Theory and Measurement
of Bistatic Scattering
of X-band Microwaves
from Rough Dielectric Surfaces

by

Roger Dean De Roo

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Electrical Erigineering)
in The University of Michigan
1996

Doctoral Committee:
Professor Fawwaz T. Ulaby, Chair
Professor Anthony W. England
Professor Linda P. Katehi
Assistant Professor Kamal Sarabandi
Professor John F. Vesecky



© Roger Dean De Roo 1996
All Rights Reserved




To my father and mother

ii



ACKNOWLEDGEMENTS

I would like to thank my committee for their time and their help. In particular, I thank
my advisor, Prof. Fawwaz Ulaby, for his enduring patience toward me and his (seemingly
sometimes misplaced) faith in me. In addition, I would like to thank Prof. Chen-To Tai,
who showed me so many wonderful things.

I also owe a great deal to those with whom I've toiled in the fields (sometimes literally):
Dr. Leland Pierce, Dr. Michael Whitt, Dr. Kyle McDonald, Dr. Emilie van Deventer, Dr.
Richard Austin, Dr. John Kendra, Dr. Adib Nashashibi, Dr. James Stiles, Dr. Yisok Oh,
Prof. Yasuo Kuga, Craig Dobson, Paul Siqueira, Eric Li, Tsen-Chieh Chiu, Yanni Kousk-
oulas, Bryan Hauck, Neil Peplinski, Andrew Zambetti, Josef Kellndorfer, Kathleen Bergen,
Sebastian Lauer, Martin Kuttner, Ron Oliver, and Mike Prozinski. My deepest apologies to
those few whom I must have missed.

Credit belongs to Ralf Zaar for the photo in Figure 3.1 and thanks go to Mike McCurdy
for providing me with this photo (and other things).

Special appreciation goes to three of my dearest friends: Jon English, for always being
there, and to Dr. Valdis Liepa and Ron Hartikka, who provided me with an engineering

education which could not be learned in a classroom.

il



TABLE OF CONTENTS

DEDICATION . . . . . . . e e

ACKNOWLEDGEMENTS . . . . . .. ... .. . i

LISTOFTABLES . . . . . . . et e

LISTOFFIGURES . . . .. .. . . e e

LIST OF APPENDICES . . ... . ... ... . . i
CHAPTERS

1 Introduction . . . . ... . .. ittt

1.1 Objectives . . . . . . o v i v i e e

1.2 Structure of this Dissertation . . . .. ... ... ... ......

2 Background. . . .. ... . ... e

2.1 BistaticScattering . . . .. ... ... o o oo

2.1.1 WavePolarization . . . . ... ...............

2.1.2 Azimuthally Symmetric Targets . . ... ... ......

2.13 TimeConvention . .. ... .. ... ...

2.14 ScatteringMatrixS . ... ... ... .. 0L

2.1.5 Modified MuellerMatrixL . . . ... ...........

2.1.6 Radar Cross Section(RCS)o . . . . . ... ... .. ...

2.1.7 Bistatic Scattering Coefficientc® . . . . . ... ... ...

2.1.8 Bistatic Scattering from Rough Surfaces . . . . .. .. ..

2.2 SurfaceDescription . . . .. .. ... ... .. ... ...

2.3 Notations and Conventions . . . . .. ... ... .........

2.4 Review of Surface ScatteringModels . . . . ... ... ......

2.4.1 Stratton-Chu Integral Equation . . . . .. ... ......

24.2 FormofthelIncidentWave .. ...............

243 Kirchhoff Approach . . . .. ... .............

2.4.3.1 Validity of the Tangent Plane Approximation . .

2.43.2 Choice of SurfaceFields . . .. .........

iv



2433 GeometricOptics . . . . . ... ... 39

2434 PhysicalOptics . . . ... ... ... ... .. 48

2.4.4 Small Perturbation Approach . . . . . ... ... ... .. 57

2.5 ReviewofBistaticData . . ... ... ............... 68
2.5.1 CoherentScattering . . . . . . ... ... ... 69

2.5.2 Incoherent Scattering . . . . . ... ... ... 71

253 Depolarization. . . . .. ... ... ... .. 73

254 Polarimetry . . .. ... ... ... 74

3 System . ... e e 75
3.1 System Specification . .. ... ... ... . .. o0 0. 75
32 ANENNAS . . . . . ..o e e e e e e e e e e 77
32.1 DishAntenna . ... .................... 79

322 HomAntenna . .. ... ........... ..., 82

33 LaserProfiler .. ... ... ... ... . .. . . 82
4 Calibration . . . .. . . . . . e 84
4.1 Distortion MatrixModel . ... ... .. ... ... . ..., 84
4.2 General Calibration Technique . . .. ... ... ... .. .... 88
4.3 Backscatter Calibration Theory: Single Target Calibration Technique 90
4.4 Bistatic CalibrationTheory . . . . ... ... ... .. .. .... 93
45 TargetTypes . . . . v v v v i v i it 97
4.6 IndependentSamples . ... ............ ... .. 102
4.6.1 TFrequency Averaging . . ... ... ............ 102
4.6.2 Measuring Sample Independence . . . . . ... ... ... 103

477 Validation . ... ... ... .. 105
5 Modified Physical OpticsModel . . . . . ... ... ............ 112
5.1 Stratton-Chu Integral Equation . . .. ... ... ... ...... 113
5.2 Evaluationof VectorProducts . . . ... ... ... .. ...... 115
53 FieldExpansions ... .............. ... ... ... 119
5.4 Rough Surface Reflection Coefficient . . . . . .. ... ... ... 129
5.4.1 Evaluation of Expected Values: Coherent Case . . . . .. 131

54.2 Zeroth Order Reflection Coefficient . .. ... ... ... 135

5.4.3 First Order Reflection Coefficient . . . . . . .. ... ... 136

5.4.4 Second Order Reflection Coefficient . . . ... ... ... 137

5.4.5 Fourth Order Reflection Coefficient . .. ... .. .. .. 138

5.5 Differential Radar Cross Section . . . ... ............ 139
5.5.1 Evaluation of Expected Values: IncoherentCase . . . . . . 142

5.5.2 Zeroth Order Scattering Coefficient. . . . . .. ... ... 145

5.5.3 First Order Scattering Coefficient . . . . . ... ... ... 147

5.5.4 Second Order Scattering Coefficient . . . ... ... ... 150

5.6 Evaluation of I, integrals for common correlation functions . . . . 158
5.7 Special Case: Forward Scattering in the Specular Direction . . . . 160
5.8 Special Case: Backscattering . . . .. ... ............ 161



59 BehaviorofModel . . . .. ... ... . 162
59.1 CoherentScattering . . . . ... .............. 162
5.9.2 Incoherent Scattering . . . ... ... ... ... ..... 166

59.2.1 Co-polarized scattering in the Plane of Incidence 166
59.2.2  Cross polarized scattering in the plane of incidence 169
5.9.2.3  Effect of the correlation function on backscatter . 170

6 Results and Comparisions withTheory . . . . ... ... ......... 174
6.1 Surface Characterizations . . . . ... ... ............ 174

6.2 CoherentScattering . . . .. .. .. ................ 175

6.3 IncoherentScattering . . ...................... 181

6.3.1 SpecularDirection . .. .................. 181

6.3.2 Within the Plane of Incidence . . . . . ... ... ... .. 181

6.3.3 Outside of Plane of Incidence . . . . ... ... ... ... 184

6.4 Summary . . . . .. e e e e e e 187

7 An Application of Bistatic Surface Scattering: MIMICS model modification191
7.1 ModelDerivation . .. ....................... 191

7.1.1 IncorporationofaRoughGround. . . . . ... ... ... 191

7.1.2 Integration over Canopy Depthz . . ... ... ... ... 196

7.1.3 Integration over Elevation ' in Ty, and Toge . . . . . . . 197

7.14 Integration over Azimuthd'. . . .. ... ......... 199

7.1.5 Reduction to Backscattering . . .. ............ 202

7.2 Example: Trunks over a Physical Optics Ground . . . . ... ... 204

7.3 Significance of Including Ground Roughness . . ... ... ... 206

8 Conclusions . ... ... ... .. ... e 210
81 Summary .............. . . .. .. ... .. 210

8.2 Resultsand Contributions . . . . ... ............... 212

8.3 Recommendations for Future Research . . . . .. ... ... ... 213
APPENDICES . . . . . . . e 216
BIBLIOGRAPHY . . . . . . . . e 268

vi



LIST OF TABLES

Table
3.1 Bistatic Measurement Facility system specifications . . . . ... ... ... 78
A.1 Integer codes in the final column of outputfiles . . . ... ... ... ... 241
A.2 Hemisphere Measurement Cross Reference and Checklist . . . . . . .. .. 247

A.3 Rough Surface Measurement Cross Reference and Checklist . . . . . . .. 250

vii



Figure
2.1
2.2

2.3
24
2.5
2.6
2.7
2.8
2.9

2.10
2.11
2.12
2.13
2.14

2.15
2.16
2.17
2.18
2.19

2.20

LIST OF FIGURES

General Bistatic Coordinate System . . . ... ... ... ... ...... 8
A one-dimensional slice of a profile of a surface used in bistatic scattering
experimentsinthisstudy. . .. ... .. ... .. ... .. 00 17
A histogram of measured heights of aroughsurface . . . . ... ... ... 19
Correlation function of surface in previous figure. . . . . ... ... ... 20
Forms of normalized correlation functions . . . . .. ... ...... ... 22
Example of one-dimensional surface with Gaussian correlation. 6 =1,1=1 25
Example of one-dimensional surface with Gaussian correlation. 6 =.5,1=1 25
Example of one-dimensional surface with Gaussian correlation. 6 =1,1=2 26
Example of one-dimensional surface with exponential correlation. ¢ = 1,
e 26
Example of one-dimensional surface with power law correlation. c=1,1=1 27
Local right-handed coordinate system at the surface. . .. ... ... ... 29
Regions of validity for the Kirchhoff approach . . . . . .. ... ... ... 37
Geometric Optics backscattering coefficients with rms slope m varied. . . . 41
Geometric Optics bistatic scattering coefficients in the specular scattering
direction for hh polarization with rms slope m varied. . . . . .. ... ... 41
Geometric Optics bistatic scattering coefficients in the specular scattering
direction for vv polarization with rms slope m varied. . . . .. ... . ... 42
Geometric Optics bistatic scattering coefficients for hh polarization vs. az-
imuthal scatteringangle . . . . . ... ... ... .o 42
Geometric Optics bistatic scattering coefficients for all polarizations vs. az-
imuthal scatteringangle . . . . . .. ... ... ... L 43
Geometric Optics backscattering coefficients vs. incidence angle with sur-
face dielectricvaried. . . . ... ... ... ... . o oo oo 43
Geometric Optics bistatic scattering coefficients in the specular scattering
direction for hh polarization with surface dielectric varied. . . . . . . ... 44
Geometric Optics bistatic scattering coefficients in the specular scattering
direction for vv polarization with surface dielectric varied. . .. ... ... 44

viil



221

2.22

2.23

2.24

2.25

2.26

227

2.28

2.29

2.30

2.31

232
2.33

234

2.35

2.36

2.37

2.38

2.39

2.40

241

242

243

2.44

Region of validity for the Geometric Optics Approach. . . . .. ... ... 47

Physical Optics coherent reflectivity for v polarization. . . . .. ... ... 48
Zeroth Order Physical Optics backscattering coefficients for hh polarization
withrmsslopemvaried . . . . . ... .. ... Lo 51
Zeroth Order Physical Optics bistatic scattering coefficients in the specular
scattering direction for hh polarization with rms slope m varied . . . . . . . 51
Zeroth Order Physical Optics bistatic scattering coefficients in the specular
scattering direction for vv polarization with rms slope m varied . . . . . . . 52
Zeroth Order Physical Optics bistatic scattering coefficients for ik polariza-
tion vs. azimuthal scatteringangle . . . . ... ... .. ... ... ... . 52
Zeroth Order Physical Optics bistatic scattering coefficients for all polariza-
tions vs. azimuthal scatteringangle . . . . . .. ... ... ... ...... 53
Zeroth Order Physical Optics backscattering coefficients vs. incidence an-
gle with surface dielectricvaried. . . . . . ... ... ... ... ..... 53
Zeroth Order Physical Optics bistatic scattering coefficients in the specular
scattering direction for sk polarization with surface dielectric varied. . . . . 54
Zeroth Order Physical Optics bistatic scattering coefficients in the specular
scattering direction for vv polarization with surface dielectric varied. . . . . 54
Dependence of Zeroth Order Physical Optics Backscattering on the choice
of correlationfunction. . . . .. ... ... . ... . ... . ... ... .. 56
Regions of validity for the Physical Optics Approach . . . . ... ... .. 57
First Order Small Perturbation backscattering coefficients with rms slope m
varied ... e e e e 60
First Order Small Perturbation bistatic scattering coefficients in the specular
scattering direction for sk polarization with rms slope m varied . . . . . . . 60
First Order Small Perturbation bistatic scattering coefficients in the specular
scattering direction for vy polarization with rms slope m varied . . . . . . . 61
First Order Small Perturbation bistatic scattering coefficients for hh polar-
ization vs. azimuthal scatteringangle. . . . .. ... ... ... .. ..., 61
First Order Small Perturbation bistatic scattering coefficients for all polar-
izations vs. azimuthal scatteringangle . . ... ... ... ......... 62
First Order Small Perturbation backscattering coefficients vs. incidence an-
gle with surface dielectricvaried. . . . . . ... .. ... .. ........ 62
First Order Small Perturbation bistatic scattering coefficients in the specular
scattering direction for hh polarization with surface dielectric varied. . . . . 63
First Order Small Perturbation bistatic scattering coefficients in the specular
scattering direction for vv polarization with surface dielectric varied. . . . . 63
Small Perturbation coherent reflectivity for v polarization . . . . ... ... 65
Regions of validity for the Small Perturbation Method . . . . . . ... ... 66
Measured coherent reflectivity of the surface shown in Figure 2.2 through
Figure2.4. . . . . . . . e 70
Measured incoherent scattering in the specular direction from the surface
shown in Figure 2.2 through Figure2.4. . ... ... ... ... .. ..., 71

ix



2.45 Measured incoherent backscattering from the surface shown in Figure 2.2

through Figure2.4. . . . . . ... ... .. o o 72
3.1 The Bistatic Measurement Facility. . . . . . ... .. ............ 76
3.2 Bistatic System Microwave Block Diagram . . . .. .......... .19
3.3 Dish Elevation One-Way Patterns. . . . . . .. ... ... ......... 80
3.4 Dish Azimuth One-Way Patterns. . . . . ... ... ... ... ...... 80
3.5 Horn Elevation One-Way Patterns. . . . ... ... ............ 81
3.6 Horn Azimuth One-Way Patterns. . . . . ... ... ... ......... 81
3.7 DiagramofLaserProfiler. . . . ... .. ...... . ... .. ... ... 83

4.1 A triangular section of a unit sphere centered at the target is used to convert
from the coordinate system of Bohren and Huffman to the bistatic coordi-

NAESYSIEIML . . . .« v v et e e e e e e e e 107
42 A hemisphere on a ground plane is used as the target for validation of cali-

bration of the Bistatic Measurement Facility. . . . .. ... ... ...... 108
4.3 Radar cross section of a hemisphere on a conducting ground plane. . . . . . 110
44 Reflectivityof water. . . . ... ... ... .. . o oo 111
5.1 Modified Physical Optics h-polarized expansion coefficients for a surface

with a relative dielectrice, =3.0—j0.0. ... ... ... ... ..., 124
5.2 Modified Physical Optics v-polarized expansion coefficients for a surface

with a relative dielectrice, =3.0—j0.0. ... ... ... ... . ..., 125
5.3 Modified Physical Optics h-polarized expansion coefficients for a surface

with a relative dielectrice, =30.0—0.0. . .. ... ... ... ... ... 125
5.4 Modified Physical Optics v-polarized expansion coefficients for a surface

with a relative dielectrice, =30.0—j0.0. . .. ... ... ... ... ... 126
5.5 Modified Physical Optics v-polarized reflectivity for a rough surface . . . . 163
5.6 Ratio of vv to hh backscatter for the Physical Optics and modified Physical

Opticsmodels. . .. ... ... ... i 167

5.7 Modified Physical Optics incoherent scattering coefficients in the specular
scattering direction for a rough surface with a Gaussian correlation function. 169
5.8 Modified Physical Optics incoherent scattering coefficients in the backscat-
tering direction for a rough surface with a Gaussian correlation function . . 170
5.9 Modified Physical Optics incoherent scattering coefficient o, in the back-
scattering direction for a rough surface with a Gaussian correlation function. 171
5.10 Modified Physical Optics incoherent scattering coefficient 0'2 , in the back-
scattering direction for a rough surface with a Gaussian correlation function. 171
5.11 Modified Physical Optics incoherent scattering coefficient oY, in the back-
scattering direction for a rough surface with a exponential correlation function.172
5.12 Modified Physical Optics incoherent scattering coefficient 62h in the back-
scattering direction for a rough surface with a exponential correlation function. 172
6.1 Measured coherent reflectivity of a smooth surface . . ........... 176

6.2 Measured coherent reflectivity of three rough surfaces. . . . ... ... .. 177



6.3

6.4

6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
7.1
7.2

73

7.4
Al

A2

A3

A4

A5

A6

Al

Comparison of measured coherent reflectivity of a slightly rough surface
with the predictions of Physical Optics, Small Perturbation, and modified
Physical Optics for v polarization. . . .. ... ... ... ... ...... 178
Comparison of measured coherent reflectivity of a moderately rough sur-
face with the predictions of Physical Optics, Small Perturbation, and mod-

ified Physical Optics for v polarization. . . . . . ... ... ... .. .... 179
The reduction of coherent scattering from a surface due to roughness. . . . 180
Measured co-polarized specular scattering coefficient for three rough surfaces. 183
Measured hh-polarized scattering in the plane of incidence (pp =0°). . . . 184
Measured vv-polarized scattering in the plane of incidence (¢, =0°).. . . . 185
Measured hh-polarized scattering in the pp =45° plane. . . . . .. .. .. 186
Measured hv-polarized scattering in the ), =45° plane. . . . . . .. . . .. 187
Measured vv-polarized scattering in the pp =45°plane. . . . . . . . .. .. 188
Measured vh-polarized scattering in the ) =90° plane. . . . . . . . .. .. 189
Measured hv-polarized scattering in the ¢, =90° plane. . . . . . . ... .. 190

Error in approximating the sinc-squared function as a Dirac delta function. . 199
Ratio of the incoherent ground-trunk scattering to the coherent ground—trunk
scattering as a function of surface roughness and for several angles of inci-

dence. . . . . ... e 206
Dependence of select terms of co-polarized forest backscatter on surface
rmsheight. . ................. e e e e e e e e 207
Dependence of cross-polarized forest backscatter on surface rms height. . . 208
The Main Form, as it appears when the Bistatic Measurement Facility soft-
wareislaunched. . . ... ... ... . oo 223
The Measurement Form, for manual sampling, as it appears when the Bi-
static Measurement Facility is not calibrated. . . . . ... ... ... ... 228
The Calibration Form, as it appears when the Bistatic Measurement Facility
isinbackscattermode. . . . ... ... .. o oo 230
The Calibration Form, as it appears when the Bistatic Measurement Facility
isinbistaticmode. . . .. ... . o Lo o 234

The Measurement Form, for manual sampling, as it appears when the Bi-
static Measurement Facility has been calibrated and RCS is the chosen mea-
SUrEMENt UNMIL. . . . . v v v vt e e e e e e 242
The Measurement Form, for automatic sampling, as it appears when the Bi-
static Measurement Facility has been calibrated and RCS is the chosen mea-

surement Unit. . . . . . . e e e 244
Typical Bistatic Measurement Facility backscattering cross section for a con-
ducting 3-3/16 inch diameter hemisphere on a calibration plate. . . . . . . . 246

xi



LIST OF APPENDICES

APPENDIX
A System User Manual

.............................

B Fourier Representations of Some Mueller Matrices . . . . ... ......

Xii



CHAPTER 1

Introduction

1.1 Objectives

The backscattering of electromagnetic fields from random rough surfaces has many uses
and has been experimentally investigated often in the past few decades. Experimental in-
vestigations into bistatic electromagnetic scattering from random rough surfaces have been
few, in part because the applications of bistatic scattering are not as straightforward as for
backscattering. The many theoretical developments for scattering from random rough sur-
faces, while developed for the bistatic case, have only been extensively used and tested for
backscattering. The usefulness and validity of these theories for bistatic scattering is largely
unknown. Therefore, a detailed investigation into the bistatic nature of these theories is ex-
pected to yield insights that are invaluable to their application to backscattering. An exper-
imental investigation of bistatic rough surface scattering is valuable in the prediction of the
performance of antennas operating in the presence of the ground [9, 3]. Moreover, recent
developments in the modeling of terrain for radar backscattering indicate that bistatic scat-
tering from a rough ground combined with a scattering overstructure (eg. trees or crops)

can contribute significantly to the backscattering from the terrain as a whole. Therefore an



understanding of the nature of bistatic radar scattering and knowledge of the behavior of bi-
static scattering theories are needed. The inversion of measurements involving such bistatic
scattering mechanisms may yield new ihsights into the determination of important scatter-
ing parameters in the target of interest.

This dissertation is an experimental and theoretical investigation into the nature of bi-
static rough surface scattering. While many theoretical approaches to modeling rough sur-
face scattering have been developed, an exhaustive investigation into vector dielectric bi-
static scattering of each of these approaches would be prohibitive, as many have been com-
pleted only for scalar scattering or Dirichlet boundary problems. Emphasis, therefore, is on
the various Kirchhoff approaches and the Small Perturbation Method, which are sufficiently
mature that minor extensions, at most, are required.

In addition to experimental verifications of the ranges of validity for these scattering
models, some curious aspects of rough surface scattering require theoretical and experimen-
tal investigation. The nature of the vertical component of the scattered field when the angle
of incidence or the angle of scattering is the Brewster angle for the relatively smooth di-
electric is unknown. The range of validity of the prediction of depolarization of radiation
by these theories, both single scattering and multiple scattering, must be determined. The
source of phase shifts between scattered components must be investigated. In addition to

the theoretical issues above, a bistatic polarimetric radar must be calibrated.



1.2 Structure of this Dissertation

Chapter 2 presents the surface scattering problem, and an outline of three traditional ap-
proaches to solving it: the Geometric Optics solution, the Physical Optics solution, and the
Small Perturbation Model. An overview of previous experimental investigations of bistatic
scattering is given.

Chapter 3 describes a Bistatic Measurement Facility which was constructed to make ac-
curate measurements of bistatic scattering at X-band frequencies. Data obtained from this
facility is used elsewhere in this dissertation.

Chapter 4 describes the theory and techniques to calibrate the Bistatic Measurement Fa-
cility. A separate technique is presented for the backscattering calibration and the bistatic
calibration. While the backscattering calibration is presented elsewhere, the bistatic cal-
ibration is developed for this facility. Unique verification measurements demonstrate the
validity of the calibrations.

Chapter 5 presents a modified Physical Optics approach to the surface scattering prob-
lem, which explains some observations which involves the Brewster angle, and reconciles a
fundamental difference in the predictions for relative levels of 6%, and Ggh in backscattering
by the Small Perturbation Method and Physical Optics.

Chapter 6 presents a comparison of measurements made in the Bistatic Measurement
Facility with theoretical models outlined in Chapter 2 and the modified Physical Optics ap-
proach developed in Chapter 5. The coherent component of the modified Physical Optics
approach is shown to be better at predicting measured data than the approaches in Chapter 2.

Chapter 7 develops an application of bistatic surface scattering, namely a model exten-



sion for backscattering from forests. The extension includes bistatic surface scattering with
scattering from tree trunks.
Chapter 8 contains the results of this investigation, as well as suggestions for potential

future research.



CHAPTER 2

Background

Traditional radar systems operate in the monostatic mode in which the transmit and re-
ceive antennas are located very close to each other or a single antenna is used for both func-
tions. Monostatic scattering, also called backscattering, is a special case of the more general
case of bistatic scattering which includes all possible combinations of illumination and scat-
tering direction. Whereas extensive backscattering data exists in both the open literature and
in classified data bases for point and distributed targets, bistatic data is practically nonex-
istent by comparison. Moreover, our current understanding of the applicability and ranges
of validity of available scattering models and theoretical formulations to the general case
of bistatic scattering is equally poor, primarily because these models have not been tested
against accurate bistatic scattering data.

This chapter provides a basic background to the problem of bistatic scattering from rough
surfaces, from basic definitions and the problem description to the three classic solutions to

the problem and conclusions which can be drawn from the existing databases.



2.1 Bistatic Scattering

2.1.1 Wave Polarization

Figure 2.1 depicts an object, which may be a point or a distributed target, located at the
center of an (x, y,z) coordinate system. In bistatic scattering, we have an incident wave gen-
erated by a transmit antenna pointed towards the target along the wave direction k;, as well
as a receive antenna whose boresight is pointed towards the target along the direction —ks.
Both k; and k; are unit vectors. The transmit direction propagation vector k; is specified
by the incidence angle 6;, defined as the angle between —Kk; and the positive z-axis, and the
incident azimuth angle ¢;, defined as the angle in the x-y plane between the x-axis and the

projection of k; onto the x-y plane,

k; = &cos¢;sin®; + §sind;sin®; — Zcos 2.1

A similar definition applies to k in terms of the scattering (receive) angle 0;:

K, = R cosds sinO; + §sin §; sin B + Zcos 6, (2.2)

The incident wave is represented by an electric field vector E which may lie anywhere in
the plane orthogonal to the direction of propagation k;. We characterize E in terms of a hor-
izontal polarization components, E;;ﬁ,-, and a vertical polarization component, E’¥;, where
h; and 9; are unit vectors denoting the directions of the respective polarizations. The direc-

tion h; is parallel to the x-y plane chosen to coincide with the d-direction in the spherical



coordinate system and is given by:

N>
=

X Ki

|

5‘)
I

= ycosd; — Xsino;

N>
o)

X

(2.3)

and the vector ¥;, which coincides with 6, completes the orthogonal set (ﬁi, Vi, ﬁi). Thus,

A

¥, =h;xk;= —(&cos;cos6; + §sin¢;cos0; + Zsin6;)

The electric field of the incident wave, E/, is given by:

E = Q’,E:, + fliE;;,

or in matrix notation as:

Similarly, the received electric field, E’, is given by:

ES = Q’sEf, + ﬁsE;;
E,

Ej

(2.4)

(2.5)

(2.6)

Q2.7)
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Figure 2.1: General Bistatic Coordinate System
with the polarization unit vectors given by:
A 2 xk R ..
hy = = ycos s — Xsin Qs (2.8)
7 x ksl
¥, = hyx ﬁs = Xcos Psc0s O + ¥ sin O5cos O — Zsin O 2.9

Throughout this document a subscript of i refers to a quantity associated with the inci-
dent wave, and s is associated with the scattered wave. This system of notation is neither
the Forward Scattering Alignment (FSA) nor the Backscattering Alignment (BSA) as found
in [47]; it could be denoted the Specular Scattering Alignment since the condition 6; = 0,
and ¢; = ¢ is the specular direction, much like the same conditions in the FSA correspond
to the forward scattering direction. It is most closely related to the FSA with the difference
being that the angle of incidence of the FSA is replaced by its supplement. In other words,
0, = T —0; 54 (see figure 2.1 of Ulaby and Elachi [47]).

In addition to the direct representation of the fields via the matrix in (2.6) and (2.7),



there exists a modified Stokes vector notation [47]:

(k1)
F = <E£' l >
2(%Re{EL B} })
oot )
(IE5 )
e - | (B

2(Re{ES E5*})

| 2(Sm{Es B}

where (x) denotes the expected value of x. The first element of the Stokes vector represents
the total intensity polarized in the V direction, while the second represents the total intensity
polarized in the h direction. The third element is the difference in intensity of that polar-
ized in the 71_2— (¥+h) direction from that polarized in the \/Li (¥ — h) direction. The fourth
element is the difference in intensity of that right hand circularly polarized to that left hand
circularly polarized (as defined by IEEE).

The advantage of the Stokes notation is that it can correctly account for partial polariza-
tion of waves while that of the direct notation cannot. The cost of this notation is that the
absolute phase of the electric field is lost; however, this is usually so difficult to measure

that its utility is minimal.



10
2.1.2 Azimuthally Symmetric Targets

In general, the bistatic-scattering geometry is specified in terms of the four angles 6;,
¢;, 65 and ¢;. The values of ¢; and ¢; are not nearly as important as the difference between
them, since their values are subject to the choice of the X and §-directions and the surface is
assumed azimuthally symmetric. Since the Cartesian coordinate system will be associated
with the surface, and in the measurements described in this dissertation the surface is rotated
under the radar antennas, the distinction between ¢; and ¢; will be preserved. Therefore, a
new quantity is introduced: ¢, = ¢s — ¢;. Thus, the angular set for bistatic scattering geom-
etry is reduced to three angles 0;, 65 and ¢, for the special case of azimuthally symmetric
targets.

Many functions in the surface scattering theories will not be dependent directly on either

k; or ki, but rather on their difference, as projected normally or tangentially to the surface:

K = X-(ks;—Kk;)=ki(sinOscosd; —sin6;cos ;) (2.10)
K = ¥-(ks—Kk;)=ki(sinO;sin¢; — sin;sin¢;) (2.11)
K, = Z-(ks—k;) =kj(cosB;+cosH;) (2.12)

K = /K24 K% =k \/sin2 0; + sin20, — 25in0;sin 05 cos dp (2.13)

For backscattering, 6; = 0; and ¢, = 180°. Specular scattering corresponds to 0; = ;
and ¢ = 0°. Scattering in the plane of incidence is specified by ¢, = 0° or ¢, = 180°, with

no restrictions on the values of 6; or ;.
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2.1.3 Time Convention

Throughout this dissertation, a time harmonic solution is assumed with a time depen-
dence of /%, where @ is the angular frequency. This time dependence is suppressed in the

expressions herein.

2.1.4 Scattering Matrix S

When a g-polarized transmit antenna, where g = h or v, illuminates a target in the direc-
tion (8;, ¢;) with an electric field E?, and a p-polarized receive antenna at a distance r from
the target receives a field E}, (where p = h or v) in the direction (85,¢s), the two fields are

related to one another by the scattering amplitude of the target Sp4(0s, 95;0;,9:,0;,9;):

e—jkr )
E;)(em ¢S) = TSpq(9s7¢s; 9,', ¢i; ej7 ¢j)E;(9i, q)l) (214)

where the direction (8;,¢;) denotes the orientation of the target relative to a reference co-
ordinate system, and k = 27t/ is the propagation wavenumber. Note that the first subscript
of Sp4 denotes the polarization of the received antenna and the second one denotes the po-
larization of the transmit antenna. In the (h, ) polarization space, there are four complex
scattering amplitudes: Sy, Sy, Swy, and Spy. To accommodate the general case wherein the
incident wave may have any polarization, and therefore may consist of both vertical and

horizontal polarization components, we use the matrix form:
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Ei e—jkr va SVh Ei,

=— (2.15)
E; Shv  Shh E,
or equivalently,
e~ Jkr )
E = . SE (2.16)

The matrix S is called the scattering matrix of the target.

2.1.5 Modified Mueller Matrix L

The analogous quantity to the scattering matrix for the modified Stokes vector notation

is the modified Mueller matrix:

F ~LF (2.17)
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where the modified Mueller matrix L is given by

(15.) (Is.4l") (Re{S3ySu}) ~(Sm{S},5.,})
(I5w/*) (Isul®) (Re{StuSi}) —(Sm{SSh )
2ARe {57, }) 2Re(S,uStu}) (Re{SuSia+SuSh}) (Sm{S,Sh, ~ SuSi})

_2<Sm{SWS;‘W}> 2<Sm{SvhS;h}> <3m{vaS;:zh+SvhS;;v}> <me{5vv52h_svh52v}>

(2.18)

and has the advantage over the scattering matrix in that it incorporates the average properties
of the scattering target. Again, the cost of the modified Mueller matrix is in the absence of
an absolute phase, which describes how a target modifies the absolute phase of the scattered
field relative to the absolute phase of the incident field. Since both of these quantities are

difficult to measure, even relative to each other, little of value is lost by using this notation.

2.1.6 Radar Cross Section (RCS) ¢

The scattering matrix S completely specifies the bistatic scattering behavior of the tar-
get for the specified incident and scattering direction. The pg-polarized radar cross section

(RCS) of a point target is given by:

Gpg = 4TS pg|* (2.19)
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The RCS for transmit and receive polarization combinations other than horizontal and
vertical (such as circular and elliptical) can be calculated in terms of S using polarization

synthesis [47].

2.1.7 Bistatic Scattering Coefficient ¢°

For a distributed target, such as a soil surface, the quantity of interest is the RCS per unit
area, also called the bistatic scattering coefficient 6°. Because a distributed target is a collec-
tion of many scattering points, the scattered signal exhibits scintillation effects as a function
of spatial position. Hence, to determine ¢”, it is necessary to perform measurements of S
for many spatial locations across the surface and then calculate the variance:

4r
0 _ 1 2
oh, = lim -A—<|S,,q ~ (Spall?) (2.20)
where A is the area of illumination. The limit exists because the bistatic scattering coeffi-
cient is a differential quantity. Mathematically, S,, must be calculated over an area which

extends to infinity in order to evaluate the expected value before the limit can be applied.

This definition usually appears more like
4r
0 2
oby = =(ISval") (221)

because Sp, is assumed to have zero mean, which is not true in the specular direction for
surfaces, and the area is not part of a limiting process because a fundamental assumption of

a statistical radar measurement is that a large number of independent scatterers is observed.
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If N observations are performed, then a practical application of (2.21) is

4 N
0% =1 X (IS5al”). 222)

ill =1

where A;j; is the total effective illuminated area of the distributed target (see Section 4.5 of

Chapter 4). In equations (2.21) and (2.22), S is assumed to have zero mean.

2.1.8 Bistatic Scattering from Rough Surfaces

Surface scattering theory refers to the development of models for the prediction of the
scattering of waves from a rough interface between two homogeneous media. Much devel-
opment of these theories has occurred in the last few decades because scattering of acous-
tic and electromagnetic waves from surfaces has been an important physical phenomenon
in many fields of science and engineering. Acoustical scattering theory has perhaps seen
the most development, partly because the physics of the acoustical case require only scalar
mathematics for the scattering equations. For the general case of electromagnetic scatter-
ing from rough surfaces separating two electrically dissimilar media, a vector equation is
formulated for the modeling of the physics. Under certain circumstances, however, such
as one medium being perfectly electrically conducting, the vector nature of the scattering
problem can be reduced to a scalar equation. Many electromagnetic rough surface scattering
publications are restricted to this important scalar problem. In the following discussion of
approaches to modeling and solving the electromagnetic scattering problems, I will outline

the full vector approaches to the surface scattering theories as they are commonly used.
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2.2 Surface Description

The surfaces under consideration in this dissertation can be mathematically modeled as
separating two homogeneous but electrically dissimilar half-spaces. The surface constitutes
the boundary between the two half-spaces, and the loci of this surface are assumed to be de-
scribed as a random height above a mean planar surface. The height of the surface above
or below this mean surface is unique for every transverse location on the mean surface. In
other words, the surface height z is described by the function z = f(x,y) where f is a ran-
dom function of the lateral coordinates x and y. This is not a strictly appropriate model for
naturally occurring surfaces like bare soils, however, which may include concavities in the
surface, small clumps of soil above the surface, and possibly air bubbles within the soil. It
is also not appropriate for soil surfaces covered with a thin layer of dead vegetative mat-
ter such as the litter found on a forest floor. Nor is it appropriate for surfaces separating
a heterogeneous material from a homogeneous one, like a bare soil which is drying in the
sun after a storm. Accurate analysis of the scattering of electromagnetic waves from these
types of surfaces is beyond the scope of this dissertation; for wavelengths sufficiently large
or natural surfaces which do not support the features described above, the assumption that
the surface can be described by a single-valued function is valid.

An example of such a surface, or at least a one dimensional slice of the surface, is shown
in Figure 2.2. This figure represents the measured profile of a surface from which bistatic
scattering has been measured. Results from the characterization and the radar measurements
of this surface will be used throughout the remainder of this chapter to illustrate some of the

surface scattering phenomenon which are investigated further in later chapters.
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Figure 2.2: A one-dimensional slice of a profile of a surface used in bistatic scattering
experiments in this study.

Calculating the scattering from every possible surface configuration is impossible. For
this reason we are interested not in the actual scattering from each possible surface, but in
expected values of the scattering of waves from a class of surfaces which could be described
with the same statistical parameters. The shape of a random rough surface is described by
the surface height distribution function and the surface height correlation function. For a
surface whose height is given by z= f(x,y), the surface height distribution function is given
by ps(z), which is a probability distribution function for surface heights. While this height

distribution function may take many possible forms, it is assumed in most analyses of rough
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surface scattering to be Gaussian:

1
ps(z) = 12 (2.23)

Measurements by this and other experimenters [31, 29] indicate that this assumption is quite
valid. Figure 2.3 shows the fit between a histogram of measured surface heights for the
rough surface in Figure 2.2 and equation (2.23). As a result of this form of the surface height
probability distribution function, the surface height characteristics can be specified by a sin-
gle parameter, 6, which is the root-mean-squared surface deviation from the mean planar
surface located at z = 0.

Another statistical descriptor of random rough surfaces is the correlation function, de-
noted by p. It describes the degree to which the height at one location given by z = f(x, ),
is correlated to the height at another location, given by ' = f(x’,)). The mathematical def-

inition for the correlation function is

z
p = %Zl (2.24)

where the brackets indicate an expected value and the 62 in the denominator normalizes the
correlation function to unity when the two points on the surface are the same (that is, when
x=x and y =y"). For surfaces described by a stationary random process, the correlation p
can be expressed in terms of the lateral separations u = x — x' and v = y— ' between the two
locations on the surface. Moreover, if the surface statistics are symmetric under azimuthal

rotations, the correlation function can be described by a single variable & = v/u? + v, which
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Figure 2.3: A histogram of measured heights for a rough surface and the Gaussian
probability distribution used to model it. ¢ = 6.9 mm for this surface;
N=4353
specifies the absolute value of the lateral separation. Unlike the surface height distribution
function, the correlation function may take several forms for naturally occurring randomly
rough surfaces. The vast majority of the literature on rough surface scattering assumes that
the surface statistics are azimuthally symmetric and Gaussian, while many measurements
of natural surfaces in microwave remote sensing situations indicate that a power law corre-
lation function may be more appropriate. While not all surfaces in nature are azimuthally
symmetric (a wind driven sea is an example of such a non-symmetric surface), a good num-
ber are symmetric and this dissertation will be limited to such surfaces.

The correlation length [ is a measure of the lateral extent of the correlation between sur-
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Figure 2.4: Correlation function of surface in previous figure.

face heights. If two points on a surface are sufficiently close such that & < I, then the heights
at those two points are considered correlated. Likewise, if those two points are sufficiently
distant such that § > I, then the heights are considered uncorrelated. When two points are
separated by the correlation length, ie. when & = [, the value of the correlation is approxi-
mately given by p = 1/e.

The correlation function for the surface in Figure 2.2 is shown in Figure 2.4. It has a cor-
relation length of 52.5 mm. In spite of the fact that a number of profiles that were taken of the
surface were used to generate this average correlation, more profiles are needed to demon-
strate that the correlation function tends toward zero beyond a few correlation lengths. As
a result of the negative values of the correlation function, several of the integrals used to

predict scattering characteristics (for example, (2.69) and (2.78)) may yield values which
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are obviously incorrect. Austin [1] describes at length the data requirements for accurate
characterization of a complete correlation function. However, only a few surface profiles
are needed to determine the shape of the correlation function within one correlation length,
and if the rest of the correlation function tends towards zero, this portion of the correlation
function dominates the integrals. The effect of the shape of the correlation function within
one correlation length can be explored by considering several analytical forms for the cor-
relation function.

Four correlation functions will be considered as valid for random rough surfaces in this
dissertation. They are the Gaussian, the exponential, the Gaussian exponential, and the

power-law correlation functions:

pe(e) = e&/° (2.25)
Pe(E) = e lol/t (2.26)
pee(f) = =% /(Ii+ERIE) 227)
op(t) = —— (228)

(1+§§)%

The Gaussian, exponential and power law correlation functions are plotted for comparison
in Figure 2.5 with the correlation length / normalized to unity. At the correlation length, all
forms of the correlation function are nearly equal to 1/e.

From the nature of the correlation functions, we would expect that a Gaussian surface
would have very few short term variations (the correlation is relatively high for € < [) and

many long term variations (the correlation is very low for € > [). An exponential surface, on
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Figure 2.5: Forms of normalized correlation functions

the other hand, would have more short term variations and fewer long term variations than
a Gaussian surface because, for € < I, the correlation is not quite so high and, for & > /, not
quite so low as a Gaussian surface. A power law surface would have short and long term
variations between those of a Gaussian and exponential surface.

The rms surface slope m, which is a useful quantity in the Geometric Optics approach
below, is related to the second derivative of the correlation function at zero displacement,

which is always negative for realizable correlation functions. In general, it is given by

m? = —o%p”(0) (2.29)
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The values for the rms slope for the correlation functions given above are:

mg = V20/l (2.30)
mge = V20/l (2.31)
mp = 30/l (2.32)

It must be emphasized that the exponential correlation function is not strictly valid as
a correlation function, since it is not doubly differentiable at £ = 0. For this reason the
Gaussian-exponential correlation function is used when a correlation function is needed
which has the proper characteristics at the origin (well defined rms slope) and yet has expo-
nential characteristics away from the origin. Unfortunately, the Gaussian-exponential cor-
relation function does not lend itself to analytical manipulation as readily as does the ex-
ponential correlation function. Therefore, models which appear in this dissertation which
assume an exponential correlation should be considered to have a Gaussian-exponential cor-
relation for which I, >> I;. The correlation length [ for the Gaussian-exponential is given

by

| = %(12+,/l§+41§> (2.33)

and, in light of (2.33) and (2.31), the Gaussian-exponential correlation function can be ex-

pressed in terms of the more useful parameters of the slope and correlation length:

Pee(8) = =8 mle/ (262 (1~[6l/1)+[E|im2, ) (2.34)
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This list of correlation functions is not exhaustive. There are many other forms for the
correlation function which are not considered appropriate for microwave rough surface scat-
tering from soils. One example of such a rough surface is a wind roughened sea surface,
which is best described with ‘Pierson-Moskowitz’ surface statistics [43].

While the Kirchhoff approaches to characterizing scattering use correlation functions,
the perturbation approaches use the Fourier transform of the correlation functions, which
is also known as the spectral density. The spectral densities can be calculated from these

correlation functions by
l oo =S] .
Wiklb) = (T)E/ / p(u,v)e I+ duy (235)
T —00 ,J =00

which, if the correlation functions are azimuthally symmetric, can be reexpressed as

W)= 5- [ pEVR(RDEE 236)

where k = 4 /k2+ k2. The spectral densities which correspond to the correlation functions

in (2.25) (2.26) and (2.28) are given by

l2 —k212/4

Welk) = 5-e (237)
2 1

We(k) = T TE—— (2.38)
n(1+k2l2)7
2

Wo(k) = 5e K (2.39)

Examples of one-dimensional surfaces with different statistics are shown in Figure 2.6



vertical distance (arbitrary units)

Figure 2.6: Example of one-dimensional surface with Gaussian correlation. 6 =1,/=1

vertical distance (arbitrary units)

Figure 2.7: Example of one-dimensional surface with Gaussian correlation. 6= .5,/ =1

3.0
25
20
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
20
-2.5
-3.0

30
25
20
1.5
1.0
0.5

00
05 F
10 E

-1.5
-2.0
-2.5

30t

25

! 1 L

5. 10. 15.

lateral distance (arbitrary units)

20.

1 N ! ]

5. 10. 15.

lateral distance (arbitrary units)



26

3.0 - T T T
25 F E
20F E
L5 3
1.0
0.5

3
0.0
0.5 ¢
-1.0
-15
-2.0
-25

30t ] 1 L a3
0. S. 10. 15. 20.

vertical distance (arbitrary units)

lateral distance (arbitrary units)

Figure 2.8: Example of one-dimensional surface with Gaussian correlation. 6 =1,/ =2
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Figure 2.9: Example of one-dimensional surface with exponential correlation. 6 = 1,
I=1
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Figure 2.10: Example of one-dimensional surface with power law correlation. 6 =1,
=1

through Figure 2.10. These surface profiles were computer generated by loading an array
with the square root of the appropriate spectral density, randomly perturbing the magnitude
and phase, and inverse Fourier transforming the spectrum into a real profile. On average,
such a generated surface has the underlying spectral density and corresponding correlation
function. Figure 2.6 shows a surface with a Gaussian correlation function with unit rms
surface height and unit correlation length. Figure 2.7 and Figure 2.8 show how the shape of
the surface changes when the Gaussian statistics are maintained, but when the rms surface
height is halved and the correlation length is doubled, respectively. Figure 2.9 is of a surface
with unit rms surface height and unit correlation length, but with an exponential correlation
function. Note how the precise shape of the exponential correlation surface of Figure 2.9
shows the effect of sampling; the slope at each point is not well defined since it so strongly

depends on the sampling of the surface used to generate the plot. This effect corresponds
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to the fact that the rms slope m for this class of surfaces does not exist. Figure 2.10 is of a
surface with unit rms surface height and unit correlation length, but with a power law cor-
relation. Its short and long term characteristics fall between the characteristics of that of the

Gaussian and exponential correlation surfaces.

2.3 Notations and Conventions

This section outlines the notation that is used throughout the rest of this dissertation. The
surface separates space into two regions denoted as medium 1 and medium 2. Medium 1
has complex permittivity €1, complex permeability [y, complex impedance 1; = \/111/—81 ;
medium 2 has complex permittivity €, complex permeability [t,, complex impedance 1, =
ﬁz/_ez. A wave of angular frequency ® has a complex wavenumber k; = ©,/[11€; in
medium 1, and a complex wavenumber k; = ®, /[1;€; in medium 2. Constitutive parameters
with a subscript r refer to those of medium 2 relative to medium 1: for example, €, = &, /;.
The incident (excitation) wave has its source in medium 1. The surface is a perturbation
from a mean surface lying in the x — y plane; ie. the mean value of the surface height is
zero: (z) = 0. Therefore the Z direction defines a global normal unit vector to the rough sur-
face; it is not, however, necessarily a local normal unit vector to the surface at any particular
point.

In addition to a global coordinate system shown in Figure 2.1, analyses of rough surface
scattering are facilitated by a description of a coordinate system local to a small portion of
the surface. One unit vector that is important on the small scale of a surface is a unit vector

normal to the surface. Two such vectors exist; one points into medium 1 and the other into
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Figure 2.11: Local right-handed coordinate system at the surface. Shown is a Gaus-
sian surface with an arbitrary incident unit vector k;. Unit vectors fi; and
f, point normally to the surface into the upper and lower medium re-
spectively. The tangent1a1 unit vector £ is orthogonal to both k; and f f.
The unit vector d completes the right-handed coordinate system (k,, t,d)

which is local to the surface. Two unit vectors (fi, and d) are shown in
halftone to clarify that they lie beneath the surface.

medium 2, and are denoted as fi; and fi; respectively. Since they point in opposite directions,
fi; = —f. Interms of the function that defines the surface, the unit normal can be expressed

in the global coordinate system as follows:

flj = ————= (2.40)

where Z, = 9%%’1) and Zy = Qfgﬁ are the surface slopes in the X and §-directions, respec-
tively. The Physical Optics approach below is developed in a Taylor series in surface slopes

longitudinal and transverse to the incident and scattered waves. The surface slopes longitu-
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dinal and transverse relative to an incoming wave direction are given by

Z) =Zxcos0; + Zysind; (2.41)

Zs =Zycos; — Zysing; (2.42)

Similarly, the longitudinal and transverse slopes relative to the scattered direction are

Z)s =Zxcos s+ Zysinds = Z;cosPp + Z; sindy (2.43)

Zss =2y 08 Os — Zyxsinds = Z; cos hp — Z;sin Py (2.44)

In addition to the unit normal, the Physical Optics approach makes use of a local right handed
coordinate system (k;, £, a). This coordinate system is shown in Figure 2.11, and the unit

vectors are given by [48],

,t\ _ ﬁi X ﬁ1
B |ﬁ, X ﬁl l
_ X(sin®;sin¢; — Z,cos6;) — §(sinO; cos §; — Z; cos 6;) — 2Z,;sin 6; (245)
\/(sin 0; — Zj;cos6;)2 + Z2
a = ﬁi X i
= (&(—sin0;cos6;cosd; + Z, c0s?0; — Z,; sin? 0; sir} d;)
+9(—sin0;cos 6;sin¢; + Zycos2 0; + Z,;sin 0, cos o;)
+2(— sin®@; + Z;;sin6;cos6;))/ \/ (sin®; — Z;;c0s6,)2 + Z2 (2.46)

In the scalar approximation to the Physical Optics approach these expressions are simpli-

fied by assuming all slopes are zero; the zeroth order terms in the Physical Optics expres-
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sions do not depend on the surface slopes. However, higher order terms which describe such
phenomenon as cross-polarized scattering in the plane of incidence and vv scattering at the

Brewster angle require the full vector development.

2.4 Review of Surface Scattering Models

2.4.1 Stratton-Chu Integral Equation

All electromagnetic surface scattering theories are approximate solutions of the Stratton-

Chu integral equation [40, 46]
E'(r) = i [V x G(r,x) - (8 x E(r')) — jknsG(x,r') - (f x H(r'))]|dS’ (2.47)

where r is the point of observation, ¥’ is a point on the rough surface §', fi is a unit sur-
face normal vector from the surface S into the observation medium, and k; and T, are the
wavenumber and impedance, respectively, of the (scattered) electromagnetic field in the ob-

servation medium. The dyadic Green’s function in the observation medium is given by

G(r,r') = [I— Vk2 ]g(r, r') (2.48)
/ e-jkslr_rl
g(r,r ) = m (249)

An analytic solution to this equation, or its scalar equivalent, does not exist for surfaces

which are randomly rough; i.e., whose loci r’ are described by a stochastic process.
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2.4.2 Form of the Incident Wave

The first assumption in the solution of (2.47) is the form of the incident (excitation) wave
upon the rough surface. The scattering pattern of radiation from the surface will depend
upon how it is illuminated, and so the choice of incident wave becomes important. In the

vast majority of the literature, the incident wave is assumed to be a plane wave:

E'(r;) = §Ege X Ti (2.50)

where k; and r; are the wavenumber and location, respectively, in the medium containing
the incident wave, Ej is the amplitude of the incident wave electric field, and § is the polar-
ization vector of the incident wave. This choice for the incident radiation is appropriate for
nearly all practical problems involving rough surface scattering. For surfaces sufficiently far
from the source of illumination the incident field at the surface is very nearly planar. One
important exception is the measurement of the coherently scattered field: standard analyses
of the coherent scattering of plane waves yields radar cross sections which are delta distribu-
tions in solid angle and are not directly applicable or interpretable for practical measurement
systems [49, 17]. The plane wave assumption also breaks down when the source of illumi-
nation is not distant from the surface. Papers by Fung and Eom [17] and Eom and Boerner
[13] are examples of scalar analyses of electromagnetic rough surface scattering in which
non-planar incident waves are assumed. The plane wave assumption engenders no loss in
generality, however, much as the assumption of a time harmonic solution does not imply
loss of generality, since most functions which could describe realistic propagating electro-

magnetic radiation are Fourier transformable in both time and space. Kojima [26] analyzes
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the scalar surface scattering of electromagnetic Hermite-Gaussian beams by decomposing

the incident wave into plane wave components.

24.3 Kirchhoff Approach

Under many circumstances, knowledge of the scattered field very distant from the rough
surface is sufficient. Under the far field approximation, the Stratton-Chu integral equation
(2.47) takes the form [39, 48, 46]:

s .e‘jksRO
E (l‘) =/ 4TCR()

ke x | [ x E(r') —nsks x (i x H(r'))]e/*s7ds’ (2.51)
Sl

where Ry is the distance from the surface ' to the observation point r. Unfortunately, this
formulation is still very difficult to solve, and further approximations are required. The
Kirchhoff approach is a solution in which the tangential fields on the surface at a particular
location ¥’ = &x + §y + 2f(x,y) are approximated in some way from the incident field on
the surface at that point. The most direct and common of the Kirchhoff approaches to solv-
ing (2.51) is the tangent-plane approximation [48, 46], in which the tangential fields at the
surface are approximated by those that would exist if, for at each local surface point v/, the
surface was replaced with one which was plane and passed through r’ with the same slope
as does S at that point. In other words, the local tangential fields are composed of the tan-
gential component of the incident field plus the tangential component of the local reflected
field as found by Fresnel reflection. To express the tangent-plane approximation mathemat-
ically, we must decompose the incident radiation into components which are locally trans-

verse electric and transverse magnetic at the surface. Using the local surface right-handed
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coordinate system (2.45) and (2.46), the electric field at the surface is expressed as

=E| +E| (2.52)

Then the local reflected fields at the surface under the tangent-plane approximation are given

by

() = REL(r)

i) = —REj(r) (2.53)

where the Fresnel reflection coefficients are

R, = M2 c0s 63 — My cosOj, (2.54)
M2c0s0;; +1M;c0s0

T COSs 911 — T2 COS 912
R, = 2.55
” 7 MycosBy; +Mzcos6) (253)

and 01, 0, refer to the local angles of incidence and transmission, respectively and are re-

lated by Snell’s law:

k1 sinell = k2 sin 912 (2.56)

Also,

Cos 911 = —ﬁl : ﬁ,‘ (257)
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Thus the total tangential electric field on the surface is given by

fi; xE(r) = f;x (E(r)+E(r))
= fiy x ((1+R,)E} +(1-R)E)

= [(14+R)E- Q) xH+(1-R)@-§)(Ay xd)E  (258)
Similarly, the tangential magnetic field on the surface is given by
My x Hr') = [(1 = Ry)(&-8)(A; x d) — (1+R,)(d-§) (A x T)]Ey (2.59)

These fields are the total tangential electric and magnetic fields on the surface subject to
the tangent-plane approximation. They have the same value in medium 1 and in medium 2,
because tangential fields are continuous across the surface, but for convenience they could
be expressed in terms of the constitutive parameters of medium 2 if the transmitted fields,

instead of the reflected fields, are of interest.

2.4.3.1 Validity of the Tangent Plane Approximation

The tangent-plane approximation is appropriate only if the surface is locally smooth with
respect to the wavelength of the electromagnetic wave for all surface loci r’. This condition

is usually expressed as

<2krscos3 61,-> > 1 (2.60)
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where r; is the radius of curvature of the surface [3, 42, 23]. Some authors [3, 48] have
slightly different expressions for the region of validity of the tangent-plane approximation.

This criterion is not expressed in terms that are usually used to describe rough surfaces,
namely the rms surface height ¢ and the correlation length I. Ulaby et al. [48] reduce this
condition of validity to 12/2.766 >> A for a Gaussian surface, together with a simultaneous
condition kI >> 6 which is not derived.

Thorsos [42], Thorsos and Jackson [44], and Chen and Fung [8] have numerically tested
the regions of validity of the Kirchhoff approach and the Small Perturbation method for
perfectly conducting Gaussian rough surfaces. It is difficult to say if the region of validity
reported by Thorsos is strictly due to the tangent-plane approximation or from other approx-
imations, like Physical Optics or Geometric Optics, used to derive useful scattering expres-
sions in the Kirchhoff approach. At any rate, Thorsos concludes that kI > 27 alone is a
condition of validity for the Kirchoff approach, except when the angle of incidence is too
close to grazing. Corrections to various parameters are also presented to extend the region
of validity of the Kirchhoff formulation. Thorsos’ definition of validity is that the theory is
to agree with the numerical results with a maximum error of 1 dB. Chen restricted his study
of the Kirchhoff region of validity to incidence angles such that 8; < 20° to avoid the effects
of shadowing. His definition of validity is the sum of the deviations of the theory from the
numerical results at 0°, 10° and 20° is to not exceed 3 dB for both co-polarizations. From
Chen’s graphics one can conclude that the Kirchhoff approach accurately predicts incoher-
ent scattering for kI > 4 and I /2.46 > A, which is very close to the region outlined in Ulaby
et al. [48]. In addition, Chen demonstrates that the Kirchhoff approach accurately predicts

coherent scattering for sufficiently small k6 and kI, a result not previously shown. The three
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Figure 2.12: Regions of validity for the Kirchhoff approach as described by several
authors. The valid region is to the right of the lines.

descriptions of the region of validity of the Kirchhoff approach are shown in Figure 2.12.
A more exact and more complicated approach to analyzing the validity of the Kirchhoff
approach is to analyze the error introduced by assuming the surface fields to be only depen-
dent on the incident fields at that point. The true surface fields are due to all currents that
exist in the model environment: the fields scattered by the surface at other locales as well as
the incident fields at that point. Several papers [6, 7, 18] attempt to analyze the Kirchhoff
type scattering of electromagnetic waves from perfectly conducting rough surfaces by us-
ing conditions more exact than the tangent-plane approximation. In particular, the magnetic

field on a perfectly conducting surface is expressed as a virtual electric current:

J(r') =20 x H'(r) + i%ﬁ X /Vg(r',r") x J(r")ds" (2.61)
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where the first term gives the (single scattering) Physical Optics current. Further approxima-
tions to this expression are required, because the current J appears on both sides of the equa-
tion. Chen and Fung [7] suggest iteratively solving for the current, using the Physical Optics
current as an initial guess. This technique has been called the Second Order Kirchhoff ap-
proach or Improved Kirchhoff approach. Fung and Pan [18] solve the scattering problem
using this technique for the three dimensional case and shows that it predicts depolarization
in the backscattering direction, but does not compare the results to measurements, as he does
for co-polarized backscatter. He claims that this approach extends the region of validity for
the scattering coefficients to shorter correlation lengths, and agrees with the small perturba-
tion solution in its region of validity. This approach has been extensively described in Fung
[15] where it is called the Integral Equation Method, and is applied to dielectric surfaces.
Ishimaru and Chen [22] use this same starting point to extend the Kirchhoff approach for a
two-dimensional problem, but uses a novel expansion of the Green’s function which yields

predictions of backscattering enhancement for appropriate surface conditions.

2.4.3.2 Choice of Surface Fields

Some debate has been raised in the literature as to which fields the symbols E and H in
(2.51) on the surface actually refer to: the scattered fields or the total (incident plus scat-
tered) fields. Holzer and Sung [21] discuss the implications of each choice of fields, and
conclude that the scattered fields alone are the proper choice for E and H, although the total
fields are also valid for some scattering problems, such as the Geometric Optics solution
or scattering from a perfectly conducting surface. The choice of fields should not matter if

an exact solution could be found [46], as the integral of the incident fields over the surface
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will only yield the incident field elsewhere. The process of approximating a solution to the
equation with the total field may give rise to errors which are obvious when the special case
of a rough surface separating identical regions is considered [21]. In this case, the rough
surface is fictitious, and the scattering should be zero. If the scattered fields alone are used,
the tangential fields in the integral in (2.51) reduce to zero and thus the scattering is zero;

scattering is not zero if the total fields are used.

24.3.3 Geometric Optics

The Geometric Optics approach to the solution of (2.51) under the tangent-plane approx-
imation is valid as k — eo, or more specifically, as x, = Z- (k; — k;) — oo. It is derived using
the stationary-phase approximation, hence it is also known as the stationary phase method.
The Geometric Optics approach to electromagnetic scattering assumes that all electromag-
netic waves travel like ray tubes, and are scattered by (smooth) objects only into the spec-
ular direction. The stationary phase method as applied directly to (2.51) yields (E°) = 0,
meaning that there is no coherent component of the Geometric Optics scattered field. If it

is applied to the expected value of the variance of the field, however, we discover that

" k2 .
<SPq mn> = WquUmn<m2> (2.62)

where p,m are receive polarizations and g,n are transmit polarizations; <|I ]2> is the sta-
tionary phase integral over the phase on the surface, and Up, are polarization amplitude co-

efficients which are constant with respect to surface slopes, subject to the stationary phase
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condition. Explicitly,

K A A N A
U = — — — R, ((hgd,,+ ¥:0,,) - K; hi8 + 0,~8v kg
pq ki((ki‘e’s)2+(ki'hs)2) [ (( ph p ) )(( hq q) )
+Ry (958, — 18p) - ki) (¥:85 — Bidgy) - Ks)] (2.63)

where 8, is the Kronecker delta function (8,4 = 1 iff p = g and 8, = 0 iff p # ¢), and

_ 4n?ApK

(I17) = =g~ p(Z,Z0) (2.64)

where k% = K,zc + K% + Kf = 2k2(1 +co0s 0;cos0; — sin6; sinO5cos d, ) (see Physical Optics,
below) and p(Zx, Z,) is the probability density that the surface has points with slopes of Z
and Z, in the %- and §-directions respectively. Z,o and Z, are slopes that correspond to

specular scattering for the given values of 6;,0;,¢; and ¢s. For an isotropic surface,
1 —K?/2x2m?
P(Z0,2y) = e /2 (2.65)

where m is the root-mean-squared surface slope.

Scattering coefficients of the Geometric Optics solution are proportional to the magni-
tude of the Fresnel reflection coefficients for the pair of directions chosen, and to the prob-
ability that the slopes will occur to facilitate scattering in those directions. In the plane of
incidence, depolarization is zero because scattering is assumed to arise only from points on
the surface which have no lateral slope. In backscattering there is not only a lack of depo-

larization, but the co-polarized scattering coefficients are identical. This prediction origi-
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Figure 2.13: Geometric Optics backscattering coefficients vs. incidence angle with
rms slope m varied from 0.1 to 0.4. & = 3.0 — j0.0 The co-polarized
terms are identical and cross-polarized terms are zero.
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Figure 2.14: Geometric Optics bistatic scattering coefficients in the specular scatter-
ing direction for Ak polarization vs. incidence angle with rms slope m
varied from 0.1 to 0.4. & = 3.0 — jO.0 The cross-polarized terms are
Zero.
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Bistatic scattering coefficient ¢’ (dB)

Specular Scattering Angle 6 (degrees)

Figure 2.15: Geometric Optics bistatic scattering coefficients in the specular scatter-
ing direction for vv polarization vs. incidence angle with rms slope m
varied from 0.1 to 0.4. €, = 3.0 — jO.0. The Brewster angle is clearly
evident.
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Figure 2.16: Geometric Optics bistatic scattering coefficients for hh polarization vs.
azimuthal scattering angle with rms slope m varied from 0.1 to 0.4. 6; =
0; = 45°, &, = 3.0— j0.0. Backscattering corresponds to ¢, = 180° and
specular scattering corresponds to ¢pp = 0°.
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Bistatic Scattering Coefficient ct"bi (dB)
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Figure 2.17: Geometric Optics bistatic scattering coefficients for all polarizations vs.
azimuthal scattering angle with rms slope fixed at m = 0.1, G(V)h =0
for Geometric Optics €, = 3.0 — j0.0, ©; = 6; = 45°. Backscattering
corresponds to ¢, = 180° and specular scattering corresponds to ¢p =

0°.
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Figure 2.18: Geometric Optics backscattering coefficients vs. incidence angle with
surface dielectric varied. Surface slope fixed at m = 0.1. The co-
polarized terms are identical and cross-polarized terms are zero.
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Figure 2.19: Geometric Optics bistatic scattering coefficients in the specular scatter-
ing direction for hh polarization with surface dielectric varied. Surface
slope fixed at m = 0.1. The cross-polarized terms are zero.
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Figure 2.20: Geometric Optics bistatic scattering coefficients in the specular scatter-
ing direction for vv polarization with surface dielectric varied. Surface
slope fixed at m = 0.1. The cross-polarized terms are zero.
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nates from the assumption that only specular points on the surface contribute to scattering;
thus backscatter is due to locally normal incidence, and the Fresnel coefficients are indepen-
dent of polarization for normal incidence. The co-polarized scattering coefficients are not
necessarily the same away from backscattering. Due to the formulation of the Geometric
Optics solution, the scattering coefficients are reciprocal. That is, the scattering coefficients
are the same if the incident and scattered directions and polarizations are reversed. Fig-
ure 2.13 through Figure 2.20 show several Geometric Optics bistatic scattering coefficients
for a number of different conditions of roughness and polarization. Figure 2.13 shows the
rapid decrease in backscattering as the incidence angle is increased. For a large angle of in-
cidence, the probability that a surface facet exists which is oriented to backscatter energy is
small for a surface with a small rms surface slope. As the rms slope is increased, however,
the point of drop-off extends out to larger backscattering angles. Scattering in the specular
direction for hh polarization is shown in Figure 2.14. Scattering in the specular direction
is caused by facets which have zero slope. As a result, scattering is large at all angles of
incidence. The probability that the slope at any one point is zero decreases only modestly
as the rms slope is increased. Specular scattering is also shown in Figure 2.15, except that
in this case the polarization is vv. In the specular direction, the polarization dependence of
Geometric Optics scattering is identical to that of the reflectivity. The effect of the Brewster
angle is clearly evident; all other characteristics mimic that of Ak polarization.

Figure 2.16 shows the Geometric Optics scattering dependence on the azimuthal angle
®a. For the very smooth surface, the hh-polarized scattering is very sharply limited to the
specular direction, while for the rougher surfaces the scattering simultaneously decreases in

the specular direction and increases in the backscattering direction. A sharp null occurs in
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the pattern which is independent of the roughness, but as Figure 2.17 shows, is dependent
on the polarization. For cross-polarization, the nulls occur only in the plane of incidence
(5 = 0° or 180°). The nulls for co-polarization exist due to a rotation the electric field by
the appropriately oriented facets. Out of the plane of incidence the field polarizations local
to the surface no longer coincide with the incident or scattered polarizations. The combina-
tion of local v and & polarized scattering generates linearly polarized scattering. The differ-
ence in the local reflection coefficients as a function of polarization insures that the angle at
which the scattered polarization is orthogonal to the receiver polarization are different for
the different incident polarizations. The Brewster angle in the specular direction is a very
special case of this phenomenon.

The dependence of the Geometric Optics scattering on the dielectric is shown for back-
scattering in Figure 2.18, for hh polarized specular scattering in Figure 2.19, and for vv po-
larized specular scattering in Figure 2.20. Except for the scattering beyond the Brewster
angle, an increase in the dielectric increases scattering. This is due solely to the change in
the reflection coefficients due to the change in dielectric.

The limit of validity on the stationary phase approximation according to Ulaby et al.

[48] is:

%0 > V10 (2.66)

where ¥, is defined by (2.12). The region of validity for Geometric Optics is therefore de-
fined by a combination of the stationary phase validity condition and that for the tangent-

plane approximation. The Geometric Optics region of validity as given by Ulaby is shown
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Figure 2.21: Region of validity for the Geometric Optics Approach as described by
Ulaby et al.. The valid region includes the upper right corner in the dia-
gram.

in Figure 2.21 for the condition that 6;,0; — 0° so that Kk, — 2k. For combinations of an-
gles away from nadir, the minimum value of the roughness parameter kG must be greater
for (2.66) to hold.

Under this stationary phase condition that the surface be sufficiently rough, we would
expect that the coherent scattering coefficient would be negligibly small. If we were to use
this condition in the coherent component of the Physical Optics solution (see below) we
would find that the coherent scattering coefficient is reduced by at least 43 dB over that
of a smooth surface, so the Geometric Optics prediction of zero coherent scattering is not
too bad. While the surface heights cannot approach a plane, the slopes of the surface can

approach zero, which gives the probability distribution in (2.64) a very sharp peak at Z, =



48

0 T T T T T 1 ! !
-10. - /'/.' -
S S— 77
2 ro e IO Gy
3 -20. ,',"/; ,"/ -]
S S —— (17
N “\ 47/ :
2 3 I/I‘ ../
) =~ 10
a0 f -7 NI g
!.": - -7 \ I.’ ; ks=0
S - i '
3 so. ko — - N1 [ 1 S ks=0.5
» R \ I
g , S | I ks=1.0
2 -0 ‘ o\ ] E
K] /, Y f —-—— kssl§
0. F - / ' Al o a0
R /
g ,' —— ks=2.5
-80. e m—

Incidence Angle 6 (degrees)

Figure 2.22: Physical Optics coherent reflectivity for v polarization vs. incidence an-
gle for a Gaussian surface with ko varied from 0 to 2.5, &, = 3.0 — j0.0.

Z, = 0. This in turn yields a scattering pattern which is a delta function in the specular
direction, which must not be confused with a coherent scattering coefficient. The scattered

waves are still incoherent.

2.4.3.4 Physical Optics

A different Kirchhoff approach is the Physical Optics solution to (2.51). The Physical
Optics approach involves the integration of the Kirchhoff scattered field over all of the rough
surface, not just the portions of the surface which contribute specularly in the scattered di-
rection. Unlike the Geometric Optics solution, the Physical Optics solution predicts a co-
herent component. Specifically, the coherent field reflection coefficient from a surface with

a Gaussian height distribution is given by

91202 a2
R,(po) = Rgoe 27 5 %, (2.67)
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where the polarization subscripts p, g are either 4 or v, and cos® = —2-k;. 8 is both the angle
of incidence and reflection; coherent scattering occurs only in the specular direction from
the mean surface. The reflection coefficient R4 for a plane surface is given by (2.75) and

2
(2.76) below. Figure 2.22 shows I',(pg) = |Ry( Po)l for several values of k6. The Brewster

angle does not change with surface roughness, but the coherent scattered power decreases
very rapidly with increasing roughness.

The power in the incoherent reflected field may be found by expanding the Stratton-Chu
equation in a Taylor series in surface slope distributions. In Ulaby et al. [48] the Physical
Optics solution is called the Scalar Approximation because slopes are ignored in the sur-
face local coordinate system, leading to a decoupling of polarizations in the vector scatter-
ing equations. As a result, co-polarized scattering in the plane of incidence is quite accu-
rate, but cross-polarized scattering is zero. With the inclusion of surface slopes transverse
to the plane of incidence in the vectorial solution to the Physical Optics approximation, de-
polarization in the plane of incidence is predicted when the Taylor series is expanded to the
second order in surface slopes. The zeroth and first order solution to the Scalar Approxima-
tion are clearly derived in Ulaby ez al. [48] and will not be given here. Usually the Physical
Optics solution is implemented by using the zeroth order term only. That is, the solution
derived by neglecting all surface slopes. As will be seen in Chapter 5, this approach is in-
complete even for surfaces with very small slopes.

The zeroth order term of the Physical Optics solution is given by

K

4mA, <SmnS;q> = aOOmnaSoquO (2.68)
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where

o = Lge /0” (exgozp(f,)_l) Jo(1E)EdE (2.69)

where ¥; and K; are given by (2.12) and (2.13), respectively, and the polarization coefficients

are

agons = —Rnoo(cosO;+ cosBs)cosha (2.70)
agovh = —Rpoo(1+ cosB;cosB;)sinda (2.71)
agony = Ryoo(1+cosB;cosB;)sinda (2.72)
agw = —Ryoo(cos6;+ cosbs)cosda (2.73)

(2.74)

The parameters R,q0, Rygo are the zeroth order coefficients of the (field) reflectivity (2.54)
and (2.55) when expanded in terms of surface slopes. That is, they are the same as (2.54)
and (2.55) with the slopes set to zero, and therefore are identical to the reflection coefficients

for a smooth surface:

T2 c0s0; — M1 cos O;
R = .
H00 208 0; + 17 cos6; (2.75)

11 c0s0; — My cos6;
R = .
Voo 11 cos 6; 4+ M, cos 6 2.76)

where 0, is related to 0; by Snell’s Law: k; sin6; = k;sin6;.

Some basic characteristics of the zeroth order Physical Optics solution are shown in Fig-
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Figure 2.23: Zeroth Order Physical Optics backscattering coefficients for ik polariza-
tion vs. incidence angle for a Gaussian surface with rms slope m varied

from 0.1 to 0.4. & = 3.0 — j0.0, ko = 2.0. The cross-polarized terms
are zero.
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Figure 2.24: Zeroth Order Physical Optics bistatic scattering coefficients in the spec-
ular scattering direction for hh polarization vs. incidence angle for a
Gaussian surface with rms slope m varied from 0.1 to 0.4. &, = 3.0 —
j0.0, ko = 2.0. The cross-polarized terms are zero.
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Figure 2.25: Zeroth Order Physical Optics bistatic scattering coefficients in the specu-
lar scattering direction for vv polarization vs. incidence angle for a Gaus-
sian surface with rms slope m varied from 0.1 to 0.4. €, = 3.0 — j0.0,
ko = 2.0. The Brewster angle is clearly evident.
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Figure 2.26: Zeroth Order Physical Optics bistatic scattering coefficients for #h po-
larization vs. azimuthal scattering angle for a Gaussian surface with rms
slope m varied from 0.1 to 0.4. 6; = 6, = 45°, ¢, = 3.0— j0.0, k6 = 2.0.
Backscattering corresponds to ¢, = 180° and specular scattering corre-
sponds to ¢, = 0°. The null at ¢, = 90° is due to the lack of surface
currents generated in the ﬁs direction for this angle.
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Figure 2.27: Zeroth Order Physical Optics bistatic scattering coefficients for all polar-
izations vs. azimuthal scattering angle for a Gaussian surface with rms
slope fixed at m = 0.1, &, = 3.0 — j0.0, ko = 2.0, 6; = 6, = 45°. Back-
scattering corresponds to ¢, = 180° and specular scattering corresponds
to (I)A =0°.
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Figure 2.28: Zeroth Order Physical Optics backscattering coefficients vs. incidence
angle with surface dielectric varied. The surface has Gaussian correla-
tion with k6 = 1.0 and m = 0.2. The cross-polarized terms are zero.
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Figure 2.29: Zeroth Order Physical Optics bistatic scattering coefficients in the specu-
lar scattering direction for hh polarization with surface dielectric varied.
The surface has Gaussian correlation with k6 = 1.0 and m = 0.2. The
cross-polarized terms are zero.
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Figure 2.30: Zeroth Order Physical Optics bistatic scattering coefficients in the spec-
ular scattering direction for vv polarization with surface dielectric varied.
The surface has Gaussian correlation with k<6 = 1.0 and m = 0.2. The
Brewster angle is clearly evident.
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ure 2.23 through Figure 2.30. Figure 2.23 shows the dependence of backscattering on the
rms slopes. The same basic behavior as predicted by Geometric Optics in Figure 2.13 is
observed, but the drop-off is not nearly as sudden. The specular scattering coefficients as a
function of rms slopes are shown in Figure 2.24 and Figure 2.25 under the same conditions
as Figure 2.14 and Figure 2.15. The Brewster angle is still clearly evident in the vv polarized
scattering. The significant difference between Geometric Optics and Physical Optics under
these conditions is that the Physical Optics model predicts zero scattering at grazing, while
the Geometric Optics model is strictly proportional to the reflection coefficient regardless
of the closeness to grazing.

Figure 2.26 shows the Physical Optics prediction for scattering in the azimuthal cone
for the same surface under the same conditions as in Figure 2.16. Unlike Geometric Op-
tics, the scattering largely increases regardless of direction as the rms slope increases, with
the exception of backscattering for the roughest surface. Also, as the zeroth order Physical
Optics currents are assumed to be flowing strictly in x- and y-directions rather than on the
surface itself in whatever plane that it lies in locally, as in Geometric Optics, the scattering
pattern null occurs at ¢, = 90°. This is the point at which h; is orthogonal to ﬁ,-.

The polarization dependence of the azimuthal scattering is shown in Figure 2.27. Since
the projections of V5 and ¥; on the x-y plane are orthogonal at ¢, = 90°, the vv scattering
pattern also exhibits a null at that angle. Since the scattering coefficients are proportional
to the reflection coefficient for that angle of incidence, the ratio of 02h to Gev, as well as the
ratio of cf,’h to va, is constant regardless of the azimuthal angle ¢,.

The dependence of the Physical Optics scattering coefficients with changes in dielectric,

shown in Figure 2.28, Figure 2.29, and Figure 2.30, largely resembles that of Geometric Op-
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Backscattering Coefficient oom (dB)

Backscattering Angle 6 (degrees)

Figure 2.31: Dependence of Zeroth Order Physical Optics Backscattering on the
choice of correlation function. &, = 3.0 — j0.0, k6 = 0.5, kI = 7.0.

tics. The angular patterns of the Physical Optics scattering is much lower due to the higher
rms slopes than the corresponding Geometric Optics figures.

The importance of the choice of the appropriate correlation function is shown in Fig-
ure 2.31. The shape of the correlation function is not so important in the specular scattering
direction as it is for the backscattering direction. Beyond a backscattering angle of 30°, the
form of the correlation function used can make a difference on an the order of magnitude or
more. The backscattering as a function of angle behaves much like the correlation function
which was assumed. For example, the exponential has the highest tail in Figure 2.5 and the
highest backscatter in Figure 2.31. The Gaussian, by contrast, has both the lowest tail in
Figure 2.5 and the lowest backscatter in Figure 2.31.

The region of validity for the Physical Optics approach is that for the Kirchhoff Ap-
proach plus a limitation on the magnitude of the root-mean-square surface slopes, since the

Physical Optics approach is essentially an expansion of the integral (2.51) into a Taylor se-
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Figure 2.32: Regions of validity for the Physical Optics Approach as described by
Ulaby et al.. The valid region is to the right of the lines.

ries in slopes. According to Ulaby et al. [48], this limitation for Physical Optics, including

the first order terms in slopes, is
m < 0.25 (2.77)

and the corresponding region of validity is shown in Figure 2.32. The region of validity for

the higher order terms have not yet been determined.

2.4.4 Small Perturbation Approach

The Small Perturbation approach was originally derived by Rice [33] and later devel-

oped by many others [52, 30, 6, 24]. The Small Perturbation expressions can be derived
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by two different methods, one using the Rayleigh hypothesis of only outgoing waves from
the surface, and one using the Extended Boundary Condition (EBC) or extinction theorem.
Using either approach, the surface currents and the scattered fields are expressed in a Taylor
series in terms of the height parameter 6. The two methods differ in the integro-differential
equations derived from the Stratton-Chu integral (2.47) which are used as the starting point
for the perturbation series. Jackson et al. [24] show that the two approaches yield the same
scattered field up to the fifth order in rms surface height o, the small parameter of the per-
turbation series. Brown [6] gives an excellent summary of the similarities and differences
in the two approaches. The zeroth order solution is the same as for a plane interface, and the
first order solution gives the incoherent scattered field due to single scattering: much like
the first order of Physical Optics, or Geometric Optics, the depolarization in the plane of
incidence is zero. The scattering coefficients, however, are not strictly proportional to the
Fresnel reflection coefficients, as they are in the Kirchhoff approaches, since in the Small
Perturbation expansion the vertical components of the incident field also generate first or-
der surface currents. As a result the Brewster angle for vv polarization is not evident. Also,
the first order solution does not predict any contribution to the coherent scattering. The first

order scattering matrix correlation product is

(55507 = Agk30? cos? B W (55, ) @78)
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where
ki
= ',5’; ((ur"' l)COSGiCOSBSCOSQ)A(l —RhOO)
-Nr (ur —1 sinO,- sinQ; + (8,- - 1) COS¢A) (1 +Rh00)> (2.79)
r
—k :
fi = "DTI((”’_ 1)cos05(1+ Ryoo) — (€ — 1) cos 8;(1 — Rygo)) sind,  (2.80)
—k .
fvh = D 1 ((Llr - l)COSGi(l —RhOO) —T],(Sr— I)COSGS(I +Rh0())) sing, (2.81)
—k &—1 . )
fow = Dl (< 31n9,-sm65+(ur——l)cos())A)(l—{—Rvoo)
v Er
+M-(€ — 1) cos6;cos05cosdpa(1 — Ry0)) (2.82)
D, = m,cos0s+cosOy (2.83)
D, = mn,cosBy -+ cosO; (2.84)

where Oy, is related to 0, by Snell’s Law: k; sin®; = k, sin0;, and W(Kx, %) is the surface
spectral density given by (2.35).

A number of characteristics of the first order Small Perturbation method are shown in
Figure 2.33 through Figure 2.40. Figure 2.33 shows the hh backscattering as a function of
incidence angle and for different values of the rms slope. Since the roughness is so slight,
the backscattering coefficient reduces only slightly with increasing angle; the drop-off for
the much rougher surfaces shown in Figure 2.13 and Figure 2.23 is not evident. The inco-
herent scattering in the specular direction is shown in Figure 2.34 for hh polarization and in
Figure 2.35 for vv polarization. The specular scattering coefficients are not strictly propor-
tional to the reflection coefficients, as evidenced by the monotonic decrease in scattering for

hh, but the Brewster angle is still very distinct in vv polarization. Consistent with Geomet-
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Backscattering Coefficient oy, (dB)
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Backscattering Angle 0 (degrees)

Figure 2.33: First Order Small Perturbation backscattering coefficients vs. incidence
angle for a Gaussian surface with rms slope m varied from 0.1 to 0.4.
& = 3.0— j0.0, ko = 0.1. The cross-polarized terms are zero.

Bistatic scattering coefficient O'OHH (dB)

-80. 1 1 1 Loaasd 1 1 L
0. 10. 20. 30. 40. 50. 60. 70. 8. 90.

Specular Scattering Angle 6 (degrees)

Figure 2.34: First Order Small Perturbation bistatic scattering coefficients in the spec-
ular scattering direction for hh polarization vs. incidence angle for a
Gaussian surface with rms slope m varied from 0.1 to 0.4. & = 3.0—
j0.0, ko = 0.1. The cross-polarized terms are zero.



61

Bistatic scattering coefficient oovv (dB)

Specular Scattering Angle 6 (degrees)

Figure 2.35: First Order Small Perturbation bistatic scattering coefficients in the spec-
ular scattering direction for vv polarization vs. incidence angle for a

Gaussian surface with rms slope m varied from 0.1 to 0.4. & = 3.0 —
j0.0, ko =0.1.

Bistatic Scattering Coefficient 0°HH

1
0. 15. 30. 45 60. 75. 90. 105. 120. 135. 150. 165. 180.

Azimuthal Scattering Angle A¢ (degrees)

Figure 2.36: First Order Small Perturbation bistatic scattering coefficients for Ak po-
larization vs. azimuthal scattering angle for a Gaussian surface with rms
slope m varied from 0.1 to 0.4. 6, = 6, =45°,¢&, =3.0— j0.0, k5 =0.1.
Backscattering corresponds to ¢, = 180° and specular scattering corre-
sponds to ¢ = 0°.
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Bistatic Scattering Coefficient cobi (dB)
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Azimuthal Scattering Angle Ad (degrees)

Figure 2.37: First Order Small Perturbation bistatic scattering coefficients for all po-
larizations vs. azimuthal scattering angle for a Gaussian surface with
rms slope fixed at m = 0.1, &, = 3.0 — j0.0, k6 = 0.1, 6; = 6, = 45°.
Backscattering corresponds to ¢, = 180° and specular scattering corre-
sponds to ¢ = 0°. 6%, =62 .

Backscattering Coefficient col_m (dB)
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Figure 2.38: First Order Small Perturbation backscattering coefficients vs. incidence
angle with surface dielectric varied. The surface has Gaussian correla-
tion with k6 = 0.1 and m = 0.2. The cross-polarized terms are zero.
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Bistatic Scattering Coefficient GOHH (dB)
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Specular Scattering Angle 6 (degrees)

Figure 2.39: First Order Small Perturbation bistatic scattering coefficients in the spec-
ular scattering direction for hh polarization with surface dielectric var-
ied. The surface has Gaussian correlation with k6 = 0.1 and m = 0.2.
The cross-polarized terms are zero.
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Bistatic Scattering Coefficient ", (dB)
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Figure 2.40: First Order Small Perturbation bistatic scattering coefficients in the spec-
ular scattering direction for vv polarization with surface dielectric varied.
The surface has Gaussian correlation with k6 = 0.1 and m = 0.2. The
cross-polarized terms are zero. The Brewster angle is clearly evident.
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ric Optics and Physical Optics models, the scattering decreases modestly with an increase
in rms slope.

The azimuthal dependence of the Small Perturbation approach is shown in Figure 2.36
and Figure 2.37. Like the Physical Optics approach, the surface currents for hh polarization
are assumed to flow only in the x- and y- directions, resulting in a pattern null at ¢, = 90°
consistent with that in Figure 2.26. The surface slopes are not completely neglected in the
first order Small Perturbation approach, however. The currents due to incident vertical po-
larization are allowed to flow in the z-direction, which results in a vv azimuthal pattern (Fig-
ure 2.37) that has a null, but its location much more resembles that of the Geometric Op-
tics approach (Figure 2.17) than that of Physical Optics (Figure 2.27). Unlike the much
rougher surfaces shown in Figure 2.16 and Figure 2.26, the level of scattering decreases in
Figure 2.36 as the rms slope increases.

Figure 2.38, Figure 2.39, and Figure 2.40 show the consistent trend of increased scat-
tering due to increased dielectric in the Small Perturbation approach, which agrees with the
predictions of Geometric Optics and Physical Optics.

The second order solution, however, predicts both coherent scattering and depolariza-

tion in the plane of incidence. The Small Perturbation reflection coefficients are given by
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Figure 2.41: Small Perturbation coherent reflectivity for v polarization vs. incidence
angle for a Gaussian surface with ko varied from 0 to 0.5, &, = 3.0 —
j0.0, kI = 5.0. The Brewster angle migrates modestly toward nadir as
the roughness increases.
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Figure 2.42: Regions of validity for the Small Perturbation Method as described by
Thorsos for various backscattering angles. The valid region is below the
lines.

where x = %kpkp,-lz, R, (spum) are the vertical and horizontal Small Perturbation Fresnel re-
flection coefficients, respectively, ky,; = k1cos6;, kyz; = \/k% —k% sin6;, ko; = kisin®;,
k3, = k2 — k% and k2, = k3 — k2 and I,(x) is the modified Bessel function of order n. The
Small Perturbation reflection coefficient for vertical polariztion is shown in Figure 2.41 as
a function of incidence angle and for differing rms surface heights. The level reduction at
ko = 0.5 is slightly than that for Physical Optics in Figure 2.22, but the most significant
feature of the Small Perturbation model is the slight change of the location of the Brewster
angle as the roughness changes.

The traditional limit of validity for the Small Perturbation Method is that the rms surface

height be sufficiently small. Ulaby ez al. [48], for example, give the region of validity for
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the SPM as

ko < 0.3 (2.87)

m < 0.3 (2.88)

Since that time numerical investigations by Chen and Fung [8] and a numerical and analyt-
ical investigation by Thorsos and Jackson [44] on a one-dimensional perfectly conducting
surface with Gaussian statistics show that the SPM region of validity for first order incoher-

ent scattering of scalar waves can be more precisely stated as

0.428¢—K*1*(sin8;~sin6})2/16 1
k6 < min ‘ ,0.282<1 + —ﬁ) (2.89)
\/1 _ (sin9i+sin6’)2 2k*1
—7
m < 0.6051 (2.90)

to guarantee that the error does not exceed 1 dB. The numerical analyses indicate that the
above inequalities are slightly conservative. The conditions evaluated in the above papers
are restricted to the plane of incidence for a two dimensional problem; they are, however,
likely to be indicitive of the region of validity for the general bistatic case. The scattering
angle 6/, is similar to 6; in that it is a measure of the direction away from the Z-axis but it
may take a negative value so that the entire plane of incidence is covered by (2.89). Specular
scattering occurs when 0} = 0; and backscattering occurs when 6/, = —8;. Thorsos’ Small
Perturbation region of validity for backscattering is shown in Figure 2.42 for several val-

ues of the backscattering angle. In the specular scattering direction incoherent scattering is
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dominated by coherent scattering, but the validity of the Small Perturbation prediction for

coherent scattering was not analyzed in either of the above papers.

2.5 Review of Bistatic Data

While all this theoretical development is valuable, it is incomplete without experimental
verification of the theories’ regions of validity. Some work has been done on theory verifi-
cation by means of computer simulations of rough surface scattering [8, 5], but the author is
only aware of two published experimental works on bistatic rough surface scattering done
at microwave frequencies.

In the optical regime, Leader and Dalton [28] investigated bistatic scattering from di-
electrics and came to the conclusion that depolarization originated in volume scattering.
Later, O’Donnell and Mendez [31] measured perfectly conducting rough surfaces with light
in search of backscattering enhancement. While their data are not normalized to a radar
cross section, they do publish both co- and cross-polarized scattering data in their correct
ratio. Saillard and Maystre [35] have simulated the bistatic scattering of light from dielectric
surfaces, and have observed a change in the Brewster angle as the roughness of the surface
increased. Greffet [20] explained their observations using the Small Perturbation Method
[33]. Phu et al. [32] reported millimeter-wave scattering measurements from several one-
dimensional perfectly conducting Gaussian rough surfaces.

Several experimental investigations were conducted at centimeter wavelengths in the
1946-1960 period to evaluate the variation of the coherent and incoherent components of the

specularly reflected energy as a function of surface roughness. The results for the coherent
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component, which is represented by the reflection coefficient, are summarized in Beckmann
and Spizzichino [3]. According to these results, the overall variation of the reflection coef-
ficient with ko, where k = 21t/A, and G is the rms height, may be explained by the coherent
scattering term of the Physical Optics surface scattering model [3, 48]. The data, however,
are rather lacking in several respects: (1) marginal accuracy with regard to both the mea-
sured reflected signal and the surface rms height, (2) limited dynamic range (10 dB relative
to the level of the signal reflected from a perfectly smooth surface), and (3) no examination
of the behavior in the angular region around the Brewster angle. Additional bistatic mea-
surements at 1.15 GHz were reported by Cosgriff et al.[9] in 1960, but the data were not
calibrated, nor were the surfaces characterized. Their work represented the only published
experimental work in bistatic radar surface scattering for over 25 years.

More recently, Ulaby et al.[50] measured bistatic scattering from sand and gravel sur-
faces at 35 GHz in the plane of incidence and as a function of azimuth for a pair of fixed
incidence and receive angles. While the data were calibrated and the surfaces were charac-

terized, no comparison to a theoretical prediction was given.

2.5.1 Coherent Scattering

At the Brewster angle, the reflectivity for the vertical polarization is identically zero for
asmooth interface. Whether it is still identically zero for a slightly rough surface is not clear.
The Physical Optics approach clearly predicts that this is so, moreover, it predicts that the
minimum reflectivity remains at the same incidence angle as for a smooth surface. This can

be seen in Figure 2.22. However, the Small Perturbation method predicts that the angle of
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Figure 2.43: Measured coherent reflectivity of the surface shown in Figure 2.2
through Figure 2.4. Solid lines are predictions of Physical Optics for this
surface, which has a relative dielectric constant € = 3.0 and rms surface
height ko = 1.39. The angle of minimum reflectivity for vertical polar-
ization is less than that for a smooth surface of the same material.

minimum vertical reflectance decreases slightly with increasing roughness of the surface,
as can be seen from Figure 2.41. The fact that Physical Optics does not predict a change
in angle while the Small Perturbation does is a consequence of the fact that the correction
to the Fresnel coefficient is purely multiplicative for Physical Optics while it is additive for
Small Perturbation. As will be seen in Chapter 5, higher order terms in Physical Optics are
also additive and will move the Brewster angle much like the Small Perturbation approach
does. Figure 2.43 shows the results of one of my measurements of the Brewster angle for
a rough surface, indicating that the minimum reflectivity does slightly change angle with

increasing roughness. The change is toward decreasing angle of incidence, in qualitative

agreement with the Small Perturbation method.
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Figure 2.44: Measured incoherent scattering from the surface shown in Figure 2.2
through Figure 2.4. Solid lines are predictions of Physical Optics for this
surface, which has a dielectric constant € = 3.0, and a power law correla-
tion with rms surface height k6 = 1.39 and correlation length kI = 10.6.

2.5.2 Incoherent Scattering

An example of incoherent scattering in the forward direction is shown in Figure 2.44.
Three polarizations are shown in the figure; the fourth, vh, shows evidence of contamina-
tion by kh and is not shown. While there are serious quantitative differences between the
measured data and the prediction of Physical Optics, it must be noted that several qualitative
features are present which the Physical Optics model does not predict. Most important of
these is the existence of cross-polarized scattering in the plane of incidence. Another is the
lack of a sharp Brewster angle for 6%,. Experimentally searching for nulls like the Brew-
ster angle in angular patterns is an intrinsically difficult task, since a failure to discover a

sharp, deep null could be due to many causes other than the non-existence of the null. In
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Figure 2.45: Measured incoherent backscattering from the surface shown in Fig-
ure 2.2 through Figure 2.4. Solid lines are predictions of Physical Op-
tics for this surface, which has a dielectric constant € = 3.0, and a power
law correlation with rms surface height k6 = 1.39 and correlation length
kl = 10.6. The measured cross-polarization shows evidence of contam-
ination and is not shown.

this case, it is particularly unclear if coherent or polarization contamination has occurred
since it is also possible that an important aspect of the surface has been misclassified or if
the calibration is faulty.

Backscattering measurements have also been made on this surface. The results, together
with the Physical Optics prediction, are shown in Figure 2.45. Much as the shape of angular
pattern of coherent scattering is dependent on the surface height probability distribution, the
shape of the backscattering angular pattern is a strong function of the form of the correlation

function. The reasonableness of the fit, especially for 0'2};9 in Figure 2.45 is strong evidence

for the use of the power law form of the correlation function. While all three forms of the
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correlation function yield approximately the same numerical values for the backscattering
coefficient for nadir to 30°, the Gaussian underestimates the scattering by 20 dB at 50°, and

the exponential overestimates scattering by 10 dB at 50°.

2.5.3 Depolarization

Electromagnetic waves, unlike scalar waves, have a polarization state which can be al-
tered by interaction with a rough surface. How well do these theories, both single scattering
and multiple scattering, predict depolarization? While Fung has shown that the Geometric
Optics solution to the Kirchhoff scattering problem does not produce depolarization in the
plane of incidence [16], he has also shown, however, in the same paper, how the inclusion
of multiple scattering, via shadowing, can contribute to depolarization in the plane of in-
cidence. Holzer and Sung [21] have derived depolarization in the plane of incidence for
single scattering under a Kirchhoff solution by expanding the local surface in a Taylor se-
ries to squared terms in surface slope. They show that the depolarization is due to the local
slopes transverse to the plane of incidence; numerical results, to show the magnitude of the
predicted depolarization, are not given.

Rice [33] did not use his Small Perturbation approach to predict any depolarization, but
since then Valenzuela [52] has shown that depolarization in the plane of incidence is a sec-
ond order effect, and is due to multiple scattering.

Unfortunately, polarization changes are difficult to measure because depolarized signals
can be generated by many mechanisms other than a rough surface. For the surface shown

in Figure 2.2 through Figure 2.4, volume scattering has been measured at levels near o=
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—50 dB and is therefore a negligible source of depolarization.

2.5.4 Polarimetry

The fact that electromagnetic waves possess polarization states gives rise to the possi-
bility that scattering from surfaces may cause relative phase shifts for different polarization
states. None of the theories developed here show any evidence that rough surfaces would
cause any phase shift other than 0° or 180° between vv and 4k scattered fields. My measure-
ments indicate that this may be true for forward scattering, but for backscattering the phase

shift appears to be roughly equal to the backscattering angle.



CHAPTER 3

System

3.1 System Specification

The Bistatic Measurement Facility, or its predecessors, which were functionally equiva-
lent, was used to obtain the measurements of the rough surfaces reported in this dissertation.
A photograph of the Bistatic Measurement Facility appears in Figure 3.1. It is a stepped-
frequency (8.5-10 GHz) measurement system capable of measuring the scattering matrix S
of the target contained in the area or volume formed by the intersection of the transmit and
receive antenna beams. Using an HP8720 vector network analyzer with an amplifier on the
transmitting antenna, the system measures a complex voltage for any pair of v or & receive
and transmit polarization states. With proper calibration, it is capable of measuring all four
complex elements of the scattering matrix of the target surface. The hardware allows the
transmitter and receiver to be located independently at any point on a hemispherical shell
2.1 m from the center of the target. In practice, however, measurements are accurate only
when both antennas are within 70° of nadir.

The receive antenna is a dual-polarized horn antenna with a beamwidth of 12°, and the

transmit antenna is a dual-polarized parabolic dish whose feed was designed such that the

75
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Figure 3.1: The Bistatic Measurement Facility. On the left is a dual polarized trans-
mitter mounted on an arch which can go from 0° to 90° in elevation and
0° to 360° in azimuth. Above and to the right is a dual polarized transmit-
ter/receiver, which ranges from 0° to 90° in elevation. The target holder
consists of a wading pool mounted on a turntable; the target is a set of
water—absorbing foam bricks.

main beam of the parabolic dish is focused at a range equal to the distance to the target
surface, which is held constant for all measurements. Because of the larger aperture (30 cm
diameter), the transmit antenna has a narrow beam of 5°, which dictates the extent of the sur-
face area responsible for the scattered energy. By using a focused beam antenna, we achieve
a narrow-beam configuration without having to satisfy the usual far-field criterion. A baffle
made of radar absorbing material was placed in the direct path between the transmitter and
receiver to insure proper isolation of the two antennas.

The Bistatic Measurement Facility (BMF) uses an X-band bistatic radar system mounted

on rotatable arches in order to measure the RCS of point targets or the bistatic scattering
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coefficient of distributed targets over a wide range of incident and scattering directions. Ta-
ble 3.1 provides a summary of the system specifications. The sweet spot refers to the region
near the center of the Bistatic Measurement Facility where the incident field is sufficiently
planar to accurately measure a radar cross section. Refer to Section A.1.1 of Appendix A
for more details on using the sweet spot. The noise equivalent measurements refer to the
values that the BMF reports when there is no scattering target observed, and represent the
minimum values which are obtainable. The bistatic noise equivalents are measured in the
specular direction, and the incidence angle is given. The noise equivalent measurements in
the specular direction with the angle of incidence at 70° exhibits a higher value than does the
similar measurement at 30° because some power leaks directly from the transmitter to the
receiver. The noise equivalent measurements at 30° should be indicative of typical noise
equivalents at most combinations of the bistatic angles where the antennas are not nearly
pointed directly at each other.

A block diagram of the microwave components of the Bistatic Measurement Facility is
shown in Figure 3.2. The horn serves as both the bistatic receiver and the backscatter an-
tenna, and is mounted on the outer arch. The dish, mounted on the inner arch, is the trans-
mitter when the BMF is in bistatic mode. Details of the microwave components, including

the antenna patterns for horn and dish, are given in the next section.

3.2 Antennas

The antenna patterns, measured at the operating ranges given in Table 3.1, are given in

Figures 3.3 thru 3.6. The patterns for the Dish are measured with the dish as the transmitter;
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[User supplied Network Analyzer NWA | Hewlett-Packard 8510 or 8720
Network Analyzer Measurement Response S21
Frequency Bandwidth B 1.52 GHz
Center Frequency fe 9.25 GHz
Frequency Sweep Type linear, 201 freq. pts.
Calibration Accuracy +1dB
Positional Accuracy (all axes) +0.1°
Bistatic Transmitter:

Antenna Type Dish reflector
Polarizations q vand h
v-pol. Elevation One Way FWHP Beamwidth el 5.0°
v-pol. Azimuth One Way FWHP Beamwidth o 4.7°
h-pol. Elevation One Way FWHP Beamwidth | ¢ 4.6°
h-pol. Azimuth One Way FWHP Beamwidth o 4.6°
Range, aperture to BMF center Ry 2.11m
Raw Polarization Isolation >30dB
Bistatic Receiver / Backscatter Antenna:

Antenna Type Horn with lens
Polarizations )4 vand h
v-pol. Elevation One Way FWHP Beamwidth e 9.8°
v-pol. Azimuth One Way FWHP Beamwidth 2z 11.3°
h-pol. Elevation One Way FWHP Beamwidth e 11.1°
h-pol. Azimuth One Way FWHP Beamwidth o 9.7°
Range, aperture to BMF center Ry 3.36 m
Raw Polarization Isolation >30dB
Bistatic Mode:

Maximum Transmit Power Level P 20 dBm
Approximate Diameter of “Sweet Spot” 9cm
Noise Equivalent RCS at 30° Omin <-50 dBsm
Noise Equivalent RCS at 70° Cumin <-30 dBsm
Approximate Effective Illuminated Area A 266 cm” sec 8,
Noise Equivalent Scattering Coefficient at 30° | o). <-45dB
Noise Equivalent Scattering Coefficient at 70° | o, <-30dB
Backscatter Mode:

Maximum Transmit Power Level P 10 dBm
Approximate Diameter of “Sweet Spot” >15cm
Noise Equivalent RCS Omin <-40 dBsm
Approximate Effective Illuminated Area Ay 2720 cm” sec®,
Noise Equivalent Scattering Coefficient Opin <-30dB

Table 3.1: Bistatic Measurement Facility system specifications
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Figure 3.2: Bistatic System Microwave Block Diagram

the patterns for the Horn are measured with the horn as the receiver. The patterns for the

Horn as transmitter are the same as for the Horn as receiver.

3.2.1 Dish Antenna

The construction of the Dish Antenna, which is used as the bistatic transmitter, is such
that the most important element, namely the dish, is not visible. The polystyrene which
conceals most of the elements of the dish comprises a rigid and strong support which holds
the active components precisely in their correct locations, yet is practically invisible to mi-
crowaves. The dish feed, of which the orthomode and waveguide-to-coax transitions are
visible in front, is held in its location relative to the dish by the polystyrene block. The dish
and feed are attached to the polystyrene block with foam polyurethane. The polystyrene

block is in turn permanently attached to the back plate by wood screws.
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Figure 3.6: Horn Azimuth One-Way Patterns.
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3.2.2 Horn Antenna

The most impressive feature of the Horn antenna is the polystyrene lens placed in the
aperture. It narrows the horn antenna one-way beamwidth from approximately 17° without
a lens to about 10° with the lens. The lens itself is very simple. It is made from two poly-
styrene cones, one extending outside the horn and one inside it, and a piece of 1 inch thick
polystyrene sheet cut to the size of the aperture. The pieces are held together with epoxy
cement. The horn has multiple flares, each no greater than 5°, designed to reduce internal

reflections within the antenna and supporting circuitry.

3.3 Laser Profiler

The surfaces were characterized by a Laser Profiler, a device engineered at the Univer-
sity of Michigan to measure 2 meter linear or 1 meter by 1 meter square sections of surface
profiles. The Profiler is shown in 2 meter linear mode in Figure 3.7. Using a Pulsar 50
Electronic Distancemeter manufactured by GEO Fennel, it can measure profiles of surfaces
without direct contact. The profiler has a horizontal resolution of 1 mm and a vertical reso-
lution of 2 mm. Figure 2.3 is an example of the height histogram generated from the profile
measured for one of the surfaces, and Figure 2.4 shows the corresponding correlation func-

tion.
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Figure 3.7: Diagram of Laser Profiler



CHAPTER 4

Calibration

The network analyzer measures only the the ratio of received to transmitted power. This
ratio is dependent on the polarization state, the geometry of the Bistatic Measurement Fa-
cility, and, of course, the target. This ratio can be converted into a useful quantity, such as
the bistatic radar cross section G or the scattering coefficient 6, only after calibration. The
calibration procedures are described in Section A.3.6 and Section A.3.7. But first, a brief in-
troduction is presented to acquaint the reader with the general concept of distortion matrices

and associated terminology.

4.1 Distortion Matrix Model

The distortion matrix model [53] was developed to analyze the relationships between the
ideal scattering characteristics of a point target and the actual signals measured by a NWA.
The method is very similar to the S-parameter analysis method used in conjunction with
microwave networks. A review of the calibration documentation for a typical NWA is very
instructive towards the general approaches that are described in this chapter.

The Bistatic Facility, regardless of whether it is in bistatic or in backscatter mode, can

84
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measure four quantities for each target position. These are four complex voltage ratios cor-
responding to four combinations of the transmit and receive polarizations. The transmitter
is equipped with a polarization switch which can be actuated to cause the antenna to trans-
mit a nominally horizontally polarized or nominally vertically polarized wave. Similarly,
the receiver is equipped with a similar polarization switch that causes the receive antenna
to accept a nominally vertically or nominally horizontally polarized wave. Deviations from
the perfect polarization state are called distortions, and the purpose of the calibration pro-
cedure is to correct them.

The four measurements constitute a 2 x 2 scattering matrix, denoted M (for the mea-
sured scattering matrix), with elements denoted M,,, where r represents the nominal receive
polarization (either v or /), and ¢ represents the nominal transmit polarization (again, either
v or h). M can be considered to consist of two terms, an undesired signal B due to back-
ground effects, and a desired signal due to the target S distorted by an imperfect transmitter

T and an imperfect receiver R, and scaled by a constant:

M = B+kyRST (4.1)
or,
Mvv Mvh va th
= 4.2)
My, My, By, By

va th va Svh Tvv th
+ kcal

Ry, Rpy Sy Shh Ty T
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where all the matrix elements are complex. Thermal noise is assumed to be negligibly small.
The background term B can be directly measured in the absence of a target (i.e., when
S = 0) and then, if not already negligibly small, subtracted from the measured scattering

matrix to give the distorted signal from the desired target:

N=M-B = k. yRST (4.3)

If a measurement of B results in the measurement of noise (i.e., the measurements of B are
not repeatable), then the background should be ignored by assigning all the elements of B
to zero.

S is the 2 x 2 polarimetric scattering matrix of the target under examination. Its complex
elements are functions of the bistatic angles (6;,6,,¢;) as well as the target’s orientation
(8j,0;). When S is theoretically known, as for calibration targets, it will be denoted P.

R is the 2 x 2 distortion matrix for the receive antenna, and represents the effects (gain,
loss, phase delay, etc) of the horn, orthomode, circulators, transitions, and plumbing up to
and including the microwave switch. For example, R, is the signal measured at the com-
mon terminal of the microwave switch while it is in the p-polarized position and the antenna
is illuminated with a perfect unit amplitude g-polarized plane wave. Since the target is de-
signed to always reside in the receive antenna’s far field, the R,, elements incorporate the
%R;—f range dependence. The matrix elements also incorporate the antenna gain by being
functions of the directions from the antenna (as measured from boresight). Within the main

beam, |Rpq| < |Rygq|- R is the same regardless of whether the system is in backscatter or

bistatic mode, since the same hardware is used to receive in both modes.
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T is the 2 x 2 distortion matrix for the transmit antenna, and represents the effects (gain,
loss, phase delay, etc) of the feed horn, dish and supports, orthomode, transitions, isolators,
and plumbing up to and including the microwave switch. Ty, is the amplitude and phase of
the p-polarized component of the transmitted wave when the microwave switch is in the g-
polarized position and a unit amplitude signal applied to the common terminal of the switch.
Unlike R, T depends on measurement mode of the system. For backscattering, T has very
similar range and direction characteristics as does R. The bistatic transmit module, how-
ever, is not designed to operate with the target in its far field, and thus the T}, elements are
more complicated functions of direction (as measured from boresight) and range from the
antenna. Within the main beam, |Tp,| < |Tyql.

k. is a complex constant accounting for the change in amplitude and phase of the signal
due to elements in common for all measurement polarizations. This includes all the active
elements (amplifiers and the NWA), as well as the microwave plumbing up to the antenna
modules. If some of the plumbing has been damaged or if plumbing connections have come
loose, it may change with respect to the bistatic angles, but the system was designed such
that this constant remains unchanged over long periods of time, regardless of the measure-
ments made.

Calibration then is the measuring of a set of targets with theoretically known P<@ and
using the corresponding N°# to determine an unknown S“"** from a measurement N“**. The
resulting S*** has the same units as P<a In other words, if a sphere is used as a calibration
target, then S“** will be reported as a radar cross section, whereas if a large conducting plate
is used as a calibration target the unknown targets will be reported in units of reflectivity.

No reliable distributed targets have been developed for the purpose of calibration, so if the
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unknown targets are distributed the measurements must be translated into a differential radar

cross section o©.

4.2 General Calibration Technique

Whitt and Ulaby [53] developed a calibration technique, known as the General Calibra-
tion Technique, with which the matrices R and T can be determined by using three calibra-
tion targets with known characteristics Py, P,,P3 and the following conditions:

(1) Py (at least) is an invertible matrix.

(2) Both Pl‘le and P1‘1P3 must have distinct eigenvalues; i.e., A; # A;.

3) P1_1P2 and P1‘1P3 must have no more than one common eigenvector.

(4) Both Py 1 P, and PI*IP3 must have eigenvalues which are not negatives of each other;
ie, M #—Ap.

If the first 3 conditions are not met, the calibration targets are not sufficiently different
to determine R and T. The last condition is not described in [53] and if it is not met the
solutions for R and T are not unique. The incorrect solutions may or may not be obvious.

Examples of a set of targets which fulfill these criteria for backscatter are: a sphere, a 45°
oriented metallic cylinder, and a horizontally oriented metallic cylinder. The corresponding

theoretical scattering matrices of these targets are (in the limit as the cylinder diameter be-
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comes very small):

10

P, =Psphere = O 4.4)
0 1
11

P,=Po., = 4.5)
11
00

P3 =Ppopi; cl = €3 (4.6)
01

where ¢;,c7, and c3 are constants which depend on the size and wavelength.

Kihny et al. [25] uses a fixed set of calibration targets to solve the calibration problem
in a similar fashion. However, he employs a unique “twist”: He measures two physically
different targets, but obtains a third by rotating one of the bistatic antennas 90° about its
boresight direction. For this purpose, the Bistatic Facility Transmitter Module has been de-
signed to rotate about its boresight direction. When the transmitter is rotated by 6 about its

boresight, the target’s scattering matrix gets modified from P to P’ = PO where

cos® sin6

@
Il

(4.7)
—sin® cos0
(If the Receiver Module were capable of such rotations, the new target scattering matrix
would be 6~1P). The reader is referred to [53] for details of the General Calibration Tech-
nique.

The improvement in a backscattering antenna’s cross-polarized isolation (the minimum
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Shv
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Shr

b

vh

2 2
value of measured I %Y}f ’ , and for a target whose theoretical P,j, = Py, =0

Sw
Shv

) is a good indicator of the quality of a calibration technique. The GCT improves the iso-
lation from a raw value of 20 dB (i.e., assuming R, = Ry, = T,,, = T, = 0) to a corrected
value of 50 dB. A perfect calibration technique would make the isolation infinite.

While the technique is exact, its application is somewhat cumbersome. The targets re-
quire very accurate positioning and orientations to prevent small errors from overwhelming
the minute corrections that the technique provides. The General Calibration Technique is
therefore reserved for situations requiring very accurate polarimetric measurements. Other
more convenient approaches are discussed in the following sections, first for the backscatter

case and next for the bistatic case.

4.3 Backscatter Calibration Theory: Single Target Cali-

bration Technique

The Single Target Calibration Technique (STCT) was developed by Sarabandi and Ulaby
[37] for a backscatter antenna for which the distortion was small, but not negligible. It starts
by taking the distortion model and further separating some of the physical processes con-
tained in the distortion elements, in particular the electrical differences in plumbing (length
of coaxial tubing, different circuit elements, etc.) for the different polarizations as separated

from the depolarizations caused by geometrical imperfections (in the dish, feed, horn, etc.).



Mathematically, these are represented as:

where

Cr -
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(4.8)

4.9)

(4.10)

(4.11)

(4.12)

(4.13)

Since the same physical antenna is used for transmitting and receiving, the geometric dis-

tortions for transmit and receive are identical. Thus, Cy, = G, and Gy, = C;, (let us denote

them as C,, and C, respectively). Then, this technique assumes that all these crosstalk terms

are identical; i.e., C;, = C,, which is then denoted as C. The justification for this assumption

is described in [37], and requires that |Cy| < 1 and |Cy| < 1. Most dual-polarized antennas

are built such that both |Cp| and |C,| are approximately on the order of -20 dB.

The calibration is achieved by measuring a single target with a theoretical scattering ma-
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trix proportional to the identity matrix:

Scal = Scal (4.14)

Such targets include a sphere in freespace, and a large conducting plate. If a sphere is used,
the calibration results in measurements reported in radar cross section; if the plate is used
the measurements are reported in term of reflectivity. These units can be converted into each
other or into differential radar cross sections with the appropriate knowledge of the antenna
pattern, as discussed in Section 4.5.

After background subtraction (if necessary), we achieve a set of four complex values:
Neal, From this single set of measurements we generate a complex parameter a:

cal nreal
N, vh N, hy
cal njeal
Nga Nhh

Q

(4.15)

Since we assume that the crosstalk is small to begin with, and the measured target has no
cross-polarized scattering, we can expect |a| < 1. In fact, it can be shown that a and C are
related by

C = + (1i¢1’-‘5) (4.16)

a

S

which has four solutions. Fortunately, two of the solutions result in a value of C which is
not small, and can be discarded. These large incorrect values are a consequence of the fact

that P¢% = P¢@! and therefore the calibration cannot, by itself, tell the difference between ¥
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and h at the target. Then, since a is small, we can expand the expression for C in a Taylor

series to avoid division by a small number:

b a a*
C = §<1+Z+§+...> 4.17)

where b = ++/a.

We cannot solve directly for R;, Ry, T}, or T,,. However, given a measurement of an un-
known target N“** | we can solve for the scattering matrix S¥* that would result in such a
measurement for this antenna under this set of (reasonable) assumptions:

k k
s St

= (4.18)
suk sy

Sunk

Nk N
1+ C2 1 -C W sz%l 1 -C
- cal 2 nk nk
(1 - Cz) —-C 1 bNu_..b.L N —C 1

cal cal
N hv N hh

The result is unambiguous in Sy, and Sy, but there is a 180° ambiguity in the phase of Sy,
and S,;, as evidenced by the choice of sign in the calculation of b. Another measurement
is required to determine the sign, but is unnecessary if magnitudes of the scattering matrix

are all that is desired.

4.4 Bistatic Calibration Theory

The basic bistatic calibration procedure is based on the Isolated Antenna Calibration

Technique (IACT) developed for backscattering by Sarabandi ez al.[38]. The IACT is a pre-
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cursor to the STCT described in Section 4.3, and it does not account for antenna cross-talk.
In other words, C is assumed to be not just small, but to be zero.

In addition, the transmitter is made to rotate about its boresight direction. For a rotation
of 0 degrees, the transmit distortion matrix for a distortionless antenna becomes:

cos® sin6 1 0
T = 7T, (4.19)

—sin® cos® [ | 0 T

where T, ,i = % The receiver distortion matrix becomes
v

R = R, (4.20)

Ry
Ry

where R, =
Up to two measurements of the same target are required with this technique, one with the
transmitter module in the normal position, and an optional one with the transmitter module

rotated by approximately 45°. The calibration target must be diagonal, ie. in the bistatic

measurement configuration

Pl 9
pa = | 4.21)
o p

For the usual calibration targets, namely a sphere and conducting plate, this condition can
be made true. For the sphere, the bistatic system must have the receiver in the the plane of

incidence, ie. ¢, = 0° or ¢, = 180°. For the plate, the specular position, where 6, = 6, and
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¢, = 0°, must be used, in which case the theoretical scattering matrix is not just diagonal,
! _ peal
but P = P

Then, for a measurement of arbitrary 6,

Nyy th
N =
Ny Npp
= kRPOT
P,,cos9 P, T;sin®
— ¥ (4.22)
_R;,Phh sin@ RZPhh T}i cos9
where k' = kR, T,. Then the following relations are easily shown:
R, P, T!
BZnly - Non (4.23)
PVV NVV
R P, —N,
ek (4.24)
vaTh th
2
K PuRyPunT;, = NywNuy— NypNpy (4.25)
KPR, P} c0s20 = NyyNps+ NypNp (4.26)
T tan® = %ﬂ 4.27)
147
—tan® Ny,
= = 4.2
T N (428)

and, for the measurement at 45°,

_ — Ny (45°)Np, (45°)
tanBys = +\/ N (457 Vi (45°) (4.29)
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From these relations the quantities of interest can be derived:

cos By

sin 90

N,;(45°)

va(45°) tane45
By Nip(45°) _ 1 Py Nig

PPy Nu(45°) T T} Pu Ny
NNy, — NypNpy

N Ny (0°) N, (0°)
va(Oo )Nhh(oo) - th(oo )th(oo)

—T; cos B

th(oo)
Ny (0°)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

The positive sign in (4.29) and (4.33) indicates that the square root which yields a positive

real part for the complex quantities tan 645 and cos 8y should be used.

It can be seen from this development that the need for calibration with the antenna ro-

tated is only necessary to prevent a multiplication and division by small numbers in the cal-

culation of T}. A rotation by 45° is best to eliminate such difficulties, but it may be that

using a lesser or greater rotation, or even using no rotation at all, may be satisfactory.

Then, the scattering matrix S“nk can be determined from a measurement N** as follows:

Sunk — R—lNunkT-le—l/kl

(4.35)
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where

1 0

R! = (4.36)
0 1/R,
1 0

T! = (4.37)
0 1/T]

cosBp —sinBy
o~ = (4.38)

sin@p cosBy

-

and k' is the square root of (4.32) that is closest to Ny,(0°)/(P,y cos8g).

4.5 Target Types

The Bistatic Facility can characterize three classes of objects: point targets, distributed
targets, and reflectors. Point targets are small objects (When compared to the cross section of
the radar beam) and scatter energy coherently in many directions. They are characterized
by a radar cross section ¢, which has the units of area and is usually measured in dBsm
(sometimes written as dBm?), which is an area expressed in decibels relative to 1 square
meter.

Distributed targets are large (when compared to the cross section of the radar beam) ran-
dom objects and scatter energy incoherently in many directions. They are characterized by
a differential radar cross section 6°, which is defined as the ratio of the surface’s radar cross
section to its physical area, and is thus dimensionless. It is usually expressed in dB. Reflec-

tors are large (when compared to the cross section of the radar beam) objects which scatter
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energy into a finite set of directions. They are characterized by the reflection coefficient
Rpg, which is dimensionless complex ratio of the p-polarized coherent field amplitude scat-
tered from the reflector to the g-polarized field amplitude incident upon it. It is also often
characterized by the reflectivity I'p4, which simply the magnitude squared of the reflection
coefficient. This quantity is also dimensionless and is expressed in dB.

The conversion of a calibration using one target into a measurement of another target

starts with the radar equation for each target:

G,GA?
Pt = P g (4.39)
g “(4n)’R2R2 7
. A2 G,G
pirc - p / 160 dA; 4.40
P q(47t)3 Ay RER? P4 i (349
2
Pk = P f’G’)‘ Toq (4.41)
(41)*(R, + Ry)

where PP is the received coherent power scattered by a point target, P is the received
incoherent power scattered by a distributed target, and P°°" is the received coherent power
scattered by a distributed target. In addition, A is the radar wavelength in a vacuum, G, and
G; are the antenna gains of the receiver and transmitter in the direction to the target, R, and
R; are the ranges from the receiver and transmitter to the target, P’ is the transmitted power,
the subscripts p and g indicate the received and transmitted polarizations, respectively, and
A;y is the area of illumination on the distributed target.

Point targets are deterministic, so only one measurement need be made for every com-
bination of bistatic angles (8;,6,,¢;) and target orientation angles (8;,¢;).

Distributed targets, however, are statistical. Therefore, accurate determination of the
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coherent and incoherent power, and thus the reflectivity I and the scattering coefficient o’
require the measurement of many independent realizations of statistically identical targets.
There are numerous ways to do this, but the easiest is to make a distributed target which
is much larger than illuminated area A;;, and to move the target between measurements so
that different portions of the target correspond to the radar’s illuminated area during a mea-
surement. For this reason the Bistatic Measurement Facility is equipped with the capacity
to include a turntable and 215 cm diameter sample holder. (It is important that the turntable
be positioned with its axis of rotation offset from the center of the BMF by at least the di-
ameter of the area of illumination, so that different portions of the distributed target can be
rotated into and out of the illuminated area. This is in contrast to a turntable which might
be used to control ¢ for point targets, which should be located at the center of the BMF so
that the point target stays at the same location within the sweet spot.)

The separation of the coherent and incoherent powers measured by the radar can be
achieved by applying complex statistics on the calibrated scatter matrices S. The calibrated
scatter matrix elements Sp, represent a complex voltage ratio which is proportional to the
scattered electric field for each polarization state at each spatially independent sample of the
surface. Because the scattered electric field is composed of a coherent component from the
mean surface and an incoherent component from the distributed target, the measured volt-
age ratio will also have a coherent and incoﬁerent component: Spg = S;‘(’Ih + SZ’; . These two
components can be separated because the incoherent component has a zero mean: S-Z’,E =0
(where X indicates the mean of x). Provided a large number of independent samples are mea-

sured, the coherent power P, is proportional to the square of the complex average of the
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measured voltages:

2 S
e — -

The incoherent power P, is then proportional to the variance of the fluctuating component

of the measured voltage:

; ) <2
P = |Sine|” = |Spg—~ Spq|” = Var(Spq) (4.43)
These averages and variances are calculated on the fly by means of the following equa-

tions. For the first independent spatial sample, (Spq | = Spq and Var(Spg); = 0 and for the

nth spatial independent sample,

n—1 1

Spadn = = Spa)or ;500 (444)
n—2 1 2
Var(Spq), = n— 1V3f (Spq)n—1+ n (Spq - (S_p;)n_ 1) (4.45)

Provided that calibration is achieved with a large flat metal plate, for which

pa = : (4.46)
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it can be readily shown that

41R%.R2
Opg = — LIS, (4.47)
(Ryo+Ryp)
-2
Tpg = |Spq (4.48)
4
ol = Var(S ) (4.49)

i (R + Rio)* T

where R,y and R, are the boresight ranges from the transmitter and receiver, respectively,
to the center of the Bistatic Measurement Facility and the illumination integral I;;; is given

by

G,G;
Ly = / ——dAj;. (4.50)
Ay RER?

and has been implemented with the following approximation:

1paz 1Rel
o~ ntaniﬁt tani {

Iy ~

451
R%)cos 6; (4.51)

The values of some of these parameters in equations 4.47 thru 4.51 depend on whether the
BMF is in bistatic or backscatter modes. Technically, some of the variables in equation 4.51
also depend on the polarization state, but that dependence is sufficiently weak that it has

been neglected.
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4.6 Independent Samples

The total number of independent samples is an indicator of the quality of the measure-
ment of T" or 6°. Generally, 20 to 30 independent samples should be considered a minimum
for a valid measurement; 50 to 100 independent samples would constitute a good measure-

ment.

4.6.1 Frequency Averaging

The total number of independent samples for 6° is not always the same as the number
of spatial independent samples. A single spatial independent sample may have more than
one independent sample due to a phenomenon known as “frequency averaging.” We can
consider a radar with bandwidth B to be equivalent to a pulse radar operating at a single fre-
quency but with a pulse duration of T = 1/B. For each point in the illuminated area there
is a path r going directly from the transmitter to that point, then continuing from that point
directly to the receiver. The propagation time associated with these paths is t = r/c, where ¢
is the speed of light. One of the points has the longest such path 7,4y, and one has the short-
est such path r,,;,. Therefore, for each instant that the radar transmits power, it is receiving
energy from the distributed target for a total duration A = Ar/c where Ar = gy — rin. If
At > 7, then different portions of the illuminated area are distinct, that is, they are indepen-
dent samples. Thus, the number of independent samples per spatial sample, denoted Ny,

is

alk
S

(4.52)
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The number of independent samples per spatial sample is never less than one, nor is it greater
than the number of frequencies sampled (for the BMF, while 201 frequency points are mea-
sured by the network analyzer, only 21 equally spaced frequency points are used by the soft-
ware). For the backscatter mode,

sin20,sin 53¢

A
4 "0 c0s 26, + cos B¢t

(4.53)

and for bistatic mode

Ar = 2Rg|sinZ¢;| (4.54)

tan% el ]
050 (sin®; — sinB,cos ;) + tan 5 B;*(1 + cosd, ) sin6;
t

Generally, for a given 0,, the backscattering direction provides the greatest Ar. Also, Ny =1
for the specular direction.

The reported scattering coefficient is the average scattering coefficient over all 21 fre-
quency points used by the software. Reflectivities do not average well over frequencies, so
the reported reflectivity is just that at the center frequency and the total number of indepen-
dent samples for the reported reflectivity is the same as total number of spatial samples. The

reported radar cross section, of course, involves neither spatial nor frequency averaging.

4.6.2 Measuring Sample Independence

The maximum number of spatial independent samples, and thus the amount of rotation

required between measurements, can be determined by the finding the angle of rotation of
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the turntable necessary for decorrelating the measured power. This is achieved by measur-
ing the RCS of a distributed target, preferably a relatively strong scattering target which has
many random variations within each possible illuminated area, at many close but equally
spaced rotations of the turntable. Let N, be the number these close but equally spaced sam-
ples. Then the amount of turntable rotation per (non-independent) sample ¢,,; would be
Oror = 360°/ Np,. Np should be on the order of 100 or more. Then the resultant measurements
at position n, namely Gpq4(néro) for the pg polarization, are used to find the autocorrelation

of the measured signal p:

Ny—1
p(nbrr) = pE‘ 1097¢(Mdror) /101 (0O pg((m+n)dror) /10 (4.55)

m=0

where it is recognized that angles greater than 360° are equivalent to an angle between 0°
and 360°. The smallest angle ¢, at which p(¢s)/p(0°) < e! is the decorrelation angle. The
total number of spatial independent samples N to be used per rotation of the sample holder
is then Ny = 360° / ¢s.

The value for ¢; should be a weak function of the bistatic angles, since it will change only
with the extent of the illuminated area. Formula 4.55 will only work, however, if the target
measured produces much more incoherent power than coherent power for the bistatic angles
chosen. Therefore, care must be taken to use a scattering target with sufficient randomness
and physical fluctuations, especially if this is to be measured at or near the specular direction.

To separate the measured signal into its coherent and incoherent components, it is neces-
sary to measure many statistically independent samples of the random surface characteriz-

ing the target surface. This is achieved by rotating the sample holder in increments of 10°,
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thereby realizing 36 spatial samples per full rotation. The spatial correlation of the mea-
sured incoherent power indicates that measurements decorrelated every 15°, resulting in 24
independent samples per surface. Measurements of smooth surfaces indicate that phase co-
herence is maintained between independent samples. The total path length, from transmitter
to target to receiver, has a standard deviation less than 4 mm (7° at 9.25 GHz) for the set of

independent samples.

4.7 Validation

Validation is the process of quantifying the accuracy of a particular calibration or of a
calibration technique. Validation is achieved by measuring a target with a known scattering
matrix and comparing it to the calibrated measurement of that scattering matrix. For an ef-
fective validation, the validation target should have a scattering matrix which is sufficiently
different from those known targets used for calibration, since an otherwise faulty calibration
could still give correct results for a small class of targets which are very similar or identical
to the calibration targets.

One possible target for validation is a metal sphere located at the center of the bistatic
facility. Such a validation target has a known scattering matrix which can be calculated via
Mie theory [4]. The scattering matrix of a sphere is diagonal when the fields are oriented
within and orthogonal to the plane of scattering of the sphere, which is the plane contain-
ing the transmitter, the sphere and the receiver. For a perfectly conducting sphere, the two
scattering amplitudes themselves are functions only of the sphere radius a, normalized to

the wavelength of the incident radiation, and the cosine of the angle between the incident
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and scattered directions (ie. the supplement of the transmitter-sphere-receiver angle), rep-
resented by LL:

P (ka,n) O
P;phere(kaa B = . (4.56)

0 P(ka,n)

where | and || indicate directions perpendicular to the scattering plane and within the scat-
tering plane, respectively, and the prime indicates that the scattering matrix is represented
in that coordinate system. A FORTRAN subroutine which can be used to calculate P| and
PI'| is listed in Bohren and Huffman [4]. The orientation of the scattering plane is undefined
for two cases: forward scattering and backscattering. For forward scattering, where i = 1,
P = PIII’ while for backscattering, where p = —1, P| = —Pl’l

In order for (4.56) to be useful, the value of L must be found and the bistatic coordinate
system of Figure 2.1 must be reconciled with that the previous paragraph. From Figure 4.1,
it is evident that the latter is accomplished by rotating the incident field coordinate system
by an angle o; about the incident direction, and the scattered field coordinate system by
an angle o, about the scattering direction, so that the scattering matrix of the sphere in the

bistatic coordinate system is

sino, —cos0y | | P (ka,p) 0 sina;  cosqy
Psphere(kaa 0;,05,04) =
cosO  SinOi 0 PI’I (ka, ) —cosoy; sinoy
4.57)

where the rotation angles o; and o,; can be found from the Sine Law for spherical trigonom-
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Figure 4.1: A triangular section of a unit sphere centered at the target is used to con-
vert fromthe _L-|| coordinate system of Bohren and Huffman to the bistatic
coordinate system. The target is located at the junction of the z, k;, and
ks vectors at the bottom of the figure. For both the incident and scattered
directions, kK is in the v x h direction as well as the E ;| x E” direction

etry:

sino;  sin0s _ sin (180° —¢4)
sin@; ~ sin@; sin B

(4.58)

and the cosine of the scattering angle, [, can be found from the Cosine Law for spherical

trigonometry:

L = cos(180°—PB) = —(cos0;cos0;+sin6;sinOscosa) (4.59)

Two problems exist with using the sphere for a validation target, one practical and one

theoretical. The practical problem is that the sphere requires an absence of other scattering
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Figure 4.2: A hemisphere on a ground plane is used as the target for validation of
calibration of the Bistatic Measurement Facility. Image theory is used to
make the hemisphere appear as a complete sphere illuminated simulta-
neously with the incident wave and its image, with the polarizations as
shown.

objects in the vicinity of the center of the bistatic facility. The surfaces measured in the Bi-
static Measurement Facility are heavy, bulky and fragile, and removing and replacing them
at the center of the facility ranges from difficult to impossible. The large planar metal sheet
used for calibration can be used simultaneously to calibrate the system and shield the system
from the unknown target directly underneath it. The verification target should have similar
shielding properties.

The theoretical problem is that a sphere has a diagonal scattering matrix in the appro-

priate coordinate system. This scattering matrix is not all that different from that of the cal-

ibration target, limiting the value of its use for validation.
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Both of these problems can be solved by using a hemisphere placed on the calibration
ground plane as the validation target. The calibration ground plane solves the préctical prob-
lem of shielding the unknown target beneath; the ground plane affects the target scattering
matrix such that, for a large number of bistatic angles, the scattering matrix is not diago-
nal in any coordinate system. Figure 4.2 shows a schematic of this validation measurement
configuration. Image theory manifests itself in this geometry in two ways. The receiver
sees not just the hemisphere itself, but also its image under the ground plane, so that the
receiver sees a complete sphere. As a result, the Mie theory developed above is useful for
characterizing the scattering from this geometry. Image theory also effects the transmitter:
the hemisphere is illuminated not just by the transmitter but also by the image of the trans-
mitter. As as result, the scattering from the hemisphere on a ground plane appears as an
interference pattern of a single sphere illuminated by two sources, one at an incidence an-
gle of 9; and an image source with an incidence angle of 180° — 0;. Also, image theory for
the perfect electric conductor states that the vertical components of the incident field and the
image field are in-phase, while the horizontal components are 180° out-of-phase, as shown

in Figure 4.2. Thus, the scattering matrix of the hemisphere on the ground plane is

Phemispherc(kaa 0;,05,04) = Psphere(kaa 0;,65,04)
+Psphere(ka’ 180° —8;,65,04)

(4.60)

This matrix, unlike that for a sphere Pgppere, typically varies dramatically with a change in
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Figure 4.3: Radar cross section of a hemisphere on a conducting ground plane. The
curves represent the theoretical development in this section and the dots
are calibrated measurements made in the Bistatic Measurement Facility at
9.25 GHz. The hemisphere has a 2” diameter and the other bistatic angles
are p = 45° and 6; = 45°.

the bistatic angles. Out of the plane of incidence, it is rarely, if ever, diagonal in any co-
ordinate system, because the plane of scattering for the incident wave and its image do not
coincide.

A comparison of measurements of the hemisphere calibration target with the theoretical
radar cross section which is described in this section is shown in Figure 4.3.

A serious weakness of this theoretical description is that it does not account for the spec-
ular flash from the ground plane. As a result, the calibration cannot be verified with this
target in the specular direction, or within one system beamwidth of the specular direction.
If the calibration is validated away from the specular direction, it should be valid also in
the direction that the calibration was performed. A limited confirmation in the specular di-

rection was performed by measuring the reflectivity of a pool of tap water and is shown in
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Figure 4.4: Reflectivity of water. Curves represent the theoretical reflectivity of fresh
water at 9.25 GHz (¢, = 63.2 — j31.4) and the dots are single measure-
ments of still water in the specular direction. The error in the measured
data does not exceed 0.2 dB. All cross-polarized data lie between -28 dB
and -30 dB.

Figure 4.4. Ulaby et al. [49] gives the dielectric constant of O parts per thousand salinity

water as €, = 63.2 — j31.4 at 9.25 GHz and 20°C.



CHAPTER S5

Modified Physical Optics Model

In this chapter, an extension to the traditional Physical Optics expression for the scat-
tered field is developed. While higher orders to Physical Optics have been attempted before
(see, for example, Ulaby et al. [48] and Leader [27]), this development is unique in several
aspects: it is generalized for full polarimetry, in that the expressions are amenable to creat-
ing Mueller matrices, and, after the tangent-plane approximation, the Taylor series in slopes
are expanded without further approximations. In the derivation of this modified Physical
Optics approach a recipe is given to extend it to arbitrary orders.

Some fundamental assumptions about the scattering problem are: the surface height
must be single-valued; the surface height probability density must be Gaussianty distributed;
the two regions, that is, above and below the surface, must have isotropic, linear, homoge-
neous electrical and magnetic characteristics; the surface can be described by a stationary
random process; the surface has a well-characterized correlation function; and that correla-

tion function is isotropic.

112



113

5.1 Stratton-Chu Integral Equation

In Ulaby et al. [48], the Physical Optics solution for scattering from a dielectric rough
surface is presented under the scalar approximation. This approximation leaves out many
terms, some of which change the results of the calculations significantly. In particular, cross-
polarized scattering is neglected in the plane of incidence under the scalar approximation.
What follows is a full vector solution to the Physical Optics problem, including vector terms
which are neglected via the scalar approximation and some higher order terms in the expan-
sion of the solution with respect to surface slope, with the rest of the assumptions remaining
the same as in Ulaby et al. [48].

The solution starts with the exact Stratton-Chu integral equation for the p-polarized scat-

tered far field due to a g-polarized wave (QEOe‘jkﬁi’r) incident upon a rough surface:

s — jkse~ IR0 / Upg _jiy(k,—k;)r
— s\Bs— By 5
qu AR, Ey D, e ds (5.1)
Dn, 1 . ek
Upy = —p- (ks x [(f x E)—nsks x (B x H)] ) e85 (5.2)

0

where K; is the direction of propagation of the incident field, k; is the direction of propa-
gation of the scattered field (in either medium), p is the polarization of the receiver, and fi
is the unit surface normal fi; or fi;, depending upon in which medium the scattered field is
observed. The vector r describes any point on the surface, and, for the purposes of calculat-
ing rough surface scattering, is considered to be of the form r = &x+ §y + 2f(x,y), where

f(x,y) is differentiable everywhere with Z, = ;% f(x,y) and Z, = % f(x,y). Under these
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circumstances, the unit normal exists for all points on the surface and is given by

. 1-ZR-ZF

fi; = 5 (5.3)
n, = -i (5.4)
D, = \J1+Z2+2Z} (5.5)

The polarization amplitude Up,, given by (5.2), is the same as that given by Ulaby et al. [48]
except for the factor of D,, which makes a number of the expressions which follow slightly
simpler.

For scattering in the “upper” medium (ie. medium 1, the medium in which the source
of the incident field exists), the singly scattered fields on the surface calculated with the
tangent plane approximation have been given by Holzer and Sung [21] and Tsang et al. [46].
Leader [27] gave the equivalent expressions for the total fields on the surface. These singly

scattered fields are given by:

iy xE = [Ry(d-0)(Ay x 1) +R, (fiy - k) (§- Q)T Ege /KT (5.6)

nlﬁl xH = [Rh (ﬁl . ﬁl) (f] . It\)’f— Rv (ﬁ . a) (ﬁl X ‘f)] Eoe—jksﬁi.r (57)

where k; is the incident wave direction, § is the incident wave polarization direction, fi is
the unit normal to the surface, t = ﬁi x i/ Iﬁi x i | is the unit vector simultaneously tangen-
tial to the surface and normal to direction of propagation of the incident wave, and d=k;xt

completes the right handed coordinate system (ﬁi, t, ﬁ) located at the surface. This coordi-

nate system local to the surface is shown in Figure 2.11. Also, R, and R, are the v- and h-
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polarized Fresnel Reflection coefficients local to a point on the surface.

5.2 Evaluation of Vector Products

Regardless of the form used for the local reflection coefficients R, and Ry, all the unit
vectors are known that appear in the polarization amplitude given by (5.2) through (5.6)
and (5.7). The local unit coordinate system (k;,,d) is given by (2.40), (2.45), and (2.46).
The incident and scattered wave directions are given by (2.1) and (2.2), respectively. The
scattered wave polarization vectors, h, and 9,, which are used in the unit vector p to pick
the polarization, are given by (2.8) and (2.9), respectively. The incident wave polarization
vectors, h; and ¥;, which are used in the unit vector q to pick the polarization, are given by
(2.3) and (2.4), respectively.

Carrying out all the vector products without employing any approximations, one can de-
rive the following expressions for the polarization amplitudes in terms of the local reflection

coefficient, the local surface slopes, and the bistatic angles:
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+R,((f; -k;) (h;-d) (¥, - 1) — (h;-d)hy- (8 x 1)) (5.8)

((sin 8; — Z;c0s6;) cos 65 sin op — Z, (sinB;sin 65 — cos6; cos B cos ¢A)>

+ ( (1 + th) sin®; — Z; cos Gi) sind, + Z;(cosB; + Z;sin 6;) cos ¢A)

— Ry, (sin®; — Z; cos 6;) ((((1 +Z,2) sin ©; —Zlcosﬁ,-> cos0;cos Py
—Z;(cos8; + Z;sin 0;) cos O sin §p + (2,2 cos0; — Z;(sinB; — Z;cos 6,—)) sin Gs)

+ (cos6; + Z;sin6;) ((sin 8; — Z;cos6;) cosdp — Z, cos6; sinq)A) )] (5.9)

—R,((h;-d)%;- (A xE) + (A - k;) (b~ d) (s - ) (5.10)

((sin 0; — Z;c0s6;) cos B sin o, — Z, (sin 6;sinO; — cos0; cos B cos ¢A))

+ ( (1 + Z,z) sin®; — Z;cos 9,-) sind, + Z;(cos0; + Z;sin 6;) cos ¢A)

-R.Z; (((1 + Z,Z) sin@; — Z;cos 9,-) cos0;cosdp

— Z(cos8; + Z;sin©;) cos O5sin P, + (Z,2 cos8; — Z;(sinB; — Z; cos Gi)> sin O
+(cos8; + Z;sin6;) ((sin 8; — Z;cos0;) cosdp — Z, cos6; sin¢A) )]

(5.11)
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A

Upy = D (Ri((Ry - k) (¥; 1) (Bs-B) + (%;-8) 95 (g x 1))
—Ry((¥%;-d)hy- (8; x T) — (8 - k) (¥;-d) (3 - 1)) (5.12)
1 . . .
= I)—% [RhZ, ((cos 0; + Z;sin6;) ((sm 8; — Z;cos6;) cosdp — Z, cosH;sin ch)
+ ((1 + Z,2> sin@; — Zlcosei) cos 05 cos P,
—Zs(cos0; + Z;sin6;) cos Ossind, + (Z,2 cos8; — Z;(sin0; — Z; cos 9,-)) sin GS>
+ Ry(sin6; — Z; cos6;) ((cos 8;+ Z;sin6;)
((sin 8; — Z;cos0;) cos Bssindp — Z, (sin 6;sinB; — cos 6; cos B cos ¢A)>

+ ( (1 + Zf) sin@; — Z; cos 9;‘) sinQa + Z;(cos; + Z;sin ;) cos ¢A)]

(5.13)
U, =D, (Rh((ﬁl . Rl) ({’l . ’t\) (i"s ’t\) - (0, i)ﬁs . (ﬁl X f))
~R,((¥%;+d)%- (i x£) + (f; - k;) (%, d) (hs - 1)) (5.14)
1 .
= B-%- [RhZ, ((cos 0;+ Z;sin6;)

((sin 0; — Z;cos 0;) cos O sind, — Z, (sin 0;5inB; — cos 6; cos 05 cos ¢A)>

+ ( (1 + Z;‘)') sin®; — Z; cos 0,-) sindp + Z;(cos0; + Z; sin6;) cos ¢A)

— R,(sin6; — Z;cos6;) (((1 + th) sin©; — Z; cos 9,-) cos 0;cos hp

— Zs(cos6; + Z;sin 6;) cos O5sindp + (Z,z cos0; — Zj(sin6; — Z; cosG,-)) sin O
+(cos8; + Z;sin6;) ((sinei — Z;c0s6;) cosdp — Z, cosO; sinq)A) )}

(5.15)



118

where

D, = [l'i,- X ﬁl’ = \/(sinei—Zlcosei)2+Z,2 (5.16)

The literature (see, for example, [14, 27, 48, 15]) abounds with exact expressions for
the polarization amplitudes Up, in terms of the unit vectors, that is, in the forms provided
by (5.8) (5.10) (5.12), and (5.14), or their equivalents. However, the exact expressions for
Upg in terms of the general bistatic angles do not appear elsewhere. Fung [14] has these ex-
pressions, but they are specialized to the backscattering case only, for example, and Ulaby
et al. [48] employ multiple approximations to the vector products in deriving the polariza-
tion amplitudes in terms of the bistatic angles, in the process losing terms which contribute
to scattering comparably with the lowest order term of the expansion to follow.

Since the coordinate system (g, ¥, 2) is attached to the surface, and the surface is allowed
to rotate under a fixed transmitter and receiver, explicit dependence of the solution on the
azimuthal incident direction ¢; and the azimuthal scattering direction ¢ will be maintained,
rather than aligning the global coordinate system with either the transmitter or receiver az-
imuth direction. The directions of incidence and scattering will then be uniquely determined
by (6;,65,0,). While the surfaces in this dissertation are assumed to be azimuthally sym-
metric, the polarization amplitudes above do not yet incorporate that assumption and need
not be rederived for the case of a non-azimuthally symmetric rough surface or a periodic

surface.
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5.3 Field Expansions

Unfortunately, the exact expressions for the polarization amplitudes U are not mathe-
matically tractable in the Stratton-Chu integral, as the surface slopes are random functions
of the location on the surface. Sung and Holzer [41] provide an exact solution to the two
dimensional rough surface problem by employing a spectral representation for the surface
slopes, yielding a deterministic, rather than ensemble average, 3-fold integral for the in-
coherent field. Further approximations reduce the dimensionality of the solution, but their
effects are difficult to measure. An exact solution, under the tangent plane approximation,
for the corresponding three dimensional incoherent scattering problem would reduce to a
6-fold integral.

An approximate solution which is much easier to evaluate, both for the solution and for
the effect of the approximation, can be obtained by expanding U in a Taylor series in slopes

and retaining only the first terms:

Upglry) = UQ+URQ+UD+... (5.17)
Uég) = @00pq (5.18)
Ulglq) = Emiéj (aIOqul(x,y) + aOlqut(xa)’)) (5.19)

sin

2
UI(Jq) = '—12—9: <a20pqzi7‘(x7 y) + allpqzl(x7 y)Zt(xay) + aOquth(xa }’)) (520)

¥ i

. . . Z

where the coefficient ayy,, is for the term of Up, proportional to —_—15—9- ,—Z{T. Except for the
sin” U; sin” b;

local reflection coefficients, the Taylor expansion of the algebraic expressions that constitute

the numerators of Up, is straightforward. The variable in the denominator, Dy, is Taylor
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expanded as follows:

1 1

5 = 5.21

D? (sine-—Zlcose-)H—Z2 -21)
(2n+m+1)! Z2 Z7

= 5.22

SlI‘l2 0; ,Z‘O,gb m! 2n + 1)! sin2" 6, tan™ 6; ( )
1 z? Z z?

= - —— 42— 43— 4 . 5.23

sin?6; ( sin?6;  tan®;  tan?0; (5:23)

The local reflection coefficients are functions of the position on the surface, and, under

the tangent-plane approximation, the Fresnel reflection coefficients are given by

T2 COS 6,-, —TjCos 9,1

R, = 524
h N, cos0;; 41 cos Oy (5:24)
M1 c0s0; —Mnycos6,
R, = 5.25
v M; cos 0, +1M2cos0,; (5:25)

where 0;; and 6,; are the local angles of incidence and transmission, respectively. From Fig-

ure 2.11, it is apparent that
cos®y; = —k;-fi;= (cos6;+ Z;sin6;) /D, (5.26)

From Snell’s Law, namely, k1 sin0; = k; sin0;;,

k2
cosb,; = 1- ) L sin?0;
2

k% k% : 2/12
= 1-— ;Cg + %g(cos 0;+ Z;sin6;)° /D2 (5.27)
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The local reflection coefficients, expanded in a Taylor series around zero slopes, are:

R5y) = 33 RemZl(x))Z(x,3)

m=0n=0

= Ryo+R,10Zi(%,y) + Ry20ZF (x,y) + Ry02Z?(x,y) + - .. (5.28)

Rh(x,y) = i iRhng;n(x’y)Z?(an)

m=0n=0

= Ruoo+ Ru10Zi(%,y) + RuoZ? (x,y) + RuonZ2(x,y) + . .. (5.29)

The local reflection coefficients depend on even powers only of Z;.
The Taylor series coefficients are found from the standard formula for a two-variable

Taylor series:

(5.30)

1 am+n
R = R

and will be referred to as the local field reflectivity expansion coefficients, or expansion co-
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efficients, to avoid confusion. The first few expansion coefficients evaluated this way are

T2 c0s0; —M; cos6;
— 5.31
Rioo T3 c0s6; + 1 cosO; (5:31)

M; cos6; — My cos 6,
Rwo = 5.32
v M cos6; +mycos 6, (5.32)

T2sin8;(1 — Rago) — M1 ALE8% i 6,(1 + Rygo)
Ryio = 2 (5.33)
N3 c0s0; + My cos6;

M1 sin8;(1 ~ Ryoo) — M2 11522 5in 6;(1 + Ryo0)

_ ky cos©; 534
Ryio M1 cos6; + 17 cos6; (5-34)
-1 (1-k2/k2)(1+R
Rip = —U—ki/)(1+Rico) (5.35)
2(M; cos6; +m;cosb;)cos6;
Ruoz M2 in8; + 1 L2 sin 6,
Rpy = 7o — Ru1o (5.36)
cos“ 6, N2 c0s0; + 1M cos6;
M2 (1=k3/K3)(1+R
Ry = —Mel=K/B)(1+R0) 537
2(N1 cosB; + M, cos6;) cos6;
o Rooo N18in6; +M2 kh——'hzgg:gt' sin6; (538)
207 Cos2g, V10 1M1 c0s6; + 1My cos6; '

where 0, is related to 6; by Snell’s Law: k;sin®; = k;sin0,. The expansion coefficients
have been confirmed numerically with the aid of modern symbolic mathematical analysis
software.

The zeroth order expansion coefficients are identical to the reflection coefficients for
a smooth surface. Leader [27] solves the scattering problem with this sort of expansion,
but explicit expressions for the neither local reflection coefficients nor their derivatives are
given. Holzer and Sung [21] propose expanding the reflection coefficients up to second or-
der in this manner, but the factorals in (5.30) were neglected, resulting in errors for all sec-
ond order expansion coefficients. Their terms for Ryy and R,y do not agree to two digits

of precision with the expressions above even with the factor of two correction.
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These first order expansion coefficients, R,jo and Ry, are different from those found
in Ulaby et al. [48] and Ulaby and Elachi [47] due to the incorporation of a more precise
method for expanding the local angle of transmission, in which the local angle of transmis-
sion is related to the local angle of incidence via Snell’s law (5.27). In [48], the expansion
coefficients are calculated only after simplifying approximations have been applied to the
expressions for the local reflection coefficients. These approximation do not change the ze-
roth order expansion coefficients from those presented here, but they do change the first
order expansion coefficients.

For v polarization, some higher order reflection coefficients are

Rv12 =

M1 sin6; +nz;‘-§%§-8—sm9t ki cos®; a6
Y02} T cos6; + M, cos O, ky cos 6, !

N2Ry10 (1 - %)

— 5.39
2(mycos6;+ My cos6;)cosO; (5:39)
2
Rt — Ry1p M sin®; +112;]: 2?,:2 sin®; (5.40)
B30T Cos26; 10} ™ cosB; + My cos b '
1 k?
Ros = —Rvoz(z—Rvoo)m l—k_% (5.41)
2
o _ R 11 5in; +n2;1%%:—%sm9, 1 1_k_%
V22 Vo2 7)1 cos 6; + 1, cos 6; 2cos*6; k3
k2
k1cosO: 0o, —R 112(1—;9 (5.42)
vnkzcoset ! vm(mcose-+n2cos9t)cos(:), '
3
R Ry R 11 8in6; + N hcoeg sin 6 (5.43)
M0 T 00528, cosig, 0 1 €08 0; + 17 cos 6; '
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Figure 5.1: h-polarized field reflectivity expansion coefficients for a nonmagnetic sur-
face with a relative dielectric €, = 3.0 — j0.0.

The corresponding & coefficients are found by applying the duality principle; in partic-
ular, replace Ry, With Ry,,,, and exchange 1; and 1);.

For a perfectly conducting surface, 15 = 0 and all the expansion coefficients are zero, ex-
cept for the zeroth order expansion coefficients, which evaluate to Ryg9 = —1 and R,gp = 1.
For dielectric surfaces, the relative magnitudes of the expansion coefficients are shown in
Figure 5.1 through Figure 5.4. While the figures show the magnitudes of the expansion co-
efficients for lossless dielectrics only, the same trends exist for lossy dielectrics. As can be
seen in the figures, the lowest order expansion coefficients, R,g9 and Ry, are always larger
than the others at nadir. As the incidence angle 0; increases, however, the lowest order ex-
pansion coefficients may not be the largest. For h-polarization, an increase in the dielectric,
from €, = 3 in Figure 5.1 to €, = 30 in Figure 5.3, results in a decrease in the higher order ex-
pansion coefficients relative to the zeroth order expansion coefficient. This trend is in agree-

ment with our expectation for the perfectly conducting surface. The v-polarized expansion
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Figure 5.2: v-polarized field reflectivity expansion coefficients for a nonmagnetic sur-
face with a relative dielectric &, = 3.0 — j0.0.
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Figure 5.3: h-polarized field reflectivity expansion coefficients for a nonmagnetic sur-
face with a relative dielectric &, = 30.0 — j0.0.
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Figure 5.4: v-polarized field reflectivity expansion coefficients for a nonmagnetic sur-
face with a relative dielectric &, = 30.0 — j0.0.

coefficients in Figure 5.2 and Figure 5.4 show a dramatically different trend, however. At
nadir, the zeroth order expansion coefficient becomes more dominant as the dielectric in-
creases, and the range of incidence angles for which it is the largest expansion coefficient
gets larger. But the higher order expansion coefficients are growing larger near grazing,
indicating that the perfectly conducting case is not uniformly arrived at as the dielectric in-
creases for v-polarization. One cannot automatically conclude that as the dielectric of the
surface increases that higher order scattering terms can be neglected for v-polarized scatter-
ing involving near—grazing incidence.

While the different expansion coefficients can be compared on the basis of their magni-
tudes, their effect on the coherent and incoherent scattering terms is through the coefficients
a, which also depend heavily on the bistatic angles. In other words, comparisons such as
those shown in Figure 5.1 through Figure 5.4 should not be used solely to determine if a

particular expansion coefficient is negligible or not.
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The coefficients a, from (5.18) through (5.20), in the expansion of Uy, are given by:

2

A10hh

A01hh

a20hh

Q11hh

ao2nh

—Ry00(cos8; + cos ;) cos b (5.44)
(Rpoo(sin 65 — sin6;cosdp ) — Rp10(cosB; + cosB;) cosdy, ) sin6; (5.45)
Ry00(1 4 cos0;cos6;) sindp + Rygocos 8;(cos; + cosO;) sind, (5.46)
(Rp10(sinO5 — sin6;cosdp) — Ryz0(cos6; + cosB;) cos h) sin?@; (5.47)
(Ry00 + Rroo)(c0s 6; + cos 6;) sinda + Ry105in6;( 1 + cos 6;cos 6;) sindp
+Rp105in6;cos 0;(cos B; 4 cos O;) sin O (5.48)
—(Ruoo + Ryoo) cos 6;(sin 8;sinB; — (1 + cos0;cos O;) cosda)

— Ry sin® 0;(cos §; + cos 6;) cos h (5.49)

The third order coefficients a are given by

a3onn =

A21hh

a12hh

ao3nh

(Ryz0(sin 65 — sin®; cos d) — Ry30(cos®; + cosO) cos 4 )sin®6;  (5.50)
((Rnoo + Ryoo) cos 0; + (Ru10 + Ry10) sin6;)(cos 6; + cos 65) sin
+(Rp0c0s 0;(cos 8; + cos B5) + Ry20(1 + cos B;cos b)) sin?6;sind, (5.51)
—(Rnoo + Ryoo) (1 + cos? 6,-) (sin®;sinOs — (1 + cosB;cosB;)cosdy)
+(Rn10 + Ry10) sinB;cos 8;(sin 6;sinO; — (14 cosB;cos6;) cos h,)
+(Rhoz(sin 65 — sin0;cos p) — Rp12(cos 6; 4+ cos O5) cos h) sin®@; (5.52)
—(Rpoo + Ryoo) c0s 0;(cos 0; 4 cos Bs) sind,

+(Rpg2c086;(cos0; + cosO5) + Ry02(1 + cos 8;cos b)) sin? ;sind, (5.53)
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The fourth order coefficients a are given by

asony, = (Rp3o(sinB; — sinB;cosdp) — Ruao(cosO; + cosB;) cosdp) sin*0;

Il

a31hh (Ryuoo + Ryoo) cos?0;(cos ; + cosBy) sin d,
+(Rp10+ Ry10) sinB;cos 0;(cos 6; + cos O;) sin
+(Rp20+ Ry20) sin’ 0;(cos 0; + cos O;) sind,

+Ry30sin> 6;cos 0;(cos 8; + cos 6;) sinhp

+R,30sin’ 0;(1 4 cos0;cos 6;) sind,

(5.54)

(5.55)

aymn = (RhOO + RvOO) (2 + cos? 91) cos Gi(sin 0;sin6; — ( 14 cosB;cos Gs) cos ¢A)

+(Rp10+Ry10) (1 + cos? 9,~) sin 6;(sin6;sinO; — (14 cos6,;cos65) cosP,)

+ (R0 + Rya0) sin® 0;cos ;(sin 8; sinO; — (1 + cosH;cos B;) cos )

+(Rp12(sin 65 — sin0;cos ) + Ry22(cos 6; + cosB;) cosd,) sin* 9

aiznn = —(Rpoo+ Ryoo) (1 +2cos? 9,-) (cos 0; + cos O;) sindp

—(Rp10+ Ry10) sin 6; cos 0;(cos B; + cos O;) sin h

+(Rpoz + Ryo2) sin? 0;(cos 0; 4 cos O;) sind,

+(Rp12c0s 0;(cos 6; 4 cos ;) + Ry12(1 + cos;cos 6s)) sin® 0; sing,
agann, = (Rpoo+ Ryoo) cos0;(sin0;sinOs — (1 + cos0;cos0;) cosdy)

—(Rpo2 + Ryp2) sin®6;cos 0;(sin®;sinB; — (14 cosB;cosOs) cosda)

—Ry04sin* 0;(cos0; + cosO;) cosdp

(5.56)

(5.57)

(5.58)

The coefficients for U, can be found from those for Uy, by replacing R, with R, and vice
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versa.

The coefficients a in the expansion of U, are given by:

aoovh = —Ruoo(1+cos6;cosB;)sinda (5.59)

aioon = —Ruoo sin® 0;cos 8 sin o — Rp105in 8;( 1 + cosH; cos B;) sin ha (5.60)

aglen, = RuoocosB;(sind;sinO; — (1 + cos®;cosB;) cosha ) — Ryoo(cosH; + cos 05) cos Oa

(5.61)

oo = —Rpiosin® 0;cos0;sind — Rygosin® 0;( 1+ cos6;cos ;) sin da (5.62)
ajn = (Ruoo+ Ryoo + Ru1osin®;cos ;) (sin©;sin 6 — (1 + cos;cos ;) cosdya)

—R,105in0;(cos 6; + cos B;) cos h (5.63)

agpwn, = ((RhOO + Rv()()) coS ei(COS 0;+ cos Os) — Rz sin2 9,‘(1 + cos0;cos Gs)) sindp

(5.64)

The coefficients for Up, can be found from those for U, by replacing the expansion coeffi-

cients for R, with those for —R, and vice versa.

5.4 Rough Surface Reflection Coefficient

With the exact expressions for the tangent-plane polarization amplitudes U, and their

Taylor series coefficients a in surface slopes, the mean field from the surface can be calcu-
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lated directly from the far-field expression for the Stratton-Chu integral equation (5.1):

s\ —ike MR /ygg ks (=)
<qu> - 47R, Eo Dy ¢ a5 G609
:1 ,— JksR
_ _JI;S;RJ 0E0< Il])l’qeﬂczz( yY)eJ(Kxx‘*‘Ky))D dxdy> (5.66)
0
kR , .
= _____-JIZS;’R ", / <quemz(x,y)>ef(v<xx+'<yy)dxdy (5.67)
0

where K;, Xy, and K; denote the x, y and z components of the change in k-vector due to scat-
tering and are defined by (2.10) through (2.12).
Upon applying the expansion in (5.17), the scattered field can be expressed as a sum of

scattered fields each of a particular order:

(Epg) = <E§%)>+<E§q)>+< (2)> - (5.68)
<E}(,"l])> _ -—]k e JksRO // eﬂczz &) Kxx+Kyy)dxdy (5.69)

The nth term of (E3,) is proportional to U,(,';), which, in turn, is proportional to the nth
power of the slopes of the surface. When the surface is flat, the slopes are zero, so for a flat

surface, <E,(,'ZI)> = ( for all n > 0. Therefore, the scattered field for a flat surface (defined
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by z =0) is given by

ik TksRo o |
Eond o = gy o (U ey (570

— 7 _jksRO R
= _*]—]:fEeR—EOGOOP‘I / / ef(“x”"yy)dxdy (5.71)
0

— k e_ijRO
= —-—]ZERO Eo00pq(21) "8(1:)3 (1)) (5.72)

jkse_ijRO 2
- WEO(M) Ryo0(cos; +cos6;)8(kx)8(16,) 8, (5.73)

The Dirac delta functions, 8(k;) and 8(k; ), together indicate that the coherent field exists
only in the specular scattering direction (k; = ky = 0). In the specular scattering direction,
oA = 0 and 0; = 0;. The Kronecker delta function, 8pq, reflects the fact that the coherent
field does not exist for cross-polarization.

From our knowledge of scattering of plane waves by plane interfaces, the p-polarized

scattered field due to a g-polarized wave (ﬁEOe‘fkf‘i") is
ES, = RyoEoe ™5, (5.74)
and this expression must be equivalent to (5.73).

5.4.1 Evaluation of Expected Values: Coherent Case

The calculation of expected scattered field from a rough surface requires the evaluation

of the expected value within (5.69). This translates into an evaluation of an expected value
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of the form
(Z]'Z}r /) (5.75)

where n; and n, are arbitrary non-negative integers, since the polarization amplitudes U have
been expanded into a power series in slopes.
The analysis of (5.75) starts with the expression for the characteristic function of N Gaus-

sian distributed random variables [10]:

. , 1
<ezz’:=1vnz,.> — oI Tt Valtn= 3 1 Zpnet ViV GnOmPrum (5.76)

where z, is a Gaussian random variable with mean |1, and variance 0',21, and ppm is the nor-

malized correlation function of z, and z,:

_ Zn—Mn\ [ Zm — Um
() e

Pnm = Pmn for all n,m, and ppn = 1.

If we are to interpret z, as the height of a zero mean surface at point (Xn,¥n), then (5.76)

becomes:

<€jzlr:l=lvn2n(xmyn)> = e_%2¥=1zlr:=1"n"m°29(x"—x’"’y"—y'") (5.78)

where it is recognized that the variance o2 of the surface is independent of where it is eval-

uated, and the explicit relationship of z, and p on the surface points is given.
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For evaluating (5.75), set N = max (l,nx—i- ny) in (5.78) and differentiate both sides
ny + ny times, once with respect to each of x1,x2, -+, Xn., Ynet15° " s Yngtn,, then evaluate

the result at the same point (x,y) on the surface for all N. For example, to find

<z§ef‘<z2> (5.79)
we evaluate
0 9 / ; - 0 0 _lon2..2
9 9 [ iviutivagy\ _ 9 9 —50X(Vi+vi+2vivopra) )
o 8x2<e ) 3%, 9%,° (5:80)

.0 .0 - - 0 0
<(JV15;Z1) (JV2E22> eMatny 222> = ((02V1V2EP12) (02V1V2EP12>

02 L oro, 0
_(52\,1\,2 P12 ) e 5G (v1+v2+2v1v2p12)
8x18x2

(5.81)

where the shorthand notation pnm = p(Xn — Xm, Yn — Ym) is used.
If we can guarantee that viv, # 0 we can divide both sides by —v{v,. Also, 32_2912 =

9
~ 3% P12, 8O

0 0 . , 82 p) 2
<(EZ1> (5522) eJV1Z1+JV222> = —0‘2 (Wpu—o@vlvz (;C—l—pu) )

e~ 29" (ViHVi+2vivapr2) (5.82)

At this point, we specialize to the more specific case where x = x; = x; and y = y; = y,.
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Under these circumstances, z = z; = z5 as well:

2
<<éa;2> ej(V] +V2)Z> _ (aa22p( )) 20‘2(V1+V2)2 (5.83)

where it has been recognized that p(0,0) = 1 and %p(O, 0) = 0. By setting v{ + v = X,

2 j 29 ~ 1o
(Z2ei) = (—o =50(, y)) 7% (5.84)
X x=y=0
1
= mle 2% (5.85)
where the mean squared slope m? = (—Gz%p(x, y)) lx=y=0.
Since the surface is azimuthally symmetric, m? = —02% x,y as well.
ay p x=y=0

Upon carrying this process out for arbitrary powers of the surface slopes in the x- and

y-directions, it appears that the general solution is of the form

<Z£”"Z§"’emz> =(1-3-5...(2n,~ 1))m*™*(1-3-5...(2ny— 1) )m*™e” 70’

(an) (zn)’) (nx+ny) e—%K%GZ

T ongtnyy 'ny' (5.86)
< 22tz szz> < Z2neH 1z eJKzZ> < 22zt eJKzZ> 0 (5.87)
which can be used with (2.41) and (2.42) to show that (5.75) has these solutions:
20 52ny jKz\ _ (znl) !(272;)! 2(ny+ny) —leoz
<ZI Zt ¢ > - 2nl+ntnl !n,! m ¢’ (588)

<Zl2n1+lzt2n; ejlczz> — <lenl+1zt2nx+lejl(z2> —_ <Zl2ant2nx+leszz> =0 (589)
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Since the evaluations of the expected value within (5.69) are independent of x and y,

they may be pulled outside the integral:

(m\ — jkse~IksRo (n)_jk,z / / J(kext,y)
(B = ~ R Eo(Ufes) [[ &5t dxdy (5.90)
_jk e_ijRO . 5
——f;kg——Eo<U£Z)e"‘Zz>(2n) 8(kx)3(x,) (5.91)

Thus, like the scattered field from the smooth surface, the coherent field scattered from a
rough surface exists only in the specular direction. By comparing (5.91) to (5.73), it is ap-
parent that an alternative description of the scattered field may be provided by defining an

nth order rough surface reflection coefficient, such that

(BSD) = RSJEe o (5.92)
similar to (5.74), where
) < UI(JZ) e szz>
Rg; L Wi A (5.93)
cos 0; + cos O
85=0;,02=0°

5.4.2 Zeroth Order Reflection Coefficient

The expected value in (5.69) for the zeroth order field scattered from a rough surface is
given by

1.2 2
Z

<U,(,2)ej“zz> = agopg(€’?) = agopge 2%° (5.94)
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so that

1
R(p%) = Rqooe—i'cgozqu (5.95)

This is the reflection coefficient for the Physical Optics rough surface that appears in

Chapter 2.

5.4.3 First Order Reflection Coefficient

From the general expression for the expected values for odd powers of the slopes given

by (5.89), the expected value for the first order reflection coefficient is zero:

<U1(7};)ejrc22> = ((@10p4Z, +.a01qu,)e1"<zZ> =0 (5.96)
sin6;

Therefore, the first order rough surface reflection coefficient is zero:
RY = o0 (5.97)

From the form of (5.89), all odd orders of the rough surface scattering coefficients are

zero. That is,
RW = 0 (5.98)

for all odd integers n.
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5.4.4 Second Order Reflection Coefficient

Using (5.88) and (5.89), the expected value for the second order rough surface reflection

coefficient is

2 2\ ,J%;
<U(2) ¢ jlczz> _ ((a20pgZf + a11pgZiZs + agopgZi ) €7) (5.99)
P4 - sin” 6; '
l
P R
_ (a20pq+aO2pq)mze 2%° (5.100)
B sin@; '
[
so that
1 a20pg T a02 =0, dr=
Rgzq) _ mze_ 2,(%0.2 ( P4 : 2174) 05=0;,0,=0 (5.101)
—2sin“0;cos 6;
For h-polarization, this becomes
2 2 —2k%62cos?6; COSZ 0;
R,/ = —m‘e “| (Rnoo+ Ryoo) o206, (Rn20 + Ruo2) (5.102)
1

while for v-polarization,

cos26;
sin2 6,-

k262020,
RS%) — 2o 05?6, ((Rvoo+Rh00) ~— (Ry20 +Rv02)> (5.103)

These expressions appears to be indeterminate at nadir, but, from (5.31) and (5.32), it is
possible to show that

2012 (k3/k% — 1) sin6;

5.104
(M2 c0s0; + My cos6;) (M cosB; +m3cos6;) ( )

Ryo0+Rugo =
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which demonstrates that the second order rough surface reflection coefficient expressions
can be evaluated at nadir.

The second order reflection coefficients are zero for cross-polarization.

5.4.5 Fourth Order Reflection Coefficient

The third order reflection coefficients, like the first order, and all odd order coefficients,
are zero. This is a consequence of (5.89). The fourth order reflection coefficients begin with

the expected value:

<U(4) eszz> _ < s0peZ) + 031peZ % + an2pgZ 24 + Ar3pgZiZ; + A0apgZ; . jlczz>
b =

9 sin4 9,‘
(5.105)
_Lloo
(3(a40pg + ospg) + arapg) mi*e™ 2"
— — (5.106)
sin” 6;
so that
1 3(a40pq + a04pg) + a2 =0; da=
R(p‘;) _ m4e_2K§G2 ( ( P4 p.q)4 pq) s_e,,¢A 0 (5.107)
—2sin*0;cos 6;
For v-polarization,
4 4 —12? cos?8;
RY = mte 2% ((Rvoo‘l'RhOO) — (Ry20+ Rio) —3(Rv02+Rh02)) Ty
l

(1 + cos? 6,') cos9;
sin’ 6;

—(Ry10+ Rh10) +3R,40+ Ry + 3Rv04> (5.108)
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5.5 Differential Radar Cross Section

Ulaby et al. [47] gives the elements of the covariance matrix as:

< - pq> <// Ir)nan’qejk ).(r—r’)dstI> (5.109)

This definition includes both the incoherent scattered fields and the coherent scattered fields.
Since the coherent scattered fields are completely described by the reflection coefficients
above, there is no advantage to including them in the covariance matrix. In fact, there is a
disadvantage to including both coherent and incoherent fields: the coherent field is a plane
wave propagating away from the surface while the incoherent field is composed of spherical
waves propagating away from the surface. As aresult, the usual quantities which are used to
describe scattering, such as the differential radar cross section or the elements of the Mueller
matrix, become dependent on radar parameters (such as the range to target and the radar
beamwidth) instead of depending solely on characteristics of the target.

If the covariance matrix is made only of the incoherent fields, these difficulties are elim-
inated. No information is lost: Total power received (for example) can then be composed
of the sum of the power in the coherent field (described by the reflection coefficient, which
is independent of radar parameters) and the power in the incoherent field (described by the

scattering coefficient, also independent of the radar parameters).
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The incoherent elements of the covariance matrix are given by:

mpq

/// (U 5B — (U, k7))

(que—jk(k —ki)r' _ <qu —jk(k;—k,-)r >> > dxdydx' dy

e e~ (i)

oI (Kxlx=2 )+ (y— Y))dxdydx dy'

from which the differential radar cross section can be derived:

Using (5.17):

k2 :
0 _
Opg = 4M0<S;qsgq>

(= (e ) (o - 567

<
<U U e,x (z— i)> <'Umnejlczz ><U;qe—szz/>
=

U(O)U(O) oI%e (z=7) > <U(O)eszz><UI(,2)*e_ jK 2 >

(U eie=) - (U0 (feme
i) {2 )
toge) ()
H{URureme=d)) - (uiler) (Ugg"e e
(VR _ (0o (D) 4

(5.110)

(5.111)

(5.112)

(5.113)
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Employing the relations (5.94) (5.96) and (5.100),

() )

O)* K, (z—2 * —x2o?
U e/* ') —aoomnaoopqe 2

+ (Ur(rgz)U}Jq) +U,(,m)U(0)*)eJKZ(Z z)>

o
+ (gm0
<

4 (U(o)qu +URUY) =)

— (@00mn (a§0pq + a(*)zpq) + (@20mn + a02mn)a60pq) Si’:—;@; KOy
(5.114)
and evaluating these separately, we can express o as:
Ohe ™ 4,’30 ((ShaSiad o+ (SogSsadya + (SoaSoad + (ShaShdg)  (S:119)
(SounSpa) 0 = / / / / UsnUS) e’KZ(z_Z)> _aOOmnaBOpqe—Kgoz)
/(=1 50-)) dxdydy dy (5.116)
S;mSl* = / / / Umn 1)* +U(1)U(0)*) ee(z— z)> (=2 +15(-¥)) dxdyd' dyf
(5.117)
(St = / / / / (D)7 (1)x kel Z’)>e1('<x(x 214%0-) dxdydy’ dy (5.118)
= ] (o o))

_chz
si n2 Y (aOOmn (aZOpq + aOqu) + (a20mn + a02mn)a60pq)>
i

J (=) +50-Y)) gxdydy' dy' (5.119)
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5.5.1 Evaluation of Expected Values: Incoherent Case

When the remaining polarization amplitudes, U, are expressed in terms of the coeffi-
cients a and the surface slopes, the expected values in (5.116) through (5.119) are of the

form
< ZiZZ 7 eJ'Kz(Z—Z')> (5.120)

where ny,n;,ny and ny are arbitrary non-negative integers.

Similar to the technique described for evaluating for evaluating (5.75), the solution to
(5.120), starts by setting N = max (1,n,+ny) + max (1,n, +ny) in (5.78) and differenti-
ating both sides ny + ny +ny +ny times, once with respect to each of x1,x3,: -, x,,, and
Yngt1s™ " Yngbnys @0A X n 41,7+ s Xnptnytn > and Ynetnytna+15" " s Yngtnytnyg+ny- The re-
sult of this differentiation is then evaluated atx; = x, = - - = Xnetn, =X, andy; =y, =-.-=
Ynytn, =¥, and Fnptny+1 = """ = Xngtnytng+ny = X, and Yretny+1 = """ = Ynptnytny+ny = Y.

For example, to find
(Z2erte=2)) (5.121)

it is observed that N = 3, and the following diffentiations are performed:

. , . 1
_a_ _2_ < 121+ V222 + V323 > — _9__ i e~ 50%(V34+V3+V3+2V1Vap1o+2ViV3p13+2VaVs p2)
dy; 9y, dy1 dy2

(5.122)
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This results in

o) (g et
Vi=—z jVa=—12 e/V1a1t V2t V33
<< o1 oy2

((czv v 9 Pia+ G2V 9 P )(ozv v 9 P12+ G2V, 9 p )
= 1V2 12 1V3 13 1V2 12 2V3 23
oy1 0y 9y, 0y2
2 1
_02V1V2a aa p12) e-—-2-0'2(V%+V%+Vg+2V1V2P12+2V1V3[)13+2V2V3p23) (5123)
Y10y2

Let x, — x; and y, — y;. Then z; — z; as well. Also, %Pu = ——a%l—plz, SO

< ——V1v2Z§ej(V1 +V2)21+jv3z3 >

0 0 0 0
= ((02\/1\’259(0, 0) + 02\’1\’35913) (—G2V1V2§§P(0, 0)+ 02V2V35§f)13>

2
+0-2V1V2'éa—2"p(0, O)) e—%62(V%+V%+Vg+2V1V2p(0,0)+2(\’1 +V2)V3p13) (5 124)
Y
2
) ("4V1v2v% (éa‘ms> -v1v2m2> e (Ml ediatbaen) - (s.125)
y

At this point, letting x = x1,y = y1,2=21 , ¥ = x3,Y = 3,7 =zz3 and K, = V1 +Vy = —V3,
we can reduce the identity farther. From the last substitution, we can also guarantee that

—V1V; # 0 and therefore we will also divide both sides by it.

: ] a 2 22 !
2 ,JK(2—7') — 2_ 44 — — —y —K; 0 (1-p( - \y—y )
<Zye > (m o Kf(ayp(x Xy y)> )e

(5.126)

Finally, the identity is converted from the rectangular difference coordinates given by

(x—x',y—y) to the polar difference coordinates (€, o), where x—x' =Ecosaand y—y' =
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Esina.

2
<Z)2)eﬁ<z(z—z’)> — <m2 _ 0-41(3 (aa_gp({;) sin OL) ) e~ X202 (1-p(®)) (5.127)

Similar analysis for other second-order combinations of two slopes Z and Z, result in:

2
<Z§ejKZ(Z"zl)> = (m2 — o' (a_a&' p(&)cos a) ) e 1-P®)  (5.128)

2
<Zny€sz(z—-z')> _ o‘ﬁcf(aa—gp(&)) sinoucos e~ 0 (1=PE=%3)  (5.129)

Unfortunately, the resultant expressions for arbitrary orders of (5.120) are considerably
more complicated than that of (5.75), so that no general expression has been derived.
One identity, used to derive the zeroth order scattering coefficients, can be found directly

from (5.78) when N = 2:
<esz(Z—Z')> — o~ %30%(1-p(8)) (5.130)

These two identities, used to derive the first order scattering coefficient, can be derived

with this analysis but have also appeared in Ulaby et al. [48]:

(27469 = (Zee-D) = jx? cosai‘.’a(gﬁe-wicm—p@))
(5.131)

ik (27 i, (27 : . 9p(8) _q2i-
Jk(z=2)\ — J&(z=2)\ — _ i 52 sin o2l e~ ¥20" (1-P(8))
<Zye > <Z;e > JK;0”sinoL 3t e

(5.132)
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Other identities which result from this analysis and which will be used to derive higher

order scattering coefficients are:

<sz;ej“z(z”z')> =—¢? (a%zip(&) cos? o+ 5585 (&) sin’ ot
2
#2200 cosza) ~51-5(0)

(5.133)
K, (2—7' 9
<ZyZ;,€] 2( )> =-—0'2 (a_éz-p(g) sm o+ Ea&p(&)cosza

2
e Zo®) sin2a> 156

(5.134)
o o | PNRE,
(223074-9) = (Ze74-)) = Gsinacosa (570(6) - 9(0)
2( 2 ey) ) me-pe)
#0300 )
(5.135)

3.5.2 Zeroth Order Scattering Coefficient

The analysis of the zeroth order term is straightforward and yields the traditional coef-
ficients for Physical Optics. For completeness, the zeroth order term, which is derived in
many other places, is rederived here.

The double integration over the primed coordinates (x',y’) and unprimed coordinates

(x,y) in (5.116) is converted into a double integration over the average coordinates (x, =
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%(x+£) = %(y—i—y’)) and difference coordinates (u = x—x,v=y—y'):

k? Ko(z—7) —x22
47tAo<Sm" S 41tAo//// _m“"o'""“o"”q ¢ >"e : )

e/ I dudvdxady, (5.136)

The integration over the average coordinates yields the illuminated area Ap; a mathemat-
ically precise approach, showing such infinite integration as a limiting process of a finite

integral, is found in [48].

K2 * K2 * RN R Y B e —x20?
A7Ag —— (S Sp ) = Zﬁaoomnaoopq//_we TRy <<e z >——e z )dudv

(5.137)

At this point, the Cartesian difference coordinates (u,v) are converted to polar form (€, o)

and (5.130) is employed, resulting in

k2 K2 v _ o
EAT—(; <Sm"S;q >s° = 4_7t—aOOmna60pq /0 /21\', e/Scosotjiybsina
(720" 1-P®) — i0) dt (5.138)

The integral over o, is evaluated with the aid of this Bessel function integral identity:

/2 cos(na+B)e” % a = 2mj"cosPJy(x) (5.139)
T
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which yields

k2 .
m(sm,,s;,q>so =a00mn00pl0 (5.140)

where

2a2
Iy = %kze KZG/

Om <e‘<3°2p© - 1)10(@)&51& (5.141)

and x; is given by (2.13). A necessary condition for the integral in Iy to converge is that, for
large &, the surface autocorrelation function p(§) must tend toward zero at least as fast as
N S . . . :

£™2. This is not a very stringent requirement; most models of surface correlation functions
assume a much more rapid decay.

This zeroth order scattering term represents the expected power in a particular direction
due to the correlation of the height of the surface at one point to the height at another point.
For most combinations of bistatic angles, particularly for incidence angles near nadir, this

term is the largest contribution to c.

5.5.3 First Order Scattering Coefficient

The first order term in Ulaby et al. [48] is that of the scalar approximation. Below is
the full vector solution under the tangent-plane approximation, the difference being that the
coefficients a for first order have been calculated from the tangent-plane polarization am-
plitudes U without further approximations. Using the expansions for the zeroth and first

order polarization amplitudes provided by (5.18) and (5.19) in (5.117) and employing the
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expected value identities provided by (5.131) and (5.132) the following expression is ob-

tained:

K . oo . 20p(E)
4T[Ao <SmnSpq>s1 _41rsin9,-/o /;n —J%0 8§

[(@00mn@}0pg + @10mna00pq) (COS OLCOS §; + sin Ousin ;)

+ (@00mnap1 pg + A01mnG0pq) (510 0LCOS O; — cOsOLSIN ;)]

ejx,&cosa+jxy§sina—1c§o2(l—p(ﬁ))daédg (5.142)
The integration over the variable o is again evaluated with the aid of the Bessel function

identity (5.139) resulting in

k2 k%02 «
—SmSpady = Foae
4mAg s 2sin0; x;

[(aOOmnatopq + alomnaBOPq) (Kx Ccos ¢i + Ky Sin q)l)
+ (aOOmnaSI Pq + aOlmnaBOpq) (Ky oS ¢; — Ky SIn¢; )]

/0 ) Q%E—Qe-'@"z“'ﬂ’@)h (E)EdE (5.143)

The following notation for the components of the k vector change due to scattering is similar

to that for the surface slopes given by (2.41) and (2.42).

Ky Kx COS; + Ky sind; = k(sinO;cosdp — sin6;) (5.144)

Ki = XyCos0; —KySind; = ksin0;sind (5.145)
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Therefore,

k2
ZEO<SmnS;q>sl = [(aOOmnaYOPq'}'alOmnaBOpq>Kli

* *
+ (aOOmnaOI prq + aOlmnaOOpq) Kti]l 1
where

o= e [ aia(é—)e-ﬁcz(l-p@)ﬂl (:,&) e

I; can be evaluated by integration by parts. Setting

ul = eK%OQp(g) — 1

vi = kEN(kE)

then

(5.146)

(5.147)

(5.148)

(5.149)

(5.150)

(5.151)
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and

I =;—]I:;22—e"<§°2 / :wvdu (5.152)
:;—]Ige_léﬁl((ulvl”g::— /g zw uldv1> (5.153)
-l (00— )xenta) [ - [ (e300 -1)deninee)
Iy (5.154)

1
The evaluation of u;v; at & = oo yields zero if p() tends toward zero faster than §72, a
requirement that has been assumed in the section on the Zeroth Order Scattering term.
This term represents the expected power in a particular direction due to the correlation

of height of the surface at one point to the slope at another point.

5.5.4 Second Order Scattering Coefficient

The cross-slope term does not appear in Ulaby et al. [48], but does appear later in Fung
[15] as part of the Integral Equation Method (IEM) single scattering term, with approxima-
tions applied to the polarization amplitudes. In particular, the expansion coefficients higher

than zero order have been neglected. The full term is obtained from using (5.19) in (5.118)
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with the expected value identities provided by (5.133), (5.135) and (5.134):

k2 k2 oo Kt X
— (S s* — // JKxUT JKyV
4711‘10< mep q>s% 4msin® 6, .t

<(a10mnzl + o1t ) (@TopgZi + a1 pgZt) e/*le=2) > dudv  (5.155)

2.2 o
— —k‘c / / eij§c08a+jKy§sinoc
4rsin?0; Jo Jan

(a10mn(COSOLCOS §; 4 SINASING;) + Ay, (SiD CLCOS O; — COS OLSING;) )

(a30pq(cos cicos §; + sinasind;) + apy ,(sincLcos §; — cososin o))
2 o(e)— 12 2(2 )\ emeti-o)
T30(E) ~ g p(®) 0% (p()) )i -P e

22 oo
_ k'Cz / / ejxxgcosa-i-jlcyﬁsina
4msin“6; Jo J2n

(aIOmnaTOpq + aOlmnaal pq

+ (aIOmnaalpq + aOlmnaTOpq) (cos¢;sing; — sin; cos ¢1))
xp(g)e-@@(l—*’@))dadg (5.156)
Upon expanding the trigonometric products, the terms independent of the azimuthal vari-

able of integration, o, are accumulated into the second integral, and both integrations over
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o are evaluated with (5.139):

k2 —k%c? > -2nJ
411’.A I 8msin“0; Jo K;

((aIOmnaTOpq - aOlmnaalpq) ((K,% - K?) cos 2¢i + ZKXK)’ sin 2¢i>

+(@10mn01 pgt aolmnaTopq) (— (K,% - K%) sin2¢; + 2K,Ky cos 2q>,-) )
? 2 22
(%p(&)—é—%p(%xioz(;—gp(a)) ) - E)ege

/ 27'[;]0 th) (aIOmnaIOpq + aOlmnaOIpq)

8m sm2 0;
92 19 2
(@p(&ngggp(&)wé&(ip@)) ) 0 1-pC)gge
(5.157)
Recognizing that
G = 2 sin20i+ (1€ i) cos2¢; (5.158)
Uik = 2KeKyCOS20;— (K,% - |c§) sin20; (5.159)

the second order expressions reduce to

k2 I

4TtA, <SmnS;q>s% = W ((aIOmna?OPq - aOlmna?)lpq) <K12z - Ktzz)

* *
+(@10mn®01 pg + F01mn%10pq) 2K1iK+i)
I

212 sin? eiK‘z(“lom"“TOPq“L“Olmn“31pq) (5.160)
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where

12.2.2 oo 2 2 22
B="5" [ nw (%p(&) b 1 ap®)+i0t (500 ) =Pt

22
(5.161)
_KZo® [~ 9 1 "\ -xot1-p®)
I —-_ZE?—,/(; J2(Kt§) (a—gip(g)_g +K226 <a§ ) )e &d&
(5.162)
Integrating I by parts with
. a % 2 2 2
uz_-éz(e“ ~1) = o?eoC ag p(E) (5.163)
& (e 2 2(3 o)) | ee
iy =55 (90 - 1)t = 2o égz-p@)wéc p®) |eiorOu
(5.164)
vy =K:&Jo(k:E) (5.165)

dvy =¥ (Jo(K:E) — KET (%)) dE (5.166)
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it can be shown that

I

T8 £=0 2k? =0

—k2 _ 25 E=oo E=oe
=2—K?-e K;0 ((”2v2)|§=0 —/§=0 U2dV2>

sz%GZ —K2o? f=ee ad x262p(E)
e /§ _, Jo(s)ggp(e)eor®as
§=°°

=;2‘%2e—1c§oz ( (a% (exfcﬂp(ﬁ) - 1) K@Jo(l{t&))

£=0

E=eo 2.2
A P@%p@muomé)—m&h(m&))da

=0

k21<§<52 gt [ d 2ap(t)
_EET, /g:o To(kE) (&) PO

2K?
_ &= 9 26208y J1(KeE)
— _ 12 2g2e—¥i0" — kzop(§) L\ Mo/ e g
pnateie [ oot o L ede
=I =1

For I, integration by parts with u, and du, above together with

v3 =K EJa(k:E)

dvs =K (k:EJ1(%:§) — Jo(:E))dE

— E=co 2 2 E=co »
e [ - S [ (8) (e O

(5.167)

(5.168)

(5.169)

(5.170)

(5.171)

(5.172)

(5.173)
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yields

szG J ? —x20%(

k?.
2K3

K K202< - /°° >
=—e 'z UsV - urdv
20 (u2v3)lg | 1advs

2
s e [” Jz(m@é—ag @eterOL

22 [ _szgcz -x2o? / = li £Kr02p(
S [Tvadiy - e | (k) ggep(8)eT PO

2K?
k2 —2o? 0 x2o2p(&
o (G
[ °°Kgozexﬁo%@_p@mmahm&)—Jmé))d&)

k2K20' _ch/ J
2

o

1)%:EJ2(kE) )

0

£)exioPOIEGE

aaap
—k21<Z 62 —2c? o?p(e) O ad
=T e [ oo Sp() (ke
=l=1I
Therefore,
k2 R Io N )
4mAg <S S > = M (Ktz (aIOmnaIOpq+ aOlmnaOIpq)

+ (Klzt - Ktzz) (aIOmnaTOpq - a()lmnazi)lpq)

* *
+2K5i%si (@10mn01 pg + aOlmnaIOpq) )

Vedg

(5.174)

(5.175)

(5.176)

(5.177)

(5.178)

(5.179)

(5.180)
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Since k2 = K5, + 2, the second order term further simplifies to

k? Iy
4mAg <Sm"S q> 2 m (KlzzaIOmnalopq+ KtztaOlmnaOlpq
+Ki K (aIOmnaSIpq-l' aOlmnaTOpq)) (5.181)

This term represents the expected power in a particular direction due to the correlation of
slope of the surface at one point to the slope at another point.

Combining the previous three terms together, the expected value of the scattering coef-

ficients is
k2 k2 k2 k2 *
4TAg <S S* >50+s1+s = ZEAT(;<SmnS;tI>sO+4_1D4O<Sm"S:’Q>s1+ <S S q) t

a K a Kt

_ _ [ “10mn Mi | %0lmn i

O(aOOmn (sine- K; + sin6; K,

*
10pg Kii |, %01pq Kii

_ Kei 5.182
. <a00pq <s1n9 %, | sind; Kz)) .

This term has been derived by Fung [15] in his Integral Equation Method (IEM), albeit with
approximations irf the derivation of the coefficients a.

Another second order scattering term is given by (5.119) which, upon using (5.18) and
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(5.20), is

k2 k2 = j j * * * 2
g el = ame, // el (< (“00'"" (“201’4212 T a1pgZiZe + Aapgi )
i —00

2 2 ik (z—2'
+ (azongI + a11mnlis + Aomns ) aBOpq) elKe(z—7 )>

—x2g2
—m2e K;C

* * * *
(aOOmnaZOpq + a20mn%00pq + a00mn?02pq + A02mn00 pq))

dudv (5.183)

Converting from rectangular to polar coordinates, and using the expected value identities

(5.128), (5.129) and (5.127), results in

k2 <S S*> _ —k2g? / /ejxxgcosa+ﬂcy§sma
4mAg 47sin® 6; om

((aOOmnaEOpq + G30mnG0pg) COS” (0L~ 41)
+(@00mn@11pg + @11mn0pg) Sin (0L — ¢;) cos (o — ;)
+(A00mn®2pg + A02mn®d0pq) Sin” (01— ¢i))

K202 (%p(g)) Ze—ﬁcz(l—p(i))dagdg

2..,2
+ k‘m / / p/Kabeos ot jigEsina
47 sin’ 6; 2n

((aOOmnaEOpq + a20mna(’§0pq) + (aOOmnaSqu + a02mna60pq))

(7100 — %) dadt (5.184)
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Upon employing the Bessel function identity (5.139):

k2 Iy

_<SmnS;q>s§ :m

2%:K1: (@00mn@1 1 pg + A1 1mn@0
4TtA, ( Kii lt( 00mn“11pq 1lmn OOpq)

+ (‘szz - Ktzt) (aOOmn (a;Opq - aBqu) + (@20mn — aOZmn)aSOpq))

I _m21 * * *
- —5—.7—0 (00mn(@30pq + %02pg) + (@20mn + A02mn) Bo0pg)
sSin 9,-
(5.185)
where
— 1ot / “D(68) (3 o\’ -r-p)

li=3K';0" | Z\5eP®) € Edt, (5.186)
Iy =220 / "ot 9 o(®) 20 (&) EdE (5.187)
5=7 A 3 0 :

5.6 Evaluation of I, integrals for common correlation func-

tions

The integrals I;, I, and I3 have been shown to be the same as Iy. The integral in Iy, I
and Is can be further simplified if we assume a form for the correlation function p(§). For
the Gaussian and exponential correlation functions, at least, the integrals may be evaluated
when the exponential functions in them are expanded in a Taylor series is done in Ulaby et
al. [48].

In particular, if it is Gaussian, i.., p(€) = e=5/%, equations (6.631.1), (9.212.4) and

(9.215.1) of Gradshteyn and Ryzhik [19] are employed, and the integrals evaluate to these
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converging infinite series:

K2 gt (K 0)% _22
:-———e_ 4 Z— -

I 7 F e~ (5.188)
i=1 '
k212 © i_1 2 2p
[ =L et § 1 (607 (5.189)
8 i ili
2 o 2i 22 2
Iszé—ge“c%"zz,(i—l)(&;) (1- L )e- ,- (5.190)
i=1 ’

Similarly, if the correlation function is exponential, i.e., p(§) = e~/ , then equations

(6.621.1) of Gradshteyn and Ryzhik [19] is used to obtain

oo 2i
Io =322~ (%0)7 (5.191)
=1 (i—= DI(2+%212)2
3k212 —K202 hnd (ch)Zi 5 2.2
14———'1'g—e mzzm 2F1 (2,5,3,—1(,21 /l) (5192)
K —K2o? (ch)zi ; 3 1. 2/:2
=™ izzzT(z—l) 2F1(1,§,1,~Kt21 /z) (5.193)
where ,Fi(a,b,c;z) is hypergeometric function defined by
— I r
Fi(abcr)=Y (a+mI(b+n)T(c) (5.194)

I(@)(b)I'(c+n)

n=0

and I'(x) is the Gamma function.
The Gaussian-exponential correlation function does not have an analytic solution by this
technique of expanding the exponential in a series in the integrals. The series representation

for I with a power-law correlation is found in Ulaby et al. [48].
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5.7 Special Case: Forward Scattering in the Specular Di-
rection

For forward scattering in the specular direction, 6; — 6;,0, — 0, so that x; — 0 and

Ky — 0, and the general expressions above simplify considerably:

k2 .
e (SnnSpg) 0 =I0%00mnTo0pq (5.195)
k2
m(SmnS;q>sl =0 (5196)
k2
T (SunSpe)s2 =0 (5.197)
k? . m2ly—Is , , .
m(smns pa)s? ZW (@00mn (@30pq + T2pg) + (@20mn + 302mn) B0pg)
(5.198)
where, for hh polarization,
agnn = —2Rh0() COS 6,- (5. 199)
Any = "'2Rh20 Sil’l2 6,- Cos 9,‘ (5200)
agomw = _2Rh02 sin2 9,’ COSs 9,‘ + 2(Rh00 + RvOO) COS3 9,- (5201)

For vv polarization, the expansion coefficients for R, are substituted for those of Ry, and vice
versa. The necessary cross-polarized a coefficients are all zero in the specular scattering
direction.

For the principal linear polarizations pq = hh, hv, vh, vv, the incoherent specular scatter-

ing coefficient can be obtained by setting mn = pq in (5.195) and the resultant expression
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in (5.115).

5.8 Special Case: Backscattering

For backscattering, 0;,0; — 0, ¢, — 180°, and thus x;; = —2ksin®, x; = 0, and x, =

2kcos©.
k2
4TA, <SmnS;q>50 =IOaOOmnaOOpq (5.202)
k2 IO * *
m <SmnS;q>sl =m (aOOmnaIOpq + alOmnaOOpq) (5.203)
k2 Iy . .
A \SmSha) ¢ = goszg (H10mnTi0pg T F01mn%1p0) (5.204)
k2 14 * * * *
AmAg (SmnSpq) 2 =520 ((@00mn30pg + B20mn0pq) — (@00mn2pg + F02mn0pg))
Is—m?l, .
SinZ6 ((a00mn30pg + a20mna60pq) + (a00mn@d2pg + a02mna50pq) )
(5.205)
where for hh polarization,
agorn = 2Rh00 cos9 (5206)
awopn = 2Rh00 sin2 0+ Rth sin20 (5.207)
aoiwy, = 0 (5.208)
aomn = - 2Ru108in® 0+ 2Ryp0sin®Bcos O (5.209)

aosrn = —2(Ruoo + Ryoo) 080+ Rygpsin®Bcosd (5.210)
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For vv polarization, the expansion coefficients for R, are substituted for those of R, and
vice versa. The necessary cross-polarized a coefficients are all zero in the backscattering

direction.

5.9 Behavior of Model

5.9.1 Coherent Scattering

The traditional Physical Optics coherent scattering term predicts that the coherent scat-
tering from a rough surface is the same as for a smooth surface, except reduced by a mul-
tiplicative factor of =207 cos’8; Scattering is in the specular direction only, and cross-
polarized scattering is nonexistent. This factor does not effect scattering at grazing (where
0; = 90° and cos 0; = 0) but is most pronounced at nadir, where a dramatic decrease in the
coherently reflected power occurs as the rms surface height 6 increases.

At an interface for which m,/m; is purely real, such as an interface between air and a
solid dry dielectric, the Brewster angle is distinct and the minimum is theoretically zero.
The zeroth order scattering term does not effect the location of the Brewster angle, which is
determined solely by the electrical parameters of the material. For non-magnetic materials,
the formula tanfp = \/5/—5 for the Brewster angle is given in countless basic textbooks
on electromagnetics.

The Physical Optics v-polarized rough surface reflection coefficient, through the second
order derived in this chapter, is shown in Figure 5.5 for varying surface slopes but fixed di-

electric and rms height. With the addition of the second order reflection coefficient, the level
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Figure 5.5: v-polarized reflectivity for a non-magnetic rough surface with €, = 3.0 —
j0.0 and normalized rms height k6 = 1.0. The rms slope varies from m =
0 to m = 0.5. The curves include the zeroth and second order reflection
coefficients.

of the coherent scattering does not significantly change, as much as the angular pattern com-
presses toward nadir. In particular, level of the reflection coefficient at nadir is unchanged

and the Brewster angle now migrates toward nadir. The v-polarized reflection coefficient,

thru second order, is given by

R =Ry +RY (5.211)
2
cos“6; —2K262 cos2 6
= (RVOO —m? ((RVOO + Rnoo) sinzef — (Ry20 +Rv02)> ) g~ 2k*0%cos’6;
i

(5.212)
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Neglecting R, and R,;, and employing (5.104),

RPO ~, ( M1c086; —mycos,
Y T\ My cosH; + 1, cos b

2 ( 2nm; (k%/k% - 1) cos’ 6; ) ) —2k%02cos? 6;
—m ( ) (4

N2 cos6;+n; cos6;)(n; cosB; + M, cos 6,
(5.213)

which, for a boundary between non-magnetic media (ie. l; = [1,), reduces to

22~
2\/&(&,— 1) cos?6; g2k cos™Gy
RPO ~( (V& 0; — cos6;) — m? - l +
. (( rCOSU; — COS t) cos0; + /€,cos 6, \/€€080; + cos 6;

(5.214)

where €, = €;/€;. At the Brewster angle, that is, when 6; = 6p, |RF°| is a minimum. For
a real dielectric, R, is real and RY O = 0 at the Brewster angle. Using Snell’s Law, sin0; =

\/&rsin6;, this can be reduced to a quadratic equation in cos? 83, the solution of which is

, (er+1) — 4mPe, £ /(6 + 1)2 — 8m2e, (e, 1)
cos“0p = (5.215)

If we assume small slopes such that m? < (g,+ 1)%/8¢,(e, — 1), then the square root can

be expanded in a Taylor series to produce

1
2 -
cos“Op = &+ D(1=m%) (5.216)
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which is equivalent to
tan20p = e,(l—m2(£,+1)> (5.217)

which demonstrates that the effect of the roughness is to reduce the effective dielectric, mov-
ing the Brewster angle in toward nadir as the rms slope increases. The actual shift in the

Brewster angle due to roughness is

AOp = 05—0p|, _o=tan"!y/e(1—m¥(e+1))—tan"' &  (5218)

~ —i/Em? (5.219)

A more precise analysis, using symbolic math analysis software, on (5.212) not neglect-

ing the terms R, + R,q2, yields the result that, to the lowest order of m,

_mze‘,‘ +4€3 +3e2 + 68, + 2

Abp =
283/2(£r + 1)2

(5.220)

That this expression reduces to (5.219) for large €, indicates that the higher order expansion
coefficients become negligible at least as far as the Brewster angle as the dielectric increases.

Greffet [20] analyzed a one-dimensional rough surface with a Gaussian correlation us-
ing a Small Perturbation technique and derived a similar result for the dependence of the
location of the Brewster angle on the surface roughness. This result is similar to Greffet’s
in that the Brewster angle migrates toward nadir as 62, but differs in that his results indicate

al~! dependence, in contrast to the =2 dependence in (5.219) and (5.220). In addition, Gr-
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effet asserts that even for non-magnetic, real dielectric media, the rough surface Brewster
angle is not a null, but a minimum, whereas this result indicates that such surfaces should
always create a coherent null.

The fourth order reflection coefficients do not change the magnitude of the total reflec-
tion coefficient by more than 3 dB or location of the Brewster angle by more than 1° unless
slopes are on the order of unity or more, at which point this single scattering model itself is
no longer valid. In addition, neither the second order nor fourth order coefficients change
the magnitude of the total & polarized reflection coefficient by more than 3 dB unless the

slopes are on the order of unity.

5.9.2 Incoherent Scattering

The Physical Optics development guarantees a separation of the effects of the surface
electrical characteristics and the roughness characteristics. The electrical characteristics are
contained entirely in the local reflection coefficients; the roughness characteristics are con-

tained entirely in the integrals Iy, I, and Is.

5.9.2.1 Co-polarized scattering in the Plane of Incidence

The form of equation (5.182) appears in the Integral Equation Method (IEM) [15]. How-
ever, the IEM neglects the expansion of the local reflection coefficients given by (5.28) and
(5.29). For specular scattering this makes no difference because, of the terms computed in
this chapter, only the zeroth order term contributes to specular scattering. For backscatter-
ing, however, the inclusion of R,19 and Rj;o make the first and second order terms non-

negligible.
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Figure 5.6: Ratio of vv to hh backscatter. The Physical Optics predicts that #h exceeds
vv by the same ratio as the ratio of the smooth surface reflectivities. The
IEM model for these terms agrees with PO. The inclusion of R,,10 and R
coefficients results in an angular dependence where vv exceeds hh for an-
gles less than 60°. This is much more like SPM than the PO is. The curves
shown are for nonmagnetic surfaces with dielectric of €, = 3.0 — j0.0 and
& = 20.0 — jO.0. These curves are independent of the surface roughness
characteristics and only very weakly dependent on the imaginary part of
the dielectric.

Without the higher order terms of the local reflection coefficients, the ratio of 63, to 69,
in the plane of incidence is always the same as the square of the ratio of R, to Ry for
the same angle of incidence. As a result, 0, is always less than c?lh in the Physical Optics
solution. This is in contrast to the Geometric Optics solution, which does not distinguish
between polarizations, and the Small Perturbation Method, which predicts that _cgv always
exceeds cgh.

With the inclusion of R,;o and Ry in the terms strictly proportional to I (that is, the

terms that appear in IEM and in (5.182)), the ratio ad/ 0'2,1 in the plane of incidence can

be either greater than or less than unity, depending on the choice of bistatic angles and the



168

surface dielectric. Since all the surface roughness characteristics are contained in Iy, this
ratio is independent of rms surface height, the rms surface slope, the correlation length, or
even the correlation function. Figure 5.6 shows this ratio for two nonmagnetic surfaces,
one with a dielectric €, = 3 and the other with &, = 20, for backscattering. With these more
complete terms the backscattering Brewster angle moves very close to grazing. From nadir
out to about 50°, the addition of the first and second order terms appears to reverse the ra-
tio from negative to an equal but positive amount. Both the modified Physical Optics and
the Small Perturbation Method predict that the ratio 69,/ 0'2,1 has an angular dependence of
sec?;, at least from 0° thru about 40°, however, the modified Physical Optics and the Small
Perturbation Method do not agree on the dependence on €,. The only effect of the imagi-
nary part of the dielectric on both the Physical Optics approach and the modified Physical
Optics approaches is to change the Brewster null to a minimum,; the curves are not changed
appreciably away from the null with a nonzero imaginary dielectric.

In specular scattering, all terms other than the zeroth order term are identically zero for
co-polarized incoherent scattering. As a result, the Brewster null for 6, in specular scatter-
ing is preserved. The angle at which this Brewster null occurs is the same as for the smooth

surface Brewster angle. Terms derived from

, (5.221)

(Joert-0)- (oo

are the lowest order incoherent terms which are non-zero at this set of bistatic angles. Fig-
ure 5.7 shows that inclusion of these terms changes the vv null to a minimum at -44 dB, but

at this level it does not otherwise appreciably change the pattern.
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Scattering Coefficient o° (dB)

Incidence Angle 6, (degrees)

Figure 5.7: Incoherent scattering coefficients in the specular scattering direction (65 =
0; and ¢, = 0°) for a nonmagnetic rough surface with €, = 5.0 — j0.0 and
a Gaussian correlation function with k6 = 0.5 and kI = 10.0. Cross po-
larized scattering in the plane of incidence are due exclusively to ayjp,

coefficients; the minimum in the G?,v is not a null due to inclusion of asg,,
and agy,, coefficients.

The terms proportional to 4 and /5 move the level of scattering by only small amounts.
At nadir incidence, R,gp = — Ry and this results in the change of level for vv to be raised
while the level of hh is reduced by the same amount. The changes induced by these terms are
negligible, indicating that the terms strictly proportional to Iy probably should be considered

the appropriate Physical Optics solution to rough surface scattering.

5.9.2.2 Cross polarized scattering in the plane of incidence

Cross polarized scattering in the plane of incidence is identically zero for all the terms
derived in this chapter. Terms derived from (5.221), in particular, terms proportional to

2 . . . o
, are the lowest order cross-polarized terms which are non-zero in the plane of inci-

lallpq
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Backscattering Coefficient d° (dB)

"0. 10. 20. 30. 40. 50. 60. 70. 80. 90.

Incidence Angle 6, (degrees)

Figure 5.8: Backscattering coefficients for a nonmagnetic rough surface with g, =
5.0 — j0.0 and a Gaussian correlation function with ko = 0.5 and kI =
10.0. Backscattering corresponds to (85 = 0; and ¢, = 180°) Cross polar-

ized scattering in the plane of incidence is due exclusively to aj,, coef-

: : _ 0 _ &0
ficients. At backscattering, aj1x, = —a1iy, and as a result, 6, = G,,.

dence. Figure 5.7 shows the level of these cross-polarized terms relative to the co-polarized
terms in the specular scattering direction; Figure 5.8 shows all the backscattering coeffi-
cients for the same surface in the backscattering direction. For a backscattering geometry,
a11yn = —a11hy, resulting in 68,1 = cgv, which must be true due to reciprocity. This is some-
what surprising result because Physical Optics does not incorporate reciprocity explicitly in
the tangent-plane approximation. In other words, preference is given to the incidence angle
0; over 6; in the calculation of the local reflection coefficients; 6; is completely ignored their

calculation.

5.9.2.3 Effect of the correlation function on backscatter

The correlation function has a dramatic effect on backscatter as predicted by Physical
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Scattering Cocfficient s, (dB)
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Backscattering Angle 8, (degrees)

Figure 5.9: o0, vs. backscattering angle for a nonmagnetic rough surface with &, =
5.0 — j0.0 and a Gaussian correlation function with k6 = 0.5 and kI =
10.0.

Scattering Coefficient oohh (dB)
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Backscattering Angle 6, (degrees)

Figure 5.10: o, vs. backscattering angle for a nonmagnetic rough surface with €, =
g hh gang g g

5.0 — j0.0 and a Gaussian correlation function with k<6 = 0.5 and kI =
10.0.
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Figure 5.11: ¢?, vs. backscattering angle for a nonmagnetic rough surface with g, =

5.0— j0.0 and an exponential correlation function with k6 = 0.5 and kI =
10.0.
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Figure 5.12: 0'2h vs. backscattering angle for a nonmagnetic rough surface with €, =
5.0 — jO.0 and an exponential correlation function with k6 = 0.5 and
kl =10.0.
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Optics. This is true also for the modified Physical Optics. A comparison between an expo-
nential and Gaussian correlation function is given in Figure 5.9 through Figure 5.12, for a
surface with otherwise identical characteristics.

The higher order terms increase the level of the backscatter away from nadir; at nadir
they are negligible. The level for the modified Physical Optics for the Gaussian correlation
is increased to the point that the co-polarized scattering agrees more closely with Geometric
Optics than Physical Optics does. The pattern still drops off very fast with increasing angle
of incidence, however.

This is in stark contrast to the case for the exponential correlation. The additional terms
provided by the modified Physical Optics dramatically increases the backscattering for an-
gles away from nadir, to the point where it actually increases with increasing incidence an-
gle and is not infinitesimally small at grazing. This is a reflection of the fact that the ex-
ponential correlation is not a strictly valid correlation function, and that the slope for an
exponential surface is undefined. The interaction between a grazing incidence wave and a
surface with arbitrarily many vertical facets would be large indeed, if such a surface were
realizable. Near grazing multiple scattering becomes very important and heuristic shadow-
ing functions often are used on single scattering theories to reduce scattering from them.
Shadowing functions are not used in this chapter.

These plots lend credence to the conclusions of Chen and Fung [8], namely that the
Physical Optics incoherent backscattering is valid only for angles less than 30°. At 30°,

the higher order terms are becoming significant in the modified Physical Optics model.



CHAPTER 6

Results and Comparisions with Theory

A number of measurements were made of rough surfaces sculpted on sand in the Bi-
static Measurement Facility, for the purpose of comparing measurements to theoretical pre-

dictions. This chapter summarizes the results of these measurements.

6.1 Surface Characterizations

The surface profiler is described in Section 3.3. It was used to characterize the rms height
and the correlation function of the surfaces measured in this chapter, including the correla-
tion of the surface shown in Figure 2.4, for which radar data is shown in Figure 6.4.

The correlation function was generated by averaging the individual autocorrelations of 3
linear profiles of the surface. Experimentation has shown that only 3 profile measurements
averaged together are necessary to roughly determine the correlation length of the surfaces,
but many more are needed to demonstrate that the correlation function tends toward zero
beyond a few correlation lengths. As a result of the negative values of the correlation func-
tion, the integral (5.141) may yield values which are obviously incorrect. Therefore, from

the surface profiles measured an average correlation function is derived, and from this a cor-

174



175

relation length is determined. The distance measuring instrument in the profiler had a suffi-
ciently large rms error (2 mm per data point) that filtering had to be done to the measured
profiles to minimize the measurement noise. This results in a less than best estimate of the
correlation function and correlation length. While these estimates are adequate for specular
scattering, where scattering is not strongly dependent on the exact correlation function and
length, the backscattering data could be grossly overestimated with an exponential correla-

tion and even more grossly underestimated with a Gaussian correlation.

6.2 Coherent Scattering

The coherent scattering data presented here has first been published in [11]. Figure 6.1
shows measurements of the reflection coefficient for a smooth dry surface with ko < 0.2 (the
rms height ¢ was smaller than 1 mm, the measurement precision of the laser profileometer).
The curves in Figure 6.1 were calculated using the Fresnel reflection coefficient formulas
given by (2.75) and (2.76) for a surface with a relative dielectric constant €, = 3.0+ jO. The
dielectric constant for the sand medium was measured by a dielectric probe, which gave a
value of € = 3.0 for the real part and a value of £” < 0.03 for the imaginary part. Because
g” /e’ < 1 and the inclusion of €” as high as 0.05 does not significantly change the results
of any of the calculations in this chapter, it was ignored. The excellent agreement between
the measured data and the calculated curves presented in Figure 6.1 provides testimony to
the measurement accuracy of the system.

Figure 6.2 compares measured values of the power reflection coefficient I" with curves

calculated using modified Physical Optics (equation (5.212) ) for surfaces with k6 = 0.515,
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Figure 6.1: Measured coherent reflectivity of a smooth surface with &, = 3.0 and
ko < 0.2: squares denote horizontal polarization and circles denote verti-
cal polarization. Continuous curves are smooth surface reflection coeffi-
cients. The angle of minimum reflectivity for vertical polarization is 60°.
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Figure 6.2: Measured coherent reflectivity of three rough surfaces. Continuous
curves are predictions based on modified Physical Optics. In all cases,
the surfaces have a relative dielectric constant €, = 3.0.
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Figure 6.3: Comparison of measured coherent reflectivity of a slightly rough surface
with €, = 3.0 and ko = 0.5 with the predictions of Physical Optics, Small
Perturbation, and modified Physical Optics for vertical polarization.

1.39, and 1.94. Good overall agreement is observed between theory and experimental ob-
servations, especially in the region of the location of the Brewster angle, which exhibits
a slight shift towards decreasing angle of incidence; the Brewster angle shifts from 60.0°
for the smooth surface shown in Figure 6.1 to 57.5° for the surface with ko = 1.39 (Fig-
ure 6.2(b)) and to about 56.0° for the surface with k6 = 1.94 (Figure 6.2(c)). The shift is
toward decreasing angle of incidence, which is the direction predicted by the Small Pertur-
bation Method. While the Small Perturbation Method can be used to explain the data in
Figure 6.2(a), it fails for surfaces in Figure 6.2(b) and (c) because they are too rough for the
model. The measured vertical polarized reflectivity data in Figure 6.2(a) is shown again in
Figure 6.3, together with the predictions of Physical Optics, Small Perturbation, and modi-

fied Physical Optics. Physical Optics does not exhibit the shift in the Brewster angle evident
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Figure 6.4: Comparison of measured coherent reflectivity of a moderately rough sur-
face with &, = 3.0 and ko = 1.4 with the predictions of Physical Optics,
Small Perturbation, and modified Physical Optics for vertical polariza-
tion.

in the data. Both Small Perturbation and the modified Physical Optics predict the level and
the shift in the vicinity of the Brewster angle, but Physical Optics and modified Physical
Optics match the data better than Small Perturbation at nadir. The measured vertical polar-
ized reflectivity data shown in Figure 6.2(b) is from a considerably rougher surface, and is
shown for comparison with the predictions of the models in (6.4). The data is clearly out
of the range of validity for the Small Perturbation model, and the Physical Optics predic-
tion fails at the Brewster angle. The modified Physical Optics prediction is very close to the
data.

By way of summary, Figure 6.5 shows the dependence of the g-polarized normalized
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Figure 6.5: The reduction of coherent scattering from a surface due to roughness.
Shown is the measured coherent reflectivity of several surfaces (all with
with €’ = 3) but differing roughness parameters = ko cos §;, normalized
to the reflection coefficient of a smooth surface. The angles of incidence
range from 20° to 70° and the roughness kG ranges from O to 2. The con-
tinuous curve is the zeroth order Physical Optics prediction for surfaces
with Gaussian-height probability densities.

power reflection coefficient y, on the zeroth order roughness parameter y, where

Yo (W)

0 2
Ty(er,0,¥) _ IRSIQ)‘
rqo(er, ea 0) ‘RqOO | 2

etV (6.2)

(6.1)

and = ko cos 6. Data similar to this has last appeared in Beckmann and Spizzichino [3],

although not with the dynamic range presented here.
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6.3 Incoherent Scattering

6.3.1 Specular Direction

As was discussed previously in Chapter 5, the expression for the bistatic scattering co-
efficient consists of a number of terms. The specular scattering direction is the special case
in which 6; = 0;, ¢, = 0 and thus k; = 0. In this direction, most terms above the zeroth
order are identically zero. Figure 6.6(a) shows the measured values of 60, and 63, for a
slightly rough surface with k6 = 0.515, plotted as a function of incidence angle, as well as
plots for the same quantities calculated in accordance with the results of Chapter 5. While
a higher order term exists which would prevent the forward scattering Brewster minimum
from being a null, its value depends on the rms slope of the surface. Since the surface cor-
relation function has been assumed to be exponential, the slope is undefined. A possible
rectification for this dilemma is to assume a Gaussian- exponential correlation function, so
that the integrals in the modified Physical Optics model behave as if the correlation were
exponential, yet there is a well defined slope. Unfortunately, this implies an additional free
parameter, the rms slope m, which the author has been unable to directly measure.

For the rougher surfaces shown in Figure 6.6(b) and (c) with k6 = 1.39 and 1.94, the

zeroth order model overestimates the level of o©.

6.3.2 Within the Plane of Incidence

Specular scattering can be considered a special case of scattering in the plane of inci-

dence. Figure 6.7 depicts 6, in the plane of incidence for a transmitter fixed at §; = 45°.
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(a) k6=0.515;kl=5.4

Figure 6.8 shows o9, for the same surface under the same conditions. Also shown are three
predictions of theories discussed in this dissertation: the Geometric Optics, Physical Optics
and modified Physical Optics. For the Physical Optics approaches, a power-law correla-
tion was used, as it best fit the profile data. The negative angles of incidence in these plots
and those to follow should be interpreted as positive angles of incidence at an azimuthal
angle 180° away. For example, 6; = —30° in Figure 6.8 should be interpreted as 6; = 30°
at ¢p = 180°. As the angle of incidence in both figures is 8; = 45°, the specular scattering
direction is at 8; = 45° and the backscattering direction is at 6; = —45°.

In Figure 6.7 the predictions for Physical Optics and modified Physical Optics overlap,
but neither of these nor Geometric Optics can be said to predict the data very well. Physical
Optics is uniformly too low; in Figure 6.8 Physical Optics and the modified Physical Optics

are distinct yet the predictions are almost uniformly too high.
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Figure 6.6: Measured co-polarized specular scattering coefficient for three rough sur-
faces. Continuous curves are based on Physical Optics: the dashed curve
corresponds to the zeroth-order term for 60, the dotted curve corresponds
to Ggh. The surface has a relative dielectric constant €, = 3.0 and an ex-
ponential correlation function was used.
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Figure 6.7: hh-polarized scattering in the plane of incidence (¢, = 0°). The surface
has a dielectric of €, = 3.0 — j0.0 and roughness parameters k6 = 1.44
and kI = 11.5. The transmitter was fixed at 0; = 45°. The circles represent
measured data points; the curves are theoretical predictions. A power-law
correlation was used, which best fit the profile data.

The measured 6%, in Figure 6.7 does not peak at the specular direction, as all three
models predict. The peak is further toward grazing reception than the specular direction, but
how much cannot be determined as the Bistatic Measurement Facility cannot make accurate
measurements beyond 0; = 70°. The trend in Figure 6.8 for o, definitely shows that the

scattering peaks near or slightly to the nadir side of the specular direction.

6.3.3 Outside of Plane of Incidence

Measurements in the ¢, = 45° plane are shown in Figure 6.9 through Figure 6.11 and in
the d, = 90° plane in Figure 6.12 and Figure 6.13. In Figure 6.9, all three scattering theories
can be seen to match the 6%, data in the ¢, = 45° plane reasonably well, particularly where

the scattering is largest. The two Physical Optics approaches are slightly better than the
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Physical Optics
~~~~~~~~~~~ modified Physical Optics
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Figure 6.8: vv-polarized scattering in the plane of incidence (¢, = 0°). The surface
has a dielectric of &, = 3.0 — j0.0 and roughness parameters kG = 1.44
and kI = 11.5. The transmitter was fixed at 6; = 45°. The circles represent
measured data points; the curves are theoretical predictions. A power-law
correlation was used, which best fit the profile data.

Geometric Optics in this case.

All three predictions are uniformly too low in Figure 6.10, but the two Physical Optics
patterns seem to capture the shape of the data better than the Geometric Optics. While the
Physical Optics prediction is at least 10 dB too low everywhere, the modified Physical Op-
tics is too low by about 5 dB everywhere.

Figure 6.11 shows some interesting features of the three scattering theories, as well as
the measurements: the modified Physical Optics model is seen to have the same pattern null
as the Geometric Optics model, while having the angular pattern of Physical Optics, except
for being higher by about 10 dB, away from the null. This is due to the fact that the modified

Physical Optics model accounts for the surface slopes, like Geometric Optics, but unlike the
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Figure 6.9: hh-polarized scattering in the ¢, = 45° plane. The surface has a dielec-
tric of €, = 3.0 — j0.0 and roughness parameters k6 = 1.44 and kI = 11.5.
The transmitter was fixed at 0; = 45°. The circles represent measured data
points; the curves are theoretical predictions. A power-law correlation
was used, which best fit the profile data.

Physical Optics model. The agreement between the data and the modified Physical Optics
model is excellent.

Figure 6.12 shows 6°,, in the plane thru nadir that is perpendicular to the direction of
incident propagation as projected onto the surface. The symmetry is apparent in both the
model predictions and the measurements. Despite the agreement between the models, the
data is 10 dB lower at a nadir-looking receiver.

There is much more agreement between not just the models, but also the models and
the data, in Figure 6.13. While the Geometric Optics apparently predicts the scattering very
accurately within 30° of nadir, but the two Physical Optics approaches do a better job of

predicting the overall pattern out to about 70°. While Physical Optics is low by about 15 dB
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Figure 6.10: hv-polarized scattering in the ¢, = 45° plane. The surface has a dielec-
tric of €, = 3.0— j0.0 and roughness parameters k6 = 1.44 and k/ = 11.5.
The transmitter was fixed at 6; = 45°. The circles represent measured
data points; the curves are theoretical predictions. A power-law correla-
tion was used, which best fit the profile data.

at 6; = —70°, the modified Physical Optics model is not low by more than about 5 dB for

all scattering angles.

6.4 Summary

The Bistatic Measurement Facility was used to make a number of measurements of bi-
static radar scattering, including coherent scattering and incoherent scattering. All surfaces
measured had a dielectric constant of €, = 3.0 — j0.0.

For the coherent scattering, the Physical Optics model agrees overall with the level of
scattering, and the Small Perturbation agrees with the migration of the Brewster angle with

roughness, but only the modified Physical Optics model developed in Chapter 5 does both.
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Figure 6.11: vv-polarized scattering in the ¢, = 45° plane. The surface has a dielectric
of &, = 3.0 — j0.0 and roughness parameters ko = 1.44 and kI = 11.5.
The transmitter was fixed at 0; = 45°. The circles represent measured
data points; the curves are theoretical predictions. A power-law correla-
tion was used, which best fit the profile data.

For incoherent scattering, measurements were made of several surfaces of differing rms
surface height in the specular direction. The Physical Optics and modified Physical Optics
models agree in the specular direction, and agreed with the data for the slightly rough surface
of ko = 0.5. The two Physical Optics models agree qualitatively with the specular scattering
data up to kG = 2.

Scattering from a surface of rms roughness k6 = 1.4 was measured in three planes of
constant azimuth with the transmitter fixed at 6; = 45°. Neither Physical Optics model nor
the Geometric Optics model adequately predicted scattering in the plane of incidence (the
d5 = 0° plane); but in the pp =45° and 5 = 90° planes, the modified Physical Optics model

modestly outperforms both Geometric Optics and Physical Optics.
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Figure 6.12: vh-polarized scattering in the ¢, = 90° plane. The surface has a dielec-
tric of &, = 3.0— j0.0 and roughness parameters k6 = 1.44 and kI = 11.5.
The transmitter was fixed at 8; = 45°. The circles represent measured
data points; the curves are theoretical predictions. A power-law correla-
tion was used, which best fit the profile data.
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Physical Optics
----------- modified Physical Optics

Bistatic Scattering Coefficient O'OHV (dB)

— — — Geometric Optics

~90. -60. -30. 0. 30. 60. 90.

Scattering Angle 8, (degrees)

Figure 6.13: hv-polarized scattering in the ¢, = 90° plane. The surface has a dielec-
tric of €, = 3.0 — j0.0 and roughness parameters k<6 = 1.44 and kI = 11.5.
The transmitter was fixed at 0; = 45°. The circles represent measured
data points; the curves are theoretical predictions. A power-law correla-
tion was used, which best fit the profile data.



CHAPTER 7

An Application of Bistatic Surface Scattering: MIMICS

model modification

7.1 Model Derivation

This chapter presents a redevelopment of the first order radiative transfer equations used
to model forest and crop backscattering, in a software package known as the Michigan Mi-
crowave Canopy Scattering Model (MIMICS) [51]. In that package, the ground has been
modeled as a specular surface, with ground backscatter and a specular ground-trunk inter-
action being the only interactions which were included. In the development to follow, the
restriction that the ground surface below the forest be specular is lifted, a second-order scat-
tering process involving specular scatter from the ground with trunks is derived, and the

assumptions and errors introduced to achieve a tractable solution are explored.

7.1.1 Incorporation of a Rough Ground

As is done in [15], incorporation of a rough ground in the radiative transfer solution

for scattering from vegetation involves replacing an otherwise specular surface reflection

191
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coefficient with a rough surface operator, which consists of an integration over elevation and

azimuthal angles of a coherent reflection coefficient and an incoherent scattering matrix:

R(p) — /O 1 /ZR(Ro(u’)B(u—u')5(¢—¢')+G(u,¢;u’,¢'))d¢’du’ (7.1)

or

R(uo) — /0 1 /2n(Ro(uo)ﬁ(u’—uo)ﬁ(¢’—¢o)+G(u’,¢’;uo,¢o))d¢’du’ (1.2)

where Ry is the coherent Mueller matrix for a rough surface (to be distinguished from the
coherent Mueller matrix R for a smooth surface which is being replaced), 8(x' — x) is the
Dirac delta function, and G is the bistatic incoherent Mueller matrix for the rough surface.

The first substitution involves integration over incident variables (when scattering from
the ground is temporally after scattering from other objects) and the second involves inte-
gration over the scattering variables (when scattering from the ground temporally precedes

scattering from other objects). Under this substitution, the bistatic MIMICS model becomes

X5 (11,) =TIy (73)

=(To+T1g+ Tirer+ Ticr+ Tire+ Tic+ Tigr + Tag + Tir + Togr) o

(74)
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_,—ktd -x;
To =¢ < 4HRG (W)e ™ M3 — 1o)8(0 — o) (7.5)
—p—KEd/u X H, : - -
Tig=e " [he % HIRG (1, 0; 1o, Go)e ™™ Hi/Mog=¥z /Mo (7.6)
| R 0 —
Tirer 1’ KRG (W) /_d K P, (— 1, ¢ o, do)e ™™ EHIMOR (g)e ™% /o
1 » ) (7.7)
_ - / ) -
Tlcr—ae uRO(u)[_de KC(z+d)/uPc(—u,¢;—u0,¢0)eK‘Z/podz' (7.8)
1 [0 ) '
Te= [ R o, o)™ H DR (o)e ko (1.9)
1 0 + .,/ -/
Te i /—d &4 RP (1, 0; — o, Go) e ¥/ Hod7! (7.10)
__1 _xt et 1 —d
Ty =e e [ || Rou)8(1— )86 ) el
Py (1, 0s —Ho, Go)e @/ ModZ dg/dyl ™ 410 (7.11)
_1 -K;.*'d/ _ +Ht -d e !
Th he* AL/ERy () /_d, e CHVEP, (—p, 6 o, §o)
X, (2'+d) /Mo g,! p—¥c 4/ Mo
e dze (7.12)
1 _ _ 1 —d
Torg =0¢ KEd/ug=x' i / / G, 4;1,0") / % (@)W
0 J2n ~d'
P, (— 1, 0'; —Ho, 0o)e" C+MagZ dy/dy/ e /Mo (7.13)
_1 —xFd/p ! =4 (g LY
Tlrt —ae [) An[d, erf (z +d)/uPt(u,¢;u',¢’)e_K;+(z +d')/u dZ'
Ro(110)3(1' — po)3(¢' — do)dd/dp'e ™ Firlhog=4c¢/ba (7.14)
_1 —xtd —d + () 1y
= /_d, e P, (11 4 g, o)™ (4D Moy
Ro(uo)e-“:_Hr/Hoe—Kc_d/uo (7.15)
T, = tetam [L [ [T g ! g )
=y o Jondar € Py (1, 05, ¢")e ™ EHM g7

G(ul,q)l;uo,¢0)d¢'du'e—Kt—Hl/u0e_K;d/u0 (716)
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where

Ry(n) = e—Kz+Ht/l»1RO(u)e"Kx_Hr/u (7.17)

Ty represents the zeroth-order solution of the radiative transfer equation. Also known as
ds in [51]. While this term can be mathematically included in the solution, the existence of
the delta functions means that it must be treated separately from the rest: it essentially rep-
resents a coherent reflection coefficient. Like coherent reflectivity for bare rough surfaces,
to convert it to the same units as the incoherent scattering (like a 6°) requires knowledge
of sensor parameters (like beamwidth, range, etc). For backscattering, this only becomes
significant near nadir, at which point other problems also manifest themselves (apparently).

Ty, is a direct effect of making the surface in MIMICS rough. It does not appear in
Appendix A of [51] but is considered separately (for backscattering) in Section 2 of [51],
where it is called T,. It consists of the rough surface bistatic scattering as attenuated by the
canopy and trunk layers.

T;,., describes energy which is coherently scattered by the ground, then incoherently
scattered by the canopy, then coherently scattered by the ground again, before exiting the
forest. Also known as Term 1 in [51].

T, describes energy which is incoherently scattered by the canopy, then coherently
scattered by the ground, before exiting the forest. Also known as Term 2a in [51].

T,,. describes energy which is coherently scattered by the ground, then incoherently
scattered by the canopy, before exiting the forest. Also known as Term 2b in [51].

T, describes energy which is incoherently scattered by the canopy, before exiting the
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forest. Also known as Term 3 in [51].

The first-order terms involving canopy scattering do not involve incoherent scattering
by the ground because that is a second-order (or higher) effect.

Ty, and Ty, describe energy which is scattered by the trunks to the ground before exit-
ing the forest. Ty, involves incoherent scattering by the tree trunks and coherent scattering
by the ground while T, is really a second order effect, as evidenced by the remaining inte-
grations over ' and ¢'. However, these integrations can often be approximated analytically
making this term no more computationally intensive than any first-order term.

Ty;, is also known as Term 4a in [51].

T, is a new contribution due to the inclusion of the incoherent rough surface scattering
in the first order solution. The triple integral over 7,1/ and ¢’ is analytic for some combi-
nations of rough surface models, trunk extinction coefficients, and trunk Mueller matrices.

T}, is known as Term 4b in [51].

Ty is another new term.
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7.1.2 Integration over Canopy Depth 7/

The integration over canopy depth 7' is straightforward and follows exactly that in [S1]:

1

Tirer =ﬁe“‘? IHRG(1)Qe(— 1, 0)Arcr(1, §; Ho, 00) Q5 (1o, 0o R (Hg)e e /o
(7.18)
Ticr =&€"‘3 IERG (W) Qe(— 1, ©)Acr(, 9; Ho, 90) Q5 ' (—Ho, do) (7.19)
1 , e
Tlr(: =EQC(ua ¢)Arc(u,¢;llo, ¢0)Q;1 (u()a ¢0)R0(l-10)e ¢ d/vo (7.20)
1
TIC =HQC(ua¢)AC(u’ ¢§u0>¢0)Qc_l(—ll0a¢0) (721)
Tue =&e“‘? /e PR () Qr(—1, 0) Aer (11, 03 o, G0) Q7™ (~Ho Go)e ™ ¢/ko
(7.22)

1 1
T = M [ G050, 0)Qu ) A 00, Qo)
71 (—po, fo)e ™ /o (7.23)

1 - -
Ty, =ge"‘”+d/ HQu (1, 0)Are(, 0; o, 90)Q; ! (1o, G0)Ro(po)e ™% Hh/Hog =% d/ko

(7.24)

1 - 1 ! / - ! ! ! ! ! !
Toge = /0 /MQt(u,¢)An(u,¢;u,¢) FLW, )G, 8 o, 00) 0 diy

e_xt_Hl/p'Oe_K;d/p’O (7.25)

where the extinction terms have been expanded as

e%t/h =Qc(i, §)De (i, 3 —2/1) Q7 (1, 0) (7.26)

[De (i, s —z/ W) =e MM/, (7.27)
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th h h

and Q is a matrix for which the i'® column is the it eigenvector of k and A, is the it eigen-

value of k. Also, the A’s are of the form:

A (s, Os; iy §i) Z/D(iusa¢s§i(z,+{dadl,o})/“s)Q_l(iHS7¢s)P(i”s,¢s;iUia¢i)
Q(£ms, 9:)D(£H;, 05 £(2 +{d,d',0})/w)dZ (7.28)
[A ks, Oss 1is 0)];; =S (FNi(Ebs, Os) / bsy NG (£, i) /Wiy {d, Hr})

Q7 (F s, 05)P(F s, O 1L, 6:) Q1L 0) (7.29)

ij

See [51] for the explicit expressions of the A’s.

7.1.3 Integration over Elevation |’ in T2 and Tog

The two new terms, namely T and T,,, depend on Py (L5, ds; i, §;) in such a way that
they can be approximated as a pair of first-order terms. This is because the form of the trunk

phase matrix is as follows ([51], appendix C):

N:H;

i H,
Pr(ls, bsi iy i) = P;(PSaHi,q’A)TSln&(Tt(Ui—IJ«S))

N:A
N Pi(us,ui,%)—,’t—ﬁ(ui — M) (7.30)

or, equivalently,

N:H; . H
Ar(Ws, Osi iy 0) = A'n(l»ls,¢s;ui,¢i)"‘;‘t—t51n02(Tt(ui—H:))

N
N AT (s, 0, 00) O — o) (7.31)
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where N, is the number density of trunks per square meter, H, is the height of the trunk layer,
and
sinTx

sinc(x) = = (7.32)

dbr = Os—¢; (7.33)

Then the integration over ' may take place as follows:

NiH; _y+ ! ! ' ano-1m! o\ H, !
Ty = wauu0) [ [ A o107 0 sind? (i)

G(W,0's Ho, o)/ dp'e ™ Fir/bog =X d/ko (734)
NeA —-xtd/u ' nn-1 / / !
TC_}le ¢ Qt(uaq)) /2nArt(ua¢;ua¢) t (H,¢ )G(H,¢ ;l~l0,¢0)d¢
et Hi/bop—Kcd/ko (7.35)

Q

The error in approximating the double sinc function as a Dirac delta function is shown

in Figure 7.1. The error &g, ., defined as
1 H,
Egine = ‘ 1- /0 sinc? ('Xt (n— u’)) du" (7.36)

is shown as a function of H; /A for several values of [ Note that £, (1 — 1) = & (1)
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30.

25.

in percent

Esinc

tree height to wavelength ratio H/A

Figure 7.1: Error in approximating the sinc-squared function as a Dirac delta function.
The error for 1 —  is the same as for [1. The error is less than 10% for all

trunk heights greater than 4 wavelengths and incidence angles between
36° and 78°.

7.1.4 Integration over Azimuth ¢/

Because the expressions for the phase matrix of the trunk layer are azimuthally isotropic,

it can be shown that the extinction coefficients are also azimuthally isotropic:

Q:(1,0) = Qi) (7.37)

Scattering in the trunk layer can be expressed as a Fourier series:

AL (s, 05 i, 0) = Ag(Ms, Miy 9a) (7.38)

©o

= Y [A%(ts, 153 K) coskda + A7, (s, Mis k) sinkda]  (7.39)
k=0
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where

- 1
B (ushik=0) = 5= [ Al(u,1s0)do (7.40)
nJ2r

Kbk >0) = = [ Al (e, 0)coskod (7.41)
T

A (us, ik =0) = 0 (7.42)

A (b5 ik > 0) = % /2 A (Ms, iy 0) sinkodd (7.43)
T

Similarly, if the rough ground is also azimuthally isotropic, then it can also be expressed as

a Fourier series:

G(uqu)s; Hi,¢i) = G(uS>uia¢A) (744)

> [G(us, iz k) coskdn + G (s, s k) sinkdy]  (7.45)
k=0

where

- 1
Go(sy ik =0) = o= [ Glot 0)d0 (7.46)
- 1
Gy ik > 0) = — [ Gl ) coskad (7.47)
G'(us,pik=0) = 0 (7.48)

1

Gtk >0) = — [ (o, 0)sinkodo (7.49)
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Using the orthogonality of the sine and cosine functions, namely, that

/2n cosm(¢ —¢')cosn(¢' —dg)dd’ = wcosm(d— dg)Smn(1 + o) (7.50)
/ sinm(¢ — ¢')sinn(¢' — ¢o)dd’ = —mcosm(d—P)dmn(1—38,0) (7.51)
| cosm(o—)sinn(¢/ ~e0)de/ =

2n

fzsmm(b o) cosn(¢' — dg)dd’ = msinm($— dg)dmn (7.52)

where 8, is the Kronecker delta function: 8, = 1 if m = n and &,,, = 0 if m # n. The

equations involving the trunks then simplify to:

1 _ _ _ e
Tur =y KEd/bg=%" He/UR G (1) Qs (— ) Arr(K, Ho, & — 00) Q) (—pg)e ™ ¢/Ho

(7.53)
N o & )
Ty =G 1, s 0) Qo) A5 o, )

+§‘1 [(G(u, o3 k) Qe(—Ho)Af (Mo, Hos k)

— G (1, 103 £) Qs (— o)A} (1o, o3 k)) cos k(¢ — do)
+ (G (1, o3 k) Qi(—H0)AS, (o, Hos k)
+ Gs(l»l, uO;k)Qt(—uO)‘&fr(uO’ Ho,k)) Sink(¢ - ¢0)] ]

Q! (—pg)e ¥ ¢/t (7.54)
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1 - _
Ty =Ee-"c* HQu(1) Are (1, 1o, 0 — 90)Q;! (o) Ro(pg)e ™ Hi/bog =T d/Mo (7.55)

NA ~ ~
Togr === QU () 2A5 (1, 10)Q7 (1) G, 11070)

o

+ 2 (AL (1 ) QT (WG (1, o3 k) — A5, (1, ) Q) ()G (1, Mo: k) cos k(0 — )
k=1

+ (A% (1 0)Q7 ()G (1, o3 k) + AS, (1, s K)Q; ()G (1, po; k) sin k(& — do)]]

e~ % Hi/Wo %z d /1o (7.56)

7.1.5 Reduction to Backscattering

For backscattering, |l = Ly and ¢ — ¢ = m. Substituting these values into the expressions

above yields:

Ty =0 (7.57)

Tlg =e“‘3'd/uoe"“r+Ht/lJ«0G(u0, Uo, n)e—‘q’Ht/Hoe—Kc_d/l»lo (7.58)

Tirer =£6_"°+d/“°R6(uo)Qc(—uo, 00+ 70) Arer(Lo, $o + T0; o, ¢0)Qc—1 (1o, 60)

R (11g)e¥e 4/Ho (7.59)
1 + ! -
Tlcr =Ee_xc d/pOR()(!J'O)QC(—uO, ¢0 + n)Acr(“Oa ¢0 + Ko, ¢O)Qc 1("”’0’ ¢0)
(7.60)

Tire =ch(uo, $o+ 1) Arc(Ho, 0o+ 75 Mo, 00) Q5 ' (Mo, 0o)Rp (o) e e ¢/Ho

(7.61)

T), =£6Qc(uo,¢o+ﬂ)Ac(Ho,¢o+1t; b0, 0) Q3 (— 1o, do) (7.62)
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1 _ _ .
T, =_u'0'e kZd/Mog "1+H‘/”0R0(p0)Q,(—uo)A,,(u0,po,n)Q, 1(—”0)3 Kcd/vo

(7.63)
=%’u—‘§e-*?d/“°e—*f”?/uono(uo>ot(—uo)A:,(uo,uo,n)Q:‘(—uwe-*c‘d/“o
(7.64)
Tog =%e"“+‘” Hog = Hit /M [2Ge (o, o3 0)Qs(— o) A% (o, o3 0)
¥ kzl (116 (Hoy o3 K) Qs (— o)L (0, o )
— (1o, o K)Qu(— o)A, (Hoy o K)IQ7 ! (—tg)e ™ /b (7.65)
Ty, =£€—K:d/“°Qt(uo)Art(l~lo,Llo,n) 7! (1o)Ro(pg)e ™ Hit/Hog=xc /Mo
(7.66)
=t 4 (1) o, o, )7 o) RafHo)e™ ibog =Kk
(1.67)
Tog = 400 (1) 25 (i, s O/ (1) (o, )
+2 1)M[AS, (o, Hos K) Q7™ (110) G (10, o )
— &3, (1o, Hos k) Q7 (10) G* (o, g ))& He/Mog=*e d/bo (7.68)

Thus, the second order terms involving incoherent bistatic scattering from the ground
and scattering by trunks can be analytically derived as an infinite series of Fourier terms,
making it little more computationally involved than are the first order terms.

The expressions for the Fourier decomposition of the trunk scattering matrices are given

in Section B.1 and for the rough surfaces in Section B.2
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7.2 Example: Trunks over a Physical Optics Ground

As an example of the effect of the incorporation of the rough ground on the scattering
from a forest, let us examine a realistic example which is also simple enough to analyze.
Let us assume that the forest is composed of trees which do not have a significant number
of primary or secondary branches which would attenuate or scatter the microwaves. Since
the canopy is not a part of the problem we are addressing, let us further assume the forest is
deciduous and the observation is during the winter months when no leaves are on the trees.
Under these circumstances, the canopy is absent, and we can set T1,., = T1o, = T1e = Tio =
0 as well as e~%e4/Ho = 1,

Furthermore, if scattering from the surface can be described by the Physical Optics model
with a Gaussian correlation function and a correlation length that is large such that %(kol Y (1-
u3) > i for the first several i in the summation of ®(kyG, kol, L), then we can employ the

large argument approximation for Iy(x), namely: I;(x) — \/% and

koo, kol,Ho) = lim @ (koG kol, Ko, o) (7.69)
1kl 5 (Zkoopo)*

= 7.70

16my/mpo /1 %Z{ iWi (7.70)

which is independent of the azimuth Fourier index k. Then, the Physical Optics expressions
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for the Fourier series components of the incoherent Mueller matrices simplify to:

2G¢(po, Mo k = 0) = G(o, oz k > 0) =8ufRopo (ko) P (koS kol, o)

(7.71)
G* (o, Hos k) ~0 (7.72)
where
IRJ? 0 0 0
0 |Ry? 0 0
Ropo(o) =e~4(kooHo)’
O 0 9{6 RvR* —Sm RvR*
(RE} ~SmiRE} |
0 0 Sm{RR} Re{RR}}

Then the relevant terms in the radiative transfer solution for backscattering become:

NH, _ _
T = '&trot'e K?H‘/MROPO(HO)Qf(_uO)Azr(uO’“’0,11:) tl(_u()) (7.74)
! 2koOlg)%
Tog = Tup/Fr— 3 { al ;0 (7.75)
t l—u(z)i_l 1!
N.H, _
Tin = “Q,( )AL, (Ko, Mo, ™) Q7! (1o)Ropo(po)e ™ Filko (7.76)
= (2kaOLg)%
Ty = T1n\/7_t17 3 (k;" \;") (1.77)
t 1_uot=1 .

T, = € HHG(jo, po,m)e ™ Hi/ko (7.78)
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Figure 7.2: Ratio of the second order ground-trunk scattering (incoherent) to the
first order ground-trunk scattering (coherent), times the ratio of the trunk
height to correlation length, as a function of surface roughness and for
several angles of incidence. This is the limiting case for all polarizations
for Physical Optics with a long correlation length.

7.3 Significance of Including Ground Roughness

The development of the radiative transfer equation for a set of trunks over arough ground,
while imperfect, has two significances in backscattering models. For co-polarized backscat-
ter, the inclusion of roughness decreases the coherent energy scattered by the ground and
off the trunks (and vice versa), and includes a new source from bistatic scattering in a cone
around each trunk. Under different conditions, direct backscatter from the ground, or the
coherent grotind-trunk interaction, or the incoherent ground-trunk interaction can dominate
the backscattering from a scene. In Figure 7.3, the model shows that the direct backscatter-
ing from a rough ground is never significant in a young aspen stand, but depending on the

rms surface height, the backscattering can be dominated by the coherent specular ground-
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Figure 7.3: Dependence of select terms of forest backscatter on surface rms height.
The total vv-polarized backscatter from a young aspen stand is dependent
on the surface roughness. The dotted curve (marked gnd) represents di-
rect backscatter from the rough ground, the short dashed curve (marked
RT) indicates a coherent ground—trunk interaction, the long dashed curve
(marked GT) indicates an incoherent bistatic ground—trunk interaction,
and the solid curve (marked all) gives the sum of all these contributions.
The backscattering angle is 8; = 30°; and the radar frequency is at L-
band (A = 0.2 m). At this frequency the aspen trunks have a dielectric
Of €ynx = 62.3 — j24.3 and the ground dielectric is €4,y = 13.0 — j2.0.

The trunks are 0.44 m high; the trunk diameter is ka = 0.4 and the stalk
density N; = 6.5 stalks per square meter.
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Figure 7.4: Dependence of cross-polarized forest backscatter on surface rms height.
Shown is the total vh-polarized backscatter from the same young as-
pen stand in the previous figure. All of the cross-polarized scattering is
from the incoherent bistatic ground—trunk interaction. Both direct ground
backscatter and the coherent ground—trunk interaction are negligible for
cross-polarization.

vertical trunk corner reflector structure, if the surface is sufficiently smooth, or be dominated
by a surface bistatic scattering interaction with the trunks, if the surface is sufficiently rough.
The overall level of scattering from the scene is different for these two cases. As a function
of the normalized rms surface height ko, the backscattering from the scene as a whole has
one particular constant value for ko < %, where the coherent specular ground-trunk mecha-
nism dominates, and a different but constant value for k6 > 1, where the incoherent bistatic
ground-trunk mechanism dominates, with a smooth transition zone in the range % <ko<1.
From a number of runs of the model for differing forest parameters, the difference of the
levels of the coherent dominant scattering and incoherent dominant scattering range from

about 0 dB to about -10 dB.
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Cross-polarized backscatter is virtually non-existent from a trunk-ground scene (with
vertical trunks) when the roughness of the ground is ignored. As shown in Figure 7.4, back-
scattering is dominated by the incoherent bistatic ground-trunk interaction in the entire cone
of the trunk, even for relatively smooth surfaces, because the direct ground cross-polarized
backscatter and the coherent specular ground-trunk cross-polarized interaction are negligi-
ble.

This model is imperfect in the sense that it amplifies the shortcomings of the bistatic
surface scattering model employed. For Physical Optics, reciprocity does not hold. For

Radiative Transfer, the trunks are not point scatterers as required by the theory.



CHAPTER 8

Conclusions

This chapter provides a summary of the results of this dissertation. Principal contribu-

tions are reviewed, and a number of recommendations for future research are given.

8.1 Summary

In Chapter 3, a new Bistatic Measurement Facility is described which was constructed
to make accurate measurements of bistatic scattering at X-band frequencies. While bistatic
measurements of random rough surfaces are reported in Chapter 6, the Facility was designed
to be able to also measure the Mueller matrix of any distributed target, the average field from
a distributed target, or the radar cross section of a point target. The only restriction on these
targets is that their sizes must be appropriate to fit in the Bistatic Measurement Facility:
point targets must be sufficiently small to fit in the Facility’s sweet spot and the distributed
targets be sufficiently large in extent so that a large number of independent samples can
be measured, which is necessary for a quality measurement. Also, while such data does
not appear in this dissertation, the Bistatic Measurement Facility is also capable of single

antenna backscatter measurements.
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In Chapter 4, the theory and techniques to calibrate the Bistatic Measurement Facility
are presented. A separate technique is presented for the backscattering calibration and the
bistatic calibration. The bistatic calibration developed for this facility uses a single measure-
ment of a commercially available aluminum sheet. Unique verification measurements of an
aluminum hemisphere on the calibration plate demonstrate the validity of the calibrations.

In Chapter 5 the Physical Optics problem is attacked with a new and general approach
to the expansion of the Stratton—Chu integral in surface slopes. A modified Physical Optics
reflection coefficient is derived with this approach and, in Chapter 6, it is shown to very ac-
curately describe the vertically polarized coherent scattering from surfaces. Of the two other
classic approaches which predict a reflection coefficient, the Physical Optics reflection co-
efficient fails to predict a migration of the Brewster angle apparent in the measurements, and
the Small Perturbation method, while adequately modeling the measurements of a slightly
rough surface, fails dramatically for that of a rougher surface which the modified Physical
Optics approach models quite well.

The modified Physical Optics approach also predicts incoherent scattering. In process
of deriving the lowest order dependence on the surface statistics of the modified Physical
Optics, it is shown that the Physical Optics model for incoherent scattering is incomplete.
While the Small Perturbation method predicts 4k polarized backscattering to exceed vv po-
larized backscattering, Physical Optics predicts just the opposite. The more complete mod-
ified Physical Optics model qualitatively agrees with the Small Perturbation method in this
regard rather than the Physical Optics model.

In Chapter 6, a number of measurements of a surface with statistics in the traditionally

accepted region of validity for the Physical Optics model is compared with the theoreti-
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cal models outlined in Chapter 2 and the modified Physical Optics approach. The modified
Physical Optics predictions modestly cutperforms the Physical Optics predictions in mod-
eling this measured data.

In Chapter 7, the Michigan Microwave Canopy Scattering Model (MIMICS), a model
for backscattering from forests, is extended to include a double bounce scattering mecha-
nism which involves rough surface bistatic scattering and scattering from tree trunks. The
model demonstrates that, for co-polarization, the level of backscattered power depends on
the surface roughness in a crudely binary fashion: if ko < 1, coherent specular scatter-
ing from the ground dominates other scattering mechanisms involving the ground, while
if ko > 1, the incoherent bistatic scattering from the ground in a cone around the individ-
uval tree trunks dominates other scattering mechanisms involving the ground. In either case,
the level of co-polarized backscattered power is otherwise largely independent of the nor-
malized rms surface height ko. Also, incoherent bistatic ground—trunk scattering dominates
other mechanisms involving the ground for the cross-polarized backscattering, regardless of
the roughness of the ground. For both co-polarized and cross-polarized backscatter from a

forest scene, direct backscattering from the ground is negligible.

8.2 Results and Contributions

There are five major contributions that may be found in this dissertation:
1) A Bistatic Measurement Facility has been designed and constructed which can polari-
metrically measure distributed targets at X-band frequencies. This is the first such facility

designed specifically for polarimetric measurements of distributed targets. A number of cal-
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ibrated bistatic measurements of characterized rough surfaces are presented in Chapter 6.

2) A calibration and verification technique has been developed to insure that the bistatic
measurements from the Bistatic Measurement Facility are accurate.

3) A generalized method for analyzing the Physical Optics model under the tangent plane
approximation has been developed. One result of the analysis is that it is discovered that the
classic (zeroth order) Physical Optics derivation misses a number of terms which have the
same dependence on surface parameters as the lowest order term.

4) One result of this new modified Physical Optics model is that the migration of the co-
herent scattering Brewster angle with roughness has been experimentally verified and the-
oretically explained with this model. This theoretical explanation has a wider range of va-
lidity than does the only other explanation, the Small Perturbation Model.

5) A modification to the Michigan Microwave Canopy Scattering (MIMICS) model is
presented which includes surface roughness in the bistatic trunk-ground scattering mecha-
nisms. For surfaces which are sufficiently rough, the incoherent bistatic ground-trunk inter-
action dominates all other scattering mechanisms involving the ground, including the direct

backscatter from the ground.

8.3 Recommendations for Future Research

With a Bistatic Measurement Facility in place a large volume of data on distributed tar-
gets which would benefit the remote sensing community is obtainable. For example, a series
of measurements could be conducted which could be used to experimentally determine the

region of validity of the Small Perturbation or the modified Physical Optics models. Such
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a library of data would be essent:al to evaluating the validity of not just surface scattering
models but also volume and vegetation scattering models. Due to the statistical nature of the
scattering problem, a large volume of data is essential to drawing useful conclusions about
bistatic scattering.

One very serious problem with the measured surfaces in this dissertation was the charac-
terization of the surface roughness characteristics. Whenever possible, surfaces measured
with radar for model verification should be manufactured to particular specifications, rather
than sculpted and the profile measured. While this has already been accomplished for sur-
faces, techniques for designing and manufacturing volume and vegetation targets need to
be developed.

The analysis of the Physical Optics approach in chapter 5 contains a number of tech-
niques which are general to nature of the Physical Optics expansion, rather than specific
to particular terms. As such, it is theoretically possible to solve all terms simultaneously,
resulting in an exact solution to the tangent plane approximation. Also, the development
can rather easily be generalized further for surfaces which have nonsymmetric correlation
functions or nonzero skewness or kurtosis statistics. The Integral Equation Model (IEM) is
a multiple-scattering model which is an outgrowth of the Physical Optics model. As such,
many of the techniques developed in this dissertation for evaluating Physical Optics terms
could be applied to the IEM as well. This would be a particularly useful exercise, since it is
expected that, even for modestly rough surfaces, multiple-scattering processes are signifi-
cant for such measurables such as cross-polarized backscatter.

While this dissertation presents a tool for evaluating the effects of surface roughness on

total backscatter from forests, this model needs to be compared with careful measurements
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for which significant ground truth data, especially regarding the surface characteristics, has

been acquired.
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APPENDIX A

System User Manual

A.1 Target Preparation

The proper preparation of targets is important to insure that measurements made by the
Bistatic Measurement Facility are accurate. This section gives a number of helpful hints for

this preparation.

A.1.1 Point Targets

The definition of a radar cross section ¢ for a point target assumes that the target is il-
luminated by a plane wave. For this assumption to be true, the target must be sufficiently
small so that it fits within the “sweet spot.” In both modes the sweet spot is approximately
spherical and located at the center of the BMF, but the diameter differs in those two modes

as shown in Table 3.1.

A.1.1.1 Locating the Center of the Facility

The center of the Bistatic Scattering Facility is that point at which the two antenna bore-

sights intersect. It is also the point at which the three bistatic axes intersect. The center is
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exactly 30 inches off the floor, and the line which passes vertically though the center can be
found with the following technique:

Move the inner arch elevation to 0° and the inner arch azimuth to 90°. Move the outer
arch elevation such that its uprights are vertical. This should be at -1.5° for this axis. The
two pairs of uprights can now be used as visual aids in locating the center of the Bistatic
Measurement Facility. Stand close to one of the arch uprights, in the plane of the arch, but
not inside the arch. Look across the plane of the arch, from the near upright to the far upright.
The plane defined by the left (right) edge of the near upright and the right (left) edge of
the far upright of the same arch goes directly through the center the Bistatic Measurement
Facility. So does the similar plane defined by the other arch. Since the two arches are now
perpendicular to each other, a vertical line going directly through the center of the Bistatic
Measurement Facility is well defined. Place the target in the facility such that its center is
exactly 30 inches above the floor. Move the target around until it can be verified to be in

both planes defined by the two arches.

A.1.1.2 Using the Calibration Plate with Image Theory

The primary purpose of the calibration plate is for the proper calibration of the system.
Another use of the calibration plate, used in conjunction with another object, is for verifying
the ability of the Bistatic Measurement Facility to measure radar cross sections. The cali-
bration plate shields the BMF from any objects underneath it, which can be a very useful
property since the removal of a bulky distributed target is often very inconvenient. The only
catch is that the object placed on the plate is now subject to two properties of image theory:

first, the object and its mirror image appear in the receiver’s field of view, and second, the
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target (and its mirror image) are illuminated simultaneously by the transmitter and a mirror
image of the transmitter. Probably the most useful target to use with image theory is the
hemisphere, because its RCS can be computed exactly and therefore it can be used to verify

the operation of the BMF.

A.1.2 Distributed Targets

For distributed targets, the main issues involved in the preparation for a measurement is

the proper use of the illuminated area and methods for producing a flat surface.

A.1.2.1 The Illuminated Area

Distributed targets are assumed to be very large with respect to the radar’s beamwidth.
The region which contributes to scattering is much larger than the sweet spot used for mea-
suring point targets. Since the antenna illumination does not drop off instantly outside the
beamwidth, this region is technically infinite in extent, but for almost all scattering situations
it suffices to say that the region is where the transmitter and receiver gain pattern product,
G,G;, is within 6 dB of the maximum gain product, which is the gain product at the cen-
ter of the BMF. This region is known as the illuminated area and is denoted by A;;. Ay
depends primarily on the antenna with the smallest beamwidth-range product, BR, and de-
pends on the angle of incidence of this antenna, 0, as 1/ cos®. Therefore, for bistatic mode,
the illuminated area is determined by the transmit antenna and its incidence angle, while
for backscatter mode, which uses only the horn antenna, the illuminated area is determined
solely by the horn antenna and the backscattering angle.

The illuminated area is not directly calculated by the software. Rather, it calculates a
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quantity closely related to it, the illumination integral, [;;;. See Section 4.5 of Chapter 4 for
further discussion of the illumination integral and the formulas used to calculate it.

While A;; is the source of the scattering, it is important to keep all objects which are,
or could be, very strong scatterers nowhere near the illuminated area. This is particularly
important when the distributed target is a weak scatterer for the bistatic angles and/or po-
larizations desired, because strong scatterers, even though they might be in sidelobes of the
antennas many tens of dB down from boresight, might still contribute the majority of the
power received. Such objects include metal objects or anything with metal, water and wet
objects (including living things), edges, and objects with planar sides which could specu-

larly reflect from the transmit direction to the receive direction.

A.1.2.2 Making a Flat Surface

An important starting point for many distributed targets is the creation of a flat surface.
For measuring volume scattering, a flat surface is useful because it does not scatter in any
direction other than the specular direction, thus preventing contamination of the measured
volume scattering with surface scattering. For measuring surface scattering, making a flat
surface is a good starting point for making rough surfaces because the mean of the rough
surface is then more likely to be flat, a requirement of most surface scattering theories.

For distributed targets made from a powdery solid, like sand or soil, the following tech-
nique has been found to be the best for creating a flat surface. Level the material as best as
one can by hand, then create the final flat surface with a flat surface tool. Such a tool con-
sists of a metal blade, from a strip of sheet metal or angle iron or similar material with a very

straight and rigid edge, which is suspended horizontally over the sample holder while the
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turntable is made to rotate slowly but continuously. The blade acts like a plow, removing
material when it is too high and filling in where it is too low. After one rotation it should
be evident where the center of the sample holder is located, as it will be in the center of a
small circle of unleveled material. Reposition fhe blade to pass through the center of that
small circle and rotate the turntable again. Repeat the process of locating the center until it
is found.

Once the center is found, the blade should be raised or lowered at one or both ends so
that it carves a plane on the material instead of a cone. It is also desirable to get the surface
as close to 30 inches above the floor as possible. Material may need to be added or removed
from the center or the ends of the blade as the turntable rotates. Near the end of this proce-
dure the surface will be flat and level but with a small amount of material being plowed by
the blade. At this point the blade should be raised a tiny amount (approximately 1/16 inch)
to enable this last material to be incorporated evenly into the flat surface. Once the surface
is smooth and the blade no longer plows any material, it can be removed and the flat surface

is complete.

A.2 Power Up

The following steps will quickly bring the Bistatic Measurement Facility to its opera-

tional state and insure that the bistatic angles are accurate.
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A.2.1 Inspection

Make sure no cables have been snagged, disconnected or damaged before attempting to
power up the facility. The rail should be cleared of all debris. If the HP-IB or the microwave

plumbing is not attached to the network analyzer, do so now.

A.2.2 Apply Power

Power up the instruments in this order: network analyzer, computer monitor, printer
(if connected), motor amplifiers, microwave relays, microwave amplifiers, computer cpu.
Nothing disastrous will happen if this order is not followed, but the components will have

the longest life if this order is used.

A.2.3 Launch The Software

Once the Gateway 2000 PC has booted and produced a DOS prompt, type “win” and
press the enter key to launch Windows. After Windows displays the Program Manager, dou-
ble click the “Visual Basic 3.0” icon to open the Visual Basic directory. In that directory,
launch the Visual Basic application by double-clicking the “Microsoft Visual Basic” icon.
From the “File” menu, select “Open Project...” The project to open is “sigzero.mak” in the
“c:\bistatic” directory. Press the F5 key or select “Start” under the “Run” menu to execute
the Bistatic Measurement Facility software. The software will display the main form, as
shown in Figure A.1, and await user instructions.

In the following discussion, a number of terms, like “radio button” or “form,” are used.

These are the Visual Basic terms for these standard Graphical User Interface (GUI) soft-
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Figure A.1: The Main Form, as it appears when the Bistatic Measurement Facility
software is launched.
ware items and the user is referred to that documentation for detailed explanations of their

appearance and properties.

A2.4 Zero Axes

The physical axes of the system do not have absolute encoders, home or limit switches,
or other means of determining absolute position without user intervention. Thus the axes
must have their zero positions set by the user. The following paragraphs describe how to
put the three bistatic axes into the zero position manually. The software should be running
during this process, so that the axes, once in the correct position, can be powered up and thus
prevent any inadvertent motion from taking them from the zero position. This is done in the
main form of the software by clicking the “Set to Zero” button for the appropriate axis, then

clicking the “Amplifier Enable” checkbox to apply power to the motors, thus keeping them
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at the correct zero position. If the axes have have not had their amplifiers disabled since the

last time the axes were zeroed, they do not need to be re-zeroed at this time.

A.2.4.1 Inner-arch Azimuth

The inner arch azimuth axis zero position is where the inner arch axis of rotation is
aligned with the outer arch axis of rotation, and the cables go around the sample holder.
(The facility is designed to have the cars in the exact same position, but with the cables go-
ing around a spool on the ﬁoor‘instead. That is the 360° position.) Since it is hard to align the
axes themselves (the big sprockets obstruct vision), the alignment can be checked by mak-
ing sure the edges of the inner arch car are in line with the edges of the outer arch stand. The
cars cannot be pushed directly into position because the cars’ driven wheels are directly at-
tached to a worm gear, which locks when torque is applied to the output shaft. Therefore,
if a car needs to be moved, the driven wheel must be used to move it or the driven wheel
must be lifted off the floor to allow the other wheels to roll. If a car needs to be moved for
proper alignment, pick it up near the driven wheel until the driven wheel is not in contact
with the floor and slide the car around on the rail. Be careful to put the car back down on the
rail properly. When both cars are properly aligned with the stands, the “Dish Azimuth” axis
may be “set to zero” with the softkey. Then enable the amplifiers for this axis to prevent

any inadvertent motion, such as that induced by manually zeroing the inner arch elevation.

A.2.4.2 Inner-arch Elevation

For the inner arch, the zero position is with both arch uprights in the vertical position. If

the center of the arch, where the antenna is located, can be reached, move the arch toward



225

vertical by applying an upward force on the arch at that point. Do not apply any force di-
rectly to the antenna, as that may misalign it. After the arch is sufficiently upright that the
center of the arch is out of reach, the arch uprights can be moved toward vertical with the
aid of an assistant (one person on each upright near the axis), or solo, if one is careful to
move each side only a little at a time. Do not move one side so hard as to “pull” the other
side along with it. Confirm that the arch uprights are both vertical with the aid of a car-
penter’s level. If one upright needs adjustment, be sure to remeasure both uprights with the
carpenter’s level before proceeding. Once the inner arch has been set to vertical, the “Dish
Elevation” axis may be “set to zero” via the softkey. Then enable the amplifiers for this

axis to prevent any inadvertent motion.

A.2.4.3 Outer-arch Elevation

For the outer arch elevation, the procedure is the same as for the inner arch elevation,
except for a few additional steps after the arch has been “set to zero.” The software recog-
nizes the outer arch as the “Horn Elevation,” so that is the axis which now must be “set to
zero” and “enabled.” Because the antenna on the outer arch is mounted on the side of the
arch instead of the center like the antenna on the inner arch, it is now not at vertical, but
instead is off by a few degrees. After the amplifiers have been enabled, type “1.5” in the
command position for the “Horn Elevation,” then hit the “Move” softkey. Wait until the ac-
tual positions agree with each other and are within one count of the command position (for
both elevation axes, one count is about 0.05°). Then disable the “Horn Elevation” axis, set

it to zero, and re-enable the axis.
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A.3 Using the Software

Now that the Bistatic Facility’s axes have been aligned and the motor amplifiers for each
axis have been enabled, all interactions between the user and the bistatic facility itself (not

including the targets) can be done with the software.

A.3.1 Moving the Antennas

Each bistatic axis has a frame in the main form (see Figure A.1) which has exclusive
control over the motion of that axis. In addition to the “Set to Zero” command button and
the “Amplifier Enable” checkbox, both explained in Section A.2.4, there is a text box and
“Move” command button for the motion of the axis. The “Actual Position” frame has labels
which display the logical axis numbers for the master and slaved axes associated with the

bistatic axis, as well as their current positions (in degrees).

A.3.2 Set the Mode

The mode, backscatter or bistatic, must be set using the radio buttons on the lower left
side of the main form. The default mode is bistatic. Pressing one of these radio buttons
will cause the software to initialize the network analyzer for the appropriate mode, but will
also erase all calibration data and invalidate the current calibration. The system is ready for
either making raw measurements or for calibrating.

If the system is in backscatter mode, the entire inner arch is superfluous to the operation
of the system. Therefore, it should be moved to a position such that it is out of the way for

making measurements. Moving the inner arch elevation to +90° or -90° will keep it entirely
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out of the field of view of the backscatter antenna, regardless of the backscattering angle of

incidence.

A.3.3 Initialize the Network Analyzer

If the mode was not explicitly set, that is, it was left in bistatic mode, the network ana-
lyzer must be initialized by clicking the “Initialize Analyzer” command button. This com-
mand button puts the network analyzer into a known state, but does not, by itself, invalidate
a completed calibration. Anytime the front panel of the network analyzer has been accessed,
re-initializing the network analyzer with this command button before doing anything else

with the software is highly encouraged.

A.3.4 Raw Measurements

Raw measurements can be done in two ways, manually from the main form, or with
all the polarizations done at once in the measurement form. Either way, the bistatic angles
must be set using the axis controls in the main form. Within the main form, the user also
has control of the polarization state of the facility via the polarization frame, and the raw
power level of the signal received at the network analyzer may be read with the power level
frame.

Within the power level frame, which is enabled only after the NWA has been initialized,
there are two command buttons. The “Single” command button takes a single trace of the
network analyzer and reports the power at the center frequency. The “Continuous” com-

mand button repeatedly makes single traces and updates the power at the center frequency
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Figure A.2: The Measurement Form, for manual sampling, as it appears when the Bi-
static Measurement Facility is not calibrated.

as it gets it. The “Continuous” command button may be turned off by clicking the “Sin-
gle” command button, or by doing various other actions (such as starting a calibration or
measurement).

The radio buttons in the polarization frame control the settings of the polarization switches
that are part of the antenna assemblies. The software cannot detect whether the power is
applied to the microwave switches, so it is the user’s responsibility to ensure that the mi-
crowave relay power switch is on.

By clicking the “Measure Unknown” command button and then clicking “Manual” in
the menu, the measurement form appears as shown in Figure A.2. The only type of mea-
surement enabled at this point is the raw data, which measures the center frequency power
for each polarization and reports the value without applying any calibration, conversion or

statistical analysis. The major difference between this measurement and that done from the
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main form, other than the fact that all four polarizations are done, is that measurements made
in the measurement form have an averaging factor set to 8 on the network analyzer, while
that done from the main form has the averaging off (which is the same as an averaging fac-
tor of 1). Thus raw measurements done in the measurements form has a signal to noise ratio
9 dB greater than that made from the main form.

Raw measurements have limited usefulness, as their numbers can only be compared to
other numbers generated in exactly the same fashion, ie. on that particular bistatic facility.
Thus the raw measurements are useful primarily in troubleshooting. For example, the op-
eration of the polarization switches can be easily verified by moving the antennas into the
specular angles for a calibration plate, then measuring the plate in the different polarization

states.

A.3.5 Calibration

In order to make meaningful measurements, the system must be calibrated. This can be
done by clicking the “Calibrate” command button on the main form, which loads the cali-
bration form appropriate for the mode the system is in. Refer to Chapter 4 for a theoretical
background to the calibration process. The next two sections describe the recommended
procedures for calibrating the Bistatic Measurement Facility for backscattering and bistatic

scattering.
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Select Operation Completed
O Plate NO
O Background NO
O Calculate calibration set using latest data NO

Figure A.3: The Calibration Form, as it appears when the Bistatic Measurement Fa-
cility is in backscatter mode.

A.3.6 Backscatter Calibration Procedure

With the software displaying the backscattering calibration form, which is shown in Fig-
ure A.3, three radio buttons and either two or three command buttons appear. The radio but-
tons are labeled “Plate”, “Background”, and “Calculate calibration set using latest data”.
They are used to determine the next object upon which the software will act, but select-
ing them in and of themselves does not do anything. To the right of the radio buttons is a
column displaying the status for each object. Possible messages in the status column are:
“NO”, meaning that no action has yet taken place with that object; “Working”, meaning that
the software is busy with that object; and a time, which indicates when the last action on that
object was completed. The background has an additional status: “0’d” and a time, indicat-
ing that the last action on the background was a deletion of the background data and when

it happened.
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The command buttons are used for telling the software to do something, and are labeled
“Execute”, “Zero”, and “Close”. The “Close” command button is used to exit the form and
return to the main form, and can be used at any time during the calibration procedure. The
“Execute” command button is used to either measure the plate or background, or to calculate
the calibration set. The “Zero” command button only applies to the “Background” radio
button, so it only appears if that radio button is selected, and is used to erase the measured
data for the background target. In effect, it returns the background data to the state it was
when the calibration form was first entered; that is, the background is unmeasured.

The following order of steps is recommended for backscattering calibration.

A3.6.1 Position Calibration Target

Place a large sheet of aluminum at the center of the Bistatic Facility. It must be flat and
level, and at a height equal to the axis of rotation of the bistatic facility (30 inches off the

floor).

A3.6.2 Position The Backscattering Antenna

From the main form in the software, move the antenna to 0°. If the inner arch is posi-
tioned such that it is between -20° and +20°, it will also need to be moved to prevent it from

affecting the calibration measurement.

A.3.6.3 Measure The Calibration Target

Make sure the “Plate” radio button is selected, then click on the “Execute” command

button. The status column will show “Working” for about 30 seconds then display the time
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when the measurement was completed.

A.3.6.4 Measure The Background (optional)

The object of this measurement is to determine how much of the calibration measure-
ment is due to scattering from other than the calibration target. We have found that the cal-
ibration measurement on this bistatic facility has such a large signal to background ratio
that this measurement is not necessary for accurate calibration. However, should the sys-
tem change so that the signal to background ratio be substantially reduced (to 30 dB or less),
this measurement would be essential. About the only thing which could cause such a reduc-
tion is damage to microwave components, which could then introduce internal reflections
within the microwave plumbing and multipath with the same length as the direct path in-
volving the calibration target.

With the same aluminum plate in the same location, the background can be measured by
moving the outer arch away from the specular direction. We recommend that it be moved
to more than 30° away from nadir for a valid background measurement. In this position, the
plate will not scatter any energy back toward the antenna, and the time-gating on the network
analyzer will prevent other nearby objects from being measured. Again, the inner arch must
not be within the field of view of the backscattering antenna. Select the “Background” radio
button, and then select the “Execute” command button. The status will display “Working”

for about 30 seconds then display the time the measurement was completed.
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A.3.6.5 Calculate The Calibration Set

Anytime a valid “plate” measurement has been completed, the calibration set may be
calculated. Select the “Calculate calibration set using latest data” radio button then select
the “Execute” command button. The software will then calculate the calibration set using

the STCT algorithm and display the time it was completed.

A.3.6.6 Leave The Calibration Form

Remove the calibration plate (unless it is going to be used for measurements) and select
the “Close” command button to return to the main form. The bistatic system is now cali-
brated in backscatter mode and is ready for measurements, as described in Section A.3.8 of

Chapter A.

A.3.7 Bistatic Calibration Procedure

With the software displaying the bistatic calibration form, which is shown in Figure A 4,
five radio buttons and either two or three command buttons appear. The radio buttons are
labeled “Plate w/ Dish unrotated”, “Background w/ Dish unrotated”, “Plate w/ Dish rotated
45 degrees”, “Background w/ Dish rotated 45 degrees”, and “Calculate calibration set us-
ing latest data”. These are used to determine the next object upon which the software will
act, but selecting them in and of themselves does not do anything. To the right of the radio
buttons is a column displaying the status for each object. Possible messages in the status
column are: “NO”, meaning that no action has yet taken place with that object; “Working”,

meaning that the software is busy with that object; and a time, which indicates the when
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Select Operation Completed
® Plate w/ Dish unrotated NO
O Background w/ Dish unrotated NO
O Plate w/ Dish rotated 45 Degrees ND
O Background w/ Dish rotated 45 Degrees NO
O Calculate calibration set using latest data NO

Figure A.4: The Calibration Form, as it appears when the Bistatic Measurement Fa-
cility is in bistatic mode.

the last action on that object was completed. The three middle objects have an additional
status: “0’d” and a time, indicating that the last action on that object was a deletion of the
measured data and when it happened.

The command buttons are used for telling the software to do something, and are labeled
“Execute”, “Zero”, and “Close”. The “Close” command button is used to exit the form and
return to the main form, and can be used at any time during the calibration procedure. The
“Execute” command button is used to either measure the plate or background, or to calcu-
late the calibration set. The “Zero” command button only applies to the three middle radio
buttons, so it only appears if one of those radio buttons is selected, and is used to erase the
measured data for those targets. In effect, it returns the data for that object to the state it was

when the calibration form was first entered, that is, unmeasured.
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The only measurement essential for calculating the calibration coefficients is the “Plate
with dish unrotated” measurement. The “Plate with dish rotated 45 degrees” is used to in-
sure that the calculation of the calibration coefficients does not involve the division by very
small numbers (see the previous section on the bistatic calibration theory). Experience has
shown that those small numbers are not sufficiently small (compared to the noise in those
numbers) to necessarily cause problems. The object of the two background measurements
associated with each plate measurement is to determine how much of the calibration mea-
surement is due to scattering from other than the calibration target. We have found that cal-
ibration measurements on this bistatic facility has such a large signal to background ratio
that these measurements are not necessary for accurate calibration. However, should the
system change so that the signal to background ratio be substantially reduced (to 30 dB or
less), this measurement would be essential. About the only thing which could cause such a
reduction is damage to microwave components, which could then introduce internal reflec-
tions within the microwave plumbing and multipath with the same length as the direct path
involving the calibration target.

The following order of steps is recommended for bistatic calibration.

A3.7.1 Position The Calibration Target

Place a large sheet of aluminum at the center of the Bistatic Facility. It must be flat and
level, and at a height equal to the axis of rotation of the bistatic facility (30 inches off the

floor).
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A.3.7.2 Rotate The Dish (optional)

Lower the dish antenna to an elevation where the the bolt holding the dish assembly to
the I-beam of the arch is accessible. Depending on the height of the user, this can be done
by sending the dish elevation to about 70° or so. Use a 7/16 inch nut driver or wrench to
loosen the bolt about one turn. Do not remove the bolt, as it is the only thing holding the Dish
antenna assembly onto the arch. Rotate the Dish assembly about its boresight direction, that
is, rotate it around the shaft of the bolt, about 45° counterclockwise (as viewed with the bolt
visible). The cables attached to the dish assembly should prevent it from being rotated in

the wrong direction. Tighten the bolt which holds the dish assembly onto to the arch.

A.3.7.3 Position The Antennas In The Specular Direction (optional)

From the main form in the software, move the Horn Elevation to some angle 6,. where
20° < 0, < 60°. An angle of 35° is recommended. The Dish Azimuth must be set at 0° and
the Dish Elevation must be the same as the Horn Elevation. This is the specular direction;
with the antennas in these positions and the plate properly locdted, the measured scattered

power will be at a maximum.

A.3.7.4 Measure The Plate With Rotation (optional)

Make sure the “Plate w/ dish rotated” radio button is selected, then click on the “Exe-
cute” command button. The status column will show “Working” for about 30 seconds then

display the time when it was completed.



237
A.3.7.5 Measure The Background With Rotation (optional)

With the same aluminum plate in the same location, the background can be measured
by moving both antennas in elevation equal amounts but in opposite directions. This allows
the direct path between antennas to be unaffected while removing the calibration target. We
recommend that the antennas be moved by more than 30° away from specular direction for
a valid background measurement. In this position, the plate will not scatter any energy back
toward the antenna, and the time-gating on the network analyzer will prevent other nearby
objects from being measured. Select the “Background w/ dish rotated 45 degrees” radio
button, and then select the “Execute” command button. The status will display “Working”

for about 30 seconds then display the time the measurement was completed.

A.3.7.6 Unrotate The Dish (optional)

Following similar procedures used to rotate the dish, return the dish to its normal orien-

tation. Remember to tighten the bolt which holds the dish assembly onto the arch.

A.3.7.7 Measure The Background Without Rotation (optional)

With the same aluminum plate in the same location, the background can be measured by
moving both antennas in elevation equal amounts but in opposite directions away from the
specular direction. This allows the direct path between antennas to be unaffected while re-
moving the calibration target. We recommend that the antennas be moved by more than 30°
away from the specular direction for a valid background measurement. In this position, the

plate will not scatter any energy back toward the antenna, and the time-gating on the network
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analyzer will prevent other nearby objects from being measured. Select the “Background
w/ dish unrotated” radio button, and then select the “Execute” command button. The status
will display “Working” for about 30 seconds then display the time the measurement was

completed.

A3.7.8 Move The Antennas To The Specular Direction

From the main form in the software, move the Horn Elevation to some angle 6,. where
20° < 0, < 60°. An angle of 35° is recommended. The Dish Azimuth must be set at 0° and
the Dish Elevation must be the same as the Horn Elevation. This is the specular direction;
with the antennas in these positions and the plate properly located, the measured scattered

power will be at a maximum.

A3.7.9 Measure The Plate Without Rotation

Make sure the “Plate w/ dish unrotated” radio button is selected, then click on the “Exe-
cute” command button. The status column will show “Working” for about 30 seconds then

display the time when it was completed.

A.3.7.10 Calculate Calibration Set

Anytime a valid “Plate w/ dish unrotated” measurement has been completed, the cali-
bration set may be calculated. Select the “Calculate calibration set using latest data” radio
button then select the “Execute” command button. The software will then calculate the cal-

ibration set and display the time it was completed.
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A.3.7.11 Leave The Calibration Form

Remove the calibration plate (unless it is going to be used for measurements) and se-
lect the “Close” command button to return to the main form. The bistatic system is now
calibrated in bistatic mode and is ready for measurements, as described in Section A.3.8 of

Chapter A.

A.3.8 Calibrated Measurements

Upon first entering the measurement form, only the menu is visible. One of the two items
on the menu, “Manual” or “Automatic,” must be clicked, which will show the measurement
form.

Manual sampling refers to the fact that the software waits for the user to modify the target
in some fashion between measuring independent samples. The user must acknowledge to
the software ( via the “Continue” command button) that the target has been set to a new
independent sample before the BMF will make further measurements.

In automatic sampling, the software rotates the target on the turntable to generate new
spatial independent samples between measurements, thus not requiring user intervention.
However, entering automatic sampling without the proper turntable controller attached will
cause the software to go into a loop which can be escaped only by stopping the program.

These two menu items may be clicked any time the measurement form is open.
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A.3.8.1 Manual Sampling

The measurement form for manual sampling, as shown in Figure A.5, displays informa-
tion in two columns side by side:

On the left, from top to bottom, is a display of the spatial samples completed, the total
number of independent samples measured for the current measurement sequence, the cur-
rent status of the Bistatic Measurement Facility, and finally two command buttons, one for
(re-)starting a measurement and a second for continuing a measurement already started.

On the right, from top to bottom, is a 2 x 2 array of the measured data, four radio but-
tons showing the type of information to be displayed in the array, and three command but-
tons. The radio buttons are entitled “Raw Data”, “Radar Cross Section”, “Reflectivity”, and
“Sigma Zero.” The title of the array matches that of the radio button which has been se-
lected. The three command buttons, which are always visible and enabled, are, from left to
right, “Write to File,” “Print Form,” and “Hide Form.”

When the “Radar Cross Section” radio button is selected, as in Figure A.S, an additional
command button and check box appear which have to do with background subtraction. The
command button is captioned “Measure Bkgnd” and is used to measure the background for
a point target (ie. the scene with just the target itself removed, but yvith all support structures
and bistatic angles unchanged). The measurement of a background occurs in the same fash-
ion as any other measurement, and it takes the same time to complete, but the data is stored
in a temporary array. If this check box, captioned “Subtract Bkgnd”, is turned on (off), the
RCS is recalculated and displayed with the background subtracted (ignored).

The “Start/Restart” command button on the left side of the form is used to reset the statis-
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measurement type | integer code
Raw Data 0
RCS 1
Reflectivity 2
Sigma Zero 3

Table A.1: Integer codes in the final column of output files

tics used to generate the reflectivity and the scattering coefficient, and start the measurement
of the first sample. The “Continue” command button is used to measure an additional sam-
ple, and can be used repeatedly to measure an arbitrary number of samples.

Clicking the “Write to File” command button will cause certain information on the cur-
rent measurement to be written as a single line at the the end of the file c:\patterns\bmf.dat.
The information is written in ASCII in this order: outside arch elevation, inside arch eleva-
tion, inside arch azimuth, the four elements of the array of measured data (vv, vk, hv, hh),
and an integer indicating which of the radio buttons is active (and therefore, what kind of
data is being written to the file). The bistatic angles are recorded in degrees, the measured
data is recorded in dB or dBsm, as appropriate, and the integer has one of the four values
given in Table A.1.

Clicking the “Print Form” command button will cause the measurement form to be printed
on a properly configured printer which is connected in some fashion to the computer. The
computer system is delivered with the assumption that a printer is attached to the printer
port LPT1, but the user may reconfigure the default printer with other software provided
with Windows. If no printer is attached, any attempt to use this command button will be
ignored.

Clicking the “Hide Form” command button will cause the measurement form to be hid-
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 Manual Sampling

Radar Cross Section

¥¥ vh
hv hh
Samples Completed: 0
QO Raw Data
Total Independent Samples: 0 @ Radar Cross Sect
Done. Ready QO Refiectivity : i
Status: Done. Ready.
QO sigma Zero [ Subtract Bkgnd

Figure A.5: The Measurement Form, for manual sampling, as it appears when the Bi-
static Measurement Facility has been calibrated and RCS is the chosen
measurement unit.

den, returning the user to the main form.

See Section 4.5 of Chapter 4 for explanations of the precise meanings of the different

types of data that the Bistatic Measurement Facility can produce.

A.3.8.2 Automatic Sampling

Clicking the “Automatic” menu option brings up the same form as does clicking the
“Manual” menu option, but with a few additional pieces of information: two text boxes and
an additional command button. The measurement form for automatic sampling is shown
in Figure A.6. Refer to the manual sampling section above for explanations of the form
elements that appear in common between the two sampling methods.

On top of the left hand side are two text boxes for entering information regarding the use

of the turntable. The first text box is for entering the number of degrees the turntable should
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rotate between independent samples, and the second is for entering the maximum number
of independent spatial samples (the number of times the turntable is rotated and the target
is measured).

There is an additional command button on the left side of the form, with the caption of
“Pause.” Clicking this command button will cease program execution, but only after the
current sample measurement has been completed. This allows the user to do something
with the target or the BMF without invalidating a measurement or having to wait for the
measurement sequence to complete. Anytime the software has been paused, and the mea-
surement of that particular spatial location has been completed, the measurement sequence
can be continued indefinitely with the “Continue” command button or restarted with the
“Start/Restart” command button.

Manual sampling is the same as Automatic sampling except that the turntable is ignored,
and that the software tells itself to pause anytime “Start/Restart” or “Continue” has been

clicked.

A.4 Examples of Measurements

The following two examples demonstrate the use of the software to make specific mea-
surements. In addition, some practical hints for setting up measurements are given. The
hemisphere measurement is useful for confirming the operation of the Bistatic Measurement
Facility. The rough surface measurement is a typical measurement of an unknown target and

demonstrates the ability of the BMF to separate reflectivity from a scattering coefficient.
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 Automatic Sampling

Radar Cross Section

Degrees/Sample: w vh
Max # of Samples: hv hh
Samples Completed: 0
O Raw Data
Total Independent Samples: 0 @® Radar Cross Sect
4 Q Rellectivity inditebdud
Status: Done. Ready.
’ @) Sigma Zero [ Subtract Bkgnd

Figure A.6: The Measurement Form, for automatic sampling, as it appears when the
Bistatic Measurement Facility has been calibrated and RCS is the chosen
measurement unit.

A.4.1 Backscattering RCS of hemisphere on a conducting half-space

The hemisphere and its mirror image create a sphere, for which the scattering character-
istics are known exactly. The formulation of the scattering from a sphere is given in Bohren
and Huffman [4], Chapter 4, and a Fortran 77 program which calculates the RCS of a hemi-
sphere on a ground plane is provided with the BMF. This code has as its heart a subroutine
“bhmie” based on the fortran code in the appendix of [4]. In addition, the software provided
includes a subroutine “scatter”, which calls “bhmie” and converts the scattering coefficients
from the coordinate system in [4] to the coordinate system shown in Figure 2.1. The main
routine calls these subroutines and applies image theory to calculate the RCS of a hemi-
sphere as it would be measured with the BMF. This code, which runs (at least) under £77 on

a Sun 4, likely needs only minor modifications to run under the local fortran compiler. As
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described in Section A.1.1.2, the radar cross section is then given by the interference pat-
tern of the sphere illuminated by the transmitter (a plane wave incident at 6;) and its image
(another plane wave incident at 180° — ;).

Upon launching the BMF software, select the Backscatter mode in the main form, and
set up the calibration sheet. Move inner arch out of the way; make sure the outer arch is at 0°
and calibrate (without a background). Refer to Section A.3.6 for the backscatter calibration
procedure. Do not remove the calibration sheet, it will become part of the measurement.
The system is now ready for making measurements and the only trick is to properly position
the target. Find the center of the BMF as described in Section A.1.1.1. Once the hemisphere
is located at the center of the BMF, marking a circle on the plate with a mechanical pencil
around the circumference of the hemisphere can be helpful to quickly but precisely relocate
the hemisphere at the center of the BMF without having to use the arches.

Again, move the inner arch out of the way. Move the outer arch to the desired angle
and enter the measurement form. Choose manual sampling. Click the RCS radio button
and click the Start/Restart command button. When the measurement is complete and an
RCS is displayed, remove the hemisphere and click the “Measure Bkgnd” command button.
When this is complete, the RCS of the hemisphere at this angle can be viewed both with
and without background subtraction by checking or unchecking the “Subtract Bkgnd” check
box. The order in which the target and its background are measured can be reversed. The
system is ready to be moved to a new backscattering angle for a new measurement.

By this technique it can be easily shown that the background is very significant at angles
near nadir, where the specular flash from the plate is large, but is negligible at angles far from

nadir.
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Figure A.7: Typical Bistatic Measurement Facility results for a conducting 3-3/16
inch diameter hemisphere on a calibration plate. The curves show the the-
oretical results as computed by the code mentioned in this section. The
corrected system isolation is evident from the reported values for cross-
polarization, since their theoretical values are zero. The agreement near
nadir is poor because the hemisphere shields part of the calibration plate
which contributes significantly to the background. The agreement for G,y
near grazing is poor because the time-gate does not eliminate interactions
between the hemisphere and the edge of the calibration plate (the same
interaction for hh polarization is extremely small).

Typical results of the measurement of a hemisphere on the calibration plate are shown in

Figure A.7. The points show the measured Radar Cross Section, and the curves are results

of the software mentioned in this section.
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Section Task

A2l Inspect the BMF

A22  Powerup the BMF

A23 Launch the BMF software

A24 Zero the BMF axes

A3l Move the Dish Elevation to +30°

A32
A35
A3.6
A3.6
A3.6
A3.6
A3l
A3l
A3.1
Alll
A3l
A3.1
A34
A38
A3.8
A38
A38
A38
A38
A38

Click Backscatter Mode radio button

Click Calibrate command button

Position Calibration target

Click Plate radio button and Execute

Click Calculate radio button and Execute
Click Close command button

Move the Dish Elevation to 0°

Move the Dish Azimuth to +90°

Move the Horn Elevation to -2°

Place the hemisphere at the center of the BMF
Move the Dish Elevation to +30°

Move the Horn Elevation to desired backscatter angle
Click the Measure Unknown command button
Click Manual in the menu

Click the Radar Cross Section radio button
Click the Start/Restart command button
Remove the hemisphere

Click the Measure Bkgnd command button
Click the Subtract Bkgnd check box

Read the RCS in the array

Table A.2: Hemisphere Measurement Cross Reference and Checklist
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A.4.2 Reflectivity and Specular Scattering Coefficient of a rough sur-
face

Prepare a smooth surface as outlined in Section A.1.2.2. Place the calibration plate di-
rectly onto the surface in the region éf the illuminated area. Put the BMF into bistatic mode
and calibrate as described in Section A.3.7, with the antennas in the (or in one of the) ele-
vation angles to be used for measuring. Carefully remove the calibration plate, so as not to
disturb the smooth surface underneath (an assistant at this point is invaluable). Perturb the
surface to the desired roughness.

The surface is now ready for measuring. If the automatic sampling is working, enter the
measurement form, click on “Automatic” in the menu, enter the desired number of spatial
samples and their angular separation in the appropriate text boxes, and click the start com-
mand button. If automatic sampling is not usable, use manual sampling in the measurement
form, and click the start command button. When the measurement is completed, rotate the
sample holder by the amount of the desired angular separation between independent sam-
ples and click the continue command button. Repeat the instructions in the last sentence
until the desired number of independent samples have been measured.

By clicking the “Reflectivity” radio button, the reflectivity matrix is displayed. Clicking
the “Sigma Zero” radio button displays the scattering coefficient matrix. These radio but-
tons can be clicked at any time during the measurement cycle to show how the variations in
these numbers decrease as the number of independent samples increases.

If the reflectivity and/or scattering coefficient are desired at other angles, move the bi-

static arches ( via the controls in the main form), and repeat the directions in the last two
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paragraphs. The reflectivity does not have a scientific meaning for a surface away from the
specular direction, however.

Once the measurement is complete, the surface may be characterized by inserting a long
piece of sheet metal edgewise into the surface, and tracing the intersection of the surface and
the sheet metal onto the sheet metal with a pencil or with spray paint. Remove the sheet
metal and digitize the traced curve. Use the data to estimate the rms surface height and
correlation length. This technique is not the most accurate, as it disturbs the surface which
is measured, but it is one of the easiest. The accuracy can be improved somewhat by taking

several “slices” of the surface.
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Section Task

A21 Inspect the BMF

A22  Powerup the BMF

A.2.3  Launch the BMF software

A24  Zero the BMF axes

A.1.2.2 Prepare a smooth target surface

A3.2  Click Bistatic Mode radio button

A3.1  Move the Dish Elevation to 35°

A3.1  Move the Horn Elevation to 35°

A3.1  Move the Dish Azimuth to 0°

A.3.5  Click Calibrate command button

A.3.6  Position Calibration target

A3.6  Click Plate radio button and Execute

A3.6  Click Calculate radio button and Execute

A.3.6  Click Close command button

A4.2  Remove the Calibration Target

A42  Make arough surface

A3.1  Move the Dish Elevation to desired angle

A3.1  Move the Horn Elevation to the same angle

A34  Click the Measure Unknown command button

A3.8  Click Manual in the menu

A.3.8  Click the Reflectivity radio button

A3.8  Click the Start/Restart command button

A3.8  Move target & click the Continue command button
(repeat for independent samples)

A.3.8  Read the Reflectivity in the array

A.3.8  Click the Sigma Zero radio button

A.3.8  Read the Scattering Coefficient in the array

Table A.3: Rough Surface Measurement Cross Reference and Checklist
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APPENDIX B

Fourier Representations of Some Mueller Matrices

This appendix presents the Fourier decomposition of the Mueller matrices of certain
targets for use in the Michigan Microwave Canopy Scattering Model (MIMICS), given by
(7.57) thru (7.68), as outlined in Chapter 7. The first section gives the Fourier series repre-
sentation for two forms of the Mueller matrix for trunks, one for thin cylinders based on a
model by Sarabandi, and another for arbitrary diameter cylinders based on a model by Ruck.
The second section gives the Fourier series representation for two models for rough surface

scattering, the Physical Optics model and the Small Perturbation model.
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B.1 Fourier Series Representation of Trunk Phase Matri-

ces

B.1.1 Form of P, for thin trunks

According to Sarabandi [36], the scattering matrix of a vertically oriented thin cylinder

of length H; and diameter, 2a, where a < A, can be modeled as

gr— 1 . H
S =1da’H, (8 " 1)smc (Tt(us — ui))

r
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where ky is the freespace wavenumber, 2a is the trunk diameter, and &, = g, + je, is the

relative dielectric constant of the trunk, p; = 1/1 —p? = sin@;, and pf = /1 — p2 = sin6;.

B.1.2 Form of P, for other trunks

For trunks which are not thin compared to a wavelength, Ruck et al. [34] provide the

following solution for the scattering matrix of vertically oriented cylinders:

CoM+235 CiM cosna 2%=1 Grsinnd B8)

—2¥° Cisinndy  CTE+235  CTEcosnd,
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where
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and k) is the freespace wavenumber, 2a is the trunk diameter, and €, is the relative dielectric
constant of the trunk. Also, J,(x) is the Bessel function of the first kind nth order, and H,, (x)

is the Hankel function of the first kind n'? order: Hy(x) = H,(,l)(x) = Jn(x) + i¥y(x). Thus,

2 oo
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B.2 Fourier Series Representation for Rough Ground

B.2.1 Physical Optics

The traditional (zeroth order) Physical Optics coherent scattering matrix and bistatic in-

coherent scattering matrix are
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where
Ayy =Rv00(ui + uS) COs ¢A
Qpy =Rv00(1 + uius) sin ¢A
Ay, =Rpoo(1+ ibs) Sinda
ann =Ruoo(1i + Ws) COSda
e =kor/ W3 4+ W2 — 2t cos b
and

i=4/1—p?=sin6;

W, =4/1—p2 =sinb
It is possible to analyze G¢ and G* using

1
515/27: sinm¢AJo(K¢x)d¢A =0

1 / /
o /2 _cos mOaTo(Kex)ddn =Jm (koxiti) Jm (koxs)

(B.39)
(B.40)
(B.41)
(B.42)

(B.43)

(B.44)

(B.45)

 (B.46)

(B.47)



260

The result is;
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G (i, i3k = 0) =3 (G“(Dz(koc, P, ki s) + G2Dy koo, p, i, us)) ¢~ (koo(rHs))

(B.48)
G (s Mssk > 0) =381 (@4-3(koO, P, s Ks) + Dy2 (Ko, P, s ) e~ oo b))
+ G2y (koO, P, I, i) e~ RoO(Hi))? (B.49)
0 0 Re{RR;} Sm{RR}}
_ 0 0 —Re{RR;} Sm{RR}}
G (i, s k) =5 (s + 1s) (1 + i)
—2|R,|* 2|Ry)? 0 0
0 0 0 0

(@r-2(koG, P, iy ) — Py 2(koO, P, i, ) e~ KoOLrHi))? (B.50)
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where
(W + IJS)2|RVI2 —(1+ uius)2|RV|2 0 0
el —(1+ )R> (b + R IRI 0 0
0 0 Re{R,.R: 0T —Sm{R,R} I~
0 0 Sm{R,R;}ut  Re{R.R;}In~
(B.51)
(i )R 2 (L4 ) 2Ry 0 0
& (14 patts)2IRA® (i + 1) 2R 0 0
0 0 Re{R,R:}u~ —Sm{R,R;}put
{RoR; }n0 {RoR}} (B.52)
0 0 Sm{R,R;}u~ Re{R.R;}ut
and
W =(+ o) £ (1+ ibts)” (B.53)
k2 00 )
i(ko, Py Hisbs) =g | [eacturrt o) — 1]y ko) ko e
S
(B.54)

. — 2
for which, if the surface has a Gaussian correlation, ie. p(§) =e &/ ,

aussian kol 2 = koo'(uz-i-l.t)) (k)2 )24
G (k()O' kol, u:aus) (IGTEBLSZ( T 5 k(x)e X (kol) (W' ;—W5)*/

(B.55)

where x = (kol)2pip}/2i.
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B.2.2 Small Perturbation

For the Small Perturbation Method, the coherent reflectivity Mueller matrix is

_ R, (spm) i 2 0 0 0 |
2
Rosp(l:) = ’ ’Rh(SPM)I O O
0 0 me{Rv(SPM)RZ(SPM)} -3 m{RV(SPM)RZ(SPM)}
0 0 Sm{Rv(SPM)RZ(SPM)} SRe{RV(”’M )RZ(SPM)}

(B.56)

where R, j,spy) are the vertical and horizontal Small Perturbation Fresnel reflection coeffi-
cients, respectively, are given by (2.85) and (2.86) above.

The first order scattering matrix correlation product (see (2.78)) is:

(S5aSia) =2mAg (ko) 2 g W (1) (B57)
Gpamn =8 (5, 5t (B.58)
pgmn — 47t}ls AO pq-mn .

where the fp, are the Small Perturbation scattering amplitudes and W (k;, ky) is the surface

spectral density given by (2.35).
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Then, the Small Perturbation bistatic incoherent scattering matrix is

| fwl? | funl?

| finl? | finl”
2Re{fwfi}  2Re{funfn}
| 23m{fufi} —23m{funf)

GSP(l»ls,lii,(PA) =

Re{ s} ~Sm{ fwfi}

Re{ funfn } Sm{ funf, }
el Sl fafn) —Sm{fdi Ffh}
Sm{ fwfin+ fnf ) Re{fvfin = Fonfin}

(ko)z (k )2us e-—kzlz(sin2 0;+sin0;)/4 e%kzlz sin®; sinB; cos P

2
(B.59)
if we re-express the f’s as:
Jih =Suno + SncCOS P (B.60)
S = frys SIN QA (B.61)
Jon =fvnsSINQA (B.62)

fw =fno+ frvccosda (B.63)
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with

Jhro =—_kﬂrur 1 sin6;sinOs(1+ Ry) (B.64)
Dy Mr
k
Fhe :D—(pr— 1)cos8;cos 05 (1 — Ry) — (€ — 1)(1 +Ry) (B.65)
H
—k
s =D—H((ur— 1)cosOu(1+Ry) —Mr(gr — 1)cos6;(1 - Ry)) (B.66)
Fohs =l—;—((u,— 1)cos8;(1— Ry) — My (e — 1) cosOu (1 +Ry)) (B.67)
vV
foo =& =L Gneising, (14 &) (B.68)
DV 8;-
fove =l_7k (mr—D(1+R,) —Mr(er— 1) cosB;cos0(1 —R,)) (B.69)
Vv

then we can express Ggp as follows:

Grp(Ms, iy 9a) =GEp(Hs, 1) + Y, GSp(Hs, i) cosnda + Gp (s, by) sinndy

n=1

(B.70)
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where
GED (b, i) %K(GC(O) o)+ 2G5 1 (x) + G5 ha(x)) (B.71)
(2 + I3(x
G50 ) =K (G500 + 6 (o) + 1) + 6P LSBT ) @
4 c In— +In X
Sp(Hs, i) = ( GEOL (%) + G (Lot (1) + L1 () + G 2(X)z = ))
(B.73)
G3p(Hs, 1) =0 (B.74)
s s Ii(x L(x
b ) =K (G4t~ (o) + G5 LA ) ®75)
s(2\In— — I a(x
50 ) =K (G 1(5) a0 + G e ) ®76)
and
=4(k0PHip, ®77)

K =1 (ko) (k) Ppse % H M /4 (B.78)
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2|fvv0|2+ vavc|2 lfvh_;!z
c(0) [ Fisl? 2| fusol” + | fnel”
(A .

SP .

0 0

0 0

0 0
0 0
Re{2f ol im0+ Foveline + FonsFis}  —Sm{2fwofio+ Foveline = FonsFivs}
3m { 2f vaf IthO + f vvcf l:hc + f vhsf ;vs} 9{2{2]“ vaf }thO + f vvcf }thc - f vhsf ltvs} i
(B.79)
29{6{]( vaf :vc} 0
el _ 0 2%Re{ funo e}

SP ces

0 0

0 0

1
0 0
0 0
(B.80)

Re {f wol; ithc + fovef, ;tho} _Sm{f wof; }thc + fuvelf, ;Tho}

Sm{ finofipe + Fvefino}  Re{ Fvofine Fwefio} |
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tfvvc|2 '—lfvhs|2 0 0
e _ | Wl Ul 0 0
SP
0 0 9{e{f""cfi::hc —fvmf}:vs} —Sm{fvvcf;thc +thSf}tvs}
0 0 Sm{fwcf;hc—fvmf}tvs} SKe{f"vc-’c}fhc-l"f"thl};gvs} ]
(B.81)
0 0 Re {f wol, v*hs} _Sm{f w0 s}
(1) 0 0 Re{ funofist  Sm{ funoSiys}
Gep' =
2Re{ fnofs)  2Re{ funof s} 0 0
| 23m{fwofins} 23m{ funofiis} 0 0
(B.82)
0 0 Re{fwvcll) —Sm{ Foveliis}
52) 0 0 Re{ fincSrns}  Sm{ funchis}
Ggp' =
2Re{ fvcftyst  2Re{ func s} 0 0
i ng{fv""fl:vs} 28m{fhh0f:hs} 0 0

(B.83)
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