,2, 
+ [  ~ ----A-~ / (20) 

CiV [Co[(E1-AO(E2-A1)-klak21] I e-air 
= t  l (21) 

Also, 

~k12k23 + k13(E2-)q)/  -,~lt, ,~, [k12k23 + k13(E2-A2)] e_~2t 
CP'~ C; I ~ I e -t-Co I -~-~2)(~3 ~2 )  I 

~k12k23+k13(E2-A3)l e -.3' (22) 
+c~ / 
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Similar equations as equations 13-14 may be written in place of 
equations 20 and 21 and the same arguments presented as given below 
equation 15. Thus we could readily assign the wrong model. 

It should be noted that model I-C is also one of the 21 classical 
"three-compartment open models with bolus intravenous injection" if 
the numbering of compartments is altered such that 3 becomes 1 and 1 
becomes 3. 

Now for model I-C equation 8 applies and F* is given by equation 23. 

F*  = k13E2 + k12k23 (23) 
E1E3- k12k21 

Model II-A 

C, J ' (k12-A1)(E3-A1)~ -~.lt , n [(klz-A2)(E3-A2)] e-A2t v :  j e / 

C ~(klz-~3)(E3-A3)] e-A~t (24) 
+ 0[ (A1-A3)(A2-A3) J 

where E3 = k32+ k30 and AI, A2, and A3 are the roots of a cubic equation and 
a function of all the kq's. 

When k12 is large relative to the other microscopic rate constants, then 
A 3 ~ k lz and e-~t  is small even for times shortly after administration, hence 
the third term of equation 24 tends to vanish and the "collapsed equation" is 
equation 25. 

g--A3t c ; :  / 
(25) 

Under certain conditions, the second and third terms of equation 24 could 
vanish and the second feasible "collapsed equation" is equation 26. 

i.v. C, ~(k,z-A1)(E3-al)~ e-X~t (26) 
Cp = O[ ( A 2 _ a l ) ( a 3 _ a l )  j 

Also, 

_,f  k12(E3-A1) / _ , f  ka2(E3-A2) /e-A 2  ̀
C~~ = C'~ ~ - ~  1)J e-A'r + C'~ 1------------~22)(~-'3- A 2)J 

_,f k12(E3-A3) /-A~r (27) 
+ C 0 / ( A ~ _ ~ A 3 ) / e  

Equations 24-27 may be written as equations 28-31 where the mean- 
ings of the coefficients may be seen by matching. 
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~--AltA- /-i'v" ~ A2t-j- /'i'v" " e A3t CpV=I~ v" ~ - - 2  �9 ~ - - 3  (28) 

i.v. i.v. --AltA.. /-i.v.. e--A2t 
Cp = 11 " ~ - ' 2  (29)  

i.v. i.v.. e-alt c ;  = it1 (30) 

CpP~ = I p ~  e-Xl '+I  p~ e-a2%I p ~  e -a ' '  (31) 

One may also readily obtain equations 32 and 33 

al  
k12 = 1 -  (F" l i ' v ' ~ / I P ' ~  (32) 

"1 Jilt1 

A2 
k 1 2 -  1 - ( F  " *2Ti'vq //'P'~ (33) 

which could provide a method of obtaining the absorption rate constant, k12, 

since F is given by equation 8 and for this model F* = 1 when the reference 
compartment is compartment 2. 

If data were fitted to equations 29 and 31, the classical assignment 
would be a special case of model II-A in which k21 = 0 (i.e., the third model 
in Fig. 1). However, the actual model may be model II-A in which k21 • 0. 

Model II-B 

Co ~ (E4  - / ~  1)[(k12 - / ~  1)(~2 - / ~  1) - k 12k213~ e-* ' '  c ;  v. 
( (,,~ 2 --/~ t) (a3 --/~ 1)(/~ 4 --/~ 1) J 

+ (2, I(E4-A2)[(k12-A2)(E2 - A 2 ) -  k12k21]] e - ,  2, 
t 

-l-~ f(E4-A2)[(k12-a3)(E2-A3)-k12k21]l e -*3t 

+ ~  [(E4-A4)[(k~2-A4)(E2-A4)- k12k21]] -x4, 
c ~  - ~ ~ ~  / e (34) 

w h e r e  E 4 ~ k43 + k40, E 2  = k21 + k23, and the &'s are the roots of a fourth- 
degree polynomial and a function of all the kq's. 
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Depending on the parameter values, either or both of the e-a3t and e -;~4t 

terms may vanish, hence feasible "collapsed equations" are equations 
35-37. 

. . - ,  f (E4 - -  3. 0[(k~2 - A 0(E2 - A 1) - k~2k2~]'] -z ~t 
i e 

C f(E4 - A2)[(k12 - A2)(E2-A2) - k12k21].~ e -aJ  
"{- O[ (3.1 __ 3.2)(3.3 __ 3.2) (3.4 __/~2 ) J 

f (E4-  3. 3)[ ( k12 - 3. 3)(E2 - 3. 3) - k12k21]l e-%t 
+cO / �9 ~ ) ~  j (35) 

i . . . .  f ( E 4 - 3 . 1 ) [ ( k 1 2 - A 1 ) ( E 2 - 3 . 0 - k 1 2 k 2 1 ] ' [  e - a , ,  c; / 

f (E4-  A 2)[ ( k12- 3. 2)(E2- 3.2)- k12k21] I e-A2t 

_ f(E4 - A4)[(k12 - 3.4)(E2 -3.4) - k12k21]] e - ,  4, 
+C'o~ ( -~1  - ~ J (36) 

f (Ea - 3.1)[(k 12 - 3.1)(E2 - A 1) - k a2k21]] -a1r 
C Pv = c~ t -~2 - - ~  ) ~  ; e 

_ f (E4-3 . z ) [ (k le -3 .e ) (Ee-&)-k12k2d]  e- ,  2, 
+Co / ~ j (37) 

Also, 

- , f  k12k23(E4-A1) 
C P ~  = (~ '~ (3. 2 - ~ -  )t 1) }  e -A1 '  

- , f  k12k23(E4-A2) ] e-a2t 
+ / 

4- C~{ k12k23(E4-A3) ~ e -a3t 
( A I - ~ - A 3 ) J  

k12k23(E4_A4 ) ~ e -AM 
+ C6 "(A1 - ~ 4 ) ~ 3 - A 4 ) J  (38) 

Equation 38 may be written as equation 39 .  

CP.O. ~_. I p'O', 15~ -A i t  7-~ 12/*P'O" �9 t:.~ --A 2 t qJ- 13/'P'O" " r.a --A 3t ---I- at4KP -O" , e - a  , t  (3  9 )  
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If oral data are "stripped" or fitted by nonlinear least squares to provide 
numerical values for equation 39, then a preliminary estimate of E4 may be 
obtained with equation 40. 

E4 = (~t I + RA2)/(1 + R )  (40) 

where 

(a 3 -- a 1)(/~.4-- a 1)1~ "~ 
R - ( 4 1 )  

(a3 -- a 2 ) ( a 4 -  •2)I2 p'~ 

An estimate of k12k23C~ could then be obtained with equation 42. 

(Xi -M)(X3-Xl ) (X4-a l ) I  p~ 
kaik23C ~ - (42) 

( E 4 - A 1 )  

Oral data could then be fitted to equation 38 and ka2k23C~, E4,  2q, A2, A3, 
and a4 could then be the parameters estimated. 

Model II-C 

Cpi . . . .  f (E4 -  A 1)[(E1 - A 1)(E2 - A 1) - k 12k21] ] -2,,t 
= to[ (~-~--A- A 1)~3 ~ / e 

( E 4 - A 2 ) [ ( E 1 - A 2 ) ( E 2 - A 1 ) k 1 2 k 2 1 ] ]  x , 
Co . . . . .  e - 2  

+~  f (E4-  A3)[(E1 - Z 3)(E2- A 3) - k12k2a]] e-;t~t 
(-'0/ (Z 1 -- A3)(/~2-- A3)(A4-  }~3) / 

+ ~ f (E4 - /4 ) [ (E l  - 14)(E2-M) - k12k21]] e_X~r (43) 

Equation 43 is the same as equation 34 except that E1 replaces k12. The 
significance is the same since for model II-B E1 = k~2 whereas for model II-C 
E1 = k12 + k13. Hence the "collapsed equations" corresponding to equation 
43 are the same as equations 35-37 except that Ea replaces k12. In equation 
43, E 4 = k43 + k4o and E 2 = k2a + k23 as in equation 34. 

~, f (E4 - A 0[k ~3(E2 - A,) + ka2k23]] _xlt 
C~J~176 ~ A ~ - - 7 ~ 4 - - ~ 0 -  J e 

, f ( E 4 - A 2 ) [ k a 3 ( E 2 - A 2 )  + ki2k23]] -A2t 
+Col ~ ~e 

~ , f  (E4 -- A3)[k a3(E2 - A3) + k12k23]] e-AJ 

_, f (E4 - Aa) [ka3(E2-X4)  q- k lzk23]]  -x. ,  
+ C ~  N ~ A4-~3"---~4) ~e (44) 
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Other Models 

Model I - B  Type. W h e n  k21 = 0 in mode l  I -B,  equa t ions  10 -17  still 
apply.  

Model I - C  Type. Equa t ions  19 -22  also app ly  for  variet ies  of mode l  I - C  
in which (a) k21 = 0, (b) k32 = 0, (c) k31 = 0 ,  (d) /<21 : 0 and/<31 = 0, (e)/<21 = 0 
and  k32 = 0, (f) k31 = 0 and k32 = 0, and (g)/<21 = 0, k31 = 0, and k32 = 0. 

Model H - A  Type. Equa t ions  2 4 - 3 3  apply  for  variet ies  of  mode l  I I - A  in 
which (a)/<30 = 0 and  (b) k20 = 0. 

Model H - B  Type. Equa t ions  3 4 - 4 2  app ly  for  variet ies  of mode l  I I -B  in 
which (a) k21 = 0, (b)/<40 = 0, (c) k30 = 0, (d) k21 = 0 and k40 = 0, and/<21 = 0 
and/<30 = 0. 

Mode l H- C  Type. Equa t ions  43 and 44 apply  for  variet ies  of mode l  I I - C  
in which (a)/<21 = 0; (b) k31 = 0; (c) k32 = 0; (d) k40 = 0; (e) k30 = 0; (f)/<21 = 0 
and k40 = 0; (g) k21 = 0 and k30 = 0; (h) k31 = 0 and k40 = 0; (i)/<31 = 0 and 
/<30=0; (j) k32 = 0 and  /<40 = 0; (k) /<32=0 and /<30 = 0; (1) /<21= 0 and 
/<30 = 0; (m)/<21 = 0 and/<32 = 0; (n) k21 = 0, k31 = 0, and/<30 = 0; (0)/<21 = 0, 
/<32 = 0, and k30 = 0; (p)/<21 = 0,/<31 = 0, and/<40 = 0; (q) k21 = 0,/<32 = 0, and  
/<40 = 0; (r)/<31 = 0,/<32 = 0, and/<40 = 0; (s)/<21 : 0 ,  /<32 : 0 ,  and/<40 = 0; (t) 
/<21 = 0, k31 = 0,/<32 = 0, and/<40 = 0; and (u)/<2a = 0,/<31 = 0,/<32 = 0, and 
k30 = O. 

Application of the Wagner-Nelson and Loo-Riege lman Methods 

T h e  W a g n e r - N e l s o n  m e t h o d  (28) was appl ied  to the equat ions  for  
mode l s  I -A ,  I -B,  and  I -C.  This involved appl ica t ion of equa t ion  45. 

i 
t 

n t / g  p = CpP~ CPp "~ dt' ( 4 5 )  

T h e  r igh t -hand  sides of  equa t ions  3, 12, and 22 were  subst i tu ted  for  Cp p ~  in 
equa t ion  45 for  mode l s  I -A ,  I -B,  and  I -C,  respect ively.  Af t e r  simplifications, 
the results  shown in Tab le  I I  were  obta ined .  The  results show tha t  if the  
A,/Vp, t da ta  were  " s t r i p p e d "  the  obse rved  ra te  p a r a m e t e r s  would  not  be  
absorp t ion  ra te  constants  but  Ai values.  The  absorp t ion  ra te  constants  are,  
however ,  con ta ined  in the coefficients of  the  e -~lt or  e -*2t te rm.  

The  L o o - R i e g e l m a n  m e t h o d  (26) was appl ied  to mode l  I I -A .  T h e  
L o o - R i e g e l m a n  m e t h o d  effect ively measu re s  the quant i ty  shown in equa -  
t ion 46 for  this model .  

~0 t A J  Vp = CPj~ + CP'~ + k2o C p ~  dt' (46) 
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where C p ~  A P ~  and A3 p~  is the amount  of drug in compartment  3 at 
time t after oral administration and the assumption is made that k3o = 0. 
The right-hand side of equation 27 was substituted for C~p ~  and the 
right-hand side of equation 47 was substituted for C~3 ~ in equation 46. 

k12k23C~ e -~lt k12k23C~ e -xJ k12k23C~ e -~3~ (47) 

CP'~ = ( , ~ 2 - X l ) ( X 3 - X l )  + ( ,~1-/~-2)(~3-/~-2)  ] ( / ~ 1 - ~ 3 ) ( / ~ 2 - ~ 3 )  

After  simplification, the result shown in Table I2 was obtained. Again the 
observed rate parameters are Ai values and not "intrinsic absorption rate 
constants." The absorption rate constant, k12, for this model is contained in 
the coefficients of the equation for At/Vp as a function of time. 

The algebra was just too horrendous and no attempt was made to apply 
a similar equation as equation 46 to models II-B and 2I-C. However,  
intuitively, one can see that similar results would be obtained as those 
obtained with model II-A. The observed rate parameters would be Ai values 
and not "intrinsic absorption rate constants." 

E X P E R I M E N T A L  

Some examples are given to show that the C~ v equations collapse 
readily and that sometimes collapsing also occurs in the Cp p ~  equations. 

Model  H - A  (Example  1) 

Values of A3 = 4, kl2 = 3.75, /~2 = 2, E 3 = 0.5, )tl = 0.1, and Co = C~ = 
200 were substituted into equations 24 and 27 to yield equations 48 and 49, 
respectively. 

i.v. C~ = 29.703e-~ + 69.079e-2t + 11.218e -at (48) 

Cp v ~  20.243e -~ + 248.026e -2t - 168.269 -4t (49) 

Integration of equations 48 and 49 between the limits of t = 0 and t = ~ gave 
an area of 234.4. The third term of equation 48 contributes only about 1% to 
the total area, while the third term of equation 49 makes a contribution of 
about 18%. 

Values of t =0 .125,  0.25, 0.5, 0.75, 1, 2, 4, 6, 8, 12, and 2 4 h r  were 
substituted into equations 48 and 49 to yield a set of C~ v and a set of C V 
values. The two sets were fitted with program CSTRIP (38) and a high-speed 
digital computer,  and the results are given as equations 50 and 51. 

A 
i.v. 20.292e-O.lO1,t C~ = +78.274e  -zl6~176 (50) 

Cp p ~  20.467e -~176 + 243.59e -1"995t- 263.83e -4"lzgt (52) 
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The r 2 value 

( ( )2/] 
2 2 n * 2 n 

= C i -  Z i = l  Ci /1 r C i -  2 i = 1  C/ n -  ( C / - C / )  2 
i=1 i=1 i 1 

for the fit shown as equation 50 was 0.99995 and that for equation 51 was 
0.99939. The area estimated from equation 50 was 235.52 (100.5% of 
theoretical) and that from equation 51 was 236.56 (100.9% of theoretical). 
Similar results were achieved with a desk calculator using the back- 
projection technique (15b). Observed and estimated values are compared in 
the Appendix. This simulation clearly shows the phenomenon of the vanish- 
ing exponential term in the intravenous, but not the oral, equation. It should 
also be noted that at 1, 2, and 3 min the third term of equation 48 contributes 
only 0.21, 0.004, and 0.0001% of the C~ v values, respectively. 

Model II-A (Example 2) 

Example 2 illustrates the effect of intestinal secretion on the phar- 
macokinetics of a non-plasma-protein-bound and non-tissue-bound drug 
and may indicate the possible magnitude of such effects on free (unbound) 
species in the presence of plasma protein and tissue binding. Volumes and 
rate constants have been chosen that are reasonably "physiological" for the 
dog. Compartment i of model II-A was assumed to have a volume of 225 ml 
and was estimated using the value of 1500 ml for upper intestinal contents in 
man (22a) and this was then reduced according to the ratio of body weights 
of the dog to man. The volume of compartment 2 was taken as 450 ml 
(plasma volume of 4.5% of body weight for a 10-kg dog). The volume of 
compartment 3 was taken as 1450 ml, which is the extracellular fluid volume 
of the dog. The glomerular filtration rate of the dog is 4.3 ml/min/kg, or 
43 ml/min for a 10-kg dog; with a plasma volume of 450 ml, this gives an 
elimination rate constant, kzo, equal to 5.7 hr -1. Values of k12 = 6 hr -1 and 
k23 = 2.4hr -1 were assumed. Based on Fick's law of diffusion, k32 = 
(450/1450) • 2.4 = 0.745 hr -1 and kzl = (225/450) • 6 = 3 hr -1. 

The above values and the appropriate Laplace transform equations led 
to equations 52 and 53 for Cp v and C p~ respectively. 

.v. = 5.6950e -~176176 + 38.1456e -3"7384t + 136.1097e-136~ 

C p'~ = 6.2137e -~176176 + 101.200e -3"7384' -- 107.4137e-13-6~ 

Integration of equation 52 between the limits of 0 and oo indicates that 
the first, second, and third terms of equation 52 contribute 36.0, 32.3, and 
31.7% toward the total area of 31.57, respectively. 
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If one obtains the Cp v' equation corresponding to the same model 
except that k21 = 0, then compartment  1 is not involved and the result is 
shown as equation 54. 

C) v =  5.4187e-~176 + 174.5813e -8"3356t (54) 

It should be noted that although the smallest of the eigenvalues in equations 
52 and 54 are very similar, the eigenvalue of 8.3356 in equation 54 is 
intermediate between the two largest eigenvalues, namely 3.7384 and 
13.6057 in equation 52. This does illustrate the possible importance of 
intestinal secretion. 

M o d e l  I I -C  

Values of A4 = 9, k23 = 8.5, A3 = 8, E1 = 6, k12 = 5.5, A2 = 3, E4 = 2, 
k~3=O.5, A1=O.25, k21 0, a n d C o -  ' -  = - Co - 100 were substituted into equa- 
tions 43 and 44 to yield equations 55 and 56, respectively. 

C~ v = 44.516e-~ + 20.000e-3t + 15.484e-St + 20.000e-gt (55) 

Cv p~ = 47.742e -0.25, + 60.000e-3t _ 727.742e-St + 620.000e -9t (56) 

Integration of both equations 55 and 56 between the limits of t = 0 and 
t = oo gave the same area of 188.89 (i.e., F*  = 1 for model II-C). The third 
and fourth terms of equation 55 contribute only 1.0 and 1.2% respectively, 
toward this total area. 

Values of t = 0.125, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 6, 8, 12, and 24 hours 
i .v.  were substituted into equations 55 and 56 to yield a set of Cp and a set of 

Cpp.o. values. The i.v. C~; , t set was fitted with the program CSTRIP and the 
digital computer.  The -.v. C"p , t set was fitted to a four- term polyexponential  
equation with the program NONLIN (29) and a digital computer.  Results 
are shown as equations 57 and 58. Similar results were achieved with the 
back-projection technique (15b) and a desk calculator, but r e values were 
lower. 

Cp v" = 45.264e -~ + 43.632e -4"655t (57) 

Cv p% = 47.759e-~176 + 62.123e -3~ 322 2e-7"362t q_ 213.7e-W~ (58) 

The r 2 value for the fit shown as equation 57 was 0.9997 and that for 
equation 58 was 1.000. The area obtained from equation 57 was 189.56 
(99.8% of theoretical). The area obtained from equation 58 was 188.91 
(100% of theoretical). Thus, in this case, the last two exponential terms of 
the polyexponential  equation giving C) v as a function of time vanished. It is 
interesting in this example that at 7.5 rain (0.125 hr) the third and fourth 
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of equation 55 contribute 8.25 and 9.40%, respectively, of the C~ v terms 
values, yet the terms appeared to vanish when data from 0.125 to 24 hr were 
evaluated. 

Model I-C 

P a r t A  

For model l-C, the Ai's are the absolute values of the negative roots of 
the cubic equation 59, where s is the Laplace variable introduced. 

s 3 + a a s Z + a l  s +ao = 0 (59) 

where 

a2 = E1 + E 2  + E 3  (60) 

a 1 = E 1 E 2  + E r E 3  + E z E 3  - k23k32 - k 12k21 - k t3k31 (61) 

ao = E 1 E 2 E 3  - k23k32E1 - k12k21E3 - k 1 3 k e t k 3 2 -  k12k23k31 - k13k31E2 (62) 

Simulations were performed with equations 59-62 by letting k13-- 
0.25, k31 = 0.9, k21 = 0, k30 = 0.1, k23 = 4, k32 = 0.5, E 2  = k23 = 4, and E3 = 
1.5 and by varying k12. Values of k12 = 1.00, 9.75, and 14.75 were used, 
making E1 = 1.25, 10, and 15, respectively. Results are shown in Table III. 
These results support the statement that when everything else remains 
constant, and kt2 (and El) increases, the absolute value of the difference 
between E t  and A 3 becomes smaller and smaller. The opposite trend occurs 
with the difference between E1 and A2. Both effects can cause collapsing. 

P a r t  B 

A simulation was performed by letting Co = C~ = 100, k13 = 1.67 hr -1, 
k31 = 0.0145 hr -1, k23 = 3.5 hr -1, k32 = 0.455 hr -1, and k3o = 1.386 hr -1. 
The reverse rat constants k31 and k32 are those based on Fick's law assuming 
volumes of 100, 1500, and l l , 5 0 0 m l  for compartments 1, 2, and 3, 
respectively. Substitution of the appropriate values into equations 59-62 
and use of a cube root program and an electronic calculator gave eigenvalues 

Table Ill. Results of Simulations with Equations 59-62 for Model I-C 

k,2 E1 )tl A2 ,t3 let-)t31 let-A21 

1.00 1.25 0.0484 2.4009 4.3007 3.051 1.15 
9.75 10 0.0693 6.366 9.065 0.935 3.634 

14.75. 15 0.0711 5.798 14.632 0.368 9.202 
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of 1.1381, 4.2278, and 11.6596. Substitution into equations 19 and 22 gave 
equations 63 and 64, respectively. 

i ,v.  (63) C~; = 76.5199e -1"1381t + 23.5887e -4"2278/- 0.1086e -11"6596t 

Cp p~ = 119.7982e -1'1381~ - 147.1322e -4"2278t + 27.3340e -11"6596t (64) 

Integration of equation 63 between the limits 0 and ~ gave an area of 
72.8049; the first, second, and third terms of equation 63 contribute 92.35, 
7.66, and -0.01%, respectively, toward the total area. Thus the third term 
would readily vanish. This is also an interesting example in that it illustrates 
that an intravenous equation can have a negative term. Integration of 
equation 64 between the same limits gave the same area; the contributions 
of the first, second, and third terms of equation 64 toward the total area are 
144.6, -47.8, and 3.2%, respectively. Thus the third term of the oral 
equation could also readily vanish. This example utilized volumes which are 
reasonably "physiological" for either unbound substances or free (unbound) 
drug existing in the body with plasma-protein- and tissue-bound drug. The 
rate constants utilized were also consistent with material covered in the 
Introduction. 

In models I-B, I-C, II-B, and II-C, k12 represents the rate constant for 
stomach emptying. This is known to be a rapid process, particularly in the 
fasting state and for small volumes of fluid, such as when medication is 
ingested. Hunt and Macdonald (30) reported an average half-life of 8.4 rain 
for the stomach emptying of a 330-ml pectin meal in ten subjects; this 
corresponds to a first-order rate constant of 4.95 hr -1. The rate constants 
were larger for smaller volumes; extrapolation of their data suggests a rate 
constant of 9-13 hr -1 for a volume of 150 ml. Eisner and Berger (31) 
reported an average half-life of 10.2 min for gastric emptying of 750 ml of 
water in five subjects; this corresponds to a first-order rate constant of 
4.08 hr -~. 

D I S C U S S I O N  

The relative magnitudes of the Ei's and &'s, coupled with the mag- 
nitude of e -* ' t  when & is large, is the cause of the vanishing exponential 
terms in the intravenous equations. Because of the form of the equations, 
this is unlikely to occur with the oral equations, but examples were shown in 
which vanishing could also occur in oral equations. As shown in the 
experimental section under model II-C, both the third and fourth terms of 
the intravenous, but not the oral, equation may vanish. This is not to say that 
exponential terms will always vanish in the intravenous equations, but rather 
that there is a high probability that this will or does occur. 
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Generally accepted concepts in linear pharmacokinetics are the follow- 
ing: (a) the number of exponential terms required to fit the plasma 
concentration-time curve following intravenous administration is equal to 
the number of compartments in the disposition model, and the latter is 
independent of the input portion involved on oral administration, and (b) 
application of the Loo-Riegelman method to plasma cincentration data 
obtained following oral administration leads to estimation of intrinsic 
absorption rate constants. The models and the collapsing concept discussed 
in this report suggest that we must reassess these concepts. 

The models discussed in this report involve transfer of drug back and 
forth between the "input" and "disposition" portions. These models relate 
more closely to known facts about drug absorption and disposition than the 
classical models. Since one and sometimes two of the exponential terms in 
the equation giving the plasma concentration as a function of time following 
intravenous administration are often extremely unimportant as contributors 

i .v.  to either Cj; o r  the area under the curve, they appear to vanish when the 
data are evaluated by conventional methods. This has important implica- 
tions as evidenced by the summary in Table IV. One can see from Table IV 
that now there is a great deal of ambiguity about which model to choose 
based on the number of exponential terms required to fit both intravenous 
and oral data in the practical sense. Even more disturbing is the fact that the 
observation of two exponential terms from intravenous data and three 
exponential terms from oral data now leads to 16 possibilities, and that some 
of these are actually "one-compartment open models" in the classical sense. 
Hence, with some drugs, the so-called a-phase following intravenous 
administration may not be caused by tissue distribution at all but rather 
by recycling of drug back to the stomach and the intestinal contents by 
secreting processes. In most cases, the a-phase is probably caused by both 
factors. 

When the Wagner-Nelson method is applied to oral data obeying 
models I-A, I-B, and I-C and the Loo-Riegelman method is applied to oral 
data obeying models II-A, II-B, and II-C, conventional methods of resolv- 
ing the resulting At/Vp, t data provide estimates of the Ai's and not of the 
absorption rate constants. These Ai's are functions of all the rate constants in 
the model. The fundamental difference between.the integrated expressions 
in this report and those of classical models is that the denominators of the 
coefficients and the exponents of the exponentials contain Ai values in the 
former and k~j values in the latter. The most important implication is that in 
most cases we really cannot distinguish one model from another based on the 
number of exponential terms. We have always realized that there are three 
two-compartment disposition models each of which yields a Cp v' equation 
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Table IV. Summary  of Potential Model Ass ignments  
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Observations 

Number  of Number  of 
exponential exponential Nonclassical 

terms terms models  
describing describing 

intravenous oral Basic Additional 
data data model varieties 

Classical models  Totals a 

Intravenous Oral Intravenous Oral 

1 2 I -A  b 0 

2 2 I -A 0 

i_Bb I b } 
3 I-C b 7 b 

II_A b 2 0 

( I-B b i b ] 
2 3 ~ I-C b 7 b 

( I I -A  b 2 b 

II-B b 5 b ] 
2 4 ~ II_C b 21 b 

I-B 
I-C 

3 I I -A 
II-B b 
II-C b 

II-B b 
3 4 I I .C  b 

II-B 
4 4 II-C 

1 
7 
2 
5 b 

21 b 

5 b 
21 b } 

21 

1 1 2 2 

0 0 1 1 

1 i 15 15 

3 3 16 16 

3 3 31 31 

21 0 62 41 

21 21 49 49 

90 0 118 28 

aThis number  excludes other types of collapsing such as discussed by Ronfeld and Benet (37). 
bCollapsed equations following intravenous administration. 

with two exponential terms. However, Table IV indicates that there are now 
16 potential models which can explain two exponential terms following 
bolus intravenous injection or post-constant-rate infusion. This presents a 
real problem to the pharmacokineticist. 

The "answer" to the problem from the author's viewpoint is to concen- 
trate in the future on model-independent linear pharmacokinetics. The first 
step in the analysis of a given set of linear data with this approach is to find 
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initial estimates of the Ii and Ai values for the general polyexponential 
equation shown as equation 65. 

Cp = ~ Ii e -a't (65) 
i = l  

Now the hi's may or may not be kq's. The approach suggests that it may be 
very difficult to determine whether they are hi's or kq's in a given case and 
the search may not be worthwhile and may be put aside. Fortunately, the 
"stripping" or back-projection technique has now been automated and is 
contained in the program AUTOAN (32) and in a separate program, 
CSTRIP (38). However, I must caution the reader that CSTRIP (which also 
obtains the initial estimates in AUTOAN 1 and AUTOAN 2) does not 
provide least-squares estimates of the/~'s and Ai's of equation 65. It just 
does what we have been doing with a desk calculator, only it usually does the 
job better. Such parameter estimates shouM only be viewed as initial estimates 
except in cases where there is virtually no error in the data and the r 2 value is 
very close to unity. These initial estimates may then be used with a program 
such as NONLIN (29) to obtain final least-squares estimates of the/~ and hi 
values. Usually the more error in the data the greater will be the improve- 
ment in the fit from CSTRIP or calculator to nonlinear least squares. 
Alternatively, AUTOAN1 or AUTOAN 2 will choose a specific model, use 
the initial estimates as starting values, and then obtain a least-squares fit to 
the particular model it tells one that it chose. One can then substitute the 
least-squares parameter estimates into the Cv, t equation for that model and 
produce a numerical polyexponential equation which fits the data very well 
(in most cases). Thus, although the author recommended otherwise in a 
recent article (33), he has now, in light of the evidence presented in this 
article, changed his mind and recommends simple least-squares polyexpo- 
nential fitting as previously recommended by Koizumi et al. (34) and N/iesch 
(35). 

The usually desired parameters, such as half-lives, F, F*, Vp, time- 
dependent volume of distribution (36), volumes equivalent to Wdarea o r  W/3 , 
and sometimes even absorption rate constants, may then be directly calcu- 
lated from the numerical polyexponential equation. One can also predict 
multiple-dose blood levels and perform essentially all needed dosage regi- 
men calculations as has been shown (15c). A careful review by the phar- 
macokineticist will reveal that in most cases it is not necessary to derive the 
values of microscopic rate constants at all. In fact, this practice makes more 
work than necessary. At first glance, this may appear to take some of the 
glamor out of pharmacokinetics. On the contrary, the author believes it 
presents a challenge to see what really can be done with model-independent 
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pharmacokinetics. A previous article (27) was an initial effort and a future 
one in this journal will yield additional useful equations. 

APPENDIX: COMPARISON OF OBSERVED AND ESTIMATED 
VALUES FOR EXAMPLES 

Model  I I -A  (Example 1) 
^ A 

C~ ~" C~ ~" % deviation Cv ~176 C~ "~ % deviation 

80.06 79.74 0.43 33.21 34.10 - 2.7 
65.24 65.34 - 0.15 47.62 48.57 - 2.0 
45.67 45.83 - 0.36 50.94 51.41 - 0.93 
34.25 34.27 - 0.06 43.43 43.53 - 0.22 
27.38 27.34 0.13 35.27 35.20 0.19 
17.40 17.59 - 1.1 19.23 19.19 0.22 
13.23 13.52 - 2.2 13.62 13.62 0.00 
10.81 11.02 - 1.9 i i . 1 1  11.11 0.00 

8.85 8.99 - 1.5 9.096 9.096 0.00 
5.93 5.98 - 0.81 6.097 6.097 0.00 
1.79 1.76 1.3 1.836 1.836 0.00 

Model II-C 

C~ *" " " % deviation Cp p'~ C p'~ % deviation 

69.08 68.25 1.2 21.07 21.07 0.00 
55.47 56.14 - 1.2 40.05 40.05 0.00 
44.25 44.18 0.16 49.08 49.08 0.00 
39.07 38.82 0.64 44.83 44.83 0.00 
35.67 35.62 0.13 40.00 40.01 - 0.025 
30.82 31.09 - 0 . 8 9  33.48 33.48 0.00 
27.05 27.39 - 1.3 29.11 29.11 0.00 
21.03 21.30 - 1.3 22.56 22.56 0.00 
16.38 16.57 - 1.2 17.56 17.57 - 0 . 0 6  

9.933 10.03 - 0 . 9 5  10.65 10.65 0.00 
6.025 6.067 - 0 . 7 0  6.461 6.460 0.015 
2.216 2.221 - 0 . 2 4  2.377 2.376 0.042 
0 . i 10  0.109 0.91 0.118 0.1.18 0.00 
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