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Canonical Commutator and Mass Renormalization 
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The question considered is the effect on the canonical commutation rules of 
mass renormalization in quantum etectrodynamics. This is investigated by con- 
sidering the quantum Langevin equation for a charged quantum oscillator inter- 
acting with the radiation field via dipole interaction. Explicit expressions for the 
commutator are obtained for finite cutoff frequency as well as the large-cutoff 
limit. The surprising result obtained is that the exactly equal-time (canonical) 
commutator involves the bare mass, while the corresponding commutator for 
infinitesimally displaced times involves the renormalized mass. 
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An integral feature of e lementary q u a n t u m  mechanics is the canonical  

c o o r d i n a t e - m o m e n t u m  commuta t i on  relation: 

Ix(t), p( t ) ]  = ih (1) 

For  our  purposes we use the fact that for a nonrelat ivist ic  particle p = m2, 
where m is the particle mass and  a dot denotes the time derivative, to write 
this in the form 

Ix(t) ,  2 ( t ) ]  = ih/m (2) 

Here, lest we confuse the reader, we remark that for a particle interact ing 
with the electromagnetic field in the often-used C ou l omb  gauge the canoni-  

cal m o m e n t u m  is p = m2 + (e/c) Ax(x ,  t), where Ax is the x componen t  of 
the vector potent ia l  operator.  Since x commutes  with A x, we get the same 
result (2). 
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The purpose of this paper is to address the question of the effect of 
mass renormalization on this relation. In particular, we ask: Is the mass in 
(2) the renormalized mass? Surprisingly, to our knowledge this particular 
question has not been addressed in the literature. Our approach to this 
question is to analyze the exactly solvable system of a charged quantum 
oscillator interacting with the radiation field via dipole interaction. The 
result we find is that the mass in (2) is the bare mass, but that the renor- 
realized mass occurs in the corresponding commutator in which the two 
times are not exactly equal, but infinitesimally separated. 

The framework within which we analyze this system is the quantum 
Langevin equation 

fl mS~ + dt'#(t - t') Yc(t') + Kx = F(t) (3) 

where K is the oscillator force constant and m is the bare mass. This is a 
Heisenberg equation of motion for the coordinate operator x. The coupling 
with the heat bath is described by two terms: an operator-valued random 
force F(t) with mean zero, and a mean force characterized by the memory 
function #(t). The (symmetric) autocorrelation of F(t) is 

�89 (F( t )  F(t') + F(t') F ( t ) )  

1 de) Re{/~(co + i0 § )} he) coth 2 ~  cos e ) ( t -  t') (4) 
rc 

and the nonequal-time commutator of F(t) is 

[F(t) ,F(t ' )]=--2 i ~ d c o R e { ~ ( c o + i O + ) } h c o s i n e ) ( t _ t , )  (5) 
oo 

In these expressions 

;/ fi(e)) -- dt #(t)e i~ Im c~ >~ 0 (6) 

is the Fourier transform of the memory function. This description in terms 
of the quantum Langevin equation and the accompanying properties of the 
operator random force are discussed in some detail in a recent 
publication. (1~ In particular, the description is uniquely determined by such 
general principles as the existence of a ground (equilibrium) state of the 
system and causality. More particularly, fi(m) must be a positive real 
function, analytic in the upper half-plane, with real part positive, and 
satisfying the reality condition/~(~o)* = f i ( -  ~o). Positive real functions have 
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many remarkable properties, but for our purposes we note only that, for 
Iogl ~ ~ in the upper half-plane,/~(co) must have the asymptotic form 

~t(09) ~ - -  i c  1 CO + C 2 + iC3/o9 (7) 

where cl, c2, and c3 are positive constants at least one of which must be 
nonzero. 

We first obtain a general expression for the nonequal-time com- 
mutator of x(t) based on this description. The solution of the quantum 
Langevin equation can be written as 

x(t) = dt' G( t -  t') F(t') (8) 

where G(t) is the (retarded) Green function. The Fourier transform of G(t) 
is the polarizability 

f? c~(og) = dt G(t)e TM, Im co ~> 0 (9) 

where we have used the fact that the retarded Green function vanishes for 
negative times. From (3) we find 

~(co) = [--mco 2 + K-/coil(co)]  1 (10) 

Forming the nonequal-time commutator of x(t) with this solution, we get 

S S Ix(t), x( t ' ) ]  = dtl dt' 1 G( t -  tl) 

x G( t ' -  t])EF(tl), F(t'~)] (11) 

Inserting the expression (5) for the commutator F(t), we find 

Ix(l), x( t ' ) ]  =--2h f ~ do9 o9 I,(o9)12 
17"C J 0  

x Re{/~(og) } sin co ( t -  t') (12) 

where we have used (9) and the reality condition ~(-o9)  = ~(o9)*. But from 
(10) it is clear that 

co fc~(co)[ 2 Re{/2(co)} = Im{c~(co)} (13) 

so that (12) may be written in the form 

Ex( t ) , x ( t ' ) ]=~ f o  dcolm{~(og)}sinco(t-t') (14) 
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This is the general expression for the commutator we seek. An equivalent 
result was obtained by Lewis and Thomas3 2) Note that the commutator is 
a c-number. [We remark that if we were to form the expectation of this 
expression, we would obtain a result familiar in discussions of the fluctua- 
tion-dissipation, theorem see ref. 3, Eq. (2.15).] If now we form the 
derivative of both sides of (14) with respect to t', we get the equivalent 
result 

[x(t),Yc(t')] =--2ih &oooIm{~(og)}cosm(t-t') (15) 
7Z 

This formula will be the basis for our further discussion. 
Before proceeding to the electrodynamic case, it will be instructive to 

consider the case of constant friction, for which /~(c0)=(, the friction 
constant, and (10) takes the form 

e (o)  = ( -moo  2 + K -  i~() -1 

= m  1 ( - (,02 -[-- 0 ) 2  - -  i0) '~)  1 (16) 

Putting this in (15), one can perform the integral by contour methods to 
give 

Ix(t), ~(c)] = i h [ -- cos 091(t- t') 
m 

7 
sin e) l I t - t '  I exp -71t-t 'L (17) 

2c% 

where 

col = (too 2 - 72/4) 1/2 (18) 

For t ' - - t ,  we get the canonical commutator (2) with m the particle mass. 
This result for the equal-time commutator in the constant friction case was 
recently obtained by Dekker (4~ and still earlier by Milonni. (5) We 
emphasize that for this constant-friction case the bare mass m is also in fact 
the observed (physical) mass, so that no question of mass renormalization 
arises. 

This result for the canonical equal-time commutator is general, requiring 
only that for ~o large the mass term dominates the asymptotic form of the 
polarizability. Stated more precisely, the requirement is that the constant cl 
in the general asymptotic form (7) of fi(co) must be zero. (An example 
of an exception is a Stokes sphere moving in a viscous fluid. (6)) To 
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demonstrate this general result, we first put t' = t in (15) and then use the 
reality condition, which requires that the real and imaginary parts of c~(co) 
be, respectively, even and odd functions of ~o, to write 

[x(t), 2(t)] =h_ foo dcoco~(co) (19) 

We now use the fact that -icon(co) is a positive real function with no 
singularities in the upper half-plane. (1~ The path of integration can there- 
fore be deformed upward into a large semicircle, co = R e  i~. On this semi- 
circle, assuming only that the constant ci in the asymptotic form (7) of 
#(co) vanishes, we see from (10) that in general c~(co)~-l/mco 2= 
- ( 1 / m R 2 ) e  -2i~, and (19)becomes 

Ix(t), 2(0  ] = - i  --h I"  d~b = _ih (20) 
m~z J~ m 

Thus we see that for any "normal" case, for which the constant c 1 in (7) 
is zero and/3(co) remains bounded as co --* o% the canonical commutation 
relation (2) holds with m the particle mass. 

We now consider the electrodynamic case. Here, the function fi(co) can 
be expressed in the form (a'7) 

/3(o9) = 2eZf22co/3c3( co + is (21) 

where s is a larger cutoff frequency that characterizes the electron form 
factor. The corresponding expression for the polarizability is 

co + it'2 
c~( co ) = --  mco 3 _ i f 2 (m  + 2e2(2/3c3)co 2 + Kco + i f 2 K  (22) 

The first thing we note here is that, for any fixed value of the cutoff 
frequency s this electrodynamic case is a "normal" case; the function fi(co) 
given by (21) has the asymptotic form (7) with ca =0.  As we have just 
shown, this means that the canonical equal-time commutation relation (2) 
holds. But now m is the bare  mass. 

The renormalized mass appears when we consider the nonequal-time 
commutator for time differences which are not unphysically short. In the 
expression (15) for the commutator this means that we look at a scale of 
frequencies that are p h y s i c a l l y  h igh,  i.e., high compared with the natural 
frequency of the oscillator, yet small compared with the cutoff frequency s 
On this scale /3(~o)~-i2e2~o(2/3c 3, and the polarizability (22) takes the 
form 

o~(co) ~ - i / M c o  2 (23) 

822/57/3-4-25 
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where M is the renormalized mass: 

M = m + 2 e 2 0 / 3 c  3 (24) 

The renormalized mass is identified as the observed mass; the bare mass 
appears only when the system is probed with frequencies of the order of 1"2. 
We can take this into account if we factor the denominator in (22) to write 

1 o)+/s 
e(0)) = -- (25) 

m (0) + iO')( _0)2 + 0)2 _ i0)7) 

where we have expressed the parameters K, M, and /2 in terms of 
parameters COo, 7, and 0 '  through the relations 

1 1 7 K 2 , cooO M (0)o 2 + 70 ' ) (O'  + 7) (26) 
- ~ 7 +  2, - - = 0 '  ' - - =  2 , 0 0)0 M +7 m 0)0 ~ 

Putting the form (25) in the general expression (15), we can perform the 
integral by contour methods to get 

ihO'(O'+y) {[0'2(0)02--}'2)+6.0 4 
[x(t), 2( t ' ) ]  - M0)02(O, 2 + 0)2 _ 70 ' )  0 ,2 

+ 
x cos 0)~(t - t') 

20) 10  t2 

,sin~ ,,-,, ] exp (-2 " -  

+~O'  e x p ( - O '  I t -  t'l) t (27) 

If we set t ' =  t and use the expression (26) for the renormalized mass, we 
obtain exactly the canonical commutator (2) with m the bare mass, as we 
now know on general grounds we must. 

We now consider the large-cutoff limit. In doing this we must 
recognize that the relation (24) between the bare and renormalized masses 
is in fact a constraint on 0.  The point is that M must be fixed at the physi- 
cally observed mass and, therefore, if the cutoff frequency is taken to be too 
large, the bare mass will become negative, which is unacceptable on general 
physical grounds. The largest possible cutoff corresponds therefore to the 
bare mass equal to zero, which from (24) we see corresponds to 

0 =  1 /%,  z e = 2 e 2 / 3 M c 3 - ~ 6 . 2 4 •  l0 24sec (28) 

The time ze, which is 2/3 the time required for a photon to traverse the 
classical electron radius, is very short, far shorter than any of the natural 



Canonical Commutator  and Mass Renormalization 809 

times of a nonrelativistic system. The frequency f2 is correspondingly large. 
For example, the cutoff frequency occurring in the nonrelativistic calcula- 
tion of the Lamb shift is of the order of Mc2/h, (8~ while that given in (28) 
is hc/e 2 = 137 times larger. Thus, although f2 is in fact finite, it is sufficiently 
large that it is effectively infinite. 

The cutoff (28) corresponds to the parameter D' in (26), what we 
might call the renormalized cutoff, going to infinity. In this limit it is a 
simple matter to show 

K= MCO2, 7 = c~ 12' --* oo (29) 

and in this same limit the polarizability (25) becomes 

(--MCO 2 K) -1 1 1 - ico% (30) 
~ = \1 _ ir + = ~  _coT~_cO-~o--ico? 

This is not a "normal" polarizabilityt The asymptotic form for large co is 
c~(co) .~ i%/Mco, not the form (23) of the "normal" case. On the other hand, 
this is a simple form for which the expression (15) for the commutator can 
be easily evaluated. We find 

ih [x(t), 2(t') ] = ~  { ~  3(t-- t') + [ (1-- 7~-~o) cos col(t-- t') 

_ 7(3 --2co172/~ sin co I It -- t ' l ]  

( ? , t - t ' , ) }  (31) x exp - 

where col is again given by (18). The limit f2' --. oo of the expression (27) 
gives exactly this same result, so the large-cutoff limit commutes with the 
evaluation of the integral in the expression (15) for the commutator. If we 
set t '=t in (31), we get 

[x(t), 2(03 = ~ 6(0) + 1 - ~o 2 (32) 

This divergent expression in fact makes physical sense, since, as we have 
seen, the canonical equal-time commutator has the form (2) with m the 
bare mass and in the large-cutoff limit the bare mass is zero. If, on the 
other hand, we take t ' #  t and then form the limit as t ' ~  t either from 
above or below, we find 

[x(t), 2(t + 0 + )3 = (ih/M)(1 - y2/co2) (33) 
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This is a finite result and corresponds to the canonical commutator (2) 
with the renormalized mass and a very small correction. 

The quantity 72/c02 = (CO0Ze) 2 is indeed very small. For  example, if we 
were to choose COo to be the Rydberg frequency, then 72/~o 2 -- (e2/fic)6/9 ~- 
2 x 10 -14. This is surely negligibly small. What is more, this correction 
reflects the particular form we have chosen for the electron form factor, (1'7/ 
and has no physical significance within the nonrelativistic approximation 
that is the basis of our disdussion. We therefore drop such corrections. 

In conclusion, therefore, we see that in the nonrelativistic case the 
canonical commutation rule (2) strictly holds true with m the bare mass. 
On the other hand, the renormalized mass M appears in the nonequal-time 
commutation rule, which takes the form 

[x(t), Jc(t') ] = ~ { ~  ~(t- t') + [cos ~l( t -  t') 

- 2~---~ sin o l  I t -  t'l exp - 

The (unphysical) bare mass has disappeared from this expression. 
However, the canonical commutation rule has disappeared as well and 
cannot be recovered except in the singular form (32). This surprising result 
does not seem to have been noted before. 
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