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A Brownian Motion Version of the Directed
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Consider a Brownian particle in three dimensions in a random environment.
The environment is determined by a potential random in space and time. It is
shown that at small noise the large-time behavior of the particle is diffusive. The
diffusion constant depends on the environment. This work generalizes previous
results for random walk in a random environment. In these results the diffusion
constant does not depend on the environment.
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1. INTRODUCTION

In this paper we consider a Brownian motion version of the directed
polymer problem in a random environment which was considered by
Imbrie and Spencer® and Bolthausen.!"” The main result of the Imbrie-
Spencer work is that for a weak random environment in dimension 4> 3
the large-time behavior of the polymer problem is given by Brownian
motion. Our goal in this paper is to set up a general strategy for proving
results of the Imbrie—Spencer type. It will be clear from this that in general
one should expect the diffusion constant of the Brownian motion to be
renormalized by the average effect of the environment. This should be
contrasted with .the situation studied in refs. 1 and 3, where there is no
renormalization of the diffusion constant. We shall see how a special choice
of environment as in refs. 1 and 3 gives rise to no renormalization of the
diffusion constant.
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416 Conlon and Olsen

We shall first describe our strategy for the situation when the environ-
ment is a Gaussian random field. The remainder of the paper will then be
devoted to rigorously implementing this strategy in the simpler situation
when the environment consists of variables independent in space and time.

Consider a Gaussian random field V: R* x R?—» R with covariance
given by

VL, xY VI, X)) =p(x—=x")Y(t—1), x,xeR reR* (1.1)

Here the positive-definite functions ¢: RY— R, i: R — R are assumed to be
shortrange. Hence the varibles V(¢, x), WV(¢', x") are approximately inde-
pendent if |t —¢'| or |x —x'| is larger than some fixed length scale.

Next let W, , be Wiener measure on Brownian paths X(s), 0<s<t,
in R with X(0)=x. We define a new probability measure on the paths
X(s), 0<s<t, by

dW, , ,=exp “’ eVis, X(s)) ds} dW . ,/normalization (1.2)
0

where ¢ is a parameter which we will choose to be small. We wish to
compare the random measure dW, , to the Wiener measure dW . To do
this recall that for any continuous function f: RY — R which grows at most
exponentially at infinity one has

X(1) - X(0)
E, [f<T(>] =E[f(Y))], >0
where E,. denotes expectation with respect to the Wiener measure dW .,

and Y, is the standard normal random variable. The basic question
addressed in this paper is to find criteria on ¥ such that

. X(t)y— X(0)
lim EY [f(——)] —E[f(Y,)] (1.3)
Jm Ji

with probability 1 in V. Here E” denotes expectation with respect to the
random measure dW ., , and Y, is a normal random variable with mean
zero and variance o2

The statement (1.3) is reminiscent of the strong law of large numbers.
To motivate our strategy for proving (1.3) we recall the proof of the strong
law. Suppose that S, is the number of heads in » tosses of a fair coin. The
strong law says that

. 1 . -
lim —== 3 with probability 1

n—-wo N
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The number 1/2 is obtained by
{= lhm E[S,/n]

"= o

The probability-1 convergence is obtained by estimating fluctuation as in
4
c
E [ ] <= (14)

n-
where C 1s a universal constant.

If we were to follow the proof of the strong law of large numbers
exactly, then our first goal would be to identify the RHS of (1.3) as the
limiting expectation of f((X(t)—X(O))/\/? ) with respect to the measure
E.[dW,, ] as t- . Here E, denotes expectation with respect to V. The
problem with this is that £,.[dW,, ] is a complicated measure since the
normalization factor in (1.2) depends on V. We try to circumvent this
difficulty by replacing E, [dW,, ] by a simpler measure which we denote
by dW,, ,. To define dW, , we first define the partition function Z . (1)

by

S, 1

n 2

E {exp[{§eVs, X(s)) ds])}
Z At)y= .
) E,E {exp[|yeVis, X(s)) ds]) (1:5)
Observe that E,.[Z, ,(#)]=1. The measure dW., , is then defined by
AW, a=E[Z, ()dW, ] (1.6)

{t is clear that dW, , is a probability measure explicitly given by
aw.,.,=E, {exp {f eVs, X(s)) ds} } dW . /normalization (1.7)
0

In the case where V is a Gaussian random field with convariance given by
(1.1) one can evaluate the expectation with respect to ¥ in (1.7) to obtain

Weri=own| 5[ [ ot - X wis—s) s ds'] aw,,
< Y070
x (normalization) ! (1.8)

The measure dW ., , is the measure for a self-attracting Brownian motion
with short-range interaction. We shall call it the averaged process. The
measure dW,, , can be analyzed by the methods of classical statistical
mechanics. In fact dW_, , is rather like the measure for a one-dimensional

§22/84,3-4-7
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statistical mechanics system with short-range interaction. It can therefore
be controlled by perturbation theory for small ¢ or by the transfer matrix
method for any value of &° In particular one should expect that, if E{
denotes expectation with respect to dW_, ,. then

im 2| 7(F) | =B (19)

o J1

for some normal variable Y, with mean zero and variance ¢’. Equa-
tion (1.9) identifies what the RHS of (1.3) should be. Observe that we
should in general expect o # 1 except in the special case when the covariance
function ¢ in (1.1) is the Dirac ¢ function. In that case it is easy to see that
dW ., , is just the Wiener measure dW ., again. The situation discussed in
refs. 1 and 3 is a discrete version of this.

So far in our discussion we have not required the dimension d to be
at least 3 or the parameter ¢ in the definition (1.2) of dW_, ,, to be small.
These enter because we require fluctuations to be small in analogy to the
inequality (1.4) in the proof of the strong law. In view of the definition (1.6)
it is clear that the fluctuation of Z, (¢) should be small. Using the fact that
V is a Gaussian random field, we can compute

ENZ. (0P]=EZ, [exp [82 [ J] otxts = vis )y wis =) ds ds'H
(1.10)

where the X(s), Y(s), 0<s<t, are independent self-attracting Brownian
motions with measure (1.8). In the case when  is a Dirac J function the
RHS of (1.10) is just an expectation value for the quantum two-body
problem with interaction potential given by ¢. We can also think of
it as a Feynman-Kac integral in 2d-dimensional space {(x, y): x, y e R}
with potential ¢(x —y). Since ¢ is short range, the potential ¢(x—y) is
effectively supported on the diagonal set x —y ~0, that is, on a set of
dimension 4. Observe that the codimension of this set is also 4 and that
Brownian motion is nonrecurrent to a set if and only if the codimension is
larger than 2. It follows that for 4 <2 Brownian motion is recurrent to the
support of the potential function @(x—y). Hence we should expect the
RHS of (1.10) to be large when d <2, but we can expect it to be O(1) if
d=3. Now even if d>3 the RHS of (1.10) can still be large, simply by
choosing ¢ large enough. The reason is that the cost in probability of
confining Brownian motion (X{(s), ¥(s)) to a region |x— X(s)| <4,
|x — Y(s)] <9, 0<s<t, looks like exp[ —yt] for some y>0. This small
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probability can be more than offset by the growth in the exponential in the
expectation value, which is bounded below by

exple’t inf{p(x' —y'): |[x —x'| <4, |[x—y'| <6} ]

On the other hand, if ¢ is small, this will not be the case and so we can
reasonably expect the RHS of (1.10) to be O(1).

Now if the RHS of (1.10) is O(1), then Z_ (t) cannot become too
large, but it does not rule out the possibility of Z ,(¢) coming arbitrarily
close to zero as t — oo. From the definition (1.6) it is clear that the situa-
tion where Z () can come close to zero is also dangerous. The problem
then of proving that inf,_ , Z. ,(¢) is bounded away from zero with prob-
ability 1 in V is a central issue. Once this issue has been resolved the proof
of (1.3) follows from (1.9) by estimating mean square fluctuations or higher
moments as in the proof of the strong law. We consider the process X{(r)
with measure dW, , , at some large time, say ¢' Since inf,. 4 Z, ,(s) is
bounded away from zero, the density for X(z'/*) is spread out on a length
scale 1'%, Now we think of X{(¢) as starting at time ¢'* from a density
spread out on a length scale ¢'/°. The fluctuation will then be proportional
to some power of 7'/ and hence goes to zero as ¢t — c0.

We shall implement now the strategy described above for field
variables ¥(¢, x} which are independent on length scales larger than 1.

We consider independent Bernoulli random variables V,,,, i=1, 2,..,,
neZ’ For neZ’ let Q, be the unit cube centered at n. Our random

environment is then a function V: R* x RY - {—1, 1} defined by
Vi, xy=V,,, i—l<t<gi, xeQ, (L.11)

The main theorem we shall prove here is the following:

Theorem 1.1. Let V be given by (1.11) and f:R“->R be a
measurable function satisfying the condition

J e M f()IFdy < oo
R‘I
Then if ¢ >0 is sufficiently small and 4> 3, one has that

i ExlexplfbeVls, X(5)) ds] f((X(0) = X(0))4/1)}
no e Za=2" E f{exp[ {4 eVs, X(s)) ds]}

1 _ 2
~ 2ra) " Ju e"p< z[;‘y?- l )f () dy (1.12)

with probability 1 in V. The diffusion constant o depends only on ¢, d.
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Remark. In Theorem 1.1 we require the values ¢ to go to infinity
exponentially fast in (1.12). This is a technical requirement which we must
impose since we confine ourselves in this paper to estimating only mean
square fluctuations. Just as in the proof of the strong law of large numbers,
one must estimate higher moments to obtain convergence with probability
1 along the entire integer sequence.

A key ingredient in the proof of Theorem 1.1 will be to show that the
partition function (1.5) converges as ¢ —» oo to a function Z, ,(c0). This
function is trivially nonnegative. We shall need to show that it is strictly
positive with probability 1. In fact we can show that

P(Z, (0} <)< (/|log 1" (1.13)

where 6 < 1/2 is arbitrarily small and C, « are positive constants independ-
ent of J. It would be interesting to show that the limit in (1.12) holds if one
takes the expectation value with respect to ¥ on the LHS. This of course
does not follow from Theorem 1.1 since almost everywhere convergence of
a sequence does not imply that integrals converge. To prove such a
theorem it appears that one would need to sharpen the inequality (1.13) to
have C4% on the RHS. We are unable to prove this.

Our first task here will be to study the averaged process (1.7). In
Section 2 we shall show by using the transfer matrix method that the
measure (1.7) is similar in many respects to the Wiener measure. In
particular the recurrence properties of the measure (1.7) are the same as for
the Wiener measure. However, the mean square deviation of X{¢) at large
t is different. The constant ¢ in (1.2) is given by

lim ¢~'E2[(X() — X(0))*] =*

{— o0

and o # 1 in general.

2. THE AVERAGED PROCESS

In this section we shall use the transfer matrix method of statistical
mechanics'® to analyze thc measure (1.7). First let us consider the nor-
malization factor with =N an integer

N
E E, {exp [_[ eV(s, X(s)) ds]}
0

=E_\.[ ﬁ E, {exp U eVis, X(s))ds]}]

i=1
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Let us denote by K(x, y), x, y € R the kernel defined by

1 1 —|x—vy|?
K(x, y)=E_\._yE,,{epr0 Vs, X(s) ds]}mexp <¥> (2.1)

where E, , indicates that the expectation is taken with respect to Brownian
motion X(#) conditioned on X(0)=x, X(1)= y. Thus we have

N
E.E, {exp [ f eV(s, X(s)) ds} }
0

=] | dvidya-dyy Kixoy) Ky ys) - K- yw) (22)

Next observe that K is translation invariant, whence
K(x+n, y+n)=K(x, y), neZ? (2.3)

We may write the integral in (2.2) as integrals over the unit cube Q, in R?
centered at the origin together with sums over e Z¢. Thus

[ o] dyidysedyw K(x,p) K(pi y2) - Ky o1, vv)
rd R

..Jgodyl...dy}v

nezt nyezd " Qo
xK(x, yy+n) K(y,+ny, ya+n)---Kyy_1+ny_1, yy+ny)
y ... ¥ J j dy, - dyy

nneZ'l myezd Qo [

x K(x, yy+m) K(yy, yo+my)---K(yn_1, Yy +my)

where we have used the translation invariance (2.3) in the last identity. If
we define now a new kernel K, on Q,x @, by

KO(x, )’) = z K(x’ ,V+m)

mezd

then we have tHat

N
E.E, {exp U eV(s, X(5)) ds] }

0

=[ o] dyidyw Kl 7)) Kolyr 2+ Ko yn—1s v
Qo Qo
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where ¥ € Q, is determined by ¥— x € Z“. We may write the last expression
in operator notation. Let 4, be the operator on L*(Q,) defined by

Aof (=] Kolxy) f(0)dy

Then we finally have
N
E.E, {exp “ eV(s, X(s)) ds] } =(0¢ AV xod (2.4)
0

where J; is the Dirac J function centered at ¥, and for £eC¥, y. is the
function x - y)=exp[i-y], ye Q.

We shall be interested in computing the Fourier transform ¢ (&),
e RY, given by

¢,(&)=E[exp[i- (X(1)— X(0))]] (2.5)

We can obtain an expression for ¢,(£) of the form (2.4) by observing that

E,\.E,,[exp UNEV(S, X(5)) ds] exp[ic - (X(N)—X(O))]]
0

=fQu...JQUdyl...dyN

xexp[ —i& - X] K%, y ) Ky, y2) - K yw_1, yu) expli€-yy]

where the kernel K is given by

KAx,y)= Y K(x,y+m)e*~"” (2.6)

nmezd

Hence if A, is the operator on L*(Q,) given by
A S =] Kooy f() dy
Qo
we have
¢N(é)=<X§(—\_') (S.faAgJX.;'>/<(5.\’~sA{)VXO> (2.7)

In (2.7) we are using the convention

B> = B () dx

Qo
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Our first task is to investigate the structure of the operator A..
Toward that goal we prove some properties of the kernel K.:

Lemma 2,1. The kernel K, has the following properties:

(a) Kdx, y) as a function of (x, y, &), x, ye R £eC? is continuous
in x, y and analytic in &.

(b) K., &eC? is periodic, K, ,,,=K;:, neZ" the d-dimensional
integer lattice.

(c¢) For x, y, & e RY there is the identity

Ké(x’ ,V) =K.§(ya .\')
(d) Kyx,y)>0, x,yeR%

Proof. (a) The kernel K(x~, y) given by (2.1} is continuous in X, y
and satisfies an inequality

0<K(x,y)<Cexp[ —|x—y*2), x, yeR? (2.8)

The continuity follows by writing the conditional expectation E, , as a
Brownian bridge expectation value. Continuity in x, y is then a conse-
quence of the dominated convergence theorem. The continuity and
analyticity of K:(x, y) follow from the continuity of K(x, y) and the bound

(2.8).
(b) This is immediate from (2.6).

(c) Observe that K(x, y)=K(y, x), x, ye R" This follows from the
time-reversal invariance of conditional Brownian motion. To get (c) we use
{2.3) to obtain

Kix, )= Y Kx,y+m)ye ="

mez!

=Y Kx,y—m)e* =3 K(x+m,y)e<"
mez! mez!

= Y K(y,x+m)e* " =Ky, x)
mez¢

(d) This is immediate from (2.1).

Proposition 2.1. The operator 4. on L*(Q,) has the following
properties:

(a) A.is a compact operator for e ce.
(b) A is self-adjoint for £ e R’
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(c) The function £ — 4. is strongly continuous for e Cc.

(d) A, has an eigenvector u, with eigenvalue | A4,ll. The function
uy(x), x€ Q,, is continuous and strictly positive, i.e., uy(x) >0,
x€ Q. There exists y<1 such that |1 <y ||4y] for all other
eigenvalues A of A4,.

Proof. (a) This follows from (a) of Lemma 2.1 and the Ascoli-Arzela
theorem.
(b) This follows from (c) of Lemma 2.1.
(¢) This follows from (2.6) and (2.8).
(d) This follows from (d) of Lemma 2.1 and the Krein—-Rutman
theorem.**

Let p(y), yeRY be the Fourier inverse of ¢,(&). We shall use
Lemma 2.1 and Proposition 2.1 to estimate p, for large .

Proposition 2.2. There exist constants C,, C, >0 such that

C —0C
0< 7)< gh exp <—,ﬁ> (>0 (29)

Proof. We first estimate the denominator in (2.7). We have
(05 A xo> =< Aol A7 ™20
where 4,6 .¢ L*(Q,). Next observe that
AG ™ o =Ag ™[ty xo> o + Pro]
=, o) 1 4oll¥ ™ ug+ AY ™" Py

where P is projection orthogonal to uy. In view of Proposition 2.1(d) we
have that

1AG 20— Cts o> 1Al ™ " gl <y =" 1401V~ lixoll
Hence we have the inequality
Aol ' [ Aob e, uod<{ttg, xo> — 1V~ 1 AoSll - ol ]
<< A4o05, A{)v_ ]Xo>
< ”Ao”N_I[(AOé.\‘-a o) {ug, xo) +yV 7! o0l - llxoll]

Since {ug, yo» >0 and {A4,95;, uy> >0, by Proposition 2.1, it follows that
the denominator of (2.7) behaves like |4,V ' for large N.
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Next we consider the numerator of (2.7). We have

Z <X§+27m('\—‘)6.\“ A.[;’v+2nnX§+27rn> exp[ —l(é+27U’l) y]

nezd

= <x¢(f)5.\—., AQ’{X: 2 Xomn EXP[—Zﬂilf'(f+J’)]}> exp[ —i¢-y]

nezd

=A%), AV xXF¥) 051D exp[ —i¢ - y] (2.10)

In the final step above we used the Poisson summation formula. Hence we
obtain the following formula for p,(y):

ply)= {jj dE AT)6 5, AVTAL(TFT) O] expl — i -y]}

x [(2m) 5 ¢, AV x> 1" (2.11)

where J is the cube [ —x, n]¢.
To estimate (2.11) we shall prove that there exists a constant ¢>0
such that

4N <N 4oll (1 =c|E1®),  &eJ (2.12)

First we consider the case when |£| is small. Let us write £ =, where n
1S a unit vector and ¢t a scalar. Then we have

A:=Ag+1A4,+ 174, + Ot

Let P be a coordinate plane through the origin in R“ and let z, denote
reflection in this plane. It is easy to see that the kernel K, of 4, has the

property
Ko(ﬂp(.\'), nP(y))=K0(xs .V), «\”)’EQO

It follows by the uniqueness of the eigenvector u, that uy(7mp(x))=uy(x),
xeQq. Now if the unit vector is along a coordinate axis, the kernel K, of
A, has the property

Ki(mp(x), mp(¥)) = —~Ki(x, y), x,y€Q,
We conclt  that for all directions »n one has
Cug, Ajug) =0

whence the vector A4,u, is orthogonal to u,.



426 Conlon and Olsen

In view of the analyticity of A in ¢ there is an eigenvector u; of 4.,
analytic in ¢ in a neighborhood of £ =0. We can seek this eigenvector by
expansion

us=a(&) uy+ v(&)

where a(0) =1, v(0) =0, and the vector v(&) is orthogonal to u,. We can
expand «(¢&), v(&) in powers of ¢,

a&y=1+at+a>+ --.
o) =v;1+v, 04 -

Evidently all the vectors v,, v,,... are orthogonal to u,. For £ real the eigen-
value of u; is given by || 4], which also has an expansion

Al =l Aoll + Ayt + A2+ -

We can compute the coefficients in the expansion by using the equation
A:u:=|A|| u: and identifying coefficients of powers of . Thus

[Ao+1tA,+ A+ - (M +ajt+a, 4 - Dug+v t+o. 82+ -}

=[ll 4ol + 2 1+ A2+ - WL +a t+a, 2+ Y ug+o 1 +v,2+ -}
Equating the coefficients of ¢ on both sides of the equation, we have

a) Agttg+ A g+ Agv, =a, | Agll ug + A ug+ 1A, vy
which is the same as
Ajug+ Agv, =2 ug+ | 4ol vy
If we take the scalar product of i, with this last equation and use the fact
that both v, and 4,u, are orthogonal to u, we conclude that A, = 0. Hence
v, is given by the formula
vy =(l4oll —Ap) ™" 4,y

Next we equate the coefficients of r*> and put A, equal to zero. Thus we
have

CasAgugta  Ajug+ Asug+ Agu, + A4,

=a | Aoll uo+ Arug+ | Aoll v5
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which is the same as
ay A ug+ Asug+ Aoty + Ay vy = Asug + || A 02

Taking the scalar product of the last equation with u, and using the fact
that v, and A4,u, are orthogonal to u,, we conclude that

Ay =g, Axugd + {ug, Ayvyd

Since A, is self-adjoint for ¢ e RY, it follows that A, is self-adjoint. Thus we
have

Ay =g, Asug) + (A ug, (14, _Ao)_|A1“0>

It is clear that the first term on the right in the last equation is less than
or equal to zero. Since (|| 4ol —A,) ™' is nonnegative definite, the second
term in the last equation is greater than or equal to zero. Hence it is not
obvious that 4, is negative. We shall prove in the Appendix that 4, <0.
Thus for |£| small we have

14 = 4ol + Q(&, &) + O(I¢]%) (2.13)

where Q is a negative-definite quadratic form. Thus there is a constant
¢>0 such that Q(&, &)< —c ||4oll-|€]>. We have proved therefore the
inequality (2.12} in some neighborhood of & =0.

To complete the proof of (2.12) observe that for any J > 0 there is a
constant ¢ > 0 such that

|K:x, )] < (1 —¢) Ko(x, y), xX,veQ,, &elJ, [&]>0

Thus (4. <(1—¢) 4ol for CeJ, |&|>0J. The inequality follows by
choosing ¢ sufficiently small so that ¢ |4, - |£]* <e&, E€J.

Let us take =N, an integer, in (2.9). Then the inequality (2.12)
immediately implies (2.9) with y =0. In fact from (2.11) we have

puI<C [ [1=c e’ dg
<C[ expl —eN Z1*] dE < €y /N2
J
for some constant C, independent of N. Observe that we have used the fact

that
sup [[A:x«X) d¢ll < o0

sed



428 Conlon and Olsen

In order to prove (2.9) for |y| > N'> we need to deform the integration in
{2.11) to an integration involving complex £. Observe that by Lemma 2.1(b)
the integrand in (2.11) is periodic. Thus

<X.;’—nn('\_.) a.\"’ Aév— nn[Xé—mt(x +J’) 5m]> exp[ _I(é —7[]1) y]
= <X§+7!"(’\T) 5-\"’ AQ’+ nl:[X§+nll(x +y) 5m]>
xexp[ —i(&+man)-y] EeC’ nez’, x,yeRY

Hence we may deform the integration dé=d¢&,---dé, on [ —n, 7] to
d(&,+in,)---d(&,+in,), where 5,,..., 7, are arbitrary real parameters. We
choose the n,, j=1,..,d, by 5,=sgn(y,)/N'”. The inequality (2.9) follows
for all ye R provided we can show that for any « >0 there exist positive
constants ¢, d >0 such that

||A§+il]“<||A0” (1"-(,' |é|2+dll7|2)a éEJa |I7|<(Z (214)

Observe that it is again sufficient to prove (2.14) provided &+ in are in a
small neighborhood of the origin. In that case the self-adjoint operator
A¥ A i ha§ a pnique eigen\{ect.or Uiy whose eigenvalpe is ||4; +i,,||2.
When 5 =0 this eigenvector coincides with the previous eigenvectors u..
Now it is easy to see that
A?+iI]A\:+iI]=A§~fI]A§+iI]

Hence, as before, ||A:+;,,||3 is analytic in &, 5 close to the origin. We need
to show that in a power series expansion in ¢, # the linear term in 5 is zero.

To do this let us write # =, where n is a unit vector and ¢ real. Then

Ay =Ag+1tA + -
uy,=(l+at+ - Yug+v,t+ -

“Ail]”Z: ||A()||2+/1|’+

as we had before, with v, L u,, etc.
We equate the coefficients of ¢ in the equation

A A u —'|Afl]||2“i)]

—in“tigttip —

to obtain

aIA(Z)u0+A(2)v] +AgA ug— A Agup=a, ||Ao||2“0+ ||A0||2U1 + A ug
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which is the same as
A(z)vl + AgA ug— Aol A yug= Aol >v, + A ug

If we take the scalar product of this last equation with u, we obtain 4, =0.
Hence the linear term in # is zero in the expansion of |4, ,|> Conse-
quently we have

A il = 114012 +2 [ 4oll Q& &)+ Q1(& 1) + Qs m) + OCLIE) + |71 1)

where Q is the quadratic form of (2.13) and Q,, Q, are quadratic forms.
The inequality (2.14) follows easily from this last expression and the
negative definiteness of Q, on using the Schwarz inequality.

We conclude the proof by showing how to obtain (2.9) for ¢ not an
integer. We have

E.[E {exp[{,eV(s X(s))ds]} o(X(1)— X(0)—y)]
E E {exp[{,eV(s. X(s)) ds]}

pdy)=

Putting N=[t], the integer part of ¢, we have then

E[E, {exp[fy eV(s, X(s)) ds1} 3(X(1) ~ X(0) —y)]
E.E {exp[fy eV(s. X(s)) ds]}

pAy)<C

for some constant C independent of x, y, . Next we write
X —-X0)—y=X(IN)-X(0)~[r+7Y]
where Y= X(N)— X{(t) is independent now of X(s), 0<s< N. Thus
PV)SCE[pn(y+Y)]

The inequality (2.9) follows now from the previous inequality, since Y is
Gaussian with mean zero and variance less than or equal to 1. QED

Proposition 2.3. There exist #>0 and a Gaussian random
variable Y such that for any measurable function f: RY— R with

J‘ () dy <o
e

then

lim [f(&;@)] —E[/(N)]
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Proof. Let us first assume that f is a Schwartz function and that
t=N is an integer. Then we have

E{ Mm%tx(o))] J, ¢N< f>f(é)dé

where ¢, is given by (2.5) and f is the Fourier transform of £, We estimate
the last integral by using the Poisson summation formula as in Proposi-
tion 2.2. Thus we have

Z <ys+"ﬂ” )6 Ac,+’7mX«,+7nn> f([é+2n’7] \/]T/)

nezd

<xg(\)5 A”[xk Y. Xamn F(LE +2n0] /N) exp[ —2mni- x]]>

nez!
= (XelX) 05, AV x> F(& J/N) + Ep(8)

when E,(¢&) is simply the remainder term. Hence

J,, onten/m) fie e
= N jwmé)f(é IN) dé

L R I DY VIR NG RS

where J=[ —n, n]% Since f is a Schwartz function, we have

lim [Nf’/’f dE g dX) 0y AV x> f1 éﬁ)}/(é.e,AS’xo>

N—- o

lim | N[ de( | [<8e Al o)
[E) < 1/NV3

N ow

= lim [N"/Z [

N 1§1 < 1/NA

& (B A0y FE /M| €O o
We have now that for |&| < 1/N'7,
(g, A¥ 10> = A0, AY " 'xo>

= A0 u>{ug, xo) 4NN '[1 4 O(e =%M)]



Brownian Motion Version of Directed Polymer Problem 431

for some 6 >0. Here u, is the principal eigenvector of 4. and ¢ is related
to the spectral gap of 4, as given by Proposition 2.1(d). We therefore have

(O AT K02/ 055 Ag 20?
=[1+O(/N"T AN 4oV 1< 1/N'

Using (2.13) and the previous identity, we conclude that

im [N92 [ de<o ) M| [0 4Bk

N— o

— lim N f
N o €] < 1/

dé exp[ NO(&, &)/ 4ol1] f1& /N))
where Q is the quadratic form in (2.13). Since Q is negative definite, this
last limit is the same as

J 4 expL Q& ) 4all1 (€)= EL/(D)]

where Y is a Gaussian random variable.
Observe next that the remainder term E (&) satisfies the inequality

sup |En(E)]/{6s. AoNX0> < C,/N*

eJ

where k is an arbitrary positive integer and C, is independent of N. This
follows from the fact that f is a Schwartz function. Proposition 2.3 for
integer ¢ and Schwartz functions f immediately follows.

We extend the result to noninteger ¢ and Schwartz functions f. To do
this put N=[t] and

=X(t) —X(0)  X(wv) — X(0)

Ji JN

Y

(2.15)

Then we have

f<X(t)——X(0)>=f<X(N)—X(0)>+ Y-'[l s Vf<X(N)_X(O)+sY>

Vi VN VN
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Just as in Proposition 2.2, we have

B[ Y1 [ s 191 (M—ﬁ”‘@HY)]

<ce[Infla] 1w (Joesr)putn ]

where Y is the Gaussian random variable defined by (2.15) under the
assumption that X is Brownian motion. It is evident that the mean of Y is
bounded by C,/N*? and the variance by C,/N for constants C,, C,. If we
use Proposition 2.2 to estimate p,(y), then we have

1 )
B[ [ as] 1o <\}_N+SY> pat3) ]
[|Y| j ds J , Vi(z+sY)exp(—clz]) d:]

for positive constants C, ¢>0. Since the mean and variance of Y are
O(1/N), this last expression is O(1/N'?). Hence the result for noninteger ¢
follows from the integer-¢ result.

Finally we wish to extend the class of functions f from Schwartz space
to the class given in the statement of the proposition. This follows
immediately from Proposition 2.2. In fact for any J > 0 there is a Schwartz
space function g such that

[ e — gl dv <o (2.16)
R

It follows from (2.16) and Proposition 2.2 that if # > 0 is sufficiently small,

then
. X(t)—X(0)>_ <X(t)—X(0)>H cs
f< 7 g 7 <

from some constant C > 0. The result now follows from this last inequality
by standard argument. QED

supE? [

=1

We have shown in Proposition 2.3 that the process X{(¢) with measure
(1.7) is in some sense a renormalized Brownian motion. Here we wish to
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show that it has similar recurrence properties to Brownian motion. Let us
consider two independent copies X(¢), Y(t) of the process (1.7). Thus the
pair (X(1), Y(z)) forms a process in R*. We consider a subset & of R*
defined by

= {0,x0,: nez

where as before Q, is the unit cube centered at ne Z9. Now the dimension
of the set & is d. Hence by the recurrence properties of Brownian motion
we should expect that for d>3 the process (X(¢), Y(t)) spends a finite
amount of time in %. We shall prove a version of the statement as follows:

Theorem 2.1. Let y, be the characteristic function of the set &.
Then there exist d,, >0, and a constant C sufficiently large such that

1 ‘
|E| L) Ef'| [ exp [6 L X (X(8), Y(5)) dsH dx dy

Co

<l+———, t=20 2.17
d+iQ) (217)

for any 6 <J, and ball Q =R, d>3.
Proof. We write the expression on the left in (2.7) as a sum

o

Y, d"a,

n=0

where ag=1 and «a, for n>=1 is given by the formula

1 n
a,,=@L) EZ, [I dsy---ds, [] xoAX(s), Y(s,-))] dx dy

O<m<s< - <sy<t Pall’
We can rewrite a,, in terms of the joint probability density

(X(0), Y(0)), (X(s1), Y(s1))seery (X(54), ¥(s,))
which we denote by

P,(xs Y, 0;x1’ yl,sl;x27 Y25 825Xy, yn’sn)

822/84/3-4-8
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as

a,= j dx dy f dx, dy, j dx, dy, - L,dx,,dy,,

12l

xj ds,---ds,

D<si<nn< - <sp<!

xpl(x’y’ 0;xl7 yl’sl;x.?,a J’z,Sz;---xm yn’sn)

Next we use the following proposition, which proves

p,(.-\‘,y, 0: X1 Y15815 X2, Va2, 825--- X5 Vs Sn)

<g exp —co(|x = x|+ |y, —yl)
st

2
s)?

n—1

— o | X =X + |J’i+1_y,'|)>
X ex > 2.18
,-1;11 (s Siv1— )(l P < (i1 _Si)l/- ( )

for some constants C,, ¢, >0 independent of x, y,t and the x,, y,, s,
1 <i< n. Using the fact that

w 1 _C'v(lx|+|,V|)> C;
ds 2 < 5773
k Ssde"p< s (>l +1yD*=2

for some constant C; depending only on ¢, and the fact that
Lv dx; o dyi o /(X=X + 1=y D TP < Co< o0
where the constant C, is independent of (x;, y;), we conclude
a, <(C2]) J dx dy J/ dx, dy, J(Ix —x,| + |y —y, )2

for some fixed constant Cs> 0. Observe that the RHS of the last inequality
is bounded by a constant times C%. To get the decay in {2| as |2]| — oo,
let 2, be the ball concentric with € which has radius equal to 2/ times the
radius of 2, j=0,1, 2,....
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Then we can write
(120 [ dxdy | dx,dy f(1x—x,| +|y—p,))*?
2 <

=@ | dxdy | dxidyfilx—xi]+ 1y =y, )*

Q2 S 2

+ Y [ dvdy | dxy dy,[(1x =, + |y =y, [=2 (2.19)
=021 ’a S D1\

Now if we take a unit cube @ < RY with Ox Q=% N Q, then it is clear

that

(afQD J dvdy [ dvidyisix=xl+ly =2 <cnop-

for some constant C. Since & N £ is the union of order-|2|"? unit cubes,
we conclude that

AN [ dxdy [ dvidyif(lx—xil+1y =y 2 < Q)

I

Hence we have bounded the first term on the RHS of (2.19) appropriately.
Clearly we have a similar bound for the j=0 term also. The jth term in
the sum for j>1 is bounded by C/2/'“=2 |Q|'?~ 1 Hence, on summing
the series in (2.19), we conclude that

an<C’5'C6/(1 +|Q|)a

where Cq is a constant and a =1/2— 1/d. Now if we choose J, such that
Csdy < 1, the inequality (2.17) follows. QED

We are left to prove (2.18). This is evidently a generalization of
Proposition 2.2. First observe that since the processes X, Y are inde-
pendent, it will be sufficient to consider X alone. The inequality (2.18)
follows then from the next result.

Proposition 2.4. Let 0=s5,<s5,<s§,<--- <s,<t and x;eRY,
0<i<n Suppose p,xg,Sg,X15 814 X,s 5,) 18 the joint density of the
variables X(s,), X(s,),..., X(s,) for the averaged process (1.7) started at x,
at time 0. Then there is a constant C> 0 such that

n

P/(an S05 X5 S50 Xy S,,) < c H Px,_s,»_,(xi—ls Si—1, X0 Si) (220)

i=1
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Proof. The inequality (2.20) with C=1 would follow from (1.7} if
the normalization constant in (1.7) were unity. However, the normalization
constant has the form y ||4,]’, where y depends on ¢ and also on the
starting point and time. However, there are constants ¢,, C, >0 such that
¢, <y<C, for all starting points and times ¢. The constant C in (2.20)} is
then bounded by C< C,/c,.

3. THE PARTITION FUNCTION

Here we establish some properties of the partition function defined by
(1.5). Now Z, (1) is a random variable in V" and it is clear that it has
expectation value equal to 1. Thus by the Chebyshev inequality one has for
any given ¢ and a > 0 the inequality

P(Z, (D) >0) < 1a
We shall prove the following:

Proposition 3.1. There is a constant C > 0 such that for any a >0
there is the inequality

P(supZ, (t)>a) < Cla

>0

Proof. Let 7 be the smallest integer such that

sup Z, ,(t)>a

O<r<r

In particular, we must have Z ,(7) =« for some ¢ with t—1 << 1. Now
let N be a large integer. Then we have

1=E[Z, AN)]=E{E[Z, (N)| V(s,x),s<t A N, xeR’]}

It is clear now from the previous section that there is a constant ¢, > 0 such
that

E[Z, (N)| V(s,x),s<TAN,xeRI=¢,Z, (t A N)
Hence we conclude that
E[Z,  (t AN}]<]/c,

If 7 < N, then there is a constant ¢, such that Z ,{t A N) = c,a, and so we
have

c,aP(t<N)Y<1/c,
which yields the result. QED
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Observe that Proposition 3.1 holds for all £>0 and all dimensions d.
In contrast, the behavior of inf, 4 Z, ,(¢) appears to depend critically on
both ¢ and d.

Proposition 3.2. Let ¢ satisfy 0 < < 1/2. Then there exists g,>0
such that if ¢ <&, and d = 3, there are constants C, « > 0 depending only on
d such that

P(inf Z, /(1) <5)< C/|log ]* (3.1)

>0
Proof. Let t be the smallest integer such that

inf Z,,(t)<o

O<r<t

As in Proposition 3.1, we must have Z_ () <J for some ¢ with 7—1 <
r<t. Let N be a larger integer. Then there is a constant C, >0 such that

E[Z,,(N)| V(s,x),s<Tt AN, xeR‘1<C,Z, {t AN)
Hence we have the inequality
1< C0P(t<N)+ E[Z, y(N);T=N] (3.2)

where C, is a constant.
We have now by the Schwarz inequality

E[(Z, (N);t2NI<P(x=N)'? E[Z, ,(N)]'?

Hence if we put

M=sup E[Z, ,(N)*]

Nzl

and assume M is finite, then we have on letting N — oo in (3.2) the
inequality

1<C,0P(t<00)+M'"?[1—P(t<0)]"?
If C,0 <1, it follows from this last inequality that
P(r<o)<1—(1-Cy0)*M (3.3)

Hence if M < co, we see that the LHS of (3.1) is strictly less than 1 for
small 6. However, the inequality (3.3) does not give a dependence on J as
0—0.
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We shall show now that M < co. From (1.15) we have

E[Z, (N)]= Ef‘x [EV {exp {JN eVis, X(s)) +eVi(s, Y(s)) ds] }

0

x<EV{exp[‘[N£V(s, X(s))ds]}

0
N —1

xEV{exp“ eV(s, Y(s))ds] }) ] (3.4)
0

where E{_ denotes that the expectation is with respect to the averaged
process (1.7), and X, Y are two independent copies of the process. Now for
i=1,.,neZ"let t,,(X) be the amount of time the path X{s) spends in the
cube @, during the time interval i —1<s <. Similarly we define 7,,(Y).
Then it is clear that

N
exp[j eV(s, X(s))ds]—exp[z Y e ,,,r,,,(X)]
0 i=1 nezd
whence
N
E,,[exp“ eVi(s, X(s ” IT I] cosh(er,, (X))
0 i=1 nezd

Consequently, we have

E, {exp[ [ eV(s, X(s)) +eV(s, Y(s)) ds]}
Ey{exp[{§ eV (s, X(5)) ds]} E, {exp[[5 eV (s, Y(s5))ds]}

N cosh[er, (X)+er, (V)]

T 2L sogecosh[er; (X)] cosh[er, (V)]

N
< I_I l_[ [1 +82.Ci,n(X) Ti,n( Y)]

i=1 nezd

/

N
< exp |: Z Z gzri,lt(X) Ti‘n( Y):|

i=1 nezd

N

—exp[z Y e j s))dsj ;(Q"(Y(s))ds]

i=1 nezd = -
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1 5 N
sexp[ T | @] xolXsn xo Ms+uy)

nezd

+ X o X(s+u)) 2o, ¥(5)) ds du]

=exp [JO‘ &2 LN X AX(S), Y(s+u))+x AX(s+u), Y(s))ds du] (3.5)

where =) {Q,x Q,:neZ is the set defined prior to Theorem 2.1.
Hence we have

E[Z, /AN)]

<Ei'\_ [ exp Ul g2 JNX’V(X(s), Y(s+u))+x A X(s+u), Y(s)) ds du”
0 0
1 N
éj du E'(f'x[exp [ng XA X(8), Y(s+u)) + x  (X(s+u), Y(s)) dsH
0 0

<

f‘ du {E’\‘\ [exp [282 JNXV(X(S), Y(s+u)) ds”
0 0

19—

+EL, { exp {zgz [" 1A X(s +w), ¥(s) ds] ] }
0

by Jensen’s inequality. Theorem 2.1 now tells us that the RHS of this last
inequality is uniformly bounded as N — oo provided ¢ is sufficiently small.
Hence M is finite.

Next we wish to obtain the dependence in é for the RHS of (3.1). To
do this we define for k=1, 2,... a partition function Z_ . ,(t) by

_ E{exp[{, eV(s, X(s)) ds]}
T E E{exp[ i eV(s, X(s5)) ds]}’

Z.\', V,k(t) f?k

It is clear that there is a number a > 0 such that
Z,\'. V(t)?akZ'\.. V,k(t)s t/>’k (36)
Evidently we have

E{Z,v(D]=1 kst
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On the other hand,
E[Z.vi(D?1< fw fw dz dw plz, w)
1 1—k
x%f du {E_f‘_wl:exp[zﬁj X AX(s), Y(s+u))ds”
0 0

+EZ, [exp [232 J'_kxy,(X(s+u), Y(s)) dsH}

0

where the density p(z, w) is given by

plz, W)= polz, w) E E. [exp UO eV (s, X(s)) ds”

11—k
xELE, [ exp [ f eV(s, Y(s)) dsJ ] /normalization
0

where p, is the density for Brownian motion in R at time k started at
(x, x) at time 0. Clearly p(z, w) is concentrated on a scale of radius k'
Hence by Theorem 2.1 we have

E[Z. y(21<1 + Ce¥%k®, 1>k (3.7)

provided ¢ is sufficiently small and again the bound is uniform in ¢ as
t— 0.
Now for k=1, 2,... let

M,=sup E[Z, V.k(N)Z]

Nzk

and 7, be the smallest integer >k such that

inf Z ., [(1)<o

k<r<zg
As before, we have

E[Z, i (N)| V(s,x),s<t A N, xeR]
<CZ.yuti AN), N>k

Hence we have an inequality analogous to (3.3), namely
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Using the inequality (3.7), we have that

P(1,<0) <1 —1/M,+2C,8
< Ce¥/k™ +2C,0

If we take 6 =&%/k*, we conclude that

P(inf Z,_,, (1) < £¥/k®) < Ce¥/k™
1=k

Hence from (3.6) it follows that

P(inf Z_ (1) <&%a"/k™) < Ce?fk™
t>0

The inequality (3.1) follows immdiately from this last inequality by choosing
k appropriately, depending on 6. QED

Next we wish to address the problem of showing that Z_ ,(¢) con-
verges to a limit as ¢t — oco. We shall show that, provided we take an
exponentially growing sequence of ¢ values, the limit exists if ¢ is small and
d = 3. We are unable to make any statement about the convergence proper-
ties of Z, ,(t) if either ¢ is large or d<2. However, there is a quantity
closely related to Z, ,(¢) which converges for all ¢ and dimension d. Let
ug(x), x € Q,, be the principal eigenvector of the operator 4, of Section 2
with eigenvalue |A,|. The function u, can be extended to all of R? by
translation. Thus for x € RY, uy(x) = uy(x), where € Q, and ¥ —xe Z“. For
N=1,2,.. we define Z ,(N) by

Z (N)= E [exp[§{ eV (s, X(s5)) ds] ug( X(N))]
T E E Lexp[ [N eV (s, X(s)) ds] up( X(N))]

It follows from (2.4) that the denominator of the last expression is simply
|]_AO||N uo(x). It is easy to verify that the sequence of random variables
Z.y(N), N=1,2,., is a martingale and

E[Z, ., (N)]=1, N=1,2,.
Hence by the martingale convergence theorem® the limit limy _, ., Z,. ,(N)

exists with probability 1. This is true for all £>0 and dimension d. Our
convergence theorem for Z, ,(¢) is based on the following:
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Proposition 3.3. There exists ;> 0 such that if e <gq and d = 3, then
E[{Z,/(M)-Z, ,(N)}*]<C/N*
for any integers N, M, 1 < N <M. The constant C and index a >0 depend
only on ¢, and d.

Proof. Let X{(s), Y(s), s=0, be independent Brownian paths. For
i=1,2,.., we define g;,(X, Y) by

g(X. 1) =E,,[ex;>[af V(s, X(s)) + V(s, ¥(s)) dsH

i—1
X {E,,[exp {s.[i V(s, X(s)) ds”
i—1

xE,,[exp [EI‘

i—

-1
Vs, Y(s)) ds]}
1

Then according to Eq. (3.4) one has

N

i=1

The right-hand side in the last equation is an expectation with respect to
the averaged process (1.7). We have introduced the parameters N, N to
indicate the dependence of the averaged process on the time ¢. Similarly we
have the expressions

—x
%
S
=

E[Z, (M)] =E§.‘.\’-”‘M[

>

(3.8)

= ¥

E[Z, (M) Z, y(N)] =Eﬁ_‘.?"”[ gi( X, Y)]

L

Letting [ -] denote integer part, we have that

N [N/2]
E:f:_\.””[n gi(X, Y)} —E:f:x”'”[ [T gdx, Y)H
i=1 i=1
(~§/2] N
<E:f:.i”[ IT s«x, Y)) I[I sx Y)—l”
i=1 i=[N/2]+1
N

i=[N2]+1

[N/2]) 27172
<e2[ (T eax n) | s

i=1

z] 1,2
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It follows now from (3.5) and Theorem 2.1 that

N [N/2]
E:i'.:‘.‘"”[ ] e, Y)} —E_:f:,:’.“”[ Il &(x, Y)” <C/N®

i=1 i=1

for suitable constants C, a > 0. Using the formulas (3.8) and arguing as
above, we conclude there are positive constants C, « such that

E[{Z,. AM)-Z, (N)}?]

<EA.N.N () X
~ & H gl( ) Y)
i=1
[N/2]

[N/2]
+Eﬁ.‘.f"M[ H g X, Y)] E”MN[ IT si(x, Y)}+C/N“ (3.9)

Next let us define a function w(z) for ze Q, by
w(z) = Ay I xo(z) AT xo(x)/AG x0(x)

The function w is extended to all of RY by periodicity, w(z 4 1) =w(z),
neZ“ Then we have

[N/2]
E;f:.f"”[ Il edX. Y)]

i=1
[N/2]
=E?,'.5N/2]‘[N/2][ Il e4x, ) W(X([N/2]))W(Y([N/ZJ))J
i=1

It is clear from Proposition 2.1 that
w(z) = {xo, Uy Up(z) + O(e V)

for some positive constant c. Hence

EA,N.N () X Y
w1 T edX 1)
i=1

, [N/2]
=Ei‘_\[.N/2]'[N/—][ H g./(X,Y)

i=1

X (o o) ol X(TN/21)) el Y([N/2]>)] +0(e M)

We can obtain similar formulas for the other terms on the RHS of (3.9).
The result follows from this and inequality (3.9).
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Corollary 3.1. If >0 is sufficiently small and 4> 3, then the limit

lim Z, ,(t)=Z, (0)

ne— oo, t=2"

exists and 0 < Z ,{00) < o0 with probability 1.

Proof. The existence of the limit follows immediately from Proposi-
tion 3.3 by standard argument. The fact that 0 <Z, {c0) <00 is a conse-
quence of Propositions 3.1 and 3.2.

4. CONVERGENCE TO DIFFUSION
In this section we shall prove Theorem 1.1. First we write
E,[exp 4§ eV (s, X(5)) ds] S((X(N) — x)//N)]
E [exp[ {8 eV (s, X(s)) ds]]

E [Lexp[ {4 eV(s, X(s)) ds] f((X __\.)/\/]T/)]/Z -
E.E EEXP[]O eVi(s, X(s ds]] XV

_Z[N"]) N X(N)—x
=S B o | [] v xonas ] 1(FT25)

{~7]
xE E, [exp [J Vs, X(s)) ds]
0

N (~]
x(E_\.EV[exp[J eV (s, X(s))ds] E_\.[exp[f eVis, X(s))ds”)
0 0

(4.1)

-1

where 0 <y <1 and [ -] denotes integer part. Now let us define

E [exp[fo eV (s, X(s)) ds]; X(M)=y]
E [exp[{3' eV (s, X(s)) ds]]

Pr(y)=

[N7]
emo ) = EuEy | exp | [ ab(s, x50 o |

EEy [[{h eV(s, X(s)) ds]
E,\.E,,[exp[jo eV{(s, X(5)) ds]]




Brownian Motion Version of Directed Polymer Problem 445

Then we have that the expression (4.1) is the same as

Z.v([N"])
SN P A7) 81,00)

 EuLexpl [ eV(s, X(s) ds] S((XN) = x)//N)]

42
EyE [expl [ eV (s, X(s)) ds]] (4.2)
Now let us define a function g, ,(y) for ye R’ by
E,[exp[ f3' e¥(s, X(5)) ds]; X(M) =y]
Gu(y) = M
E.E [exp[ [ eV(s, X(5))ds]]
It is evident that
G AV)=Z AM) pasA¥), yeR? (4.3)

observe that

[ prrty)dy=1
rRY

and hence we do not expect the integral of ¢q,, ,- to be unity.

Lemma 4.1. Let §>0. Then there exist constants C, ¢ depending
only on d such that

E“ Qar. A Y) dy} < Cexp[ —cM?]
[y —x|>MP2+é
Proof. We have

EU qa () dy] =f Paly)dy
|y — x| > MIR+S ¢ — x| > MI2+4

where p,, is as in Proposition 2.2. The result follows immediately now from
this proposition.
Lemma 4.2. Let I, , be the expression

Iyy= dy q[N'f],V(y)gN,r(y)
R‘l

x {E [exp [ j;] eV(s, X(s)) ds| f((X(N) —x)/ﬁ)]



446 Conlon and Oisen
—E,E, [exp UN eV(s, X(s)) a’s] FUX(N) -—x)/ﬁ)] }
[N7]

N —1
x (E,,E), [exp “ Vs, X(s)) ds”)
{N7]

Then there exist positive constants C, a such that
E[I,%,_ ] < C/N* (4.4)
Proof. We consider first

E[L, | V(s ) s<[N']]

= lej Idy dz g ni (Y) N A Y) Gy 2) v y(2)

R

N—[N7]
x B4 [ {E,, [ exp “ eV (s, X(s)) ds +eV(s, ¥(s)) a’s] ]
- 0
N—[N7]
x(E,,[exp U V(s X(s)) ds”
0

N—[N] =1
xE,,[epr eVis, Y(s))ds”> —l}
0

X f(X(N=[N"]) = x)/\/N) f(YIN=[N"]) —x)/\/JT/)]

In the last equation X(s), Y(s) are paths which run for time s<N—[N”]
with X(0)=y, Y(0)=:z In view of (3.5) it follows that

E[I3 | V(s,-), s<[N']]

<llgw, % fw’ Jnd dy dz g v(Y) gpam,i(2)
1 N—[N7]
xEL. “ du[exp [ezf X AX(s), Y(s+u))
) ] 4]
+x A X(s+u), Y(5)) ds] - 1]

% LfI((X(N = [N"]) = x)//N) |f] (YN = [ N7]) —x)/ﬂ>]
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Hence we have

E[I} 1=ELELIR | V(s,-), s <[N°]]]
< “gN.r”i: JR“ -[Rd dy dz pya(y) pean(z)
1 N—[N7]
XEf.:“ dll[exp[Ezj X AX(s), Y(s+u))
. 0 0
+ x A X(s+u), Y(s)) ds} - 1}
<AL=V =/W) LN = [0 D=5/
Applying the Schwarz inequality to this last expression, we see that
E[Iil.y]éllgw,rlli“ dy
R
puwn) B/ PN = (8D =0/ /W) |
1
* {L du JR:I jﬂd dy dz prany( V) prae(z)
N—[N7]
xE{,“:[exp [ZEZJ X AX(s), Y(s+u))
’ 0
1/2
+x A X(s+u), Y(s) ds} — 1} }
The inequality (4.4) follows from this last inequality by virtue of Proposi-

tion 2.2 and Theorem 2.1.

Lemma 4.3. There exist constants C, « >0 such that

E{J @ qum ey =11} | <

Proof. We consider first

£ [ -[w dy qrnn. () gN.y(y)] B A([)NT]gN.y(x)/A<[>M']Xo(-\')
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It is easy to see that

—e)

v A Y)Y =<Xo» o) uo(y)+ Ole

for some positive ¢. Thus we have

E“W dy q[NrJ.V(y)gN.;.(y)] =1+ O(exp(—cN"))

Next we use the notation of Proposition 3.3 to write

2 o
E[{[ & qumnstn} | =E20909 T g 1]

i=1

Just as in Proposition 3.3, we have

(V7]
Ei,_\[_N"'],[N'/][ IT &:(X, Y)]
i=1
[(N7/2]
=E:{‘,'\[_N"'].[N7][ I (X Y)] + O(1/N%)

i=1
(V2]

XEf.‘_E""’”‘["""”[ [T six, Y)] (Xo» o)?

i=1

X ug( X(LN7/21)) uol Y([N/2]) + O(1/N*) = ay + O(1/N*)

where a, denotes the expectation value in the last expression. Similarly we
have

2

E[{J.R‘/ dy qnm, V(J’)gzv.;.()’)} ] =ay+ O(1/N%)

E[J'Rd dy qrnn,v(2) J‘R" az qpnn.v(2) gN.y(—")] =ay+ O(1/N%)

The result follows now from the last three equations.

Proof of Theorem 1.1. We start from the expression (4.2). First
observe that by Corollary 3.1 we have

lim  Z A[N'])/Z, (N)=1

n— o N=2"
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with probability 1. Now let us put

aN=J. dy Pin, V(y) &n, )'(y)
rY

EsLexpl{f eV(s, X(5)) ds] S((X(N) = x)/s/N)]
EVEy[exp[ﬁvN?] eV(s, X(s)) ds]]

bN=J ay pen () gnAY)
Rxl

Ey E,[expl {{) 6¥(s, X(5)) ds] f((X(N) = x)//N)]
EyE,[exp[ |}y eV(s, X(s)) ds]]

We need to show that lim,, , . y_ ay exists and is equal to the RHS of
(1.12), which we denote by ¥. Now by Proposition 3.2, (4.2), and
Lemma 4.2 it is sufficient to show that lim, _, ., v by exists and is equal
to 2. Next we define ¢, by

CN:’J‘ dyp[Nv]_V(y) gN.)'(y)
|x =yl < N#2+d

x E E, [exp [ jN eV(s, X(s)) ds”

[N7]
x f(X(N) = x)//N)/E,E, [exp “N eV(s, X(5)) dsH
[N7]

where 6 > 0. Then by Lemma 4.1, (4.3), and Proposition 3.2, it is sufficient
to show that lim,,_, , y_a»cy exists and is equal to . Observe next that
if y/246 <1/2, then

sup
Ix—y| < N72+4

N
E,E, [ exp [ J’[N_/] eVi(s, X(s)) ds] ]

x f(X(N) - x)//N)/EE, [ exp U )

fni]

eV(s, X(s)) ds” —3'
converges to zero as N — co. Thus if we put
dy=

J ay penviv(¥) gnly)
[x—~y| < N72+S

822/84/3-4-9
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it is sufficient to prove lim, _, ., y—ody=1. Again by Lemma 4.1 this is the
same as showing that the sequence

en= f dy pran.v(¥) gny(¥)
R

converges to 1 as N goes exponentially fast to co. However, this last fact
is a consequence of Lemma 4.3. QED

APPENDIX. EXISTENCE OF SPECTRAL GAP
Here we shall show that the quantity A, defined by

Ay =g, Arug) + A ug, (4ol —Ao)_1 Ayugy

is strictly negative.

Our first goal will be to prove that 4, <0. To do this let & = tn, where
teR and ne R is a unit vector. Suppose ve L*(Q,) is a function which is
pure imaginary and orthogonal to u,. It is clear that

Cug+ 10, A(ug+ 1) ) < (Jug + tv], Ag |ug + tv])

< [ Aol - llug + 1ol
= || 4oll [lluoll* + 22 [[v]}*] (A1)

where |u, + tv] is the function defined by

[tg + tv] (x) = |ug(x) + tv(x)], xeR?
We have now that
Qug+ 1o, A(ug+10))
=uUg+tv, (Ag+ 1A, + 2A4,)(ug + tv)> + O(£3)

= [ Aoll - Nuol® + <, Agv) + 263 ug, A\v) + 1*Cug, Ayugy + O(t*)
(A.2)

In this last identity we have used the fact that v is pure imaginary, since it
implies that (uy, A,v) is a real number. Now if we let r— 0 in (A.1) and
(A.2) we easily see that

Cug, Axttg) +2<uy, A1v) — v, ([ Aoll — Ag)v) <O

Taking v=(||4oll — A4¢) ™' A,u, in this last inequality yields 1, <O0.
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In order to prove that A, <0, we need to obtain a formula for the
difference between the LHS and RHS of (A.1). We have that

<u0+tu,A§(u0+tv)>=f j dxdy S f(x, y.m)

Qo mezd

where
Sx, y,m) = [ug(x) — to(x)] K(x, y +m) e® "[ug(y) + 10(y)]
Hence we have

[Cup+ tv, A{ug + )|

[ [ axdr T fosoyom)

mezd

[ [, axar 5 1wy |

mez!

_%Jgojgodxdy Y j j dx' dy'

mezd Q0" Qo

x Z Hf(x9 V> m)l f(X’, y’s ml)— lf(x,a yla m,)l f(xa Vs m)|2
mezd lf(x’ Y, m)l : |f(x,’ yl’ m,)l

(A3)
It is clear that

|/ Cx, y, m)| = Luo(x)* + 22 [o(x)*1'2 K(x, y +m)[uo()* + £ [o(»)1*]'
Consider the function g,(x) defined by
gdx) = Lug(x)* + 22 |0(x) 212 — ug(x)
Then we have

Jo [ sy 3 1fx v

mez!

=g, +ug, Aolg,+ 1))
= [ Aol [||u0||2+ ? ”0"2] +< g, +ug, (Ao — 4ol ) g, +uo)>
= [l doll [Nuoll> + 2 l0]I*] + < &/, (4o — 40l £,
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Since g, = O(+?), we conclude that

Jo o @xdr S 1Ayl = ol [luol+ £ 1011+ O (Ad)
Next we write |
f(x, y,m)=ay+ta, + O(£*)
Since
S (x, y, m) = [ug(x) — tv(x)] K(x, y +m)
X [1-+itm - n][uo(y) +10(7)] + O(£%)

it follows that

ao=uo(x) K(x, y +m) ug(y) (AS)
a;=i(m-n)ag+uy(x) K(x, y+m)v(y)—ov(x) K(x, y+m)uy(p)
Observe that a, is real while a, is pure imaginary. We conclude that
LS, y, )l (', y', m') = | f(x', ', )] f(x, y, m)
=aplay+tay] —apl ap+ ta, 1+ O(1?)
=tlagd) —a,] + O(t?)

where ag, a) are the quantities for f(x’, y', m’) corresponding to a,, «,.
Hence

”f(.\‘, y: n7)| f(x'a J", n1,)_ lf(x’9 y,’ ml)l f(x’ ,V, m),.’!
If(xa Y, m)l * |f(x,’ J”» ’nl)l

2 laga — 06a1|2

+0(#?)

ayay
It follows now from (A.3)—(A.5) and the previous equation that
[Cug+ tv, A(ug + 1v) |
= (I 4oll [lluol®+£* l0112])

Sl e 2]

mezd Qo

fQ dx' dy'
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x Y K(x,y+m)K(x',y' +m')

m'ezd
X [ug(x) uo( y) uo(x") ug(y') i(m’ -n—m - n)
+ uo(X) uo(¥) uo(x") v(y') — uo(x") uo(y') uo(x) v(y)
— ug(x) to(¥) 0(x") ug( ¥") + ug(x") uo( ¥') v(x) o ¥)|?
x [uo(X) uo( y) uo(x") ug(¥")1~" + O(2?)

From (A.2) we have
| ug+ to, A(ug+ tv))|?
= (I 4oll - Hluoll*)?
+2 1 Aol - Nugl® £ v, Agv) +2{utg, A0 + g, Artg) ]+ O(F)
Comparing the coefficients of > in the last two identities, we see that

<U, AOU> +2<u05 Alv> + <u0a A2u0>

= 4ol - Iol* — 1(v)

4 [| Aol - lluol?

where
Iy = J Do J.Qo dxdy m:Z‘Z“‘ J‘Qo '[Qo o’ dy

x Y Kx, y+m)KX,y +m')

mezd
X |ug{x) uo(yY ug(x') ug(y') ilm’ -n—m-n)
+ ug(x) ol y) uolx") v(y") — uo(x") uo(y') ug(x) v(y)
— uo(x) uo( ¥) 0(x") ug( ') + o(X") o ¥') v(x) uo( ¥)|*
x [ug(x) tg( ¥) to(x") uo(y")] "

We shall show that I(v) >0 if v#0. To see this, we bound I(v) below by
the sum restricted to m =n?'. Thus, if

h(x, y, x', y') =uo(x) uo( ) uo(x") v(y')
—uo(x") uo( ') uo(x) v(¥) — uo(X) o y) v(x') o ¥')
+ ug(x") up( y') v(x) uo(y)
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we have
I{(v) = dx dy dx' dy'
'[Qo J~Qo on Qo

x > K(x, y+m)K(x', y' +m) |h(x, y, X', y)I?

mezd
X [ug(x) ug(y) ug(x') ug(y')] 7"

Observe next that

h(x, 3, X', y)
= —up(x) up( y) v(x") ug( y) + to(X") tp( y) v(x) up(y)
=ug(¥)? [ —ug(x) v(x") + up(x") v(x)]

If I{v) =0, then we must have

up(x) o(x") =uo(x) v(x), X, x'€Q

whence v{x) = cuy(x) for some constant ¢, It is easy to see that I(u,) > 0.
Hence I{v) >0 all v #0.
We finally conclude that A, <0 since

v={]l4,ll _Ao)~I Ayug#0
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