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Regularity of the Density of States in 
the .Anderson Model on a Strip for Potentials 
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We derive regularity properties for the density of states in the Anderson model 
on a one-dimensional strip for potentials with singular continuous distributions. 
For example, if the characteristic function is infinitely differentiable with bounded 
derivatives and together with all its derivatives goes to zero at infinity, we show 
that the density of states is infinitely differentiable. 
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1. I N T R O D U C T I O N  

To descr ibe  the m o t i o n  of a q u a n t u m  par t ic le  on a d i so rdered  crystal ,  
Ander son  m in t roduced  a mode l  in which the part icle ,  an electron,  is 
a ssumed  to in terac t  only  with the impur i t ies  in the crysta l  which p roduce  
a po ten t ia l  vary ing  s tochas t ica l ly  from site to site. 

The  Ande r son  mode l  is given by the r a n d o m  Schr6dinger  o p e r a t o r  

act ing on  /2(Zd),  where  d is the finite-difference Lap lac i an  and  the values 

V(x )  of the po ten t i a l  at  the la t t ice site x are  t aken  to be independen t  ident i-  
cally d i s t r ibu ted  r a n d o m  variables .  
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In the study of such random Hamiltonians one is usually not 
interested in the study of properties of H for a fixed potential V, but only 
in properties that hold for typical V. For example, it is a consequence of 
ergodicity that the spectrum of the Hamiltonian H is given by 

a(H) = a( - �89 A) + supp p 

with probability one, (7'31~ where 1~ is the common probability distribution 
of the potential at a single site. The spectrum of H can be decomposed into 
pure point spectrum, absolutely continuous spectrum, and singular 
continuous spectrum. This decomposition is independent of the potential 
with probability one. (31~ 

An important quantity in disordered systems is the density of states, 
which measures, in some sense, "how many states" corresponds to energies 
below a certain level. 

The integrated density of states N(E) is defined by 

1 
N(E) = lira # {eigenvalues o fH~  ~ E} 

A ~ z d - ~ [  

where A is a cube centered at the origin and HA denotes the operator H 
restricted to 12(A) with Dirichlet boundary conditions. 

It is a consequence of the ergodic theorem that for almost every poten- 
tial the limit exists for all E and is independent of the potential. (2 6) N(E) 
is always a continuous function (7"*/and under some mild conditions is log- 
Holder continuous. (9) 

It is known that without further restrictions on /~ one should not 
expect too much more regularity. (1I'12~ In one dimension under very 
general conditions N(E) is always H61der continuous on compact 
intervals(lO,11~ and under some minimal regularity assumptions on # it is 
always differentiable, even infinitely differentiable. (~2 15) 

In more than one dimension little is known about the differentiability 
of N(E). (16 18) Under mild regularity conditions which include the uniform 
distribution it follows that N(E) is differentiable at high disorder, (19) and 
under some strong assumptions on # (analytic density or exponential 
boundedness of its Fourier transform) it has been shown to be analytic at 
low energy or high disorder. (2"19'2~ 

In this paper we study the regularity of N(E) for the Anderson model 
on a strip. This had previously been done by Klein and Speis (21) under 
certain regularity assumptions on /~ which required /~ to be absolutely 
continuous (e.g., the uniform distribution). Their approach, following 
ref. 13, was to use the supersymmetric replica trick to rewrite the averaged 
Green's function as a two-point function of a supersymmetric field theory, 



Anderson M o d e l  on a Str ip  67 

which was then studied by a supersymmetric transfer matrix. The problem 
was reduced to the study of a certain eigenvector problem. Existence was 
not hard to establish, but the uniqueness followed from the uniqueness of 
a certain probability measure on the symplectic group which is invariant 
under an action associated with the random Schr6dinger operator on the 
strip. Klein and Speis (21) proved that the eigenvector was always the 
restriction of the Fourier transform of that invariant measure to a certain 
cone; to do so, they used an old result of Whitney (32) to extend the eigen- 
vector, originally defined on the cone of positive-semidefinite matrices, to 
the space of all symmetric matrices. This extension required a hypothesis 
on # that excluded singular distributions (Ref. 21, Theorem IV.2.7). 

In this paper we prove directly the uniqueness of the eigenvector under 
very weak hypothesis on # (see Theorem4.11);  in particular, our condi- 
tions allow for singular continuous distributions. 

This paper is organized as follows: In Section 2 we introduce the 
Anderson model on a strip and state our results; Section 3 is devoted to the 
development of the supersymmetric Hilbert spaces used in ref. 21 as well as 
to the introduction of some new ones which will be needed in the sequel. 
The supersymmetric transfer matrix and the eigenvalue problem are 
studied in Section 4. Finally, in Section 5 we derive the regularity of the 
density of states from the above-mentioned eigenvector as in ref. 21. 

2. S ta tement  of Results 

Let 9m be the one-dimensional lattice strip of width m, i.e., 9, ,  = 
Z x { 1,..., m }, where Z is the set of all integers, Z + is the set of all non- 
negative integers, and m e Z + \ { 0 } .  Let 9 1 =  {(1,0), ( - 1 , 0 ) }  and 9 2 =  
{(0, 1), (0, - 1 ) } .  

The Anderson model (1) on 9m is given by the random Hamiltonian 
H = H o + V on /2(9m) , where 

(Hou)(x) = 2 (Ho)xy u(y) 
Y ~ m  

with 

(Ho)xy=.{O1/2 if otherwiseX--yEgl 

(vu)(x)= Y~ Vxyu(y) 
y E J@m 
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with 

f - l / 2  if x -  y e ~ 2 

V x y = l V ( x  ) if x = y  
otherwise 

and { V ( x ) } ~  are i.i.d, real random variables with a common probability 
distribution # whose characteristic function will be denoted by h. We will 
always assume that 

f log(1 + IvJ)d#(v)< +o0 

Let l 1 ~<l 2 EZ and let AEt,.t2 ~ be the box [ l l , /2 ]  X {1, 2,..., m} in ~m. 
We will denote by HEt~.t21 the operator H restricted to /2(AEt,,t2n) with 
boundary condition u(x) = 0 for all x r A Etl.t21- 

Let l~ Z § ; we will denote by A t the set A F-t.tl and by Ht the operator 
Hr- t, tl. We will also denote by rAt[ the number of points in A t. 

The integrated density of states N(E), E~  R, is defined by 

N(E) = lim I / t ] -1  ~ {eigenvalues of l i t  ~<E} 
l ~ o o  

As in Z d, for almost every potential the limit exists for all E and is a con- 
tinuous function of E. (2 9) 

On a one-dimensional strip, Klein et al. (23~ showed that if # is not con- 
centrated in a single point and .[Ivl=dNv)< +oo for some c~>0, then 
N(E) is locally H61der continuous. Under the hypothesis that h is of class 
C a on [0, + o e ) w i t h 4 d > ~ 3 r n 2 - m + 4 a n d h / i ) ( t ) = O ( l + l t l  ~)forsome 

> 1/2 and all j =  0, 1,..., d, Klein and Speis r showed that N(E) is of class 
C ECa+l)/21. They also proved that i fh  is of class C (3m~ m+4)/4 on [0, +oo)  
with h(Jl(t)=O(1 + l t ] - ~ )  for some e >  1/2 and all j = 0 ,  1,..., 
�88 and h(Jl(t)=O(e bl,l) for j = 0 , 1  and some b > 0 ,  then 
N(E) has an analytic extension to a strip about the real axis. Recently 
Glaffig (22) proved that if the potential on the top line consists of i.i.d. 
random variables with compactly supported distributions F(x) dx such that 

i _ { f  e LI(R); there exists g e  LI(R) such that ~ ( t )=  (1 + t2)~/2f'(t)}, F e L ~ -  
with e > 0, and on the rest of the strip consists of i.i.d, Bernoulli random 
variables with possible values 0 and b, independent of the ones on the top 
line, then then exists bo > 0 which depends on F such that if [b[ < bo, then 
N(E) is of class C ~. 

In this paper we prove the same type of regularity as in ref. 21 under 
much weaker hypotheses, similar to the ones Klein and Speis used in 
ref. 15. We now state our results. 
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T h e o r e m  2.1.  Let  d e Z + \ { 0 } .  Let  h be bounded  and of class C a 
with bounded  derivatives on (0, + o~). If h ~ ) ( r ) ~  0 as r ~ + o~ for all 
j = 0 ,  1 ..... d, then N ( E ) i s  of class C ~(a+~)/2? 

T h e o r e m  2.2.  Let  h be differentiable on (0, +o~)  and let 

Ih(J)(r)l ~< Me - ~  

for some M < + ~ ,  c~ > 0, all r > 0 and j = 0, 1. Then  N(E)  has an analytic 
extension to { z e C :  I lmzl  < b l }  for some b 1 >0 .  

3. S U P E R S Y I V I M E T R I E S  A N D  S U P E R S Y M M E T R I C  S P A C E S  

3.1. Funct ions  D e f i n e d  on Superspaces  

De f in i t i on  3.1.  Let  n, m be two positive integers. Let A(R 2"m) 
denote the Grassman algebra over R 2nm and let AI(R 2"m) be the vector 
space of 1-forms in A(R2"m), 

The superspace 5o,,m is defined to be the set of all n-tuples q~ = 
(q~l,..., q~,) where 

qs~ = (~o~, ~ ,  ~ ) ,  i =  1 ..... n (3.1) 

q)i~R 2, i=l , . . . ,n  

and { ~ ,  O i}e = 1 ..... n is a family of 1-forms with its nonzero elements 
forming a linearly independent  set in A~(R2"m). 

De f in i t i on  3.2.  Let I be a finite index set, let n e Z ,  and let Ill 
denote the number  of elements of L 

We define 5~In to be the set of all functions qs: I-- ,  5on.Ill of the form 
~/ '(x)= (<bl(x),..., ~n(x)) ,  x e I, where 4~1,..., ~b,, are functions from I to 
LPl, lll with q~i(x)=(cpi(x) ,  ~i(x) ,  O~(x))esol,  vt for all x e I  and for all 
i~ {1,..., n}; q)l,.-., ~o~ are functions from I to R 2, and ~ ,  ~l,---, ~ , ,  ~ ,  are 
functions from I to A~(R2"lli), such that  {~)~(x), Oe(x)}x~t,~=l ...... is a 
family of 1-forms with its nonzero elements forming a linearly independent  
set in A](RZnl/I). 

We will also be using the nota t ion q~ = (qg, ~, ~p), where (p is a function 
from I to R 2" with ~o=(~0~ ..... ~o,) and ~, q~ are functions from I to 
A ' (N 2"lzl) with 0 = (~9~,..., ~b,,), q~ = ( ~  ..... ~,) .  

De f in i t i on  3.3.  Let  n e Z, let I and I '  be two finite index sets with 
I ~ I ' .  Let ~ 1 ' =  {qss 5o/n, : ~ ( x ) = O V x ( s I ' } .  We say that  5~, ' is the copy 
of 5O~' in 5~ 

Let {so~'}i=l ...... be a family of superspaces with {Ii}i=l ...... a family 
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of index sets not necessary distinct. We define X m li ~=15~ to be the usual 
Cartesian product between the Lf~ '. 

Let I be the disjoint union of I~ and let 5(', be the copy of 5~ in 5~ 
Vi= 1,..., m; then X m ~ z' ~= ~ L~, can be identified in a canonical way with S~ .  

Since for the purposes of this paper the specific linear dimensions of 
the Grassmann algebras in Definitions 3.1 and 3.2 are not important as 
long as we have enough linearly independent 1-forms, we will not be 
distinguishing between different copies of a superspace. Consequently we 
will always assume that XT=~ L,e~' is a particular case of a superspace as it 
is defined in Definition 3.2. 

For the sake of clarity of our notation we will always be assuming that 
all the index sets that appear are equipped with a fixed linear order ( ~< ). 
Let I be an index set; for x, y e I  we will write x <  y if and only if x~< y 
and x r y. 

Notat ions .  Let I be a finite index set and let 2 z be the set of all the 
subsets of L Set St = 21x 21 and let ~ = ((p, ~, ~) be an element of L,f', l, for 
some n ~ Z + \ { 0 } .  For every a in $7 we assign to ~0 an element 0 ,  of 
A(R 2hill) defined by the formula tp, = ~ I n = l  @i(~i, ai) where 

a = ( ( d i , a i ) , . . . , ( ~ , , a , , ) )  with 6~,a~e2  z, V i= l , . . . , n  

IDI IDI 

~(/3, D ) =  1~ ~i(2j) I~ O~(xj), ( D , D ) ~ S 1  
j = l  j = l  

21 < . . -  < 21131 f f / )  and X 1 < - . -  < Xlo I ff D 

and 1131 and IDI are the number of elements in D and D, respectively. 
Let a a S7 and let a be a permutation in n symbols. Let a(a) be the 

element of $7 which is defined by 

a(a) = ( (ao- (1) ,  a~r(1)),..., (da(n) ,  aa(n))) 

where a=((~il ,  al),..., ( ~ ,  a,)). Let x ~ I  and p s  {1,...,n}; we define the 
following operations on elements of S i: 

/ 7 ; a =  ((as, al),..., u {x}, (an, an)) 
H ~ a  = ((al ,  al),..., (@, ap ~ {x}) ..... (an, a,,)) 

f2~a =(( t i l ,  al),..., (gtp, ap \ {X}  ),..., (?zn, an)) 

~ ; a  = ((ci~, a~),..., (@\{x}, ap) ..... (gin, an)) 

f2pa = ((al ,  as) ..... ( ~ ,  ;g)  ..... (an, an)) 

H~,a -- ((~il, am) ..... (I, I) ..... (an, a~)) 

set, and all changes were done in the pth  position. where ~ is the empty 
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We will be denoting ( (~ ,  ~),..., (~3, ~ ) )  by a~  and ((L I) ..... (/, I)) by 
al. We will also be using the notation 

n 

~] lapl + lapl = lal 
p - - 1  

Defini t ion 3.4. Let L n be as in Definition 3.2. A superfunction F 
defined on LPzn is understood to be a function F: Lfl. ~ A ( R  2hIll) of the 
form 

F(OS)= ~, Fa(q))0a 
a e S ~  

where 45=(~o, ~, qj)ES~z, and {F.}a~s7 is a family of complex-valued 
functions defined on R 2"m 

The notation 

F(@I,..., q) ,)= ~ F,(qo, ..... <p.)~9= 
a~S~ 

will also be used. 
We will say that a superfunction F is in Ck(s if and only if F~ is of 

class Ck o n  R 2hIll 'qa ~ S I . ~ We will also say that F is in C~(Y,)k i if and only 
if F~ is of class C k and has compact support in R 2"m VaeS I. 

Defini t ion 3.5. (Also see refs. 21 and 25 27.) Let I, n be as in 
Definition 3.2 and let a, a 'E S~. We will say that a 'D a if and only if 
~tp~a;, ap ~ap Vp~ {1 ..... n}. 

Let I '  be a subset of I and M a subset of { 1,..., n }. We define the nota- 
tion of superintegration through the formula 

( - 1 )  c~ f F(~b) H dZ~~ 
i c M  
x ~ l "  

= ( - - 1 ) c a r  F(q~)d@a H d2q~ 
i ~ M  
x ~ I '  

= ( - - 1 )  1~1/2 ~ (-1)c~176 
a ' ~ a  

x f  (-1)C~ [I d2q)(x) 
i ~ g  
x ~ l '  

(3.2) 

where 

a'\a= ((a'l \d l ,  a'1 \al),...) 
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F is a superfunction defined over 5~z, such that 

; IF~,((p)] [ I  d 2 ( p i ( x )  < oO for all 
i e M  
x ~ 1' 

and 

a~S7 

t7 
C~= ~ lap[ ( lap[+1)  

2 , a ~ S ;  
p = l  

If k<<.n, {i,,..., ik}c  {1 ..... n}, and a=H~k ...H~la;~ we will be using 
the notation dqS~, .. .  dq~ for 

1 

x ~ I  i = 1  

If k = n, the notation dq~ will be used instead of dq~ ... dO,,. 
We will say that a superfunction F defined on s belongs t o  LP(~,cfl/n) 

if and only if F~ ~ LP(R 2"1~1 ) Va ff S 7. 

3.2. Supersymmetries and Supersymmetric Functions 

Let I, n be as in Section 3.1. 

D e f i n i t i o n  3.6. (See also refs. 13, 19, and 21.) Let ~, ~'ESCn.vl. 
We define a dot product between cb and ~ '  through the formula ~ - r b ' =  
Z "  q5 .q~;, where i = 1  

p t I - t -! ~ , -  ~ i  = ~0, . ~ ,  + ~(~,d, ,  + q,d,,),  i =  1 ..... n 

Supersymmetric transformations are "rotations" of the superspace 
Lfn, t, I (see ref. 27) which leave the above dot product invariant. More 
specifically, in addition to the usual rotations of R 2n and symplectic 
transformations of A(R 2nlzl) they include transformations of the type 
5r ~ ~ ~ ~.b,6(rb), where 

%,b,h(qSp) = (~Op + 2b~Op + 2b~(Jp, ~p -4&Opt, Op + 4b~op~) 

is a 1-form in A~(R 2"1~1+~) such that ~(co)=0 for all o e R  2~1~1, and b, 
/~ER 2. 

D e f i n i t i o n  3.7. A supersymmetry t/ of s ~ , is a transformation of 
the type 5azn ~ �9 ff(qs), where [ffrb](x)= u(~b(x))Vxe I and u is a super- 
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symmetric transformation of 2',,iz I. The action of supersymmetries on 
superfunctions defined on Y~ will now be defined. If u is a usual rotation 
or a pure symplectic transformation, the action of ~ is obvious, If u is of 

p the type cg_e,b.e, the action of ff on a superfunction F is defined by 

(ffF)(q~) = F(dq~) 

g(~ol(x),..., q)p(x)+ 2br ..... ~0,(x)) 

= g((pl(X), . . . ,  (pn(x))  -+- 2V~p(x ) g(q)l(X), . . . ,  0n{X))  

�9 (b~p(x) + br (3.3) 

where g: R2"--+C is a function in C ' ( R  2'') and Vxel ,  V~,pCx)is the usual 
gradient with respect to ~Op(X)~ R 2 for all x ~ L 

1 I p If u is of the type <g~,b,~ and F e  C (Sfn), then, following the notation 
of Section 3.1 and using (3.3), it is easy to show that (~F)(qs) = F(~45) = 
F(~)  + F'(qs)r where F 'E  C(s and VaeS  7 

F' (cp)= ~ (-1)~(x)4~op(x).bFn,,(qo) 
xCap 

+ ~ ( - - l )  ap( ' )+ '  2b.V~,o(~/Fa~(q0 ) 
x~ tip 

+ ~ (--1)  ~ ~' 4q~p(x)./)Fn;,(q~) 

+ 2 ( - 1 )  "(*)+1 2D'V~(x)Fa;,(q ~) (3.4) 
x~c/p 

where ap(x)= # of 1-forms in front of ~0p(x) in Oa;~ and @ ( x ) =  # of 
1-forms in front of ~p(x) in q~,7;,. 

D e f i n i t i o n  3.8. Let n, I be as in Definition 3.2. A superfunction F 
in C(2'I~) is called supersymmetric if it is left invariant by all sypersym- 
metries of 5e~,. 

We will say that a superfunction F defined over 5~ is in SCk(Sa~,) 
k I [ S C c ( 2 ' , ) ]  if and only if F is supersymmetric and F is in Ck(S~,) 

k I [C c ( ~ ) ] .  We will also say that F e  $5~176 if and only if F is supersym- 
metric and F~ e g,q'(R 2ntll) Va~ S / ,  where O~ is the usual Schwartz 
space over R 2<~1. 

Proposition 3.9. Let k, n be a positive integers such that k~<n. 
Let ff be a supersymmetric of 5(',1, with the property (9qs)j = ~j,  Vj>  k and 
Vq5 e ~ , .  Then for any FeC'(~I~)c~L~(s 

f (gF)(4~I,..., q~, , )d~- . -dq~e = f F(q~I ..... q~,) dq~, .-. dq~ 
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Proof. The only non-obvious case is when u is of the type ~,b ,6 ,  in 
which case the proof follows as in ref. 27, Proposition 4.2. | 

Notations. Let Mz be the set of [I] x [I1 real, symmetric matrices and 
let M~ + be the set of all positive-semidefinite elements of Mz. Topologi- 
cally, we identify M z with R 1/21zl(Izl + ~). Let ~o be a function from I to Rzn; 
we associate to ~o an element A~o of Mz defined by the formula (A<o)~,), = 
~o(x). <p(y), x e / .  Let q5 = (~0, q?, ~) be an element of 2'z,; we shall make use 
of the supermatrix A~ defined by Ae = A~o + A~,o, where 

1 ~ ~p(X) Op(y) + tpp(y) tpp(X) (A~,~)~y =~  
p = l  

Trivially (A~)x,y = Cb(x) . cl)(y), x, T e L  
Let e be an element of Mz with its matrix elements being positive 

integers. We shall make use of the notations 
c 3 e ~ >  , 

~ =  ]1 e~,. 
x,y~l ~?Axy 
x<~ y 

x, y E l  
x<~ y 

We will say that e is/-admissible of order n if and only if lexy ] <~ n, for all 
x, TEL  

To every element (/5, D) of Sz with the property ]/51 = ID] = d  we 
associate a d x  d matrix (9(O,D) defined by the formula 

O(D,D ) = 

0 1 0 1 0 
63A oI, DI 2 OA &,D2 "'" 2 c3A &,Da 

1 c? c~ 1 

2 c3A&,D~ c~A~2,D 2 2 OA&,Da 

1 ~? 1 c~ 

_2 OA~e,D ~ 2 c~A~,D2 
. , ~  

OA De, Dd 

where c?/OA&Dj is the partial derivative with respect to A~,,Dj and 151 < 
/52 < "'" < / s a  eD,  D1 <D2 < .. .  < D d e D .  We will be making use of the 
operators c?(/5,D) which acts on functions defined on M [  and they are 
defined by the formula 

~ (D,D) : det[(9(lS, D)] 

if 1/51 = IDI and zero otherwise. 
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Let k e Z +. We will say that a complex-valued function f defined over 
M;- is in Ck(M;- ) if and only if it is of class C ~ in the interior of M [  
and O~fis continuous all the way up to the boundary for all a in S~, where 

k 
(~a = H ( - -1 ) la r ( lap l+  l)/2(~<ap, a,) 

p - I  

and a = ((61, al) ..... (ak, ak)) e S/k. 
To every element f of Ck(M [ ) we associate a supersymmetric function 

L~(f) which is defined by 

F(cI))= f(A@), q~e Sf~ (3.5) 

where f (A~) is defined as usual through a formal Taylor expansion, 

1 
f (Ae)  = ~, e~ " c?~f(A<o)A;,~, (3.6) 

el-adm 
of order k 

where 

Remark 3.10. 

.v, .v ~ l 
x ~ y  

Let f ~ C~(M ;- ). It is easy to see that 

L~(f)(cI))= f (A~)= ~, 3~f(A~o)~ 
a e skl 

and that L~ maps C k ( M [ )  into SC~ for all k e Z + \ { 0 } .  

D e f i n i t i o n  3.11. Let k e Z + \ { 0 } ;  we will say that a complex- 
valued function fdef ined  on M [  is in 5 ~ ( M [ ) i f  and only i f f e  Ck(M + ) 
and L~(f) E SS:(L~'I). 

Theorem 3.12. I f n ~ Z + \ { O }  withn~>111/2, then the function 

L1n: 

is one to one and onto. 

Proof. The proof follows easily from ref. 21, II.2.7-II.2.9. | 

Let Rp: S J ( L # : , ) - ~ S ~ ( ~ I  p), p c  {1,..., n} be a family of functions 
defined by 

( R p F ) ( ~ l  ,..., q~)n--p) ~- W ((~ l  ..... (~n p ,  0, . . . ,  0 )  
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where (q~,..., q~,)eS~ FeSS~(~I,) and we have used the convention 
S~(5~ C. It is easy to see t h a t  RpL~. =Ln_ p for all p e  {1,..., n} and 
n ~ Z + \ { 0 } a n d  ' i -~ Lp(L,) =R,  pforallpe{1,...,n} andnsZ+\{O} with 
n ~> [I[/2. 

3.3. Supersymmetric Hilbert Spaces 

Let q): I--* 11. 2" be as in Definition 3.2 and let K be a function from I 
to (Z + )2,. We shall make use of the following notations: 

~ [I 
x 6 1 

p~{1, . . . ,n}  

V~= IF] 
x ~ I  

p E  { 1,...,n } 

IKI= Z K (x)+XZ(x) 
x ~ I  

p ~ { 1,...,n} 

where ~Op(X)=(~O~p(X), ~o2(x)), xeI ,  pe{1,. . . ,n},  and K(x)=  
(K~(x) ..... K,(x)), with Kp(x) = (K~p(X), KZ(x)) ~ (Z + )2 Vp e { 1,..., n}. 

Definition 3.13. Let K~, K 2 ~ ( Z + )  2"1~1 and let F~S~(~1,).  Let 
n, I be as in Section 3.1, let a~S';, z ~ Z  +, and let 

IIFII = 112   /2q  Vx2F~ II 

(IIFH ]2  = V ([[FI] K l ' K 2 1 2  

[KI + K2[ ~< r 

(IIFII,~,,) 2= ~ ( I F I L , I )  2 
a~ S~ 

We define J t~(~l)  to be the completion of $5~(~ I )  under ][] ill,]j, where 

( ][ F[[[, 1).c ~ -  n p , l )  
p = 0  

and we have used the convention ]]R,F[r~,I = ]F(0)[ for all ~ e Z + 
Trivially Rp extends to a continuous linear function from ~ ( ~ , )  to 

~(s  p) for all z ~ Z  + and for a l l p e  {1,...,n}. 

Definition 3.14. Let z ~ Z  + and let S M [  =L~[SP(M/+)] ,  where 

5P(M [ ) = ~ 5~ ) 
/ 7 ~ N  
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We define .vf~ to be the completion of SM [  under the norm /11 'll/~ = 

Ill "INLs. 
It is clear that ._~{ is a subspace of Jt~(S~,) and it consists of vector- 

valued functions F =  {Fo},~sJ with F,  �9 L2(R 21li) for all a � 9  SJ. However, 
in view of the next proposition, we can assume that the components of F 
are in some sense weak derivatives of F,e.  

Proposition :3.15. L e t r � 9  + a n d l e t F ,  G � 9  
all a �9 $7 ~> F ~  = G ~ .  

Proof. Since Yt~ is a subspace of Ygs~ for r ~< r', it suffices to prove 
the result for Jg~. 

Let F be an element of J t~ with Fa~ = 0  and let {fk}k~N be a 
sequence in ~ ( M  + ) with L((f~)--+F in ~'f~s~ as k--+ +oo. It follows from 
the usual chain rule that for all x � 9  qo �9 R 2 I/l, and k �9 N 

Vx[L{(f)k](q~176 LaAxxA . . . . .  LoAxyA (A~) 

where Vx is the usual gradient with respect to the variable ~o(x)e 112. 
Trivially for every k �9 N we can solve the system of equations above 

and compute the partial derivatives 

Of k~ {?A xy, X <~ y 

in terms of Vx[L~(f~)] ,  x e L on all of R 2m except maybe a hypersurface 
which we will denote by H k. 

Let H =  Ue~NH k and l e t j  be a function from Y ( M  + ) whose support 
is a compact subset of the interior of M + \ { M e M  +" M=A~ for some 
40 e H} and let J be the complex-valued function o n  1121ik which is defined 
by 

J(qo)=j(A(o), qoeR 21'L 

Using successive integrations by parts, one can show that, Va e S}, 

L z k (Fo, J ) =  lim ([ i f  ] a , J )  
k ~ o o  

= k~oolim f~2,,, O,f(A~o) J(~o) d21SEqo 

= klim~ oo fu2,,, J'k(A ~) J'(cP) d2 IriS~ 
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where J '  is some other function in ~(R 21zl) whose support is a compact 
subset of the interior of Rzl/I\H. 

Since [L~fX],~ ---,0 in L2(R 2Ill) as k ~ oo and j was chosen arbitrarily, 
we conclude that F =  0 and the result follows. | 

4. T H E  S U P E R S Y M M E T R I C  T R A N S F E R  M A T R I X  

4 . 1 � 9  T h e  O p e r a t o r s  T,  B(z) 

Let m � 9  and let M + , Sin, L pm, SM + , and jC~;n denote the 
+ 1 ~ I 1 ...... }, SM ~l . . . . . .  } and ~ ~1 . . . . . .  } respectively�9 s e t s  M{1 . . . . . .  } ,  S { 1  . . . . . .  } ,  , ~ v , 

D e f i n i t i o n  4.1, We define the supersymmetric transfer matrix as 
an operator T from SM + to SSP(~ m) defined by (2~ 

[ ~_ qb(j).q~'(j)]F(qb)d45, ~ ' � 9  M (4.1) [T(F)](q~')=f exp ij l 

Note that in view of Definition 3.3 the integral in (4.1) is well defined, 
since exp[iZ~= 1 ~(j)-q~ ' ( j ) ]  is a kernel which is naturally defined in 
o ~ m x  ~ m. 

D e f i n i t i o n  4.2. Let ~ �9 Z + and let h be a complex-valued function 
defined on R; we will say that h �9 fr if and only if h is bounded, of class 
C" on (0, + oo) with bounded derivatives, and ]h(~'~(r)l ~ 0 as r---, oo for all 
~' with ~' ~< z. 

Let z � 9  + = {z �9  Imz~>0} and let 

i 0 - 1 / 2  

V z =  . .  + ".. ... 
0 v(t, m) - z 

0 
0 

- 1/2 

O) 
- 1/2 

0 

where ~m ~ (t, j) ~ V(t, j)  �9 R is the random potential defined in Section 2. 
Let b,(z): M + --, C be a complex-valued function defined by 

bz(z)(A)=exp[-itr(V~zA)], A � 9  +, t e Z  

Let b(z): M + ~ C be a complex-valued function defined by 

b(z)(A)= h(Akk) 1~ exp(iAk,~+l), A e M 2  
k = l  k = l  
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Let/~t(z): 5 a ' ~  A(R 2m) be a superfunction defined by 

[S,(z)(~)=b,(z)(A~,), q,~2P m, t ~ Z  

Let us assume that h is of class C m with bounded derivatives and let/~(z): 
~(,m __~ A(R2m) be the superfunction defined by 

/~(z)(cb) = b(z)(Ae),  q~ ~ •m (4.2) 

One can easily check that /~(z)�9 S C ( 2  'm) and that if S bvl" #(dr)< + 0% 
then 

E{/?,(z)} =/~(z), t e Z  (4.3) 

We will denote by B(z) and B,(z) the operators multiplication by/~(z) 
and/~,(z), respectively. 

P r o p o s i t i o n  4.3. L e t m ~ Z + \ { 0 }  and l e t h e f #  ~ f o r s o m e r e Z + ;  
then: 

(i) B(z) is a bounded operator on ~ m ,  for all z ~ H  +. 

(ii) T extends to a bounded operator on Jt ~m. In particular, T is an 
isometry in )r and T 2= L 

(iii) B(z) TB(z) is a bounded operator from ~ m  to ~ m + l  for all 
~ '<~  and z e l l  + = {zeC:  Im z>0} .  

Proof. In view of ref. 21, IV.1.4, it suffices to show that de~ ~, is left 
invariant by T and B(z), z~  H + for all r'~< T. Indeed, let n e Z + with 
n>~m/2, let L~ denote the map L~ ~ ...... }, and let Lr m denote the space 
~ { I .  ...... }. For a f i x e d f ~ S M  + we set 

where the integration above is over the superspace ~ .  
It is a direct consequence of ref. 21, II.2.10, that 

[-Rn_, F"](ti0) = T[LTf](eb) ,  ~ "  

Moreover, one can easily check that F " e  SSe(&a~) (see ref. 21, III.2.1) and 
that for all q~ E ~ m  

L~'[(L~') 1 (F~)](@)= T[LTf3(qs) 

n + Thus, T(L'~f)~ 5 e (M m ). Since n was chosen arbitrarily large, we con- 
clude that T(L'~f )~  5P(M + ) and the result for T follows. 

822/57/l-2 6 
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Finally, the fact that B(z), z ~/7 +, leaves ~f~ ,  ~' ~< ~, invariant follows 
through an easy approximation argument. 

Proposit ion 4.4. Let h e n  s for some z s Z + \ { 0 }  and let 
m e Z + \ { 0 } ;  then: 

(i) (B(z )T)  2 is compact on ~tg7 for all z ~ / 7  +. 

(ii) Let B(W~') be the Banach space of all bounded linear operator 
on ~ .  Then the operator-valued funct ion/7 +z ~ B(z) TB(z)e B(Jf~') is 
norm continuous. 

Proof. It follows directly from the previous proposition and ref. 21, 
IV.1.6. | 

4.2. The Spectrum of B(z) T 

We first state a theorem the proof of which follows directly from 
Propositions 4.3 and 4.4. 

Theorem 4.5. Let m ~ Z + \ { 0 }  and let h ~  ~ for some ~ Z + ;  
then: 

(i) B(z)T has discrete spectrum in ~ with zero being the only 
possible accumulation point for all z r  + and all v'~< ~. 

(ii) Let ze I1  + and let ~'~<~. A superfunction F i s  an eigenvector of 
B(z) T on ~ '  ~=. F is an eigenvector of B(z) T on ,ut~ ~m. 

We now proceed to study in more detail the point spectrum of B(z)T 
on the Hilbert space ~,~0~. In particular, if h s ~  ", we will study the 
existence and uniqueness of the eigenvalue 1 for the operators B(z)T, 
Z ~ / 7  + 

Theorem 4.6. Let m C Z + \ { 0 }  and let h r  ~ for some v e Z + ;  
then: 

(i) 1 is an eigenvalue of B(z) T on ~,uto~m for all z s / 7  + and all ~' ~< 3. 

(ii) I f z r  +, then 1 is algebraically simple and it is the only eigen- 
value of modulus 1. 

(iii) The spectral radius of B(z) T on gf~, is 1 for all z e /7  + and all 

Proof. Let z ~/7 + and let F~ SM + . As in ref. 21, Theorem IV.2.12, 
one can show that 

lim (B(z)T) k (F) 
k ~  



A n d e r s o n  M o d e l  on a S t r ip  81 

exists in Yt~  ' and it is equal  to F(O)E(z), where s  is a fixed vector  in 
Jut~;' which is independent  of F and has the p roper ty  [ 2 ( z ) ] ( 0 )  = 1. 

Thus,  (i)-(iii) in the case z EH + follow from Theo rem 4.5. The  rest 
of the theorem now follows easily f rom Propos i t ion4 .4( i i )  and 
T heo rem 4.5(i). I 

Let H be the Hami l ton i an  defined in Section 2 and let E ~  R. To  the 
s ta t ionary  SchrSdinger equat ion  

( H - E ) ~  = 0  

we associate the matr ix  equa t ion  (23'24) 

- � 8 9  2 n + l  + VEM, = 0  (4.4) 

where M , ,  n ~ N, are m x m square matrices. 
Let H~,+~) be the Hami l t on i an  H with bounda ry  condit ions 

u(x,y)=O if ( x , y ) e ~  with xr  If ~ is a solut ion of the 
equat ion  

(H[I ,  + oo ) - E)kk = 0  

then it can be writ ten as 

#/,, = P h i l ,  n = 1, 2,... (4.5) 

where P , ,  n = 1, 2,..., is the solut ion of the associated mat r ix  equat ions 
(4.4) which is given by 

0%) or)  .- ' 

where I is the m x m identity matr ix,  0 the m x m zero matr ix,  and 

#/, = �9 , n e N  

\o(;,.)/ 
Let n ~ Z + \{0 ,  1 }. We will denote  by F ,  the opera to r  on 12(~m) which 

is defined by 

(r..)(x)= Z r.(x, y)uiy), u~12i~m) 
y ~ C'~ m 

where 

F , (x ,  y)  = J ' l  if x = y = ( i , n ) f o r s o m e i = l ,  2,3 .... 
otherwise 
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Let e > 0. We shall make use of the operator H~I,, ~, which is defined by 

H~l,n ] = HE1,, q - ieFn 

k e m m a  4.7. The resolvent of H~l,n I contains the set of real 
numbers for all configurations of the potential, all n ~ Z +\{0, 1 }, and e > 0. 

Proof. Let E ~ R ,  e>0 ,  n ~ Z + \ { 0 ,  1}, and let tp be a solution of 
(H~l,n I - E ) ~  = 0  with ~p(k, 1 )~R for all k =  1, 2,..., m. It is an immediate 
consequence of (4.5) that ~ is real-valued, However, since 

n - -  2 ~ / n  - -  1 VEOn 1 - iSOn = 0 
with 

/r  

we conclude that 0n = 0n i = 0. Thus, ~ -  0 and the result follows. | 

Let E ~ R ,  we will denote by G}l,nl(E) the operator (H}~,n I - E ) - k  
We will also denote by G}~,~(E, k, k') the matrix 

G}x,~j(E, k, k ' ) =  (<(k, i)IG)I,~(E)I (k',j)>)e,j-l,2 ...... 

where k, k' e { 1, 2 ..... n }. 

L e m m a  4.8. Let E e R .  For all configurations of the potential the 
following are true: 

(i) Im G~i,,1(E ) is positive definite for all e > 0. 

(ii) Pn+l - i ePn  is an invertible m x m  matrix for all n e Z + \ { 0 ,  1} 
and 0 < e, and 

G~,,,I(E, k, n) = 2Pk(P, +1 - i2eP,) - - 1  (4.6) 

for all n, k e Z + \ { 1 ,  0} with k<~n and e>0 .  

Proof�9 (i) This follows easily from the resolvent identity. 

(ii) Since 

are symplectic matrices, we conclude that Pj+ ~P) =PjP}+ ~ for all j =  1, 
2 ..... where Pj denotes the transpose of Pj. Hence 

�9 t t 2 t (Pj+I- lePj ) (P)+l  +iePj)=P~+,P'j+I +e Pjpj,  j =  1, 2 .... 
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One can easily check that  since 

det( ? 
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for all j =  1, 2 ..... the determinant  of Pj+lPj+l--~Pjp~ is also nonzero for 
all j = 1, 2,.... Furthermore,  

[det(P;+ 1 - iePi)[ 2 >1 rain( 1, e 2) de t [P j+  ~ P'j+~ + PjPj ] 

for all j =  1, 2 .... and all ~ > 0. Thus, the invertibility of Pj+~ -ieP; follows. 
Finally, let ~, be a solution of ( H ~ , + o o ) - E ) O  = 0  and let 

One can easily check that  (also see ref. 28) 

Ok = [a~c,,,~(E, k, n)](�89 ~ - leap,), k - -  1, 2,... 

Thus, 

P k  = G ~ I , , q ( E ,  k,  n ) ( � 8 9  n +1 - i a P . )  

and the result follows. | 

P r o p o s i t i o n  4.9.  Let E e R  and let e > 0 .  

(i) Let h(r) --* 0 as r --* oo; then ]]G~I,,3(E, 1, n)]j ~ 0 almost surely as 
n ---* o0. 

(ii) ][G~1,,3(E,n,n)H<<,M for all n 6 Z + \ { 1 , 0 }  and for some 
M < + oo independent of n. 

Proof. (i) Under the assumption that h decays at infinity, it follows 
from ref. 23, 1.3 and 1.2, that  t r l - (P ,+lP 'n+l  +PnP'n) 1] ~ 0  almost surely 
a s  iv/---). 00. (20,23) 

One can easily show, however, that  for all 0 < e < l, 

t r [ (Pn+lP 'n+~+e2PnP 'n)  l ] ~ < ~ t r [ ( p ~ + l p , + l + p ~ p , n )  1] 

and (i) follows from (4.6). 

(ii) This follows from (4.6) and the inequality 

1 m tr[P~P'~(P,+~P'+I + e 2 P ~ P ' ) - I ] < ~  | 
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Let A be an m x m matrix and let (b, ~ ' e  ~ .  We will be using the 
notations 

(Aq~)(x) = ~ A~yqS(y), x e  {1 ..... m} 
v e  { l . . . m }  

and- 

x e  { 1,...,m} 

We will also be using the notations 

r e,'(x) 

(A~o)(x) = ~ A~yqo(y), x 6  { 1,..., m} 
y ~ { l  . . . . . .  } 

and 

(q', q") = E  otx). 
xe{1,...,m} 

where qS(x)= (q)(x), ~(x), 0(x)), cb'(x)= (~o'(x), t~'(x), tk'(x)). 

I_emma 4.10. Let rnaZ+\{0} ,  let E~R,  t / eR+\{0} ,  let 
f e  5e(Mm + ) with f(0)  = 0, and let F =  Llmf; then 

( [ B(E + iq) T(B(E) T) k B(E + it~) T] (F))a~ ~ 0 

in L2(R 2m) as k ~ oe. 

Proof. Through an easy approximation argument and III.2.3 of 
ref. 21, we conclude that for all ~ e ~m and almost all configurations of the 
potential 

[Bo(E + i~l) TB~(E) T. . .  Bk(E) TBk + I(E + itl) T](F)(~)  

=exp -i(q~, VE+/,qs) +~  (~b, GEI,k +~1(E; 1, 1)qs) 

• ~ exp [ j  (OS, G~cl,k+l](E;1, k + l )~ ' )  

i 
+-~ (~' ,  G~,k+~](E; k+ 1, 1 ) ~ )  

+~(qY,  G~l ,k+~l(E;k+l ,k+l)qY ) F(qS')dq~' (4.7) 
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Using ref. 21, II.2.10, one can rewrite (4.7) as 

( [Bo(E+  iq) T B I ( E ) T . . .  Bk(E ) TBk +,(E + itl)T](F)).~(q~) 

[ ' 1 =exp  - i <  ~o. V~ +~.~o ) + ~ i(  q~, G"[1.k + ,](E, 1, 1)q~) 

IR [ / 6. x ~ exp~ {(~o, [1,k+l](E, 1, k +  1)q~') 

<9', G~,,k+1](E;k+ 1, I)~o)}- 11 + 
J 

x O~(J~)(A~o,) d2mq/ (4.8) 

where am = a{~ ..... } ~ S"  and JT, an element of C ~ ( M m  + ) which is defined 
by 

" I i t r [DG~1k+l l (E 'k+ 1, k + l ) ] l ,  Jk (D)=exp  --~ DeM+m 

It now follows from (4.8) and ref. 21, III.2.5, that for almost all con- 
figurations of the potential 

II([Bo(E+ it/) TBI(E) T 

�9 .. Bk(E) TBk+ I(E+ it/) T](F))~]I  L2(R2m) --+ 0 

as k ~ ~ .  On the other hand, from (4.8) and Proposition 4.9 one can easily 
conclude that 

II(EBo(E-4- i~) TB,(E) T 

�9 .. Bk(E) TBk + I(E + i~l) T](F))a~II L2(R~,) ~< M 

for some M < + o0 which is independent of k and of the configuration of 
the potential. Thus, the result follows from the bounded convergence 
theorem and the independence of Vez, i t  Z, z ~ H +. 

T h e o r e m  4.11. Let E e R ,  m ~ Z + \ { O } ,  z ~ Z  +, and let he.ff~; 
then 1 is an algebraically simple eigenvalue of B ( E ) T  on ~ ,  for all 
O~<z'~<z. 

ProoL In view of the fact that 3r176 m is a subspace of a~f m whenever 
~'~< 3, we have only to show that 1 is algebraically simple on o~f~. 

Indeed, let 21 ..... )., be the eigenvalues of (B(E)T)  2 o n  ~r n which lie 
on the unit circle. Let P1 ..... Pn be the corresponding spectral projections 
and let D, ..... Dn be the corresponding nilpotents that appear in the Jordan 
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decomposition of (B(E) T)2. (3~ Since (B(E) T) 2 P, = 2iP~ + Di, one can 
easily see that for all k e Z +, 

(B(E)T)2~=Qk+ 2 fe j+ Z 2~ "D 7 
. i =  1 m =  1 

where Q is an operator on ~ whose spectral radius is strictly less than 
one and mj is the algebraic multiplicity of 2j. 

Let Fc SM + with F(0) = 0. If u > 0, then Lemma 4.10 implies that 

rI([B(E + iq) T(B(E)T) 2k+2 B(E+ i~l) T](V)az II L2(a2m) ~ 0 

as k ~ oo and since 
lim k 0 [IQ (f)ll ~1 ...... } = 0  

k~oo 

we conclude that 

[B(E+#I) TB(E) TPj(E)B(E) TB(E+irl)T](F)=O (4.9) 

for all r/> 0 and all j = 1, 2,..., n. 
Let A~ be the closure of {FeSM + " F(0) = 0 }  in ~ ' .  It is easy to see 

that A~ is invariant under the action of B(E) T and has codimension one. 
Letting t7 ~ 0, it follows from (4,9) that Pj(F)= 0 for all F e  A~' and all j =  
1, 2 ..... n. Thus, 1 has geometric multiplicity one. 

The rest of the proof now follows as in ref. 21, IV.2.12(iii). | 

5. C O N C L U S I O N  

In this section we give a brief outline of the rest of the proof of 
Theorems 2.1 and 2.2. As we have already pointed  out, we use the same 
techniques as in ref. 21 and we refer the reader to the last sections of that 
article for more details. 

Let E o e R ,  z ~ Z + \ { 0 } ,  and he r#  ~. Let z~C,  let m be the width of the 
strip @m, and let •(z) be the eigenvector of B(z)T on J t ~  which 
corresponds to 1 and has the property S (z ) (0 )=  1. From Theorems 4.5, 
4.6, and 4.11 and a routine perturbation argument, (12 14,21) we conclude 
that there exists a closed contour 7 around 1 and a complex neighborhood 
UE0 of Eo such that 7 is in the resolvent of B(z) T for all z e U~0 c~/7 + and 

l f [  ~ dz'](~(Eo)) ) S(z)=~iL ( ~ ( z ) T - z ' )  1 (5.1 

One can easily show now (see ref. 21, V.1.2) that the complex-valued 
function 

H + ~z-.-,_=(z)E~'g 
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is continuous on /7  + and that its restriction to the real axis is E,/2]-times 
norm continuously differentiable. Thus, Theorem 2.1 follows directly from 
the relations/=1~ 

dNac 1 
dE 

1 

TC 

E{((0, j) I ( H - E + i )  11 (0, j ) )}  

f ~(0, j) ~(0, j) i 

lim Im 
n~,0 j - - 1  

lira Im ~ 
j 1 

x [ ~ ( E +  iq)](~)ET(Z(E+ iq))](#) d~ (5.2) 

where Nac is the absolutely continuous part of N and the integration is over 
the superspace ~m. 

Finally, under the assumptions of Theorem 2.2 one can easily show 
that the complex-valued function 

has an analytic extension to {z E C: Im z > - b }  for some b > 0 (see ref. 21, 
V.1.4). Thus, Theorem 2.2 follows again from relations (5.2). 
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