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ABSTRACT

AN ANALYSIS OF THE BEHAVIOR OF A CLASS
OF GENETIC ADAPTIVE SYSTEMS

by
Kenneth Alan De Jong

Chairman: John H. Holland

This thesls is concerned with the design and analysis
of adaptive systems, particularly in the area of adaptive
computer software. To that end a formalism for the study
of adaptive systems is introduced and, within this frame-
work, a means of evaluating the performance of adaptive
systéms is defined. The central feature of the evaluation
process 18 robustness: the ability of an adaptive system
to rapidly respond to 1ts environment over a broad range
of situations. To provide a concrete measure of robust-
ness, a family E of environmental response surfaces was

carefully chosen to include a wide variety of surfaces,

including multimodal and discontinuous ones. The per-
formance of an adaptive system is evaluated over E by
computer simulation by monitoring two distinct performance
curves: on-line and off-line performance. With on-line
performance every response of the adaptive system 1s
evaluated, reflecting situations in which an adaptive
system 1s used to dynamically improve the performance of a
system. With off-line performance only responses which

improve performance are evaluated, reflecting situations



in which testing can be done independently of the system
being controlled.

Within this evaluation framework, a class of genetic

adaptive systems 18 introduced for analysis and evaluation.
These artificial genetic systems, called reproductive
plans, generate adaptive responses by simulating the
Information processing achieved in natural systems by
means of the mechanisms of heredity and evolution. Thi:
1s accomplished internally by maintaining a population of
individuals whose "genetic" material specifies a particular
point on the response surface. New individuals (responses)
are produced by simulating population development via
mating rules, production of offspring, mixing of genetic
material, and so on.

Even the most elementary genetic adaptive plan is
shown to produce performance on E which 1s superior to
pure random search of the response surfaces. However,
these elementary genetic plans were shown to be easily
affected by stochastic side-effects resulting from in-
ternal random processes. By sultable adjustments in para-
meters and modifications to the basic genetic plan, a |
considerable improvement in the performance was achieved
on E.

As a final point of comparison, the performance of two
gstandard function optimization techniques was evaluated
on E. Thelr performance 18 shown to be superior on the

continuous quadratic~like functions for which. they were:



designed. However, the genetic plans are shown to be
superior on the discontinuous and multimodal surfaces,
suggesting that genetic plans hold a valid position

between specilalized 1o§al adaptive techniques and pure

random search.
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Chapter 1

FORMAL ADAPTIVE SYSTEMS

1.1 Introduction

The adjective "adaptive" 18 frequently encountered
in the highly sclentific and technological age in which
we live. We read of sophisticated radar gulildance systems
which are capable of adapting qulckly to changes in terrain
and thus permit high-speed low-altitude flying. The space
program has focused our attention on the need for machines
which are flexible enough to adapt thelr responses to un-
expected environmental factors. Artificial intelligence
research has generated complex game-playing computer pro-
grams which have learned by experience to play better than
their authors. Bilologlists continue to study the fascin-

ating adaptive capabllities of organisms as simple as bac-

teria and as complex as man,

The question as to what constitutes an adaptive sys-
tem has been widely debated, most recently in Tsypkin's
survey of control theory (1971). This debate will not be
continued here; rather, a broad view of what constitutes
an adaptive system will be adopted, a view succinctly
stated by Tsypkin (1971, p. 45):

eee the most characteristic feature of adap-
tation 1s an accumulation and slow usage of

the current information to eliminate the un-
certainty due to insufficient a priori infor-

mation and for the purpose of optimizing a
certaln selected performance index.



Tsypkin has focused his attention on artificial adaptive
systems used in control theory. Holland (1975), on the
other hand, has been studying the characteristics of both
natural and artificial adaptive systems from this broad
viewpoint., Out of this work has come a formal framework
for describing, analyzing, and comparing adaptive systems.
This framework is the basis for the formal definition of
adaptive systems used in this thesis. However, before
presenting the formalism, let us consider some examples

of problems which are candidates for an adaptive solution.

1.2 Some Problems for Adaptation

I am particularly interested in the application of
adaptive system theory to the problem of adaptive software
design. This bilas will show iteelf in the cholce of ex-
amples and applications discussed in this thesis. The
reader 1s reminded that the adaptive system theory pre-
sented here i1s limited in its application only by the
1maginat10n. and he 1s encouraged to conslder examples

from his own experience.

1.2.1 Data Structure Design

Suppose we are faced with designing a data structure
for a generalized information-retrieval system. If it 1is
really intended to be general purpose, the characteristics
of input data sets are unknown at design time. A standard

approach 1s to assume random input and choose the data



structure which minimizes some performsnce criterion for a
standard set of data structure operations (e.g. search,
delete, insert). Unfortunately, many applications consist
of distinctly non-random input resulting in sub-optimal
performanée. An adaptive apﬁroach would explore the
possibllity of deferring the cholce of a specific data
structure until the characteristics of a particular data

set are avallable in order to enhance on-line performance.

1.2.2 Algorithm Design

Suppose we are faced with designing a sophisticated
time-sharing system which supports a large number of batch
and terminal users simultaneously. The heart of such a
system 1s a supervisor program which is responsible for
sharing limited system resources among competing processes.
The performance of a time-sharing system (usually specified
in terms of terminal response time, batch throughput, and
system overhead) 1s directly affected both by the algo-
rithms chosen for resource sharing and by the demand
characteristics for system resburces. Unfortunately, the
demand characteristics can vary widely from day to day and
are often difficult to predict. A standard approach 1is
to base resource sharing algorithms on average demand
characteristics and hence obtain good performance "on the
average". An adaptive approach would explore the possi-
billity of modifying resource sharing algorithms in response

to current demand characteristics (see, for example,



Bauer (1974)).

1.2.3 Game-playing Programs

Some of the most fascinating aspects of software
design have arisen in the area of game-playing programs.
Credible systems have been developed for playing games as
complex as checkers and chess. The difficulty in design-
ing such programs lies in our inability to specify a
winning strategy in a precise algorithmic way. The stand-
ard approach has been to specify as precisely as possible
the strategies used by expert players. Unspecified para-
meters (of which there are many) are externally "tuned"
during development by observing their effects on perform-
ance. This approach has led to the development of several
good chess-playing programs. An adaptive approach would
explore not only the possibility of self-tuning programs,

but also the possibility of strategv-generating systems.

1.,2.,4 Two-armed Bandits

Two-armed bandit problems arise in the context of
statistical decision theory, but have considerable bearing
on the problem of adaptation. In 1ts simplest form, the
problem i1s stated as follows: you are presented with two
slot-machines, one of which pays better than the other.

If you are unaware of which is the better-paying machine,
what strategy would you use to minimize your expected

losses over N trials? The ontimal (but alas, non-realiz-



able) strategy 1s to play the better-paying machine all
the time. Lacking this a priori information, the problem
becomes one of minimizing the expected number of trials
to the lower-paying machine. Each trial yields more
Information about the relative performances of the two
machines. The goal 18 to exploit this information as
quickly and efficiently as possible. It should be clear
by now that two-armed bandit problems capture adaptation
in its simplest form: the dynamic gathering and exploit-
atlion of information to reduce uncertainty and improve

performance.

1.3 A Formal Framework

With these examples in mind, we now ask what are the
essentlal characteristics of adaptation. It has already
been suggested that a problem in adaptation arises out of
a lack of a priori information which prevents one from
choosing between competing alternative solutions to the
problem. Implicit in the idea of competing solutions is a
measure of performance used to compare alternative solu-
tions. The performance of a solution is a function both
of i1ts own characteristics and the particular environment
in which it is tested. Adaptation consists of a strategy
for generating better-performing solutions to the problem
by reducing the initial uncertainty about the environment
via feedback information made available during the evalu-

ation of particular solutions.



Holland has been studying the properties of both
natural and artificial systems. Out of these studies has
come a formalism for representing problems in adaptation
which will be used in this thesis. Briefly, a problem 1n
adaptation 18 formally represented as:

E: the set of environments to be faced.

A: a set of structures describing alternative solutions
to the problem.

U: a performance measure for evaluating solutions in a
particular environment, i.e.

U: Ax E-»R (R representing the real line)

I: a feedback function providing dynamic information to
the adaptive system about the performance of a par-
ticular solution in a particular environment, i.e.

I: A x E—»R"

S: the collection of adaptive strategles under study.
Each s €6 S 1s a strategy for generating better-per-
forming solutlons based on feedback information from

previous trial solutions, 1i.e.

T
st {EA(t).I(t))}r —p A
t=1

X: the criterion used for comparing the performances of
adaptive strategles, 1l.e.
X: S -»R
As an example of the formalism, considér how one might

formally represent the previously discussed problem of



choosing data structures for an information retrieval

system:

E: the set of all possible input data sets,

A: the set of alternative data structures.

U: the performance of the information-retrieval system
on a particular data set.

I: data structure performence statistics (e.g. search,
insert, delete timings).

S: alternative strategies for changing data structures
based on input data set characteristics.,

X: usually U averaged over random samples from E,.

1.4 The Problem of Function Optimization

In this section we will consider the close relation-

ship between the problems of adaptation and function
optimization. Function optimization is a well-studled
problem in applied mathematics and is briefly stated as
follows: given a function f: A—#R, find those points
in A on which f takes its maximum (minimum) values. To
see i1ts relationship to the problem of adaptation, con-
sider again the formalism discussed above. The perform-
ance measure U: A x E—¥R is more precisely the com-
position of two functions, a behavioral function

B: A x E-»R" specifying the behavioral characteristics
of a particular solution in a particular environment, and
a metric function M: R®—»R specifying the performance

rating assoclated with behavioral characteristics. We



can further emphasize the role of the environment by
considering a family of behavioral functions {be} oc E'
where each b, is simply the restrictlon of B to A x {e} .
In thls way adaptation can be viewed as attempting to
optimize the performance measure ug A—-> R associated
with a particular environment e € E and defined by

u (a) = M(bg(a)). The difficulty of the problem of
adaptation (i.e. the initial uncertainty) can then be ex-
pressed in terms of the richness of the set .{u;§‘e€.E of
performance measures. Because of this close relationship
between the two problems it is worth considering the
applicability of function optimization theory to the prob-
lem of adaptive system design.

Function optimization theory is generally divided into
two areas: constrained and unconstrained problems. The
tractabllity of a constrained problem is often highly de-
pendent on the complexity of the constraints; finding the
maximum 18 often eclipsed by the problem of staying within
the constraints. From an adaptive systems point of view,
the problem of constrailnts can be subsumed in the defin-
ition of the representation space A and the performance
measures ;{u;} « For example, a complexly constrailned
space H can be embedded in a simply constrained space A
wlthAue defined to take on its minimal value on A-H. For
these reasons we will restrict our attention to uncon-

strained problems which, as far as any implementation 1is

concerned, are really llnearly constrained problems where



the constraints are of the form
1(1) € x(1)=<h(1), 1 =1, o, N.

A second observation restricts our attention even
further. It is the case that the performance measure u,
18 slmost never avallable in analytic form. Recall from
above that u, is really the composition of be and M.
While M is often explicitly expressed in analytic form,

b the behavior function, 1s generally only a "black box"

P
representing the complexity of the problem under adaptation.
This observation immediately rules out classical analytic
techniques and those iterative techniques which depend
on exact expressions for first and possibly second order
partial derivatives.

A third observation, and perhaps the most critical
as far as the applicabllity of function optimization theory
is concerned, is the fact that for problems of any complex-
ity the behavibral function be (and hence in general ue)
is a high-dimensional, non-linear, multimodal function.
As a consequence standard optimlzation techniques which
assume linearity or unimodality, or techniques whose
computation time grows rapidly with dimensionality are
generally inapplicable to the adaptation problem.

With these constraints we are left with only a few
alternative optimization technigues. The most commonly

proposed search technique for multimodal functions is

to run one's favorite local (unimodal) optimizer repeat-

edly using random starting points, the assumption being
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that each local maximum will be encountered after a
sufficient number of trials., Alternate approaches perform
some type of patterned search over the whole space looking
for likely areas in which the local optimizer should be
employed. Finally, for problems of high dimensionality,
several authors (see, for example, Rastrigin (1963) or
Schumer & Steiglitz (1968)) have recommended reverting to
various forms of random search.

Whether or not these techniques produce the kind of
adaptive performance we would like is at this point an
open quéstlon which will be explored further in this thesis.
Comparisons of function optimizers center around the num-
ber of function evaluations required to find the optimum
within a certain tolerance. The emphasis here is on con-
vergence. In contrast, adaptation is also concerned with
the quality of interim performance, the criterion often

involving the integral of the performance curve.,

1.5 A BReduction in Scope

Having stated and explored the general framework for
problems in adaptation, we will now focus our attention
on a specific class of adaptive systems which will be
the object of this study.

In the first place, we will consider only discrete
time-scale adaptive systems. A time step generally
consists of generating, testing, and receiving feedback

about a particular solution to the problem. The inter-
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pretation of a time step is, of course, application-
dependent.

Secondly, we will be concerned with the design of
adaptive systems in which the only avallable feedback 1is
the value of the performance measure u,. Such systems
are usually termed "first-order" feedback systems in the
sense that the very minimal feedback information available
about the behavior of a particular solution is its per-
formance rating.

Finally, we will restrict our attention to two adapt-
ive system performance criteria (X and X* defined below) .
The motivation for these criteria arises from the concept
of robustness. We say that an adaptive system is robust
if it is able to generate and maintain acceptable solu-
tions to a problem across a wide variety of environments.
In order to formalize this concept, consider first the
definition of local robustness, 1.e. the ability of a
strategy to generate and maintain acceptable solutions
to a problem in a particular environment. Two such
measures will be used in this thesis: 1local on-line per-
formance and local off-line performance. On-~line perform-

ance x, : S~ R will be defined as follows:



12

That 1s, the performance of strategy s in environment
e 1s a weilghted average of the performances ue(gt) of
the generated solutions a; over a time period Te’ Oon-
line performance measures are motivated by situatlons
in which adaptive systems are being used to dynamically
improve the overall performance of an on-line systenm
such as a time-sharing system.v In such situations every
new solution generated by the adaptive system for testirg
is included in the overall performance rating of the
system,

In contrast, local off-line performance x* : s—»R

will be defined as:

e
x:(s) =1F§———— * Cg ° u;(at)
o t=1

t=1

where u;(at) ¢ nin {ue(al). eees ue(at)\k « Off-line
performance is motivated by situations in which the
testing and evaluation of solutions 1s done off-line
and is not included in the overall performance eval-
uation. In these situations the on-line system runs
with the best solution generated to that polnt while
off-line adaptation is contlnulng; Off-line performance
i1s much closer to the standard measure of performance
for function optimizers. The mggnltude of trial errors

is not included; only progress  toward the minimum 1is
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measured. As a consequence, off-line performance places
heavier emphasis on convergence while on-line perform-
ance emphasizes initlal performance.

In both cases, the welghts c{ provide a means of
shifting the emphasis. If they are lncreasing (cy<cgyq),
more emphasis 1s placed on convergence. If they are
decreasing (°t>'°t+1)' more emphasis 1s placed on in-
itlal performance. For our purposes c¢=1 for all t
is sufficient, |

Global robustness is now defined in terms of these

local measures. On-line performance X: S =R 1is given by:

X(s) = —— & Weox,(s)

Z v E
E

Off-1ine performance is similarly given by:

x¥(s) = 1 » we-x;(s)
S
E

In both cases, the weights w, can be used to assign

relative difficulties to the alternative environments.

1.6 Summary
In this chapter we have attempted to define formally

what we mean by a problem in adaptation and have dis-
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cussed some practical examples of such problems. We
have noted the close relationship between the problems
of adaptation and function optimization, and we have
seen that the bulk of optimization techniques is not
generally applicable to the design of adaptive systems,
Finally, we have defined the specific class of adaptive
systems which will be the subject of further study in

the following chapters.



Chapter 2
GENETIC ADAPTIVE MODELS

2.1 Introduction

In the discussion of function optimization theory in
chapter 1, we noted that, although the problems of adapt-
ation and optimization are closely related, most of the
standard optimization techniques are lnadequate for adapt-
ive problems of any complexity. This inadequacy can be
viewed as an inabllity to process information relating to
global aspects of the function to be optimized. Extremely
efficlent techniques have been developed for finding the
nearest local maximum of a function; however, éttempts to
extend these techniques to find global maxima have met
with little success. Some global search technlques have
been proposed for low-dimensional problems (see, for ex-
ample, Hi1ll (1969) or Bremermann (1970)), their computa-
tion time growing rapidly with dimensionality. As a
consequence, most global searching is accomplished with
some form of random search. From an adaptive system point
of view, random search 1s extremely inefficlient because
it makes no use of the available feedback information to
reduce the initial uncertainty surrounding the problem
for adaptation. These observations suggest a critical
question for adaptive system design: are there efficient
ways to exploit global information about a problem in

order to generate better-performing solutions?

15
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This theslis 18 part of a larger research project
which 1s attempting to answer such questions under the
direction of John Holland at the University of Michigan.
The basic point of vliew of this research is that nature
18 an extremely rich source of examples of sophisticated
information processing and adaptation. The goal of this
proJect is to understand and abstract from natural systems
the mechanisms of adaptation in order to design artific) .l
systems of comparable sophistication. This research has
centered around the design of artificial systems derived
from standard models of heredity and evolution in the field

of population genetics which we will briefly review.

2.2 Genetic Population Models

Population genetics is concerned with the character-
istics of heredity and evolution at the population level.,
It assumes a Mendelian view of the mechanisms of heredity,
l.e. genetic material 1s represented as strands of chrom-
osomes consisting of genes which control observable
properties in the individuals making up the population.

A population is viewed as a dynamlic pool of genetic in-
formation, the characteristics of which change from gener-
ation to generation in response to environmental factors.
Numerous examples exist which demonstrate the ability of

a population of organisms to adapt over a period of gen-
erations to complex changes in its environment. The goal

1s to explaln these observable adaptations in terms of
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the mechanisms of heredity and evolution.

In a genetic population model, individuals are repre-
sented purely in terms of their genetic makeup. Repre-
sentations of genetic material vary from simple one-chrom-
osome 1individuals (haploid models) to complex multi-
chromosome individuals (polyploid models). Having speci-
fied a representation for genetic materlal, the observable
characteristics of an individual are defined as functions
of the chromosomal genes. Environmental pressures, specl-
fied in terms of these observable characteristics, assign
a measure of "fitness" to an individual. Finally, the
dynamics of population development are defined in terms of
fitness, life-death cycles, mating rules, mobility, sex,
species, and so on.

We, of course, aré not concerned with modeling the
development of biologlical populations per se; rather, we
are concerned with understanding the mechanisms of adapt-
ation which provide for such development. Unfette:ed by
bilological facts, we are free to construct artificlal
systems which capture the essence of these mechanisms.

The exciting aspect of this approach, as we will see, 1is
that even very simple artificial systems exhibit consider-

able adaptive capabilities.

2.3 Reproductive Plans

In this section we will describe the basic class of

artificial adaptive systems which has arisen from the
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genetic population models. This class of adaptive systems,
called reproductive plans, was first proposed by Holland;
subsequent variations have been studied by others (see, for
example, Caviccio (1970), Hollstien (1971), Frantz (1972)).
Recall from the formalism introduced in chapter 1
that alternative solutions to the problem for adaptation
are represented by the set A. In a reproductive plan, the
memory of the system at time t consists of a population
A(t) of N individuals a,4 from A together with their-
assoclated performance ratings ue(alt). These repre-
sentations ay¢ of solutions to the problem for adaptation
are considered the genetic material to be processed by a
reproductive plan. New individuals (and hence new alter-

native solutions) are produced by simulating genetic

population dynamics. That is, individuals from A(t) are
selected as parents and idealized genetic operators are
applied to produce offspring. More specifically, a repro-

ductive plan operates as follows:

Randomly generate A(0) |

Fﬁ{?or each a 4 1in A(t), compute and save ue(ait)'

Compute the selection pro?abilitles defined by
u (a

)
p(alt) = v € it

ug(ayt)
i1 e‘\#it

+

Generate A(t+1) by selecting individuals from A(t)
via the selection probability distribution and
applying genetic operators to them.
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To get a feeling for how reproductive plans work,
note that the expectéd number of offspring produced by
an individual 1s proportional to its performance. This
can be seen by consldering the process of sélecting
individuals for reproduction as N samples from A(t) with
replacement using the selection probability distribution.
Hence, the expected number of offspring from individual

8, is given by

O(ayg) = N * Plagy)

=N o ue(alt)

ug(ayt)
i=1

ue(ait)

11@ zue(alt)

= ug(ayt)
g (A(t))

So we see that individuals with average performance ratings
produce on the average 1 offspring while better individ-
uals produce more than 1 and poorer individuals produce
less than 1. Hence, with no other mechanisms for adapt-
ation, reproduction proportional to fitness produces é

sequence of generations A(t) in which the best individual

in A(o) takes over a larger and larger proportion of the

population.
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However, in nature and in these artificial systems,
offspring are almost never exact duplicates of a parent.
It 1s the role of genetic operators to exploit this selec-
tion process by producing new individuals which have high-
performance expectations. The cholce of operators is
motivated by the mechanisms of nature: crossover, mu-
tation, inversion, and so on. The exact form taken by
such operators depends on the "genetic" representation
chosen for individuals in A. In order to see more clearly
the role of genetic operators, let us consider a very
simple (from a biological viewpoint) reproductive plan

which exhibits surprising adaptive capabilities.

2.4 The Basic Reproductive Plan: R1

The simplest reproductive plans use fixed-length
haploid representations for elements of A. That is, an
individual 1s represented by a single chromosome consist-

ing of a fixed number (§{) of genes:

1 % 3 -1 g

Each gene position 1s defined to take on one of a specified
number of (allele) values. Hence, the set A of all poss~-
ible individuals can be considered an f-dimensional space
in which an individual is represented by the value of 1its
genes, To obtaln a representation of this form for a
specific problem for adaptation, alternative solutions to

the problem are characterlzed uniquely by an ordered set
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of R parameters which in turn play the role of genes.
Having thus defined the representation space A, a
reproductive plan 18 now free to explore A by submitting
individuals for testing and evaluatlion as solutlions to
the problem. The basic reproductive plan accomplishes
this via two genetic operators: crossover and mutation.
To specify preclsely how these operators work, we let an
element a, from A be represented as the string v11v12 coe

v in which the vij represent the gene values (alleles).

18

Crossover generates a new individual ay from two

existing individuals a, and a by concatenating an initial

J
gene segment from a; with a final gene segment from aJe
The segments are defined by selecting a crossover point
via a random sample from a uniform distribution over the
1-1 positions between the genes. So, for example, if

crossover occurs between the second and third gene posi-

tions, individual ay i1s generated from a, and a, as 1llus-

trated:

al = v11v12V13 cee vll

—’. ak = v11VIZVJ3 X VJR
a =V v \4

J Jl j 33 eo e vjl

The crossover operatlion 1ls embedded in plan Rl in the
following way. Given an individual a4 selected from A(t)
to produce an offspring, a mate ayy 1s chosen from A(t)
using the selection probabilities. An offspring is then

produced by crossover.
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So we see that the strategy employed by crossover in
searching A for better-performing solutions consists of
constructing new sample points from existing ones selected
on the basis of performance. Notice that if a particular
allele (gene value) Vi is not present in A(t), no off-
spring produced by crossover will contain vlj' In other
words, crossover is unable to generate points in the sub-
space V1 x V2 X oee X {.VU} X eee X VR of A. An allele
can be missing from A(t) for several reasons. It may
have been deleted by selection because of assoclated poor
performance. It may also be missing simply because of the
limited size of A(t). Obviously, if \Vi‘ = 1000, a min-
imum population of size 1000 is required for A(t) to con-
tain an instance of each Vige In plan Rl new alleles are
introduced into A(t) by the second genetic operator:
mutation.

Mutation generates a new individual by independently
modifying the value of one or more genes of an existing
individual. A gene 1s selected for modification via a
random sample from a uniform distribution over the x gene
positions. The new gene value 1s selected via a random
sample from a uniform distribution over the assoclated
set of alleles VJ. So, for example, if individual a, is
selected to undergo a mutation at position 2, an individ-
is generated. The mutation

ual aJ = v11t£§v13'°°viﬂ
operator is embedded in plan Rl as follows: a small
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percentage of individuals generated by crossover for
A(t+1) additionally undergo a mutation. In nature the
probability of a gene undergoing mutation is generally
less than .001 indicating that mutation (a form of random
search) 18 not the primary genetic operator. Rather, it
should be viewed as a background operator guaranteelng
no allele will permanently disappear from A(t).

In order to evaluate the adaptive capabilities of
plan Rl, an environment E was defined consisting of a
broad class of performance measures u, defined on A (see
appendix A). Included were instances of continuous, dis=-
continuous, convex, non-convex, unimodal, multimodal, low-
dimensional and high-dimensional functions as well as
functions with Gaussian noise. The plan Rl was implement-
ed in PL1 and its behavior observed over E in comparison
to pure random search (see appendix C). While R1 did not
always converge to a global maximum in the time allotted,
i1t exhibited a considerable improvement over the perform-
ance generated by random search. Typlcal curves from

these simulations are shown below:

Raandom
u (t)
Ry
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ug(t)

Random

Recall that the performance criteria X and X* for adaptive
systems were defined in terms of the average values of

ue and u;. respectively, over time. With these encour-
aging results, we consider in more detail the properties

of plan R1l.

2.5 K-armed Bandits

Before we explore in more detail the way in which
plan Ri searches the space A for better-performing ele-
ments, we will take a brief, but relevant, diversion to
consider solutions to the generalization of the 2-armed
bandit problem introduced in section 1.2, namely, the opti-~
mal allocation of trials to K machines. Holland (1975)
has shown a mathematical solution exists if one is given
a blt more a priori information about the K machines.
Suppose we know that each machine pays stochastically
according to a normal distribution N(ul,si), but we are not
told which distribution is associated with which machine.

In this case, an optimal strategy for allocating T trials

to the K machines 1s roughly characterized as follows:
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allocate exponentially more of the T trials to the ob-
served best than to the remaining K-1 machines, where the
exact form of the exponential depends on the K distribu-
tions N(ui.sf). Notice that this strategy 1s non-realize-
able in that no strategy can decide which machine will be
the observed best after T trials without allocating the T
trials, and then 1t 1s too late to distribute the trials
optimally. However, such a solution gives us a character-
ization of the way in which trials should be allocated,
and it yields a lower bound on the expected losses over
T trials. The question, of course, is whether there are
any realizeable strategies which are good approximations
to the optimal one. To answer this question, we consider
in more detail the optimal solution to the 2-armed bandit
problem,

In this case we have twovmachines Bl and B2 which
pay according to the distributions N(ul,sf) and N(uz.s%)
respectively., For convenience, let Bl be the machine with
the higher payoff and gi be the machine with the highest
observed payoff after all T trials have been allocated
with t, going to Bl and t, to B2. Holland (1975) has
shown that the expected loss incurred over these T trials

is given by:
L(t,.t;) = ‘ul-uz‘*{%l*q(tl.tz) + tz*(i-q(tl.tz);l

where q(tl.tz) is the probability that B2 will be the

observed best and is well-approximated by
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) = 1 - exP("xz/z ul-ui
\l g X N ]
2 WJ 8§/t1 + Sg/tz

To get a feeling for how L(tl.tz) varies over the

interval 0<t2< T, consider L rewritten as a function of T:

)|

|

L(Totz) \u1‘u2\ *[(T‘tz)*Q(Totz) + tz*(l‘Q(Totz)

L]

\UI°112\ * [(T-th)*q(T,tz) + tz]

As 1llustrated in figure 2.1, the term

1 exp(-x2/2)
sz‘ X

(T-2t,)#q(T,tp) = (T-2t,)»

dominates L for small values of t;, but drops off exponen-
tially as a function of t, since
u,-u - |
17%2 o W, ul-u
X = ; = = ( 2)*1rt2l = kz‘{tz
2 2 1 2 ' 8

2
) exp(-k5t,/2)
Sty —— , ZRUX/E) ¢ T, 27
\IZT( X {2“‘ kz“,tz'
T . exp(-axty)

kz\]ZTf \J—E?
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FIG 2.1: BANDIT LOSS FUNCTION FOR T=50
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As t2’1ncreases. the term tz dominates and L is essen-

tilally linear with respect to tz. Finally, as t2~.qg
the term

2
_ exp(-kst,/2) - _
(T-2t,)wa(T,tp) ¥ "2 & 17 LT ety

{zr’ ky Yt o X K

re-emerges as the dominant term with a negative sign.
In order to minimize our expected losses over T trlals,

we must find the value t; such that
L(T,t;) = L(T,t,) , 0<ty,< T

Finding an analytic expression for t; by considering those

points at which EE_ = 0 is fairly complex. Holland (1975),

dat
for example, has derived the approximation

* b2 U, -un
tzﬂb-zuln b'T sy b = 1 2

81 +1n(T?) 8,

For our purposes the optimum is found via a one-dimension-

al iterative search technique applied directly to L for
various values of T. Figure 2,2 i1llustrates how the op-
timal loss function L(T,t;) varies with T. It is this
kKimd of performance that a reallizeable strategy must
hope to approximate. Fiﬁally. figure 2,3 1llustrates the

previously mentioned relationship between t; = T-t;

and t;. namely, that an optimal strategy allocates ex-
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FIG 2.2: OPTIMAL LOSSES OVER T TRIALS
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Figure 2.2: Optimal losses incurred over T trials on two
bandits B1(9,1) and B2(8,1).
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FIG 2.3: OPTIMAL DISTRIBUTION OF T TRIALS
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bandits B1(9,1) and B2(8,1).
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ponentially more trials to the observed best.

We are now in a position to evaluate the performance
of some realizeable strategles. The first one which comes
to mind 1s the standard decision theory approachl(here-
after referred to as DTS) which goes as follows: allocate
a small number t of trials to each machine; then allocate
the remaining T-2t trials to the observed best. Parallel-
ing the preceding analysis, we have an expected loss func-

tion:
L (T.t) = [ug-u,| *[(T-t)*q(t) + t*(1-q(t))]

where q(t) 1s the probability that B2 is the observed
best after allocating t trials to each machine. In this
case we have

o 1 exp(-x2/2) u; -u,
q(t) = * » X =

Yz x ‘V s%/t + sg/;1

u,-u

1 72 r—1
2 2!
s1 + 82

Again, we seek the value t*, o< t*< g. which minimizes
Ll(T.t), as 1llustrated by figure 2.4. It should be clear
that we can define a DTS which, when given T, Uy Ups Sq»
and B computes the optimal initial sample size t* and
allocates its trials accordingly. Intuitively one feels

that this DTS will approximate the optimal strategy as T
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FIG 2.4: DTS LOSS FUNCTION FOR T=50
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increases. Figure 2.5, however, illustrates that 1t 18 a

fairly crude approximation since the optimal number of

trials allocated to B2 grows very slowly with T.
A second more interesting approach incorporates

some of the ideas presented in the discussion of repro-
ductive plans in section 2.3. The basic 1dea 1s to make
a serles of reversible decisions during the sequence of
trials rather than one non-reversible decision. This 1s
accomplished by defining a selection probability distri-
bution over the machines. Initially, the distribution is

uniform; however, it changes over time as follows:

T, (t)

Pl(t+1) = Pi(t)l ) *Kt+1

That is, the prdbablllty of selecting machine 1 changes
over time in proportion to its observed performance rela-
tive to the average, where Ky,q 18 the normalization
factor required for :2 P, (t+1)=1. If at each time step
we select a machine fo% trial by sampling from this time-
varying selection distribution, it should be clear that

a machine which continues to show above-average performance
will rapidly dominate the allocation of trials.

Initially t samples are allocated to each machine for
estimates ?H(t) of uy; before the first declsion 18 made.
This, of course, incurs an initial loss lu1-u2\ #t, but
adds certainty to the subsequent declilsions. As t-»1, the

initial overhead is reduced at the expense of making de-
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FIG 2.5: EXPECTED DTS LOSSES OVER T TRIALS
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Figure 2.5: A comparison of the expected losses for DTS
: and the optimal on two bandits B1(9,1) and
B2(8.1).



35

cisions with more uncertainty.

So we have expected losses over T trlals given by:
n/
Ly(Tot) = |ug-u, | #t + Lp(T,t)

V4
where L,(T,t) specifies the expected losses during the
time-varying decision processes from 27+1 to T. We can

ns
express L2 as

Tp(T.t) = g L)

where R(J) 1s the expected loss on the Jth trial and is

giveh by
Qeay = \ui-uz\*EE’Z(J-)l

where EE’Z(J)] 1s the expected value of the selection
probability P,(J) at time J.

While it 1s relatively strailghtforward to calculate
the expected initial value, E[%Z(th,' subsequent expected
values are extremely difficult to analyze since the tran-
sition function

To(t)

T(t)

Pz(t+1) = Pz(t)* #Kppq

1s non-Markovian and depends on the random variable tz(t),

the number of trials allocated to B2 through time t.
Consequently, we are faced with optimizing LZ(T.t)

with respect to t by simulation as illustrated in figure

2.6, Two hundred samples were taken of L,(100,t) for
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FIG 2.6: TVS LOSS FUNCTION FOR T=100
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Figure 2.6: Simulated losses over 100 trials using TVS
on two bandits B1(9,1) and B2(8,1).
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t=1,2,3,04+,10. These flgures, and others not shown here,

suggest that a good approximation for t* is given by:

, 2 2
" 81+82

t 2

~

which, for the illustrated case, ylelds t*= J2'or t" ¥ 2.
This formulation is motivated as follows: choose enough
initial samples t so that, with a priori probability q,
?q(t) - ?;(t) Will have the same sign as uj-u,. We know
the a priori probabilities associated with f,(t) - fz(t)

_" t + sb/t"
falling in the interval (u;-u,)t K s§/ 58/t

For the signs to be the same, we must have
o
2 2
-\}sl/t + sz/t
! tl
S 2 2 1
81 + 82

| ug-vz|

\ul-uz\ 2> K«

or t> K=

The value K=1 or q=.68 seemed to fit the data best.

Using the above approxlmation for t*. figure 2.7
compares the expected TVS losses with those of the two pre-
vious strategies and 1llustrates that it rapidly approaches
the opﬁimal one. Finally, figure 2.8 compares the way in
which the three strategies divide the trials between the
two machines. |

With this analysis in mind, we now consider in more
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FIG 2.7: EXPECTED TVS LOSSES OVER T TRIALS
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Figure 2.7: A bomparison of expected losses over T trials:
on two bandits B1(9,1) and B2(8,1).
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FIG 2.8: COMPARATIVE ALLOCATION OF T TRIALS
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Figure 2.8: A comparison of the allocation of T trials to
two bandits B1(9,1) and B2(8,1).
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detaill how adaptive plan Rl allocates its trials within

the space A,

2.6 Hyperplane Analysis of Rl

In this section we willl attempt to understand more
clearly hﬁw the genetic plan Rl searches the representa-
tion space A for better-performing elements by focusing
our attention on hyperplane partitions of A as suggested
by Holland (1975).

Aé suggested in section 2.4, we consider A as an
R-dimensional space in which a point a; € A 1s specified by
giving its { gene values Vyq,ecee ¥y« A x"oorder
hyperplane 1s then defined to be the ({-k)-dimensional
subspace of A specified by giving only k of the ] gene
values. These hyperplanes can be represented visually as

follows:

d
0"-’..."’ = {a1€A H Vil = 0}

ellesee~ g{ai EA : V12 =1 & VIB = 1}

If we consider all possible hyperplanes which can be de-
fined by specifying the gene values of a fixed set of

K positions, this set {H;} of hyperplanes forms a uniform
partition of the space A. For example, if V1 = {0.1}. the
allowable values for the first position, then

Hl = 0—-...-

Hz = 1"“'.00"
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form a first-order partition of A with exactly half of
the points falling 1n each hyperplane. If we consider the
performance measure ue:A-*-R restricted to a particular

hyperplane,

it has a well-defined mean and variance which are, of
course, unknown to an adaptive strategy. Hence, associ-
ated with each hyperplane partltlon-{Hik f=1 of the space
A, 1s a K-armed bandit problem, namely, the optimal allo-
cation of trials among the partition elements Hi’ Since
any sequence of trials in A simultaneously distributes
trials among the elements of each of the :E; (%) = 2l
distinct hyperplane partitions of A, we cag=giew the prob-
lem of searching A as simultaneously solving Zx KJ-armed
bandit problems. The question we are exploring in this
section 1s how well plan Rl allocates its trials to these
Kj-armed bandits.

In order to accomplish this we fix our attention on a
particular hyperplane partition {F;} in relationship to
the population A(t) of N individuals maintained by plan
Rl. Since {Hiﬁ is a partition of the space A, each a4
in A(t) lles in some Hy. Let Hl(t) represent the number
of individuals from A(t) which lie in Hy at time t. Be-
cause of the way in which the selection probabilities

were defined for reproductive plans (section 2.3), we
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know that the expected number of offspring O(Hi) produced
by individuals in H1 at time t is given by:

Ml(t) u (ajt)
O(Hl) =
(t)
=1
My ()

u.(a,,)
yo1 e‘*"jt
— *
ue(t) Mi(t)

'Ke(Hl(t))
= Mi(t)*
g (t)

If in fact the offspring O(Hi) themselves lie in H,, then

we have

W, (H (t))
, u (t)

That 18, the number of trials allocated to H1 varles from
one time step to th; next in proportion to its performance
relative to the average, which of course is the TVS solu-
tion to the K-armed bandlt problem discussed in the pre-
ceding section.

Whether or not O(Hi)EE}H_depends on the genetic
operators used to construdt them. In plan Rl there are

two such operators: crossover and mutation. An offspring

will 1ie in H, only if the k positions which define H, re-
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main unchanged between parent and offspring. Intultively,
if crossover occurs within these defining positions, one
or more of them will likely be changed. Hence it is
fairly easy to showbthat the probability of a parent in H1

producing an offspring outside Hi 1s no greater than
d(Hi)—l ’

-1
namely, the length of the smallest segment containing all

, Where d(Hi) is the "definition length" of H,,

the defining positions of Hy as illustrated below.

d(Hy)
---xl---xJ---xk---
¢

As a consequence we note that crossover has little effect
on the allocation of trials to the bandits assoclated
with short-definition hyperplanes (relative to £ ), while
the allocation of trials to long-definition hypgrplanes
is considerably disrupted.

The probability of a parent in H, producing an off-
spring outside Hi via mutation is Just Pm * ; » Where
Pm 18 the probability of a gene undergoing a mutation and
k 1s the order of H,, In nature and generally in plah R1,
Pm$.001. Hence, mutation has very little effect on the
allocation of trials according to performance.

In summary, then, by looking at hyperplane partitions

of A, we have gained considerable insight into the behav-
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lor of reproductive plans. In the first place, this anal-
Ysis ylelds a criterion for artificial genetic operators,
namely, the ability to generate new individuals in A with-
out disturbing too much the near-optimal TVS allocatdon

of trials., Secondly, we can now describe the way plan R1
searches the space A. It generates near-optimal allocation

of trials simul taneously to short-definition hyperplane

partitions. As elements of high-performance hyperplanes
begin to dominate A(t), we have a reduction in the dimen-
sion of A and a corresponding reduction in the definition
lengths of hyperplanes, providing for another cycle of

near-optimal sampling.

2.7 An Example of R1

As an illustration of the discussion in the previous
sections, we consider a simple problem for adaptation.
Suppose each alternative solution to a problem is repre-
sented by a single real number in the interval ‘9.16] with
a precision of 2 decimal places. Suppose further than
the performance assoclated with each solution point is
given by f(x)=x2 with the higher valued solutions being
the better ones. We choose the representation space A for
Rl as follows: There are (10--0),&102 distinct solutions;
hence, 1052(103)=10 bits are required for a binary repre-
sentation. The correspondence between (9.16] and A 1is

given by:
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So, for example,

0.01 «— 0000000001

5.12 <4—» 1000000000
In order to see how Rl searches A, we focus our attention
initially on a first-order partition P1 defined by:

H11: Oceceeo===

lez 1-’-000‘--

P, simply divides the space in half:

1

Since Rl generates an initial population A((0) randomly
from & uniform distribution over A, we expect half of A(0)
to 1lie in H11 and half in H12. Notice, however, that
?(H11)<?(H12). Since P, 1s a short-definition partition
relative to £=10, plan R1 will allocate trials to H,; and
H12 according to the near optimal time-varying strategy
(TVS) described earlier. In other words, Rl quickly gen-

erates a population A(t) consisting almost entirely of

individuals from H12.
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We now consider a refinement P, of P, given by:

Hoqy: 00---c.o==
Hypt Ol-w=eoo=-
H23z 10=w=eeo==
Hop: 1l-==0co=-=

P2 simply divides the space in quarters:

4

f(x)=x2

— 4 —
s 1®
— M)
Hyy Hyp Hps Hyy

As we noted above, Rl rapidly generates a population A(tl)
in which most individuals begin with a 1. This is in
effect a reduction in the search space A to an -1 dimen-
sional space. Hence, after a few generations, PZ effect-
ively becomes a first-order partition of Ax-l to which
Rl now allocates a near-optimal sequence of trials. Since
?(H23)<?(H2u). Rl rapidly generates a population A(t,)
which lies almost entirely in qu. effecting yet another

| reduction in the search space.

The important thing to note here is that the same
remarks hold for any other short-definition peartitioms,

for example:



b7

——=eee==0
“"-ooo-‘l
While such partitions are harder to visualize, each 1is

belhg sampled at a near-optimal rate simultaneously by

Rl. It is this parallelism which gives even simple repro-
ductive plans like Rl their surprising adaptive capabll-

ities.

2,8 Summary

In this chapter we have defined a class of geﬁetic
adaptive models called reproductive plans. These artific-
ial systems are motivated by the kinds of models used in
population genetics to explailn the adaptive behavior of
natural systems. The central feature of these reproductive
rlans is that new solutions to the problem for adaptation
are generated by selecting individuals from the current
porulation on the basis of thelir observed performance
to produce offspring via genetic operators. By focusing
our attention on hyperplanes on A rather than individual
elements of A, we were able to characterize the way in
which reproductive plans search A, and the characterization
provided a criterion for genetic operators. Finally, we
saw that even the simple reproductlvé plan R1, because of
its ability to simultaneously allocate trials at a near-
optimal rate to a large number of hyperplanes on A, exhibit

considerable improvement over random search.



Chapter 3

STOCHASTIC EFFECTS IN FINITE GENETIC MODELS

3.1 Introduction

In this chapter we will explore the characteristics
of finite genetic adaptive systems, that 1is, genetic
plans which have limited memory and time to adapt to the
problem at hand. As one might expect, the behavior of
such systems can vary considerably from the norm predicted
by mathematical analysis involving expected values, the
law of large numbers, and limit theorems. The motivation
for analyzing finite models, of course, is that they
correspond to the observed behavior in any practical
application of genetic adaptive systems. We will pursue
this analysis by considering in more detall the character-

istics of plan Rl introduced in the preceding chapter.

3.2 The Problem of Premature Convergence

We begin by analyzing the behavior of plan Rl on
test function F1 (see appendix A). Here the problem
consists of finding the minimum point on the three

dimensional parabolic surface given by

3

1

As 1llustrated in appendix C, plan Rl generates an

L8
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exponential decrease in both f(t) and £¥(t) over the
interval 1 < t < 10,000. However, since Rl 1s a stochastic
process, these curves represent the performance of Rl
averaged over the number of independent runs. Table 3.1

depicts the behavior of Rl for a particular run on test

function F1. Notice that there 1s little or no lmprove-
ment in f(t) and £*(t) from t=3000 on, éven though
f*(t)-is still greater than the minimum of zero at the
origin. This behavior is typlcal of plan Rl. After

an initial reduction in f(t) and £*(t), a threshold seems
to be crossed after which little or no improvement is
generated. If we look more closely at the population
A(t) maintained by Rl, the reason for this lack of
improvement becomes clear: each individual in A(3000) 1is
very nearly alike. Recall that plan Rl uses a bilnary

genetic representation for points in the solutlon space

A. That is, each gene position can take on only the
values 0 or 1, and for this problem,|A| = (103)° = 109
requiring ﬂ,= 30 gene positions. If we consider A(t)

a reservolr of gene values (alleles), the "lost" column
in table 3.1 1llustrates that in A(3000) 22 of the 30

gene positions have no instances of one of the two
possible alleles. That 1s, plan Rl has converged to a
particular allele in all but B positions and hence
reduced the search space for crossover to 28 = 256 points.

Moreover, if we say that plan Rl has effectively con-

verged to a particular allele whenever an allele 1is
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found in more than 95¢ of the population, then the
*converged" column in table 3.1 1llustrates that by

t = 3000, Rl has effectively converged in 25 of the 30
positions.

This reduction in the seafch space A 1s precisely
the behavior discussed in chapter 2. 'Unfortunately.
however, in thlé case the optimum for Fl1 is not contained
in the reduced subspace. Nor is it very likely that
plan R1 will find-the optimum for t> 3000. To see this
recall that crossover can generate a point in A for trial

only if all the alleles for that point are present in

the population. Hence, crossover effectively searches
only the reduced subspace of 256 points. Moreover,
because of the similarity of individuals in A(3000),
the results of many crossovers will be to produce an
offspring ldentical with one of the parents, providing
no new points for trial. Comparing the "trials" column
and the "generation" column in table 3.1 illustrates
this reduced effectiveness of Rl as alleles are lost
from the population. 1Initially, nearly 50 new trials
are generated per generation by crossover and mutation.
However, from generation 60 on (t> 3000), there are
fewer than 15 new trials per generation,

Restating these observations in terms of the
hyperplane analyqis ofvchapter 2 ylelds further insight
into the problem. For 25 of the 30 first-order hyper-

plane partitions of A, plan R1 has chosen to allocate
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almost all of the trials from t = 3000 on to one of the
two competing partition elements. However, 1if we con-
sider the symme%ry of test function F1 on A, it should
be clear that every first-order partition of A presents
plan Rl with a 2-armed bandit problem in which the
machines have ggggl payoffs. In other words, no par-
ticular allele has an advantage over its competitor;
yet in 25 of 30 positions, one allele seems to have
"almost completely dominated, effecting a dramatic re-
duction in the search space.

Immediately one thinks of increasing the mutation
rate as a simple direct way of maintaining variability
in the population. But we must be careful at this point
of applying a cure to a symptom rather than the problem.
Certainly increasing mutation will increase the var-

lation in the population maintailned by Rl on Fl. But

recall that on F1 no particular allele has an advantage
over its competitor. For the other functions in E

there clearly are alleles which yleld much higher per-
formance than their competitors. Increasing mutation

in these cases will retard the dominance of the better
performing alleles and slow the adaptive response., What
we attempt to understand in this chapter is why Rl

has such a high rate of allele loss on Fl. The hope

is that understanding this problem will provide insight

into improved performance on E,.
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3.3 Genetic Drift
The phenomenon of genetic drift is a well-studied

problem in population genetics. Since 1t is an arti-
fact of the application of random selection processes to
finite populations, it has considerable bearing on the
finite genetic ﬁodels under study 1n this chapter.
Genetlc drift can be 1llustrated by the following simple
stochastic model. Suppose we have a population A(t) of N
individuals and we generate A(t+l1) by making N uniformly |

random selections from A(t) with replacement and apply

no genetic operators. Again we focus our attention on
the alleles of a particular gene and observe the num-
ber of instances of these alleles in the population. If

we assume a binary genetic representation and a uni-

formly random initial population A(0), then the expected
number of O-alleles R,(t) for gene 1 is N/2. However,
as t increases, the variance of Ri(t) &lso increases

to the extent that wide deviations from the norm are
quite iikely.

To see this more clearly, we can represent. the
above model as a Markov process in which the states
are simply the N+1 possible values of Ri(t). The
trapsltlon probability ij 1s simply the probability
of k successes in N Bernoull trials with a probability
of success on each trial of j/N. That 1is,

3. N-k

P = D QFa-d
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The inltlal state probabilities Py are simply

N, ,1,k,1,N=k Ny, ,1,N
¥y =00 @@ = Q@)

With no genetic operators defined, it should be clear
that states Rl(t) = 0 and Rl(t) = N are absorbing states.
Since the other N-1 states are all transient, the proba-
bility of belng in either of the absorbing states in-

creases over time and in fact approaches 1. Of even

more interest is the expected number of generations to

first entry into a particular state. We are interested

in those states in which one of the alleles under ob-
servation has managed to dominate a certain percentage
of the population. To illustrate the effects of genetic
drift we will focus our attention on 4 states: 70, 80,
90, and 100% dominance.

The expected number of generations fjk to first

entry into state k from state J is given by:

o

n
fjkzé n*fjk

n=0
n ,
where fjk 1s the probability of first entry to k from J

in exactly n steps. Unfortunately, the computation of

n
these expected values 1s difficult since the terms ka
are computed recursively as

n

n 1 n-i
Fix = 12_1 i * Pk
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in terms of the extended transition probabilities PJE

which are themselves computed by raising the transition

P = (Pij\l

power.,

matrix

to the ntP

However, for our purposes, we can estimate the
expected values by simulation, the results of which are
1llustrated in figure 3.1. As might be expected, the
number of generations to reach a particular state of
dominance is a linear function of population size. The
slopes associated with the (70, 80,90, and 100%) states
are roughly 1/5, 2/5, 4/5, and 8/5 allowing for a pre=-
dicted rate of dominance. Figure 3.2 illustrates more
clearly the role of population size in increasing the
expected number of generations to first entry into one
of the four states. Moreover, it illustrates that the

effects of genetic drift cannot be ignored even in a

population of size 100 if the number of generations
exceeds 50,

To reduce these stochastic effects over the interval
of adaptation, we can of course increase the population
size sufficliently to minimize genetic drift, but we do
so at the expense of maintaining a larger population and
in general a slower adaptive response. A second alter-
native which immediately comes to mind is to add a

mutation operator which would counteract the allele loss
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FIG 3.1: GENETIC DRIFT VARYING POPULATION SIZE
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Figure 3.1: The rate of allele loss due to genetic drift
as a functlion of population size.
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FIG 3.2: GENETIC DRIFT VARYING POPULATION SIZE
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Figure 3.2: The rate of allele loss due to genetic drift
as a function of population size.
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due to genetic drift and allow smaller population sizes.
To evaluate this alternative, a mutation operator can
be easily added to the Markov process discussed above.
While the addition of mutation complicates the expected
value computations even more, 1t is intuitively clear
that the states 0 and N are no longer absorbing states.
Figures 3.3 and 3.4 illustrate the effects of several
mutation rates on the simulated Markov process with
populations of size 50 and 100. As might be expected.
one mutation per generation is sufficient to increase
the expected first-entry times to the 100%-loss state
beyond the bounds of a practical adaptive interval.
However, the effects on the first entry times to the
other states are much less pronounced. The expected
first entry to a 90%-loss state with a population of

size 50 1s still less than 60 generations.

3.4 The Effects of Population Size on R1

The analysis of the preceding sections has yielded
considerable insight into the behavior of plan R1.
As we have seen, the loss of alleles from A(t) corres-
ponds to a dramaﬁic decrease 1n’the space belng searched
by Rl. 1If this reduced space does not contain the op-
timunm, ﬁe have seen that Rl will very likely remain on
a non-optimal plateau with mutation providing only a
low-probability chance of escape. Since this is the case,

1t 1s critical that alleles are lost only if their com-
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FIG 3.3: GENETIC DRIFT VARYING MUTATION
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Figure 3.3: The rate of allele loss due to genetic drift
as a function of the mutation rate.
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FIG 3.4: GENETIC DRIFT VARYING MUTATION
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Figure 3.4: The rate of allele loss due to genetic drift’
as a function of the mutation rate.
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petitors are in fact better. However, on test function
F1, alleles are lost even when there is no selection
differential and Rl converges to a non-optimal plateau.
The preceding section suggests that this may be due in
part to stochastic effects and suggests two approaches
for alleviating the problem: changing the population
slze and the mutation rate of plan Rl. In this section
we explore the effects of population size on the be-
havior of Ri,

Recall from appendix C that plan Rl maintained a
population of 50 individuals and a mutation rate of .001.
Note further from table 3.1 that 100 generations had’
elapsed by the time R1 generated A(3000). Referring
back to figure 3.3, we see that for a population size of
50 and a mutation rate of .001, the expected number of
generations for the simulated Markov process to enter
the 100%-loss state was approximately 75. Hence, the
allele loss observed in A(3000) could be due entirely to
genetic drift. If this is the case, increasing the pop-
ulation size should reduce considerably the rate of

allele loss on test function Fl. Whether or not this

will also improve the performance of Rl on F1 is not
quite so obvious. Clearly, premature convergence 1is

to be avoided. However, increasing the population size
may also have the effect of slowing down the rate of
convergence beyond acceptable bounds.

In order to evaluate these hypotheses, the behavior
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of Rl on Fl1 was also observed with population sizes of
100 and 200, leaving the mutation rate unchanged at .001,
Figure 3.5 contrasts the average rate of allele loss for
the varlous population sizes. As expected, increasing
the population size reduces the allele loss considerably
over the interval of observation. The effect here 1is
heightened by the fact that the time scale is in terms

of the number of trials rather than the number of gen-

eratlions. That 1s, the allele loss was reduced in part
because fewer generations (and hence fewer stochastic
effects) were involved 1n'generat1ng the same nurber

of sample points.

So we see that the problem of premature loss of
alleles can be effectively removed by increasing the
population size maintained by Rl. However, it remains
to be seen what effect this has on the performance of
Rl. Recall from chapter 1 that two local measures of

adaptive performance were defined for functions in E:

T
* _1 *
off-line xe(s) =3 :zg;: fe(t)
t=1
T
1
and on-line xe(s) = T :ZE: re(t)
t=1

where fe(t) is the performance rating given to the sample

solution generated by the adaptive plans for evaluation
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FIG 3.5: R1 ALLELE LOSS VARYING POPULATION SIZE
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Figure 3.5: The effects of population size on allele loss

for Rl on test function Fi.,
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at time t, and where f;(t) is defined by:

f;(t) = min {fe(l).fe(Z). veey fe(t)}

Figure 3.6 1llustrates the effects of population size on
Fl*(t). The tradeoff here is clear. Initially R1(50)
outperforms the larger populations, but converges pre-
maturely to a non-optimal plateau. BR1(100) and R1(200)
respond more slowly but yleld better long-term performarce.

Figure 3.7 illustrates the effects of populatien
size on F1(t). Here the interval required for the
tradeoff to become apparent is considerably longer with
R1(50) outperforming the others over the first 25,000
trials,

At this point a few words of explanation about the
notation being developed in chapter 3 is in order.
As we shall see, genetic plan Rl is really a family of
plans defined by such parameters as the population
size, the mutation rate, and so on. Specific members
of thils family will be designated by notation of the
form R1(X,Y,Z) specifying the actual parameter values.
For purposes of clarity, two notational conveniences
willl be used. First, parameters which have not yet
been introduced into the discussion will be suppressed.
So, for example, in the preceding paragraph we refer
to R1(X) even th@ugh by the end of the chapter four
parameters will have been defined. Secondly, in a

particular context where it is clear that only one
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FIG 3.6: R1 OFF-LINE VARYING POPULATION SIZE
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Figure 3.6: The effects of population size on off-line
performance of Bl on test function F1l.
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FIG 3.7: Rl ON-LINE VARYING POPULATION SIZE
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Figure 3.7: The effects of population size on on-line
performance of Rl on test function Fi.
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parameter is under study, the values of the other para-
meters will be suppressed. So, for example, we may
refer to R1(Z) in situations in which X and Y are clearly

fixed.

3.5 The Effects of Mutation Rate on R1

In this section we explore the second alternative
approach to the problem of premature allele loss on Fl1,
namely, changing the mutation rate for Rl. Recall from

appendix C that Rl maintained a population of 50 individ-
uals and a mutation rate of .001., Referring back to figure

3.3 we note that a considerable reduction in allele loss
was achleved in the simulated Markov process with a
population size of 50 by increasing the mutation rate.
This suggests that the allele loss in Rl might also be
reduced by increasing the mutation rate. How an increase
in the mutation rate will affect the performance of Rl
i1s not so obvious. Clearly, reducing the premature
allele loss will increase the potential for improving
loné-term performance as we saw in the previous section.
However, recall that in chapter 2 we were able to neg-
lect the effects of mutation (at .001) on the near-op-
timal sampling rate of Rl. As we increase the rate of
mutation, we increase its effects on sampling which,

in turn, may negatively affect the performance of Rl.

In order to evaluate these hypotheses, the behavior

of Rl on F1 was observed with mutation rates of ,005, .01,
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«02, and .1, leaving the population size unchanged at 50.

Figure 3.8 contrasts the average rate of allele loss
for the various mutation rates. As expected, increasing
the mutation rate reduces considerably the allele loss
over the interval of observation. Clearly, the problem
of premature allele loss can be solved by ralsing the
mutation rate. However, its effect on the performance
of Rl must also be considered.

Figure 3.9 1llustrates the effects of increasing
the mutation rate on the off-line performance of Rl
on F1. Increasing the mutation rate has the effect of
improving initial performance. As noted earlier, a
rutation rate of the same order of magnitude as 1/POP_SIZE
seems to be about the best setting. Increasing the rate
more definitely degrades off-line performance. These
observations tend to confirm our intultion about Rl.
With too low a mutation rate, the performance of Rl
is degraded by the premature loss of alleles. With too
high a mutation rate, the performance is degraded by
the sub-optimal allocation of trials to compet;ng hyper-
planes.

Figure 3.10 1llustrates the effects of increasing
the mutation rate on the on-line performance of Rl on Fil.
Here the effects of mutation are clear. When every

trial counts in the performance rating, any increase
in the application of a random search operator like

mutation has a degrading effect on the performance of Rl.
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FIG 3.8: Rl ALLELE LOSS VARYING MUTATION
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3.8: The effects of mutation rate on allele loss
for R1 on test function Fi.
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FIG 3.9: Rl OFF-LINE VARYING MUTATION
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Figure 3.9: The effects of mutation rate on off-line
performance of Rl on test function Fl.
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FIG 3.10: R1 ON-LINE VARYING MUTATION
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Flgure 3.10: The effects of mutation rate on on-line
performance of Rl on test function F1.
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3.6 The Effects of Crossover Rate on Rl

As described in appendix C, plan Rl produces an
individual for the next generation A(t+1) by selecting
two parents, applying crossover to produce an offspring,
and then applying mutation to each gene position with
pfobablllty Pp. In this section we explore the effects
of reducing the number of individuals in A(t+1) preduced
by crossover. This variation 15 easlly accomplished
within the framework of Rl as follows:

Do I=1 to POP_SIZE:

- select an individual a,, from A(t) using ‘the
selection probabilities.

- with probability P, apply crossover to a;; by
selecting a mate from A(t) using the selection
‘probabilities and choosing a crossover point.

- apply mutatioﬂ at each gene position with
probablility Pm.

Since crossover 1s the principle search operator in
Rl, the effect of lowering the crossover rate is to reduce
the number of new trials per generation. This reduction
should in turn heighten 'the stochastic effects noted in
the previous sections and increase the rate of allele loss
generated by Rl -on Fl. As a conséquence, we would -expect
the performance of Rl to be adversely affected, sirnce fewer
trials will have been allocated before the allele loss
has reduced A(t) to a nearly uniform population.

In order to evalusate these hypotheses, ‘the bemavior
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of Rl on test function F1 was observed with crossover
rates of P, = .8, .6, and .4, leaving the population
size and mutation rate unchanged at N = 50 and Pp = .001,
Figure 3.11 compares the rate of allele loss for
Rl on F1 as a function of the crossover rate. AS expected,
the rate of allele loss increases as the crossover rate
decreases. Figures 3.12 and 3.13 compare the off-line
and on-line performance curves for Rl on Fl1 as a function
of the crossover rate. Here the results were unexpected.
In spite of the fact that the rate of allele loss is
increased, lowering the crossover rate initially improved
performance. Only when the crossover rate was lowered
to .4 was any negative effect on performance observed.
In an attempt to understand this phenomenon, con-

sider for a moment the effects of the two genetic operators:

crossover and mutation. Until the allele loss in A(t) is
extensive, applying crossover to two individuals generally
produces an offspring quite distinct from either parent.
On the other hand, applying mutation to an individual

at the rate of .001 changes on the average f#(.001) alleles.
In the case 6f test function F1, the number of genes

per individual 1s:x=30. so that crossover affects on

the average .03 gene positions. So we see that with only
these two genetic operators, lowering the crossover rate
in Rl has the effect of increasing the likelihood that
members of A(t) will produce an offspring nearly identical

to themselves, 1f not identical. Since parents are
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FIG 3.11: R1 ALLELE LOSS VARYING CROSSOVER
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Figure 3.11: The effects of crossover rate on allele loss
for Rl on test function Fi.
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FIG 3.12: Rl OFF-LINE VARYING CROSSOVER
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Figure 3.,12: The effects of crossover rate on off-line
performance of Rl on test function F1.
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FIG 3.13: R1 ON-LINE VARYING CROSSOVER
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Figure 3.13: The effects of crossover rate on on-line
performance of Rl on test function Fi.
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selected on the basis of performance, the result is to
increase the probability of high-performance individuals
surviving into the next genefation. Here again we en-
counter the delicate tradeoff between further exploration
and preserving the status quo.  Applying crossover at

the rate of 1.0 seems to be too high a sampling rate for
R1(50,.001). High-performance individuals are discarded
faster than crossover can produce improvements, terminat-
ing with the usual premature convergence due to allele loss.
On the other had, a crossover rate of .4 seems to be

too low a sampling rate for R1(50,.001). Too little
exploration combined with the increased rate of allele

loss causes rapid convergenge to a non-optimal plateau.

3.7 The Effects of Generation Gap on Rl

Recall that plan Rl 1s designed to produce the
next generation A(t+1) by replacing all N individuals
from A(t). A genetic model of this type is described
as having non-overlapping generations; that 1s, parents
do not exist simultaneously with their offspring. It

is not immediately clear whether non-overlapping gen-

erations are good or bad in an artificial genetic
adaptive model., From an implementation point of view,
the distinction poses the classic tradeoff between
storage and cpu time. Non-overlapping models requlre
storage for two populations: A(t) an& A(t+1). If

generations overlap, less storage is required, but
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more generations are required (recomputing selection
probabilities) to produce the same number of trials. In
this section we ignore the tlme-space tradeoff and explore
the effect of overlapping generations on the performance
of Ri.

Overlapping generations can be incorporated into
Rl by adding a new parameter called the generation
gap G which specifies the fraction of A(t+1l) to be
generated via the genetic operators. Obviously,
G must lie in the range 04G=<1 with G = 1 the default
value used in the previous simulations. If G<€1, the
remaining positions in A(t+1) are filled by selecting
individuals from A(t) without replacement using a
uniform distribution. As before, we inquire as to
the expected number of offspring produced by an indiv-
idual 8;¢ in A(t). If we assume that the selection
probabilities do not change much over the life-time of
an individual, then on any particular generation ﬁhe ex-

pected number of offspring from ay¢ is given by:
(N'I-G) * p(ait)

where N is the population size and_p(alt) 1s the probability

of selecting a The number of generations a4 is ex-

1t°
pected to survive 1s simply the walting time to extinction.

Each generatlion a,, has a probabllity G of disappearing;

hence, the walting time is éand the total number of off-

spring produced by a is given by:
it
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NuG
-%—)*p(ait) = Nup(ay¢)

which i1s the same as the non-overlapping model.

On the basls of our experiences with the crossover
rate, we would Fxpect that reducing the generation gap
should 1ncreése the rate of allele loss since fewer trials
are made per generation. Its effect on performence 1s
not quite so obvious. Clearly, the reduced sampling rate
should improve the performsnce of R1(50,.001) on Fl as
it did in the case of crossover. However, note that the
individuals which are likely to survive into the next
generation are selected at random, rather than on the
basis of performance. This should reduce the extent of
the improvement observed when the crossover rate was re-
duced.,

In order to evaluate these hypotheses, the behavior
of Rl was observed on F1 with generation gaps of .8, .6,
and .4 leaving the population size, mutation rate, and
crossover rate unchanged at N = 50, Py = 001 and P, = 1.0.

Figure 3.14 compares the rate of allele loss for
Rl on F1 as a function of the generation gap. As expected,
the rate of allele loss increases as the generation gap
decreases. Figures 3.15 and 3.16 compafe the off-line
and on-line performance curves for Rl on Fl as a function
of the generation gap. As expected, lowering the gener-

ation gap provides an initial improvement in performance



80

FIG 3.14: R1 ALLELE LOSS VARYING GENERATION GAP
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Figure 3.14: The effects of generation gap on allele loss
of Rl on test function Fi.
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R1 OFF-LINE VARYING GENERATION GAP
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FIG 3.16: R1 ON-LINE VARYING GENERATION GARP
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Figure 3.16: The effects of generation gap on on-line
performance of Rl on test function F1.
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but also produces an earlier convergence to a non-optimal
plateau, the improvement belng considerably less dramatic
than that generated by a corresponding reduction in the

crossover rate.

3.8 Improving the Performance of Rl on F1

In the preceding sections we have 1solated several
parameters in the definition of plan Rl and have explored
the effects of independently changing these parameters
on the behavior of Rl on test function Fl. The motivation
for these studies was to gain further insight into how Rl
operates and, in particular, to analyze the problem of
premature convergence to a non-optimal plateau. As we have
seen, no one of the parameters studled both satisfactorily
resolves the problem of premature convergence and sub-
stantially improves the performance of Rl on Fl. 1In
this section we explore the possibility of resolving these
problems by changing various combinations of parameter
settings for Ril.

In this chapter Rl has evolved into a family of
genetic plans, a member of which is selected by specify-
ing the values of four parameters: the population size N,
the mutation rate Pp, the crossover rate P,, and the
generation gap G. Ideally, we would like to apply
optimization technigques to the space of algorithms de-
fined by these parameters and optimize with respect to

premature allele loss, off-line, and on-line performance.
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In reality, however, this approach 1s prohiblited by the
cost involved in analyzing the behavior of a single
member of this family. Because each plan 1s a stochastic
process, at least 5 (and often more) simulations are
required to produce analysis measurements within reason-
able standard error limits. In terms of present uni-
versity rates, this can mean a cost of as much as $50 to
evaluate a single plan on F1 alone. We will avoid this
problem by applying the insight gained from the previous
sections to the selection of a few well-chosen combin-
ations of parameters to confirm and extend our under-
standing of the basic genetic plan Rl.

We begin by noting that of the four parameters
analyzed, reducing the crossover rate produced the single
best improvement in the performance of Rl on Fl, even
though the allele loss rate actually increased in the
process. This, we felt, was due to the reduced sampling
rate effected by reducing the number of new individuals
produced by crossover. As we observed, reducing the
generation gap also lowered the sampling rate, but the
improvement in performance 1s not as substantlal as the
corresponding reduction in crossover because of the
difference in the kind of individual most likely to
survive into the next generation. If these observations
are correct, we would expect that sampling rates pro-
duced by a combination of reduced crossover rates and

generation gaps should not be as effective in improving
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the performance of Rl on Fl1 as the equivalent sampling
rate produced by crossover alone.

In ordér to evaluate this hypothesis, the behavior
of Rl on Fl1 was observed for 4 different combinations
of crossover rates and generation gaps (Pc=.8.G=1.0).
(P =.8,6=.8), (P,=.6,6=1.0), and (Po=¢6,G=.8), holding
the population size and mutation rate fixed at N=50
and Pm=.001. The performance curves generated by these
combinations on test function F1 are 1llustrated in
Figures 3.17 and 3.18, and they confirm our intuition
about the behavior of plan Rl. R1(.8,.8) performed
better on F1 than R1(.8,1.0), but not as well as R1(.6,1.0)
which has an equivalent sampling rate. As we saw pre-
viously, a combined sgmpling rate of less than .6 (in
this case R1(.6,.8)) adversely affects the performance
of Rl on Fl. These observations suggest that reasonable
settings for the crossover rate and generation gap of
Rl are approximately P,=.6 and G=1.0.

Alternatively; we saw that increasing the mutation
rate improved considerabiy the allele loss rate, but
the effects on performance were mixed. The best on-
line performance was generated by a mutation rate of
approximately Pm=1/N while any lncrease in mutation
adversely affected on-line performance. This, we felt,
was due to the fact that mutation is in fact an effective
method for combatting premature allele losé and, hence,

improving off-line performance. But because it accomplishes
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FIG 3.17: R1(50,.001,X,Y) OFF-LINE PERFORMANCE
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Figure 3.17: Off-line performance of Rl on Fl1l as a
function of crossover rate and generation

gap.



87

FIG 3.18: R1(50,.001,X,Y) ON-LINE PERFORMANCE
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Figure 3.18: On-line performance of R1 on F1 as a
function of crossover rate and generation

gape.
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this in 1ts random sampling style, the price is paid in
its adverse effect on on-line performance. If these
observations are correct, we should expect to see the
same kind of behavior changes produced by varying the
mutation of R1(50,x,.6,1.0) as we saw with R1(50,x,1.0,1.0),
but perhaps less dramatic changes since a crossover rate
of .6 has already improved the performance curves.

To evaluate these hypotheses, the behavior of Rl
on F1 was observed with mutation rates of Pp=.001, .01,
and .1, leaving the population size, the crossover rate,
and the generation gap fixed at N=50, P,=.6, and G=1.0.
Figures 3,19 and 3.20 compare the performance curves
generated by the various mutation rates. These observa-
tions confirm our intuition about the effects of mu-

tation on the performance of Rl and emphasize again the

tradeoff between on-line and off-line performance.
Finally, we observed that increasing the population
size reduced the rate of premature allele loss, but its
effects on the performance of Rl were ﬁlxed. Larger
populations responded more slowly but generated better
long-term off-line performance, while increasing the
population size adversely affected on-line performance

over the interval of observation. This, we felt, was

due to the fact that increasing the population size
reduces considerably the allele loss and hence improves

long-term performance, but at the cost of taking more

samples before a decision (a generation) 1s made con-
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FIG 3.19: R1(50,X,.6,1.0) OFF-LINE PERFORMANCE

y .
v

0.0 " 2000.0 4000.0 | 6000.0  8000.0  10000.0
SAMPLES REQUIRED

4 4 1 d 4

0.

Figure 3.19: Off-line performance of Rl on Fl as a
function of mutation rate,



FIG 3.20: R1(50,X,.6,1.0) ON-LINE PERFORMANCE
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cerning the re-distribution of trials. If these observa-
tions are correct, we should expect to see the same
kind of changes in the behavior produced by increasing
the population size of R1(x,.001,.6,1.0) as we saw with
Rl(x..001.1.0.1.0). but perhaps less dramatic changes
since a crossover rate of .6 has already improved the
performance curves.,

To evaluate these hypotheses, the behavior of Rl
on Fl1 was analyzed for population sizes of N=50, 100,
and 200, leaving the mutation rate, the crossover rate,
and the generation gap unchanged at Pp=.001, P,=.6,
and G=1.0. Flgures 3.21 and 3.22 compare the performance
curves produced by the various population sizes. These
observations confirm our intuition about the effects of
population size and emphasize again the tradeoff between
on-line and off-line performance. |

These observations also suggest that no particular
combination of the four parameter settings is going
to dramatically improve the performance of Rl on Fl,
and that perhaps the off-line performance generated
by R1(50,.01,.6,1.0) and the on-line performance generated
by R1(50,.001,.6,1.0) are about the best that can be

expected from the basic genetic plan Rl.

3.9 Summary _
We began this Chapter by noting that, although plan

Rl outperforms random search on test function F1, it
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Figure 3.21: Off-line performance of Rl on Fl as a
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FIG 3.22: R1(X,.001,.6,1.0) ON-LINE PERFORMANCE
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suffers from the problem of premature convergence to a

non-optimal performance plateau caused by a loss of

alleles in A(t), even though on F1 no allele has any
selective advantage over 1ts competitor. We saw via
Markov process slmulation that such allele loss rates can
in fact be caused by the stochastic side-effects of
generating new populations from old ones using only a
finite number of random samples. In order to understanc
and, perhaps, alleviate the problem, the effects of
changing various parameters of genetic plan Rl were
analyzed. As we observed, increasing the population
slze maintained by Rl reduces considerably the rate of
allele loss, but also poses a tradeoff in performance.
Larger populations respond more slowly, but yield better
long-term performance. Alternatively, the allele loss
can be counteracted by increasing the mutation rate.
However, the effects on performance are mixed. A
mutation rate of about 1/POP_SIZE seems to generate the
best off-line performance for Rl. But any increase in
the mutation rate adversely affects on-line performance.
Reducing the crossover rate did nothing to alleviate the
premature convergence problem; rather, it increased the
rate of allele loss. Surprisingly, however, it did
effect an improvement in the initial performance of R1,
suggesting that generating A(t+1) by replacing every

individual in A(t) was, perhaps, too high a sampling

rate, Reducing the generation gap of Rl was also ob-
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served to increase the rate of allele loss rather than
alleviate it. As with crossover, even with the increased
rate of allele loss, an improvement in initial performance
was observed. Finally, several combinations of parameter
values were analyzed in an attempt to improve the per-
formance of Rl on Fl. As we observed, no particular
settings significantly improved performance suggesting

that thils is about the best we can expect from Rl on Fl1.



Chapter 4

PERFORMANCE EVALUATION OF GENETIC ADAPTIVE PLANS

4L,1 Introduction

In the preceding chapters we have introduced a
class of genetic adaptive algorithms for study, and we
have focused our attentlon in particular on the be-
havioral characteristics of the baslc family of plans
Rl on test function Fl, The emphasls has been on under-
standing how these adaptive models operate in finite time
and space. In this chapter we apply the insight galned
by these studles to the problem of improving the per-

formance of genetic adaptive plans on E.

4,2 The Performance of Rl on E

In the last chapter we studied the effects of chang-
ing the Various parameters of Rl on its performance
on test function Fl. In this section we will extend
these observations to the performance of Rl on E. As
noted earlier, optimizing the performance of Rl over
its parameter space 1s prohibited by the cost of sim-
ulation analysis on exlisting facillities. As before,
however, we extend our insight by analyzing a few well-
chosen members of the family of plans defined by Rl.
Recall that in choosing a particular member in R1,
four parameters must be specified: the population size

N, the mutation rate Pm' the crossover rate P,, and the

96
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generation gap G. Based on the results of the previous

chapter, the following members were chosen for analysis‘

on E:

N P, P, G

m
R1( 50,.001,1
R1( 50,.001,
R1( 50,.001,
R1( 50,.001,
Rl( 50’ 001 (]
R1( 50,.01 ,
Ri1(100,.001,
R1(100,.001,
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Recall from chapter 1 that, for each fe in the environment

E, local robustness was defined by

for on-line performance and

T
xg(m) = 1 g £2(t)
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for off-line performance with the associated global

measures of robustness defined by
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respectively. éased on previous experience and with an
eye for practical applications, T=6000 was chosen as a
reasonable bound on the interval of observation. Tables
4.,1a and 4.1b sumﬁarlze the performance measures Ob-
tained from this evaluation and there were very few
surprises.

The first three members analyzed differed only in
their crossover rates of 1.0, .8, and .6 respectively.
As we observed before on test function F1, reducing the
crossover rate improves both off-line and on-line per-
formence. The fourth member analyzed 1llustrates that
on E as well as F1, reducing the generation gap is not
as effective as reducing the crossover rate. The fifth
and sixth members analyzed confirm on E the observation
regarding the tradeoff between off-line and on-line
performance presented by changing the mutation rate.
The only mild surprise came with the evaluation of the
last two members supporting a population of size 100,
Contrary to our earlier observations, increasing the
population size degraded both off-line and on-line
performance indices. Upon reflection, however, the
reason for this change seems oleaf. Recall that our
earllier observations over 10,000 trials suggested that
increasing the population size improved long-term
performance at the expense of short-term performance.

By shortening the evaluation period to 6000 trials, we

have put more emphasis on the short-term behavior and
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hence should expect to see a performance degradation.
These results confirm our earlier observations of
the behavior of R4, and they suggest that the off-line
performance of R1(50,.01,.6,1.0) and the on-line per-
formance by R1(50,.001,.6,1.0) are about the best

that can be expected from these simple genetic plans,

4.3 Elitist Model R2

Earlier ofservations of the behavior of Rl suggested
that generating N new individuals for each new population
A(t+1) was in fact too high a sampling rate. High-
performance individuals were lost before the genetic
operators were able to‘produce improvements. An im-
provement in performance was obtained by reducing the
crossover rate and/or the generation gap which, in turn,

reduced the number of new individuals produced for A(t+1).

Morepver. we observed that reducing the crossover rate
produced better performance improvements than a corres-
pronding reduction in the generation gap. This, we felt,
was due to the fact that, because of the selection
processes, high-performance individuals were more likely
to survive into the next generation via a reduction in
the crossover rate than with a reduction in the generation
gap. In thls section we consider the 1mpliéations of
giving high-performance individuals special treatment

by modifying the basic plan Rl to include the following
elitist policy:
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*
Let a (t) be the best individual generated up to
time t. If, after generating A(t+1) in the usual fashion,

a¥(t) 18 not in A(t+1), then include a*(t) to A(t+1)

as the (N+1)%h

member,

Such a policy guarantees that the best individual
generated will not be lost from one generation to the
next as a consequence of sampling effects or the appli-
cation of genetic operators. From the hyperplane analy.is
point of view, this policy will bias the distributior
of trials in favor of those hyperplane partition elements
which have produced the best-performing individual.

This suggests that the effect of such a policy on per-
formance may be to improve local search at the expense

of global search.

In order to evaluate the effects of such a policy,
two members of this family were evaluated on E:

R2(50,.001,.8,1.0)
and R2(50,.001,.6,1.0)

Figures 4.1 - 4.3 compare the behavior of these plans
with theilr R1 counterparts on test function Fl. Figure
4,1 1llustrates that the allele loss rate is slightly
better with R2, This is probably due to the fact that
appending the best individual tp A(t+1) prevents one

or two alleles from being counted as lost. Figures 4.2

and 4.3 1llustrate that R2 produces both off-line and

on-line curves for F1 which are significantly better than

those produced by Rl.
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FIG Y.1: R2 ALLELE LOSS ON F1
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FIG 4.2: OFF-LINE PERFORMANCE OF R2 ON F1
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FIG. 4.3: ON~LINE PERFORMANCE OF R2 ON F1
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Finally, the assoclated performance indices for
both off-line and on-line performance are tabulated below

in cbmparison with their Rl counterparts:

T=6000 R1(.8) R2(.8) R1(.6) R2(.6)
xg (T) .199 .178 146 .093
Xp, (T) .230 .076 .310 .182
xp3(T) || -26.5 -26.3 -27.2 -27.1
xpy(T) || 34.67 29.61 34.5 26.76
Xps(T) 3.75 5.86 2.56 3.95
Xg(T) 2,47 1.88 2.06 778 |
T=6000 R1(.8) R2(.8) R1(.6) R2(.6)
xgy (T) 4,27 2.88 3.65 2.71
Xpo (T) 76.8 51,73 76.7 50.46
xpy(T) || -23.17 | -22.9 -23.3 -24,02
xpy(T) || 93.2 65.8 89.9 59.92
xpg(T) || 34.1 36.2 36.2 37.49
Xg(T) 37.04 26.74 36.69 25.31

These results confirm our intuition about the behavior
of elitist plan R2. Because of its more conservative
sampling policy, on-line performance is consistently
improved. Off-line performance is improved as well,
but notice that the improvements come on the unimodal
surfaces, particularly F4, while the performance de-

graded significantly on F5.
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b,4 Expected Value Model R3

The problem of premature allele loss and the sub-
sequent convergence to a non-optimal plateau which was
analyzed closely in the previous chapter has still not
been resolved. As we have seen, changing the various
parameters of the genetic models affects both the allele
loss rate and performance curves on test function F1,
but gives no satisfactory solution to either. In this
section we explore the possibility of resolving these
problems by modifying the sampling techniques used in
R1 and R2.

We begin by focusing our attention agaln on the
two competing hyperplanés associated with a particular
gene position. As we have seen, test function Fl1 has
the characteristic that it has the same average value on
both partition elements, so that neither hyperplane theo-
retically has any selective advantage over the other.
However, the next generation A(t+1) is produced by taking
a finite number of samples from A(t) using a selection
distribution computed from sample means. This opens the
door for stochastic side effects from two sources: the'
error involved in the sample means (and hence the'selection
probabilities), and the error involved in only taking a
finite sample from A(t) using the selection distribution.
The error in the sample means is, of course, a function
of the population size and the variance of F1 on the

associated hyperplanes, and can be resolved, as wWe have
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seen, by increasing the population size at the expense

of initial performance. The Markov process‘slmulations
in the sectlpn on genetic drift modelled the second
source of error which, we have seen, cannot be ignored.
In Rl and R2 this sampling process 1s used to produce

the offspring of individuals in A(t). As a consequence,
the actual number of offspring produced by an individual
can differ markedly from the expected number of offsprirg,
As we saw in chapter 2, the offspring determine the
number of trials allocated to a particular hyperplane in
the next generation. Hence, the sampling side-effects
can lead to considerable disparities between the expected
and actual number of trials alloéated to competing pairs
of hyperplanes. This suggests that we consider rede-
fining the sampling process used in Rl and RZ in such a
way as to force‘the actual number of offspring to more
closely approximate the expected number.

Genetic adaptive plan R3 attempts to accomplish this
in the following way. The expected number of offspring,
u(alt)/ﬁf?3. is computed and associated with each individ-
ual ay. in A(t) before selection begins. Each time an
individual is selected as a partner for crossover, its
associated offspring count is decremented by .5. Each
time an 1nd1v1duai is selected to produce an offspring
without applying crossover, 1ts assoclated offspring
count is decremented by 1. When the offspring count

falls below zero, an individual 1s no longer avallable
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for'se]ectlon.

This modification to the selection process forces
the actual number of offspring to always be less than
u(alt)/GTES + 1 and generally less than u(alt)/ﬁ??3 + .5,
resultiﬁg in a leveling effect on the sampling error.

If the high rate of allele loss exhibited by Rl and R2
on F1 is due in part to this sémpllng error, R3 should
exhibit a reduced rate of allele loss and a corresponding
1mprqvement in performance.

In order to evaluate these hypotheses, the following
three members from the famlily of plans defined by R3 were

chosen for evaluation on E:

R3(50,.001,1.0,1,0)
R3(50,.001, .8,1,0)
R3(50,.001, .6,1.0)

Figures 4.4 - 4,6 compare the behavior of R3(50,.001,.6,1.0)
on F1 with its corresponding R1 and R2 counterparts.
Figure.u.h 1llustrates that, as we had hoped, the allele
loss rate is considerably reduced with the modified
sampling technique. Figures 4.5 and 4.6 compare the
performance curves of Rl, RZ, and R3 for test function F1l.
Notice that R3 performed significantly better.than R1
on F1, but not quite as well as R2,.

Finally, the associated performance indices for
both off-line and on-line performance of R3 on E are

tabulated below in comparison with Rl and R2:
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FIG Y.4: R3 ALLELE LOSS ON F1
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FIG 4.5: OFF-LINE PERFORMANCE OF R3 ON F1
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FIG. 4.6: ON-LINE PERFORMANCE OF R3 ON F1
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_T=6000 || R3(1.0) R3(.8) | R3(.6) | B2(.6) | R1(.6)
—;;1(T) 410 130 .166 .093 146
i (m) || uzs .213 .36k .182 .310
xp3(T) || -27.3 -27.1 -27.2 -27.1 -27.2
xpy, (T) 21.17 20,22 21.07 26,76 | 34.5
xpe (T) b.31 2.86 3.20 3.95 2.56
Xo(T) 196 -.735 -.483 778 2.06
T=6000 || R3(1.0) | R3(.8) R3(.6) R2(.6) | R1(.6)
Xpq (T) 3.53 2.41 3. b2 2.71 3.65
Xpp (1) || 65.65 46, 64 55.15 50.46 76.7
xFB(T) -24,6 -24,87 -24,94 -24,02 -23.3
xp, (T) || 48.28 49.08 44,18 59.92 89.9
:E§<T) 36.46 ~132.29 37.31 37.49 36.2
Xg(T) 25.46 | 21.68 22,65 25,31 36.69—1
These results yield two interesting observations. First,

note that R3(.8) performed slightly better on E than
R3(.6), suggestlng that, by reducing the sampling error,
a higher sampling rate can be supported. Secondly,
note that, although R2 outperformed R3 on Fl1, R3 showed
an overall improvement in robustness on E. Both of these
observations confirm our intuition about the behavior

of the elitist and expected value models.
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L,5 Elitist Expected Value Model R4

At this point in the analysis of genetic adaptive
plans, it 1s difficult to resist combining the two pre-
vious models to produce an expected value model with an
elitist policy. The motivation here is to increase our
confidence in the observations and inferences made so
far about the behavior of genetic plans, rather than pro-
viding new insights. If our anélysis of the preceding
sections 1is correct, we should expect that adding an
elitist policy to R3 should improve its performance on
the unimodal surfaces at the expense of multimodal per-
formance.

In order to evaluate this hypothesis, two members
of R4 were chosen for analysis on E:

R4(50,.001,.8,1.0)
R4(50,.001,.6,1.0)

Figures 4.7 - 4.9 compare the behavior of R4(.6) on
test function F1 with its R2 and R3 counterparts.
Figure 4.7 1llustrates again that adding an elitist
policy reduces slightly the allele loss rate on Fl.
Figures 4.8 and 4.9 illustrate the 1ﬁproved off-line and
on-line performance curves generated by RU.

Finally, the associated performance indices for
both off-line and on-line performance of R4 on E are

tabulated below in comparison with R3 and R2:
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FIG 4.7: RY ALLELE LOSS ON F1
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FIG Y.8: OFF—LINE PERFORMANCE OF RU ON F1
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FIG. 4.9: ON-LINE PERFORMANCE OF RY ON F1
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T=6000 || B4(.8) | R4(.6) | R3(.8) | R3(.6) | R2(.6)
xpy (T) .097 .113 130 166 .093
Xpo (T) .201 .221 .213 . 360 .182
xp3(T) [[-27.5 |-28.2 [-27.1  [-27.2  |-27.1
xpy(T) || 18.21 | 17.62 | 20.22 | 21.07 | 26.76
xps(T) || 2.98 3.34 2.86 3.20 3.95
Xg(T) || -1.20 | -1.38 -.735 | -.483 .778
T=6000 || R4(.8) | R4(.6) | R3(.8) | R3(.6) | R2(.6)
Xpy (T) 2441 2.32 2.1 Jok2 2.71
xpp (T) 35.46 | 34,76 | L6.64 | 55.15 | 50.46
xp3(T) || -25.35 | -26.49 | -24.87 | -24.94 | -2L.02
xpy(T) || 42.53 | 40.73 | 49,08 | 44,18 | 59.92
xps(T) || 33.59 | 34.3% | 32.29 | 35.31 | 37.49
Xg(T) 17,73 | 17.12 | 21.68 | 22,65 | 25.31

These results suggest that our intuition about the effects
of an ellitist policy on the behavior of these genetic

plans is correct. The performance on the unimodal sur-
faces (F1-F4) i1s considerably improved at the expense of

performance on the difficult multimodal surface F5.
Notice however that performance on F5 was only slightly
affected (an observation which will be explored more
fully later) and, as & consequence, R4 generated the best

overall performance we have seen on E.
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It is worth considering at this point whether the
performance generated by R4(50,.001,.6,1.0) is about the
best R4 can do on E. We have been evaluating these
particular parameter settings to provide straightforward
comparisons with the preceding models. However, the
changes we have made to the genetic algorithm may also
affect the choice of the parameter settings. To answer
this question, the performance of the following members of
R4 was evaluated on E:

Ru(.50o-001.o 1
R4( 50,.001,.6,1
RHﬁ 50..001.. o1
R4( 50,.01 .. o1
Ru( 500005 oo 1
RU( 50..001,.6.

R4( 50,.001,.6,

.0)
.0)
.0)
.0)
.0)
«8)
.6)
R4(100,.001,.6,1.0)

Tables 4.2a and 4.2b compare the off-line and on-line
prerformance indices for each of the parameter settings.
The first three members evaluated differ only in their
crossover rates and they suggest that a crossover rate
of .6 1s still a reasonable cholce. Notice, however,
that because of the overall improvement in performance,
R4 1s considerably less sensitive than Rl to changes in
the crossover rate. The fourth and fifth members illus-
trate the effects of an increased mutation rate. Here
the results differed from before. Increasing the muta-
tion rate degraded both the off-line and on-line per-
formance of Rl, This observation will be explored in

more detail later. The sixth and seventh members 1illus-
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trate again the negative effect on performance generated
by reducing the generation gap. And the last member
evaluated illustrates again that increasing the population
size degrades performance over the interval of observatiormn.
In summary, then, these results suggest that the
performance generated by R4(50,.001,.6,1.0) is about the
best R4 can do on E. It is important, however, to
emphasize the extent of the improvements in performaﬁce
we have achieved by moving to type R4 genetic plans.
Recall from the evaluation in appendix C that, if on-line
performance 18 desired, one simply cannot afford to use

random search. Even the simplest genetic plan generates

significantly better on-line performance. However, when
measuring off-line performance, we saw that random search
gave Rl considerably stiffer competition and produced
in several cases better performing individuals over the
interval of observation. To illustrate the improved
performance of R4, figures 4.10 - 4.14 compare the off-
line performance curves of random search on each of the
test functions in E with the best curves generated by
Rl and R4 as well as the (unattainable) optimal off-line
curve given by:

£*(t) = MIN(E) , t=1,...,T
On test functions F1 and F2 plan R4 located the minimum
without difficulty within the interval of observation.
On the larger search spaces assoclated with F3 and F4,

the minimum was not found within 6000 trials. But notice
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FIG. 4.10: OFF-LINE PERFORMANCE ON F1
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FIG. 4.11: OFF-LINE PERFORMANCE ON F2
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FIG Y4.12: OFF-LINE PERFORMANCE ON F3
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FIG. Y4.13: OFF-LINE PERFORMANCE ON FU
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FIG. Y.1U4; OFF-LINE PERFORMANCE ON FS
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that the problem of pre-mature convergence to a non-
optimal plateau is no longer evident. Consistent pro-
gress 1s made over the entire interval of observation.
Only on the difficult multimodal surface defined by F5
do we still see convergence to a non-optimal plateau.

It is this problem which will be addressed in the next

sections.

4.6 Improving the Performance of B4 on F5

As noted in the previous section, considerable
progress has been made in improving the performance of
finite genetlic models on E, By modifying the sampling
technique used in Rl so that the actual number of off-
spring more closely approximate the expected number, the
allele loss rate due to stochastic side-effects has been
reduced considerably with a corresponding improvement
1n’performance. In addition, by adding an elitist
policy to R3, significant improvement on the unimodal
surfaces was observed. Figure 4.15 summarizes the re-
maining fly in the ointment: the performance of genetic
plans on F5., By golng to plan R3, the premature con-
vergence generated by Rl was replaced by an off-line
performance curve which made slow but steady progress
over the interval of observation. Adding the elitist
policy to R3 improved initial off-line performance, but
once agaln we observe convergence to a non-optimal

plateau. Thls also suggests an explanation to the
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FIG. 4.15: OFF-LINE PERFORMANCE ON FS
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observation noted in the previous section that adding an
elitist policy to R3 did not degrade the performance
indices for R4 on F5 as much as had been expected. As
figure 4.15 1llustrates, the average values (performance
indices) of the off-line curves generated by R3 and R4
are very nearly the same. Over a longer time interval,
the negative effects of the premature convergence with
R4 would have been more clearly seen. In this section
we address the pfoblem of improving the global search
properties of R4 without, hopefully, having to give up
the improved local performance.

We begin by considering this problem in terms of
the hyperplane analysis introduced in chapter 2. Recall
that genetic plans have the property that the best of
competing hyperplanes were allocated an exponentially
increasing number of trials relative to their competitors.
This property was shown to be a consequence of the fact
that the number of instances of a particular hyperplane
in A(t) changed over time in proportion to the hyper-
plane’s performance relative to its competitors. If a
particular hyperplane outperforms its competitors for
‘a relatively small number of generations, we saw that
the number of instances of that hyperplane in A(t)
increased exponentially to a point of complete dominance.
When such a hyperplane is in fact the best, this is pre-
cisely what we want to happen with the corresponding

allele loss effecting a reduction in the search space.
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However, we are working with finite genetic plans which
maintain reasonably small populations which evaluate
hyperplane performance via sample means based on a rela-
tivély small number of samples. As a consequence, it is
not difficult to imagine that some of the premature allele
loss observed may be the result of non-optimal hyperplanes
appearing to be the best for a sufficiently long time to
effect a reduction in the search space. More to the
point, 1t 1s easy to imagine that on the difficult sur-
face defined by F5 a hyperplane associated with a rela-
tlvely good local optimum could quickly dominate A(t)
and cause the observed premature convergence., These
observations suggest that the premature allele loss rate
and the performance of genetic plans on multimodal func-
tions could be improved by making it more difficult for
hyperplanes to dominate A(t). It should be clear,
however, that overall performance on E may be seriously
degraded unless a solution is chosen carefully, since

it i1s precisely this exponential increase in trials
which generates the kind of performance exhibited by

R4 on the unimodal surfaces. What we seek 1s a solution
which permits exponential exploitation of the observéd
best without allowing them to readily dominate a finite
population. This suggests that, rather than allow ex-
ponential growth until total dominance occurs, genetic
plans should admit "controlled" growth in the form of

an "S" curve as 1llustrated below:
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POP_MAX

Such an approach permits initial exponential exploit-
ation of hyperplanes for rapid performance improvements,
while at the same time making 1t considerably more
difficult for a hyperplane to completely dominate A(t).
The difficulty, of course, is in finding a reason-
able implementation for this conceptually simple solu-

tion. Consider for a moment the alternatives within

the R4 framework. Increasing the'population size
serves both to improve the sample means and increase
the time required for a hyperplane to dominate A(t).

As we have seen, however, this results in a significant
degradation in performance over the interval of ob-
servation. Increasing the generation gap reduces the
rate at which decisions are made and hence the rate of
dominance. Hoﬁever. wlthin the genetic context, a
value larger than 1.0 makes no sense. Increasing the
crossover rate has the opposite effect from that desiréd.
As we saw in chapter 2, crossover becomes increasingly
less likely to interfere with hyperplane growth as it

begins to dominate A(t). Increasing the mutation rate

seems to be the only possible solution within the RY
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framework. As the number of instances of a particular
hyperplane begin to dominate A(t), the number of their
offspring expected to undergo mutation increases and
effects a reduction in the hyperplane's growth rate.

In order to explore the aspects of such a solution,
the performaence of'Rﬁ was evaluated on F5 with mutation
rates of .001, .005, .01, and .05, respectively. Figure
L,16 1llustrates clearly the effect that increasing the
mutation rate has on the off-line performance of R4 on F5,
As the mutation rate increases, the shape of the off-line
performance curve changes to reflect less dramatic initial
performance and more uniform progress over the entire in-
terval of observation. Note that R4(.01) very nearly
converges to the minimum within 6000 trials. However,
its initial performance is less impressive than R4(.001),
This suggests an explanation to the observation noted in
the previous section that, unlike Rl, the performance of
. B4 on E was actually degrading slightly by increasing the
mutation rste from .001 to .01. With R1l, increasing the
mutation rate served to reduce its high rate of allele loss
and improve performance. However, with R4's reduced
allele loss rate and improved local performance, increasing
the mutation rate generated an improvement in longer-term
performance at the expense of 1nitia1 performance. Had we
evaluated R4 over a longer time interval, the long-term
improvements would have been more clearly visible.

Finally, figure 4.17 illustrates clearly what we have
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FIG. 4.16: OFF-LINE PERFORMANCE OF R4 ON FOS
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FIG. 4.17: ON-LINE PERFORMANCE OF RY ON FS
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seen before. If on-line performance is required, any in-

crease in the mutation rate seriously degrades performance.

4,7 Crowding Factor Model RS

Holland has suggested that the kind of controlled
growth we seek in finite genetic models occurs in nature as
a consequence of crowding. That 1s, as more and more like
individuals dominate an environmental niche, the compet!’-
tion for limited resources increases rapidly resulting in
lower life expectancies and birth rate. In thils section we
consider the effects of including such a feature in genetic
adaptive plans as an alternate to increasing the mutation
rate in order to improve performance on multimodal surfaces.

If we think of the genetic plans in terms of the over-
lapping generation models. connections between the natural
and artificial systems are more intuitive. In particular,
consider a model in which only a few offspring are pro-
duced each generation (e.g. G=.1). Plans of this sort
produce A(t+1) as follows:

- produce G#N offspring using selection and the

genetic operators

- using a uniform distribution on A(t), insert the

G#N offspring into A(t) by selecting G#N
individuals to "die".
Stated in this form, the concept of life expectancy is more
clearly defined for these artificial systems. And, as we

noted in chapter 3, the expected number of offspring of an



137

individual is directly related to the number‘of generations
it survives. What we seek 18 a method for reducing the
life expectancy of individuals which are instances of a
hyperplane rapidly dominating A(t).

One interesting approach to this problem 1s as follows.
When selecting an individual in A(t) to dile, pick several
candidates initially and choose that one which is most sim-
ilar to the new individual being inserted into the popula-
tion. For the genetic models under study here, similarity
158 defined in terms of the number of matching binary
alleles. Intuitively, this approach has the right chaiac-

teristics. Until a hyperplane begins to dominate, the
modified replacement policy has little effect, allowing

initial exponential growth. However, as a hyperplane begins
to dominate A(t), instances of that hyperplane become in-
creasingly more likely to be replaced by other instances,
resulting in reduction in the hyperplane growth rate.

This approach will clearly increase the amount of pro-
cessing required to produce the next generation. Additional
information (which, incidentally, has a derivative-like
flavor) is being computed at each time step to control the
allocation of trials. 1In this section, however, we will
ignore the processing time tradeoffs and concentrate on the
effects of this approach on the performance of genetlic plans
on E.

In order to galn further insight into this approach to

controlled growth, a fifth parameter was defined for the
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genetic plans under study: a crowding factor parameter CF
which specifies the number of individuals initlally se-
lected as candidates to be replaced by a particular off-
spring. CF=1 18 equlvalent to no crowding factor, and as

CF increases, the more likely 1t becomes that similar in-
dividuals replace one another. As an initial study of

the effects of the crowding factor, the behavior of the
following four members of thls new class of genetic plar.s
was analyzed: R5(50,.001,.6,.1,CF) where CF =1, 2, 3, and
4, Figure 4.18 1llustrates the allele loss rates of each

of the plans on test function Fl. Recall that, because of
the symmetry of Fl1, theoretically there should be no allele
loss. As one can see, increasing the crowding factor re-
sults in a dramatic decrease in the allele loss rate. Fig-
ures 4.19 and 4.20 give the off-line and on-line performance
curves generated by these plans on test function F5. BRe-
call that these studies were motivated by the observation
that the off-line performance curves of R4 on F5 suggested
that premature convergence was still a problem on multimod-
al surfaces. Figure 4.19 1llustrates that the crowding
factor has in fact the right effect on F5 with R5(2) very
nearly converging to the global minimum within the interval
of observation. Figure 4.20 i1llustrates that, like mutation,
increasing the crowding factor adversely affects on-line per-

formance., This, of course, is due to the constralnts placed

on the number of samples allocated to the observed best.
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FIG 4.18: RS ALLELE LOSS ON F1
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FIG. 4.20: ON-LINE PERFORMANCE OF RS ON FS
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Any reduction slows the overall improvement rate.
Notice, however, that these negative effects are not
nearly so severe with increases in the crowding factor
as they are with increases in mutation. The reason
seems obvious. Mutation controls the growth rate by
randomly changing allele values, an approach which be-
comes more likely to produce performance degradation

as adaptation progresses. On the other hand, the crowd -
ing factor provides the same kind of controlled growth
rate by reducing the number of offspring produced by
instances of dominating hyperplanes, rather than modify-
ing offspring allele values.,

We began this analysis of the crowding factor by
arbitrarily choosing an overlapping generation model for
which G=.1l. Since we saw in previous studies that in-
creasing the generation gap led to improved performance,
it 1s of interest to explore that possibility here. In
this situation we do not have quite the freedom in choos-
ing G that we had before since as G increases beyond ,5,
the concept of the crowding factor becomes less meaning-
ful, and makes little sense at all if nearly all the pop-
ulation is being replaced. As a consequence, the effects
of crowding were analyzed for two other values of G,

.2 and 4. Figures 4.21 and 4.22 give the off-line
performance curves for each of these settings and 1llus-
trate two points of interest. The first observation is

that, for the same crowding factor, increasing the
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FIG. U.22: OFF-LINE PERFORMANCE OF RS ON FS
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generation gap actually degraded the off-line performance

curves of R5 on F5. In each case an increase in the

crdwdlng factor was required to preserve the same kind

of performance curve. These observations suggest an

interesting interaction between crowding and generation

gaps: the larger the generatlion gap, the less effeétive

crowding becomes. One possible explanation for this

interaction is as follows. As the generation gap increases,

the lifespan (in terms of generations) of an individual

is reduced with a compensating increase in the number

of offspring per generation. The crowding facﬁor operates

by reducing the lifespan of individuals and, hence, with

shorter average lifespans its effectiveness 1s reduced.
Finally, it remains to be seen what effect crowding

has on the overall performance of genetlic plans on E.

To analyze these effects, the following members of RS

were evaluated on E:

R5(50,.001,.6,.1,2)
R5(50,.001,.6,.1,3)
R5(50,.001,.6,.1,4)
R5(50,.001,.6,.2,2)
R5(50,.001,.6,.2,3)
R5(50,.001,.6,.2,4)
R5(50,.001,.6,.4,3)
R5(50,.001,.6,.4,4)

Tables 4.3a and 4.3b give the corresponding off-line and
on-line performance indices computed over 6000 trials.

As in the previous section these results indicate quite
clearly the tradeoffs in performance we face. Including a

crowding factor in genetic plans improves significantly
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their performance on multimodal surfaces at the expense

of rapid convergence on the unimodal surfaces. On the

other hand, the distinction between these tradeoffs
becomes less evident as the interval of observation

increases and more emphasis is placed on convergence.

4,8 Generalized Crossover Model R6

Recall from the hyperplane analysis introduced in
chapter 2 that genetic plans generate near-optimal
allocation of trials to competing hyperplanes whose
definition length (the shortest gene segment containing
all the fixed positions) was short relative to the
chromosome length {. This was due to the fact that
crossover disrupted the allocation of trials according
to performance with a probability directly proportional
to the definition length of a hyperplane. This means
that the performance of the genetic plans under study may
in fact be representation dependent. That 1s, one
binary representation of the space to be searched may
be less affected by crossover than another representa-
tion because high-performance groups of alleles are
physically closer together., One solution to this prob-
lem is to allow the representation itself undergo adapta-
tion be introducing a genetic inversion operator which
physically permutes genes on a chromosome without loss

of functional position. Studies by Franz (1972) suggest
that changes effected by inversion are difficult to
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detect except perhaps in long-term behavior. Since we

are concerned with practical applications, we explore
an alternate approach in this section: the possibility
of modifying the crossover operator itself to reduce
representation dependencies.

Recall again how crossover has been defined to
this point. After selecting two individuals, a crossover
point is selected uniformly from the {-1 positions be-
tween the { genes. The offspring consists of the first
segment of the flrst parent up to the crossover point and
the remaining segment of the second parent. If we think
of a chromosome as a circle with the first gene immedi-
ately following the last
then it becomes immediately clear that there are in fact

2 crossover polnts: one fixed at position zero and the

other randomly selected.

R I K L

x1 | x2 | x3 cee Xg| X1 X2 | oo

- e a e w e ar -

- o e e am e e e e

Yi{y2{y3| ... Yo | Y1} Y2 Y

- e e w e e e o e

t--random agixed

An immediate generalization to the present crossover

operator 1s to allow both crossover points to be randomly
selected. Further generalization can be made by allowing
an arbitrary number of crossover points. But notice

that the actual number of crossover points is always
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an even number since (from the circular viewpoint)
you always end up back where you started.

In order to understand what effects these changes
have on the allocation of trials to competing hyperplanes,
We generalize the discussions of chapter 2. We need to
compute the probability that an offspring after crossover
lles in a different hyperplane partition element than
1ts parent. If we let X1, X5, ***, Xk be the k positious
defining a hyperplane, then the offspring will certajlaly
lie in the same hyperplane if there were an even number
of crossover points between each consecutive pair of
fixed points (xi.xj). Hence, 1f we think of the hyper-
plane's k fixed points as dividing a chromosome into k
segments (in the circular viewpoint), the probability of
staying in the same hyperplane is at least as great as
the pfobabillty that each segment contains an even number
of crossover points, Restating this as the probability
of the loss of an offspring to another hyperplane, we
have:

Pr (9rossover 1os§] 21 - Py

where Pnk 1s the probability that each of the k segments

received an even number (including zero) of the n=2m
crossover points,

In order to get a feeling for how these probabilities
change by increasing the number of crossover points,
consider the effects on second-order hyperplanes. fhey

divide the chromosome up into two segments of length
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ﬂléxz-xl and k2=g-(x2-x1) with the probabiilty of a
randomly selected crossover point falling in one of them
glven by 114&' If we assume the convention that whenever
an odd number of crossover points are randomly selected,
the final even crossover point is defined to occur at
position zero, then we have:

m
21 n-21
%,

Pho = (21) % 1
1=0
where n is the number of randomly selected crossover
points with m=n/2 (integer division).

Figure 4.23 1llustrates how the loss probability
1-P , changes both as a function of the definition
length 91 and the number of randomly selected crossover
points n for second order hyperplanes with‘a chromosome
length of £=30. Notice that there are two distinct
families of curves: one for n even and one for n odd.
When an odd number of crossover points are randomly
selected, the probability of loss for wldely spaced
fixed points remains high since it remains likely that
all the crossover points will fall in the long segment
defined by the two fixed polnts; On the other hand,
randomly selecting an even number of crossover points
immediately drops the loss probabilities to .5 or less
with X/Z spacings becoming the most likely victims.

How these generalizations of the crossover operator
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FIG 4.23: PROBABILITY OF LOSS DUE TO CROSSOVER
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wi1ll affect the performance of genetic plans is not clear.
We may find that they reduce representation dependencies
at the cost of lower overall performance on E. On the
other hand one can imagine that perhaps a modest lncrease

in the number of randomly selected crossover points may

generate performance lmprovements while larger numbers
of crossover points may be too disruptive to the allo-
cation of trials to higher order hyperplanes.

To explore these possibilities, plan R5 was mod-
ified to accept a sixth parameter, CP, which specifies
the number of crossover points to be randomly selected.
Up to this point we have been implicitly using a value
of CP=1, If CP is odd, the final crossover point is
assumed to occur at position zero.

As an initial attempt to understand the implications
of generalized crossover, five members of R6 were eval-

uated on test function Fi:

R6£50..001..6.1.0,1.1;
R6(50,.001,.6,1.0,1,2

R6(50,.001,.6,1.0,1,3)
R6(50,.001,.6,1.0,1,4)
R6(50,.001,.6,1.0,1,8)

Figure U4.24 depicts the allele loss generated by these
members of R6 on test function F1, and i1llustrates that
the allele loss rate actually increases as CP does.

This is a surprising observation for which an explanation
18 not immediately clear. It may very wel} be the case
that the previous disruption of the allocation of trials

to the longer hyperplanes may have counteracted some
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FIG U.24: R6 ALLELE LOSS ON F1
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of the stochastic side-effects of genetic drift and, hence,
the removal of some of this disruption opened the dpor
for increased allele loss,.

Figures 4.25 and 4.26 give the off-line and on-line

performance curves generated by these members of B6,on
Fl. In general, increasing the number of crossover
points seems to degrade slightly the off-line performance
of R6 with R6(8) exhibiting the old problem of premature
convergence. This is probably due to the previously
noted increased allele loss rate. It i1s also interesting
to note that inlitial on-lline performance also degrades
somewhat as CP increases, suggesting that increasing the
number of crossover points leads to a less conservative
sampling policy in the initial stages of adaptation.
Finally, to evaluate the effects of generalized

crossover on the performance of R6 on E, the behavior

of the following members was analyzed on E: -

R6(50,.001,.6,1.0
R6(50,.001,.6,
R6(50,.001,.6
R6(50,.001,.6

1
1
o1
R6(50,.001,.6,1
1

R6(50,.01, .6

1,1)
0,1,2)
0,1,3)
0'1’1"')
0,1,8)
0,1,2)

R6(50,.001,.6, .1,2,2)

Tables 4.4a and 4.4b summarize the off-line and on-line
performance indices for these evaluations over 6000 trials,
The first five members analyzed differed only in the
number of crossover points selected. The best overall

off-line performance was achieved with CP=2, chiefly

on the basis of its performance on F4, Note that
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FIG; 4.25: OFF-LINE PERFORMANCE OF R6 ON F1
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FIG. Y.26: ON-LINE PERFORMANCE OF R6 ON F1;
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. performance of F5 degrades significantly as CP increases,
indicating again how important a low allele loss rate 1s.
As we saw on Fl1, on-line performance degrades signifi-
cantly as CP increases.

The last two members were chosen as llikely candidates
to improve the off-line performance of RB6 on E. Time
and resources prohibited a more detalled esnalysis of
the six parameters defining R6. However, since we had
earlier noted the increased allele loss rate of R6 on
F1, the two most likely candidates for improvement

were increased mutation rates and the crowding factor.
One instance of each was chosen; neither improved off-
line performance over 6000 trisls and, as we have seen

before, both degrade on-line performance.

4,9 Summary
We began this chapter by analyzing the performance

of the basic family Rl of genetic plans on E. While this
family outperforms random search on E, we noted that
there was considerable room for improvement. To this
basic plan we added an elitist policy which biased the
allocation of trials slightly toward the hyperplanes
which produced the currently best individual. This

resulted in improved performance on E, particularly

on the unimodal surfaces. In fact, performance on F5
was degraded suggesting that an elitist policy improves

the local search properties of genetic plans. As an
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alternative, expected value model R3 was introduced
which attempted to improve performance by minimizing

the difference between the actual and expected number of
offspring produced by individuals in A(t). This broduced
a significant increase in performance on E. R3 was then
modified to include the previously mentioned elitist
policy. Agailn the performance on E was improved to the
extent that on test functions F1-F4, there were no signs
of premature convergence over the interval of observation.
Rather, RY4 generated steady progress toward the minimum
with convergence within 6000 trials on F1 and F2. F5,
however, remained a difficult challenge. To that end,
several members of the R4 family were analyzed on F5

to see whether a change in parameters would improve the
off-line performance curve. Increasing the mutation

rate to .01 seemed about the most effective change for

F5 but resulted in an overall decrease in off-line
performance on E. As an alternative approach to im-
proving the global search properties of R4, a crowding
factor model was introduced which attempted to slow

the growth rate of hyperplanes beginning to dominate

the finite population A(t). Like increasing the muta-
tion rate, the crowding factor improved off-line perform-
ance on F5 at the expense of on-line performance, but

the tradeoff was less pronounced. Finally, generalized
crossover model R6 was introduced in an attempt to

alleviate possible representation problems caused by
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the disrupting effect crossover has on long-definition
hyperplanes. By allowing several crossover points to
occur when generating an offspring, the disruptiveness
on long-definition hyperplanes can be considerably
reduced. Although time did not permit a complete anal-
ysis of the effects, no significant improvement in
performance on E was noted. In fact overall performance
was seen to degrade as the number of crossover points

increased.



Chapter 5
PERFORMANCE ANALYSIS OF FUNCTION OPTIMIZERS

5.1 Introduction

In the last two chapters we have developed a class
of genetic plans which performs well on the environment
E in comparison with random search. In this chapter we
provide an alternate point of comparison by evaluating
the performance of several function optimization tech-
niques on E.

In our discussion of function optimization in chapter
1, we noted that the problem of finding functlion extrema
has geﬁerally been divided into two subproblems: finding
the nearest local extremum (local or unimodal search)
and finding the global extremum (global or multimodal
search). Many sophisticated techniques have been de-
veloped which solve the local search problem (see, for
example, Jacoby and Kowalik(1972) or Huang(1970)). How=-
ever, much less success 1s evident for the global search
problem. Several approaches have been proposed if
appropriate bounds can be assumed on the derivatives of
the functions to be optimized (see, for example, Bremer-
mann (1970) or Brent (1971)). Alternatively, one can
perform some sort of patterned search in an attempt
to locate the global optimum (see, for example, Hill

(1969)). Unfortunately, for most of these techniques

the computation time grows rapidly with the dimensionality
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of the problem, and they are used in practlice only for
low-dimensional problems. As a consequence, one is left
with two altefnaﬁives for a more general global function
optimizer. Either one runs a good local optimizer a
sufficlently large number of times to assure all local
optima have been found or revert to some form of random
search. Since we know we can do better than random
search with the genetic algorithms, we consider in this

chapter the alternative of restarting a local optimizer.

5.2 Local Optimization Techniques

The most successful 1océl minimization techniques
have come from the area of iterative descent methods.

The ldea here is to reduce the problem of finding the
minimum to a sequence of one-dimensional searches along

a direction vector Py e That 1s, at each step a point

Xy 4q 18 generated where X, ., = X +Akpk and f(ky,q)< (k).
The techniques differ in how the direction vector Py and
the step slze.kk are chosen. We will consider two
different techniques, one which requires that derivative
information be avallable for the function being optimized
and one which does not.

A well-studied approach to the choilce of direction
vectors 1s to perfbrm a sequence of one-dimensional
minimizations along a sequence of conjugate directions.
If the function to be minimized is quadratic of di-

mension n, then in theory only n such one-~dimensional
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minimizations are required for convergence. In practice,
however, conjugate direction techniques are applied to
arbitrary functions with heurlistic modifications to pre-
vent the conjugate directions from becoming linearly
dependent and reducling the search space. Powell (1964)
proposed a technique for calculating conjugate direétions
without derivative information by means of a series of
one-dimensional minimizations. Subsequently, Brent (1971)
and others have made modifications to improve the per-
formance of this approach., Since Brent's algorithm is
available in software form (PRAXIS), it seemed a reason-
able choice as a representative of conjugate direction
methods which do not require derivatives.

A somewhat more sophisticated approach to the
problem of local minimization, using variable metric
methods, was introduced by Fletcher and Powell (1963)
with subsequent variations proposed by Brdyden (1970)
and Huang (1970). In thils case a sequence of nxn "metric"
matrices (where n is the dimensionality of the search
space) are constructed using gradient information to
simultaneously provide a linear transformation of the
search space into one less badly scaled and provide a
sequence of conjugate directions for one-dimensional
searches. As a consequence, each step 1s computationally
more expensive than, for example, the previous approach

(particularly when n is large), but generally requires

no more than n steps on quadratic functions even when
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the function to be minimized is badly scaled. 1In
practice, varlable metric methods are applied to arbi-
trary functlions with heuristics for preventing the
metric matrices H, from becoming singular. Since the
Fletcher-Powell algorithm is available in software
form (DFP), it seemed a reasonable cholce as a repre-

sentative of the variable metric methods.

5.3 Performance Evaluation Conventions

One of the most difficult things to find in the

function optimization literature is a comprehensive

comparative analysis of the performance of various op-

timization techniques. Invariably, a paper will cite

as performance evidence the fact that one technique
required fewer function evaluations to minimize a partic-
ular function from a particular starting point. 1In
reality one finds that the comparison depends not only
on the starting point but also on a number of "hidden"
parameters such as one-dimensional search accuracies,
initial step sizes, estimates of scaling, and so on.
Applying the algorithm to a differeht function or even

a different starting point requires more parameter
"tuning" for the published results. In thls thesis we
have been concerned with the quality of robustness, that
1s, the ebility of an algorithm to perform well in a

- Wide variety of situations. For function optimization

analysis, this suggests that we evaluate algorithms
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over a varlety of starting points and require that
any "hidden" parameters be fixed over the duration of
the evaluation.

In order to provide direct comparisons with the
performance of the genetic algorithms on E, several
conventions were adopted. On-line and off-line perform-
ance measurements were made for PRAXIS and DFP in each
of two modes: 1local mode and global mode. In local
mode, a random starting point is chosen and the algorithm
1s run until it converges. If convergence occurs within
6000 trials (the interval of observation), the performance
measures are extrapolated from the point of convergence
out to 6000 trials by assuming fo(t) = £¥(t) = FMIN where
EﬁfﬁAis the minimum at convergence. By averaging this
performance over a number of random starting points, we
have a direct comparison between local optimizers and

genetic plans. In global mode, the algorithm is restarted
with a new random starting point each time it converges
until it has allocated 6000 trials. By averaging global
performance over a number of random initial starting
points, we have a direct comparison between proposed
global optimizers and genetic plans.

Becall from appendix A that each test function in
E was in fact restricted to a bounded subspace of RD
of the form [x;J< b. PRAXIS and DFP are unconstrained

minimization techniques. No attempt was made to prevent

excursions outside of the bounded search space. How-
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ever, all random starting points were chosen from a
uniform distribution over the bounded search space. Recall
also that the bounded spaces were discretized by speci-
fying a resolution factor A.xi. For fairness in con-
parison, no finer resolution of the minimum was required

of PRAXIS and DFP. For PRAXIS convergence 1is assumed

when successive extimates of the minimum essentially

satisfy
|2 - % q) €T

For each test function in E, T was set to the dis-
cretization factor Ax;. For DFP, convergence is assumed
whenever the gradient at a particular estimate of the
minimum X, satisfies

G(x) < €

For each test function in E, € was set to G(xmi +Ax1).

n
the gradient one resolution step away from the minimum.
Finally, an attempt was made to equalize the fact
that DFP required derivative information about the
functions being minimized. As we noted in chapter 1,
in many adaptive system applications, the performance

functions to be optimized are not avallable in mathe-

matical closed forms. Rather, they are usually "black

box" problems for which only function values are readily
avallable. Thils means that derivative information must

be estimated by function evaluations taken small dis-

tances away. Thls suggests that gradlient information
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18 equivalent at the very least to n function evaluations
(where n 1s the dimension of the space) and perhaps

2n or more depending on the accuracy required. Since

the DFP algorithm we used expected exact derivative in-
formation, it seemed unfair to use derivative estimates.
Rather, exact derivatives were computed upon request

for each of the test functions in E, but at the same

time n function evaluations were computed as a conserva-

tive way of equalizing for this additional information.

5.4 Performance Evaluation of PRAXIS and DFP

Figures 5.1 - 5.10 give the off-line and on-line
performance curves produced by PRAXIS and DFP in local
mode. Each of these curves represents the average of
20 independent trials using random starting points with-
in the bounded subspaces defined in appendix A.

Figures 5.1 and 5.2 1llustrate the performance of
PRAXIS and DFP on test function Fl. Notice the time
scale here in relationship to those of the genetic al-
gorithms in the previous chapter. Both PRAXIS and DFP
converge within 60 trials while the genetic algorithms
required several thousand. These curves indicate the
kind of performance which is possible with local op-
timizers when the assumptions about the function being
minlmizeq actually hold. With a low-dimensional, nicely
scaled quadratic function like Fl1, one can hardly do

better. The on-line performance curves on Fl1 bring
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FIG S.1: OFF-LINE PERFORMANCE ON F1
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FIG. 5.2: ON-LINE PERFORMANCE ON F1
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out an 1ntgrest1ng characteristic of PRAXIS. To avold
the problem of being caught in a narrow valley, when
convergence 1s imminent, PRAXIS tries several steps 1n
random directions. This shows up immediately in on-line
performance since the probability of improvement 1s small.
Figures 5.3 and 5.4 illustrate the local perfarmance
curves generated on F2. F2 violates several of the
assumptions made concerning the function to be minimized.
It is non-convex and non-quadratic, and is also badly
scaled. Agaln, both DFP and PRAXIS converged in far
less time than the genetic algorithms, although they
both required considerably more trials than on Fl.
Notice again hoﬁ the'random strategy of PRAXIS shows
up in the final stages of on-line performance.
Figures 5.5 and 5.6 1llustrate the local per-
formance curves generated on F3. As they indicate,
F3 gave both local optimizers considerably more diffi-
culty than F1 and F2. The stopping criterion used by
PRAXIS was never satisfied within 6000 trials, requiring
manual termination. On the other hand, because DFP
used a gradient stopping criterion, it stopped almast
immediately on whatever plateau was selected by the
random starting point. As a consequence, in local
mode it converged on the average to AVE(F3) = -2.5, which
was then extrapolated as discussed earlier over the
remainder of the 6000 trials.

Figures 5.7 and 5.8 illustrate the local performance
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FIG. 5.3: OFF-LINE PERFORMANCE ON F2
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DFP in local mode on F2.
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FIG. 5.4: ON-LINE PERFORMANCE ON F2
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FIG S5.5: OFF-LINE PERFORMANCE ON F3
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FIG. 5.6: ON-LINE PERFORMANCE ON F3
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curves generated on F4, Recall that F4 was a high

dimensional quartic with Gaussian nolse. Here we see

a considerable difference in the performance of the al-
gorithms. PRAXIS seemed to make no better progress than
random search on F4, while DFP easily outperformed the
genetic algorithms. This suggests that PRHAXIS is con-
siderably more sensitive to nolse than DFP. To verify
this, PRAXIS was evaluated on F4 with the Gaussian noise
reduced from N(0,1) to N(0,.01). As illustrated, this
resulted in considerable improvement in the performance
of PRAXIS. It 1s interesting to speculate why PRAXIS

is so much more sensitive to noise. BRecall that PRAXIS

constructs a conjugate direction without derivatives
via a sequence of n one-dimensional minimizations. It
is quite easy to imagine that this process is sensitive
to noise, particularly with high-dimensional problems.
Finally, figures 5.9 and 5.10 111ustfate the local
performance curves generated on F5.’ The results are
pretty much as expected. In local mode, both PRAXIS
and DFP converge rapidly to the nearest local minimum,
which when evaluated over a nuﬁber of independent trials
with random starting points yields convergence to the

average value of F5 on its local minima.

At this point it is fairly easy to predict what will
happen when we switch PRAXIS and DFP to global mode.
On F1 and F2 there will be essentially no change in

off-1line performance since convergence is already



178

FIG. S.7: OFF-LINE PERFORMANCE ON FUY
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FIG. 5.8: ON-LINE PERFORMANCE ON FUu
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FIG. 5.9: OFF-LINE PERFORMANCE ON FS5
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FIG. 5.10: ON-LINE PERFORMANCE ON FS

FS (T)
180. 00 240.00 300. 00 360.00

120.00

PRAXIS

60.00

DFP

.. 1
¥ T

0.00

200.0  300.0  400.0 500.0

SAMPLES REQUIRED

0.0  100.0

Figure 5.10: On-line performance curves for PRAXIS and
DFP in local mode on F5,



182

achieved within 6000 trials. Notice, however, that re-
starting a local optimizer will have a definite effect on
on-line performance, degrading it considerably. This
1s the same kind of tradoff between local and global
search we observed with the genetic algorithus.
Switching fo global mode on F3 will not affect the
performance of PRAXIS at all since it did not converge
in local mode within 6000 trials. Global mode will,
however, improve the performance of DFP on F3, but,
as 1llustrated by 5.11, it can do no better than ra<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>