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We consider a system of random walks or directed polymers interacting with an 
environment which is random in space and time. Under minimal assumptions 
on the distribution of the environment, we prove that this system has diffusive 
behavior with probability one if d > 2 and fl < flo, where flo is defined in terms 
of the probability that the symmetric nearest neighbor random walk on the 
d-dimensional integer lattice ever returns to its starting point. We also obtain a 
precise estimate for the mean square displacement of this system. 

KEY WORDS: Random walks: directed polymers: random environment: 
martingales. 

1. I N T R O D U C T I O N  AND THE M A I N  RESULT 

A directed polymer system is a statistical ensemble of walks or paths in Z d 
parametrized by time. The graph of the walk in Z d+l is the "polymer" 
which moves at a constant rate in the time direction and so is called 
"directed." A more formal description of a directed polymer system is as 
follows. Let {X,,},,~>o be a simple random walk in 7/d on a probability 
space (/2, ~,, P). (n, X(n)) is our model of a directed polymer. Let P,. be the 
probability measure of {X,,} starting at x, and E,- be the corresponding 
expectation. For  convenience, we set P = Po and E = Eo. The environment 
is given by h(n, x), 17 ~ N, x E Z a, a collection of independent and identically 
distributed random variables on a probability space (/2H, ~ n ,  PH)' We 
also assume that h(n, x), ii e N, x s 7/a are independent of the random walk 
X. We use En  to stand for the expectation with respect to Pt~. The directed 
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polymer (n, X(n)) interacts with the environment {h(n, x), n~ ~, Xe7?d}, 
producing an interacting density 

j = l  

where f l>  0 is a constant. This density is unnormalized, and so we nor- 
malize it to 

qN(ll,  X) = q(n, x)/Zl~(n) 

where Z/s(n) is the partition function 

x j =  I 

The parameter fl describes the strength of disorder or the extent to which 
the directed polymer interacts with the random environment. When fl > 0 
is small, the interaction is weak, and when fl > 0 is large, the interaction is 
strong. We are interested in studying the asymptotic behavior of the mean 
square displacement of the interacting system 

Eli..,h( IX(n)l -~) : ~ x=qN(n, X) 
x 

E( [X(n)T 2 exp[fl Z~.'= i h(j, X(j))] ) 

Z/j(n) 

There are many papers dealing in physical terms with the asymptotic 
behavior of the mean square displacement E/j,,,,h([X(n)[ 2) as n-+ ~ .  The 
results in the physics literature are as follows. (i) When d~<2, the directed 
polymer is superdiffusive in the sense that Ep.,,,h([X(n)[ 2) behaves like 
n 2~ for some ( >  1/2. In particular, it is believed that <; = 2/3 when d =  1. 
(ii) When d > 2 ,  the directed polymer is diffusive in the sense that 
E+~, ,,, h( IX(n)[ 2) behaves like 17 as 17-+ ~ if fl > 0 is sufficiently small, and it 
is superdiffusive if fl > 0 is sufficiently large. The arguments in the physics 
literature are either heuristic or numerical; they are not mathematically 
rigorous. 

The first rigorous result concerning the asymptotic behavior of 
E/s,,,,h([X(n)[ ~-) is due to Imbrie and Spencer. They proved in ref. 6 that 
when d > 2 ,  if f l > 0  is small enough, and if for any n~t~ and x~7/d, 
h(n, x) = _ 1 with probability 1/2 each, then for typical realizations of the 
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environment, the directed polymer system is diffusive, in other words the 
following holds with probability one: 

lim E / ~ ' ' d l X ( n ) l Z ) -  1 (1) 
n ~ cr~ I ' /  

They actually obtained in ref. 6 a more precise estimate than (1). Later, 
Bolthausen ~-'1 used a martingale approach to prove a central limit theorem 
for the system given in ref. 6. By means of the martingale approach, 
Albeverio and Zhou t~l recently obtained a Wiener process behavior and a 
precise mean square displacement for the system given in ref. 6. However, 
the coupling constants fl > 0 given in refs. 1, 2, and 6 are assumed to be suf- 
ficiently small. There is no rigorous result concerning the asymptotic 
behavior of Ep. ,,. h( ]X(n)] 2) when d ~< 2. 

It seems that the assumption that h(n, x ) =  4-1 with probability 1/2 
each is probably not the assumption physicists had in mind. This is because 
Olsen and Song ~gJ proved that when d>~4, if h(n, x ) =  _ 1 with probability 
1/2 each, then (1) is always true with probability 1 for all fl > 0, contra- 
dicting the results in the physics literature. The assumption physicists had 
in mind about the distribution of the environment is probably that h 
follows a continuous distribution, like the normal distribution or a uniform 
distribution. 

In this paper we study the asymptotic behavior of random directed 
polymers under the following more general assumption on the environment 
variables h(n, x): 

E H e x p [ y h ( n , x ) ]  <co,  V),>O 

Normal distributions and uniform distributions certainly satisfy the above 
assumption. 

Our way of approaching the problem above is that we first ignore 
the coupling constant fl and assume that f l=  1. For convenience, put 
Z ( n ) = Z t ( n )  and E,,.h=El., , .h . Let 

exp[h(n, x ) ]  -- E~t exp[h(n, x ) ]  
H(n, x) - 

EH exp[h(n, x)] 

and put 2=EH(H(n,  x)-'). In this paper we prove the following result: 

T h e o r e m  1. Suppose that d > 2 .  If 

1 --Pd 

Pa 
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then with probability 1, 

lim E,, h(IX(n)l 2) 
�9 - - 1  

where Pa is the probabili ty that the random walk X(n) ever returns to its 
starting point, 

pd=P(X(i)=O for some i > 0 )  

Sinai II1~ also studied the diffusive behavior of the above system�9 Under 
the same assumption as in Theorem 1, Sinai I111 obtained a diffusive 
behavior (in the weak sense) for this system. Here we prove that this 
system has diffusive behavior with probability one. A more precise form of 
Theorem 1 will be given in the next section (see Theorem 2 below). 
Moreover, we will still use the martingale approach to prove our main 
result. 

It would be very interesting if one could find the "critical" value 2,. 
such that when 2 < 2,. the conclusion of Theorem 1 is true, while when 
2 > 2,. the conclusion of Theorem 1 is not. We have not been able to do 
that yet. However, Theorem 1 tells us that 20 = ( 1 --Pd)/Pd is a lower bound 
for 2,_ It is known that pd~O as d ~  co, thus 20--* c~ as d--* ~ .  We also 
know that p3=0.340537 ... (see, for instance, ref. 12). For numerical 
values of Pd for 4 ~ d ~< 20 and some other values of d, see ref. 3. 

Theorem 1 can be easily translated into the language of random 
directed polymers. For  instance, the following result is a direct consequence 
of Theorem 1. 

Corollary 1. Suppose d > 2  and that for any nel~l and x ~ Z  a, 
h(n, x) follows the standard normal distribution. If fl < ( - In Pal)1/2, then for 
typical realizations of the environment h, our directed polymer system is 
diffusive, or more precisely 

lim Ea'"'h(IX(n)12)-- 1 

with probability 1. 

Proof. If we replace h(n, x) by flh(n, x) in Theorem 1, then under our 
assumption that h(n, x) is a standard normal random variable, we have 

2 = e a' - 1 

The inequality 2 < (1 --Pd)/Pd is equivalent to fl < ( - I n  Pal)I/2. Q E D  
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As a consequence of Theorem 1, we can easily get the following result, 
which is a generalization of the main result of ref. 9. 

C o r o l l a r y  2. Suppose d~>3 and that for any n ~ N  and x ~ Z  d, 
h(n, x) = _ 1 with probability 1/2 each. Then for any fl > 0, we have 

lim Ep,,,,h(lX(n)['-)= 1 
n ~ ~ 17 

with probability 1, i.e., for typical realizations of the environment h, our 
directed polymer system is diffusive. 

Proof. If we replace h(n, x) by flh(n, x) in Theorem 1, then under our 
assumption about the environment, 

2 cosh(2f l ) -cosh 2fl 
= <1 

cosh-" fl 

while we know that (1 --Pd)/Pd is always larger than 1 when d~> 3. QED 

2. PROOF OF THE M A I N  RESULT 

In this section we prove our main result. First we need to introduce 
some notations and establish some preliminary results. 

Let ri = P(X(2i)= 0) be the probability that the random walk returns 
to its starting point at the 2ith step. Then it is known that 

~ r , -  (2) Pd 
i=, 1 --Pa 

(see, for instance, ref. I0). We use this identity several times in the argu- 
ment below. 

It is clear that 

exp 

so if we put 

then we have 

h(j, X(j)) = {E,~ exp[h( 1, 0)]}" [ 1 + H(j, X(j))] 
j 1 j = l  

x ( n ) = E  f i  [ l  + H ( j ,  X(j))] 
j = l  

Z(n) = {E u exp[h(1, 0)] }" K(n) 

822/85/I-2-19 



282 Song and Zhou 

and 

E (IX(n)l 2) n, /t ~ -  

E (  ' " IX(n)l- I - - [ ~ =  1 [1 +H(j ,  X(j))])  

K(n) 

Let us first prove two lemmas. 

Lemma 1. For d > 2 ,  if 

1 - -Pd 

Pa 

then h'(n) converges almost surely to a random variable ( satisfying 

Eu(  = 1 and Pn( (  = O) = 0 

Proof. It is easy to see that {K(n)}.~, is a Pn-martingale with 
respect to the o-fields ~ generated by the variables h(m, x), m ~< n, x e 7/d. 
Therefore K(n) converges almost surely by the martingale limit theorem. 
say, to (. 

Let { Y(n)},,~o be an independent copy of {X(n)},,~o. We assume that 
{ Y(n)} ,, ~ o is also independent of the environment. Then 

Eu(x(n)2)=Eu E [ I + H ( j , X ( j ) ) ] [ I + H ( j ,  Y(j))] 

c ) = E  E u I-I [I +H( j ,X ( j ) ) ] [ I  +H(j ,  Y(j))] 
\ j = l  

n 

= E  I-I (1 +) . l lx ( j  = nj~l) 
j = l  

k = l  1 ~ i 1 <  "-. < i k ~ < n  

= 1 + ~  2k E 
k ~ l  I ~ i l  < . . -  < i k ~ n  

~< 1 + 2 k r,. 

k = l  j 1 

k= l \ 1 - P a /  

P(X(il)= Y(il) ..... X(i~)= Y(ik)) 

r i l  ri~. - i l  " " " r i k  - -  i k -  I 
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where we used (2). Therefore  under  the assumpt ion  2 < ( 1 - - P d ) / P d ,  w e  

know that  

sup E/e(K(n)-') < 
I1 

hence we can conclude that  K(n) converges to ( in L 1 and L 2. Therefore  
En(() = 1 a n d  P n ( (  = O ) <  1. It  is easy to see that  the event { ( = 0 }  belongs 
to the tail field 

('] tr(h(m, x): m >1 n, x ~ Z d) 
tl 

and thus by K o l m o g o r o v ' s  z e ro -one  law we know that  Pn((  = 0) = 0. Q E D  

Let 

f , = E  (- I [l + H(i,X(i))](lX,,12-n),  Vn~>l 
~=, 

Then it is easy to check that  {3'~,},,>.] is a P ~ / m a r t i n g a l e  with respect to 
the filtrations ~,,. 

I . e m m a  2. Fo r  d > 2 ,  if 2<(1--pd)/pa. then there is a constant  
C(d)E(O. oo) such that  

( C(d), d> 6 

Enf~, <~ ~C(d) log n, d =  6 

(C(d)  n 3-d/2, 2 < d < 6  

Proof.  Again let { Y(n)},,g o be an independent  copy of {X(n)},,~ o, 
and assume that  { Y(n)},,>~o is also independent  of  the environment .  Then 

En(f~,)=Et4E [l+H(i, Xi)][l+H(i, Y,)3(IX,,IZ-n)(IY.12-n) 

(H ) = E  (l+2trll:~,=r,i)(iX,, i2-n)([Y,,12-n) 
i 

= ~.,~k Z E(IX,,12-n)(IY,,I 2-n) lcx,, 
k = l  1 ~ < i 1 <  . - .  < i k ~ < n  

Z 
k = l  l ~ < i l <  ' "  < i l . . ~ < n  

E 
k = l  I < ~ i l < . . . < i k < ~ n  

= } 'q  , . . . ,  X,,~. = Y~k} 

E(IX, kI'- --ik)(I  Yikf 2 --ik) 1 {x,, = r,t.. .x,,.= v,k I 

E( I Xi~ I 2 _ ik)-" 1 { xi, = r , .  t ..... x,~ = r~k I 
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Noting that 

k 
IXe, l-~-ik = ~ (IX,,-X~_,12-(ij-i}-,)) 

)~1 

+2 [ YG.}- Z(ij,-,) ][ X(6,)- X(6,-,)] 
1 ~Jl  <j.~<~k 

we get that 

<2 [pr,-x,j_,l'--(6-i;_,}] 
j 1 }, { +2 2 E [x(6,}-x{6-,I]Ex(6)-x{6,-,}] 

4 2  [ IXo-X, j_~[2-( i j - i j_ , }]  
j i 

+ 2 ( k -  1) 2 IXi-Xi,_, l  2 

k 
<~2k 2 ~, [ I X i j - X i y _ , 1 2 - ( 1 } - i l _ l ) ]  2 

. i s  1 

k 

+ 2 ( k - 1 ) 2 k  2 ~ IXi,-Xo_,l 4 
j = l  

k 

<2ka[1 + 2 ( k -  I} 2] Z [ I x , , - x , , - , 1 2 - { 6 - i ~ - , ) ]  2 
j ~ l  

k 
+4(k-1) - 'k  2 ~ (ij-ij_,) '-  

j = l  

Therefore EH(f~) is less than or equal to 

f 2k2[I +2{k-1}2] Xk 
k = l  

k 

• Y Z E{EIX,,-X,;-,I'--{~J-ii-,)]'- 
I <~il < . . .  < i k ~ n  j =  1 

x ] ~j~. ~ ~,  ..... x~. = n d  ) 
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k 

+ k 4 ( k - l )  2k-'xk E E ( i j - i j  -1)2 
k =  1 1 <~ i l  < " ' "  < i k . < ~ n  j =  1 

x P(X(i:)  = Y(i I ),..., X(ik) = Y(ik)) 

=:  1, + 12 

It is easy to see that 

k 

12 = 4 ( k -  I )  2 k " 2 '  ~ ~ r , , r , ,_ , , . . . r ik_,k_, ( i j - - i j_ , )  2 
k = l  1 ~ i 1 <  . . .  < & ~ n  j = l  

,) 4(k - 1 ) 2k32 k r~-  i t_ri 
k = l  i 1 i 1 

f O(1),  d > 6  

~< ~ 0 (  1 ) log n, d = 6 

L O ( 1 ) n  3 - a / 2 ,  2 < d < 6  

where we used the fact that when  i is large 

ri ~ 2 \ ~ j  

N o w  we es t imate  I~. N o t e  tha t  for I ~<j ~< k, 

E(EIX,,-x,~-, I=-(O-O-,) ] :  : I ~,, = ,?,..... ~,, = ~,~.) ) 

= rij+~-ij"" rik-ik_~E{ I I x(i,) = Y(i,)..... x(6_,)= nO-,)) 

xE([lX(ij-ij_,)12-(t)-ij_,)] = 1 by. j_ ,~_ ,) = y,.-._ o_ .)) ) } 

r i j + 1 - 0 " "  r & - - i k - i  E t 1 {.v(i,) = Ytit)..... x(,)_:) = Y(ij-t)} 
L 

x ~ E(EIX( i j -O_, ) l=- (6-G_,) ]  2 
x 

- } x l lxuj_O_,~=, . IP(Y( i j - - i j_~)=x))  

0 ( 1 )  r ij§ l _ ij " . " r i k_  ik_ ,( i j  - -  i j _  l ) - d / 2  

x E{ I C x, , ,  = ,.,;, ,..... x,,j_,l= r,j-,,l E ( [ I X ( i j -  ij_l)l-" - (ij - i j_ ,  ) ]z)}  

~< O(1)  ri, . . .  %_, _o_.r o+,-o"  " rik-i,._,( i j -  ij_ l) 2-a/'- 
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where we have used that facts that 

and 

Therefore we have 

E([ IX(i)I-' - i]-') ~< O(1) i 2 

P( Xi  = x )  <. O(1) i -d/2 

I, <~ O(1) • 2k3[ 1 + 2 ( k -  1)-'] 2 k "i ~ i-'-a/2 
k = l  i 1 i = 1  

~ O(1), d > 6  

~< ~O(1) log n, d = 6  

( O ( 1 ) n  3-a/'-, 2 < d < 6  

The proof is now complete. QED 

R e m a r k  1. By modifying the above argument, we can actually 
prove that if 0 < 2 < ( 1 - P a ) / P a ,  then there is a constant Ode (0, ~ )  such 
that: 

(i) lim . . . . .  E n f ~ ,  = ca for d >  6. 

(ii) lira . . . . .  E~ , f~ , / log  17 = Ca for d =  6. 

(iii) lim . . . .  n - 3 + a/,_EHf~ ' = Ca for 2 < d < 6. 

The following theorem is an improvement of Theorem 1. 

T h e o r e m  2. Assume 2 < (1 --Pa)/Pd.  

(i) If d >  6, then there is a finite random variable ~ such that the 
following limit holds with probability 1: 

lim (E..I, I X , , 1 2 - - n ) = {  

(ii) For d = 6 ,  for any given fie(0, 1) there is a finite random 
variable t /such that the following holds with probability 1: 

IE..h IX. l - ' -n l  ~< r/(log n) j/2+6, Vn~>2 

(iii) For 2 < d < 6 ,  for any given r e ( 0 ,  1) there is also a finite 
random variable r/such that the following holds with probability 1' 

[E,,,h IX,, l'--nl ~<qn 3/2-d/4 +6, Vn I> I 
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Proos The p roo f  of  this theorem is similar to that  of  Theorem 1.1 of  
ref. 1. We provide the p roof  of  (iii) here for the reader's convenience. 

Set a,, = n  ~/~, Vn >/I .  By Lemma 2 we can show that  

EH( J f~. [ 1 I If.. I > ,,]/-'- a/4 + ~/) ~< a,]- 3/2 + a/4 - '~EH( If,,. [ z) 

~< O( l )  a,-~ 3/2 + d / 4 - 6  a 3 - d / 2  

-- O(1) a]/2-a/4-~ 

Thus by Theorem 2.4 on p. 16 of  ref. 4 we have that 

PH( max If,] > 2a3/2-d/4+6) <~ a,73/2+a/4-6EH(lfo,,] l ll:o i > 3/_,-a/4+fi) 
1 <<.i<~an 

<<. O( 1 ) a-3/2+d/4-'sa3/2-d/4-'5 
n -- tl 

-2,~ O ( 1 ) n - Z  = O(1) a,, = 

Let 

D o =  { max If,-I <~2a3/2-d/4+6} 
n 1 n = m  l ~ i < . a n  

Then using the Borel-Cantel l i  lemma, we can get that  P /~(Oo)= 1. It is 
easy to see that  when n is large, 

a 3 / 2 - - d / 4 + 6  ~ l _ r t 3 / 2 - - d / 4 + 6  
i i -  1 .~" 2 ~ * n  

For  each co ~ I2 o, there is N(co) > 1 such that  

max If, I <~2a312-d/4+a, Vn>~N(co) 
I < . i < . a n  

If  i>~aNi~, I, there is Nl(co)>>. N(co) such that  

and so 

Cl N l (o J )  ~ i < a Nl(Og) + I 

Jill "%< max [fj[ 
1 ~ j ~ a N l { t O )  + I 

2a 3/2 - w4 + 
N I ( ~ )  + 1 

~ A,-~3/2  - d / 4  + 6 
~ N I ( O J )  

<~ 4i3/2-d/4+a 
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In other words, for each tong2 o, there is N(co)> 1 such that 

I/;I <~ 4i3/2-d/4+'~, Vi>~aNto,) 

Let ~o c g2/~ be the collection of co such that for each co ~Qo, 

lim x(n) = ( > 0  
I I ~  oc  

Then we know from Lemma 1 that P H ( ~ o ) =  1. From Lemma 1 we also 
know that for each co ~ ~o,  there is M(co) >~ 1 such that 

((i)>~�89162 Vi>~M(co) 

Thus for each co ~ ~o ~ Oo, 

IEi, h IXil 2 il If/I _<8 i3/2_d/4+a Vi>~aN~,o ) V M(CO) -- = ; ( ~  

which proves (iii). 

R e m a r k  2. As in ref. 1, we can also get a Wiener process behavior 
with probability one for our system with 2 < ( 1  --Pd)/Pd. 
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