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Ideal Magnetofluid Turbulence in Two Dimensions 
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A continuum model of coherent structures in two-dimensional magnetohydro- 
dynamic turbulence is developed. These structures are macroscopic states which 
persist among the turbulent microscopic fluctuations, typically as magnetic 
islands with Ilow. They are modeled as statistical equilibrium states Ibr the non- 
dissipative dynamics, which conserves energy and families of cross-helicity and 
flux integrals. The model predicts that from a given initial state an ideal 
magnetofluid will evolve into a final state having steady mean m~,gnetic and 
velocity fields, and Gat, ssian local fluctuations in these fields. Excellent quali- 
tative and quantitative agreement is found with the known results of direct 
numerical simulations. A rigorous justification of the theory is also provided, in 
the sense that the continuum model is derived from a lattice model in a fixed- 
volume, small-spacing limit. This construction uses the discrete Fourier trans- 
[brm to link the discretization of x-space with the trunc~,tion of k-space. Under 
the ergodic hypothesis and a separation-of-scales hypothesis, the lattice model 
is defined by a mean-field approximation to the Gibbs measure on the dis- 
cretized phase space. A concentration property shows that this measure is 
equivalent to the microcanonical measure in the continuum limit. 

KEY WORDS:  Magnetohydrodynamics; turbulence; coherent structure" 
statistical equilibrium; maximum entropy; discrete Fourier translbrm. 

1. I N T R O D U C T I O N  

A conspicuous feature of high-Reynolds-number magnetohydrodynamics 
(MHD) is the formation of long-lived, large-scale organized states, or coherent 
structures,-amid small-scale turbulent fluctuations. This organization 
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phenomenon is clearly exhibited by two-dimensional systems such as occur 
in the plane perpendicular to a strong magnetic fieldJ 4"241 Indeed, direct 
numerical simulations ~5 7. 31.2~ show that a freely evolving, slightly dissi- 
pative 2D magnetofluid relaxes toward a state in which the magnetic and 
velocity fields exhibit small-scale local fluctuations around a steady mean 
state that varies on the large spatial scale. The coherent structure defined 
by these mean fields typically assumes the form of one or more magnetic 
islands, generally with flow. A similar phenomenon occurs in 2D hydro- 
dynamics at high Reynolds number. In that setting, the coherent structure 
usually consists of a steady vortex flow that persists in the midst of small- 
scale vorticity fluctuations. '-'~'~ Unlike nonmagnetic hydrodynamic tur- 
bulence, however, M H D  turbulence is expected to be qualitatively similar 
in two and three dimensions. 

These coherent structures in fluid or plasma turbulence can be 
modeled as statistical equilibrium states associated with the conservative 
(nondissipative) dynamics governing the system. Such an ideal model, in 
which the effects of fluid viscosity and electrical resistivity are ignored, is 
justified whenever the magnetic and kinetic Reynolds numbers are suf- 
ficiently large. Indeed, the organized states in question vary on a spatial 
scale comparable to the domain size, and form on a temporal scale that is 
short compared to the corresponding dissipation time. Moreover, the small- 
scale local fluctuations attached to them are also controlled by the ideal 
dynamics, since they occur in some inertial range of scales. While the 
behavior of cascades and other transfer processes cannot be captured in 
such a statistical equilibrium model, the organized state itself can be 
characterized by the general principle that entropy be maximized subject to 
the constraints dictated by the ideal dynamics? ~ 2~ 

Two fundamental difficulties are confronted, however, when the 2D 
M H D system is placed in this theoretical framework. First, the continuum 
system is infinite-dimensional, and hence some kind of discretization is 
required to make it amenable to a probabilistic treatment. Second, the 
ideal dynamics conserves not only energy, but also two infinite families of 
cross-helicity and flux integrals, which give the system its distinctive 
character. The compatible resolution of these difficulties accordingly 
becomes a key point in the construction of a statistical equilibrium model. 
As is explained in the review by Kraichnan and Montgomery, ~2-'~ models of 
this kind therefore tend to fall into two categories: "k-space models" and 
"x-space models." While these categories principally refer to whether the 
system is truncated in wavenumber space or discretized in physical space, 
they also relate to how the conserved quantities are included in the model. 

The k-space model for 2D M H D  turbulence, indicated by Lee, ~23~ was 
developed by Fyfe and Montgomery. ~3~ This statistical equilibrium theory 



Ideal Magnetof lu id  Turbulence in Two  Dimensions 663 

is based upon a canonical measure for a truncated spectral representation 
of the governing equations. While this model captures some of the essential 
features of the turbulent state, it accounts only for the purely quadratic 
invariants of the ideal dynamics, ignoring the invariants that are not easily 
expressible in a spectral form. As a result of this simplification, it yields 
equilibrium distributions whose mean magnetic and velocity fields vanish 
identically, and hence it fails to predict a (nontrivial) coherent structureJ 34~ 
Instead, it contains finite energy fluctuations in the lowest mode, which in 
the continuum limit contradicts the equivalence-of-ensembles postulate on 
which the theory rests. These defects of the k-space approach are removed 
in recent work by Gruzinov and Isichenko, ~j4" J7~ who use a formal 
asymptotic analysis to build a steady mean state into the model. They 
obtain a meaningful continuum limit by appropriately rescaling the inverse 
temperature-like parameters in the canonical ensemble with the number of 
spectral modes. Their analysis, which ultimately relies on a separation- 
of-scales assumption, shows how the conserved integrals (energy, cross- 
helicity, and flux) partition between the large-scale mean state and the 
small-scale fluctuations. 

The x-space approach is taken by Montgomery et  al. ~29~ Their model 
uses a field-line discretization of the current density and vorticity, com- 
bined with an information-theoretic entropyJ ~8~ It yields equilibrium equa- 
tions for the most probable state by maximizing this entropy subject to 
constraints on the classical conserved quantities. The predicted macro- 
scopic state is, however, not necessarily a steady solution of the MHD 
equations. This property, along with some arbitrariness in the construction 
of the maximum entropy principle itself, suggests that the underlying x-space 
discretization is too crude. A different x-space approach is proposed by 
the present authors. ~37~ Our model draws upon the ideas introduced by 
Robert ~32~ in the context of 2D hydrodynamic turbulence. The major 
innovation of this approach is the use of an x-parametrized probability 
measure (or Young measure) to provide the macroscopic description of the 
organized state. In the theory of 2D vortex structures, due independently 
to Robert et  al. ~32" 33~ and Miller e t  al., 127"2~ the macrostate represents a 
probability distribution on the values of the fluctuating vorticity field near 
each spatial point. (Methods of a similar nature were used earlier by 
Lynden-Belf in a heuristic statistical model of violent relaxation in stellar 
systems, ~25~ and essentially all such statistical theories of fluid turbulence 
have their roots in the pioneering work of Onsager ~3~ on the statistical 
mechanics of fluid vortices.) In an analogous manner, our theory of 2D 
magnetofluid turbulence makes use of an x-parametrized joint probability 
distribution on the values of the fluctuating magnetic and velocity fields. 
Such a description is valid under the hypothesis that the local fluctuations 
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occur on an infinitesimal scale at each point, and that they are 
uncorrelated between distinct points. This separation-of-scales hypothesis 
leads directly to a continuum x-space model governed by a natural con- 
strained maximum entropy principle. As is demonstrated in Ref. 37 the 
most probable state is a steady solution of the 2D MHD equations, and 
the local fluctuations are Gaussian. These basic results of our x-space 
model agree with those obtained by Gruzinov and Isichenko c ~7~ from their 
k-space model. 

In the present paper we give a complete theory of coherent structures 
in ideal 2D MHD turbulence, using a synthesis of the x-space and k-space 
methods. We examine the continuum model enunciated in our earlier 
paper t371 from two points of view. First, we analyze its predictions and 
compare them with some known results of direct numerical simulations. 
Second, we justify its formulation by deriving it as the convergent limit of 
a lattice model. This derivation, along with the construction of the lattice 
model, is perhaps the main contribution of the paper. We construct the 
appropriate lattice model (for doubly periodic boundary conditions) using 
the discrete Fourier transform, which allows us to exploit the relationship 
between truncation in k-space and discretization in x-space, and thereby to 
clarify the separation-of-scales hypothesis. Our lattice model is defined by 
a mean-field approximation to the classical Gibbs measure for the discrete 
system. In essence, our mean-field theory defines the simplest invariant 
measure on the discrete phase space that respects both the separation-of- 
scales condition and the complete family of dynamical invariants. 

The paper is organized as follows. In Section 2, we formulate the 
x-space continuum model in a general domain. The constrained maximum 
entropy principle that defines the model is developed in this section from 
intuitive, physical considerations. In Section 3, we analyze the statistical 
equilibrium states governed by the continuum model as thoroughly as 
possible, without resorting to numerical methods. This section extends the 
analysis published by Jordan ~ ~,;i for the special case in which the family of 
cross-helicity integrals is reduced to the classical quadratic cross-helicity. In 
Section 4, we construct the lattice model and use it to give a rigorous 
derivation of the continuum model formulated heuristically in Section 2. 

2. IDEAL M A G N E T O F L U I D  TURBULENCE 

2.1. Microscopic Dynamics. 

The equations governing ideal magnetohydrodynamics (MHD) are 
expressible in a normalized, dimensionless form as ~4' 241 



Ideal Magnetof lu id  Turbulence in Two Dimensions 665 

OB 
O-7=Vx(VxB),  V . B = 0  (2.1) 

OV 
0--7= V x ( V x  V ) + ( V x B ) x B - V P ,  V. V=O (2.2) 

where B is the magnetic induction field, V is the fluid velocity field, and 
P =  p + �89 V 2 is the total pressure head. The fluid is incompressible with 
mass density normalized to unity. The conducting and flowing medium is 
ideal in the sense that its resistivity and viscosity are both ignored. Under 
these conditions the induced electric field is given by E = -  V x B, and 
therefore it does not enter into the governing equations. Similarly, the 
pressure head P is determined instantaneously by B and V in response to 
the incompressibility constraint. For  these reasons, the state of the 
magnetofluid is completely described by the vector field 

Y(x, t) := (B, V) (2.3) 

which we shall call the field-flow state. 
We are concerned exclusively with purely two-dimensional systems. 

We let the domain D = R 2 be the crosssection of the spatial region D x R 
occupied by the magnetofluid, and we assume that the field-flow state has 
the form Y=(B~e~+B2e2, V~e~ +V2e2) in which the components are 
functions of x = (xt,  x2) ~ D. For the sake of simplicity, we take the domain 
boundary OD to be finite and regular. On 3D we impose the ideal boundary 
conditions n. B = 0, n- V = 0, with n normal to the boundary. Alternatively, 
in Section 4 we consider periodic boundary conditions on a rectangle D 
with fundamental periods L~ and L 2 in x~ and x>  respectively. In the 
periodic case, we also require that Y averages to zero over D. 

The induction Eq. (2.1) implies that the magnetic lines of force are 
frozen into the mass flow (the B-lines are advected by V) and that the 
magnetic flux of any tube composed of these lines is conserved by the flow 
(the flux of each B-tube is constant in time). In two dimensions these 
central properties of ideal MHD are expressed succinctly by the equation 

-~t + V. Vqs = 0  (2.4) 

for the flux function qs, which is defined by B = V x ~ t e  3 . The scalar advec- 
tion Eq. (2.4) is equivalent to the primitive Eqs. (2.1). In an analogous 
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fashion, the primitive momentum Eqs. (2.2) are reducible to the scalar 
equation 

6~O9 
- - +  V . V o 5 = B . V j  (2.5) 
0t 

in which o5 = e 3 - V • V is the vorticity and j =  e 3 �9 V • B is the current 
density. In contrast to the nonmagnetic situation, where the vorticity is 
rearranged by the flow it induces, the evolution Eq. (2.5) contains both 
advection and intensification, which arises from the J • B body force term 
in (2.2). These flux-vorticity equations for ideal MH D  in two dimensions 
are often useful in deriving properties of solutions. Moreover, they are 
intimately connected to the (noncanonical) Hamiltonian structure of the 
conservative dynamical system (2.1)-(2.2)/~5~ This structure is manifest 
once the stream function ~b is introduced by V= V • ~e3. The flux-vorticity 
equations can then be written in the form 

~t + c~(+, r  0o5 0~ 4- ~(o5, r =O(j, t~ ) 

using the canonical bracket on R 2 defined by 0(if, ~b)= e 3 �9 Vff x V~b. 
For use throughout the paper, we introduce a notation for the linear 

operators that mediate between the primitive vector fields B and V and the 
derived scalar fields ~b, j and ~b, o5. This is necessary because the statistical 
description of turbulent field-flow utilizes the primitive fields, while the 
conserved quantities and equilibrium equations involve the derived scalar 
fields. We let "curl" and "Curl" be defined by 

curl B := e 3 - V • B, Curl ~ := V x ffe~ (2.6) 

for any vector field B and any scalar field ~b. We note that curl acts on a 
vector and produces a scalar, while Curl acts on a scalar and produces a 
vector. These operators are adjoints in the sense that 

f/~ ~b curl B dx = I/~ Curl ft. B dx (2.7) 

for any ff and /~ satisfying the ideal boundary conditions. We especially 
need the inverses of curl and Curl. Let G be the Green operator for the 
boundary-value problem 

- A r  in D, ~b=0 on OD (2.8) 
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so that the solution is expressed ~ = Gj. Using the identity - A = curl Curl, 
we obtain the inverse operators 

curl tj:=Curl(Gj), Curl t B:=G(curlB) (2.9) 

for any scalar field j and any vector field B. We note that these formulas 
determihe the inverse operators completely, without further integrability or 
gauge conditions. Indeed, B = c u r l - ~ j  is solenoidal ( V . B = 0  in D and 
n- B = 0 on OD) for an arbitrary density j, and ~ = Cur l -  ~ B defines the 
flux function for the solenoidal part of an arbitrary field B. The identity 
(2.7) translates into the statement that curl-~ and Curl-~ are adjoints: 

~o (cur 1 -t B) ] dx = fl B. curl - i  ] dx (2 .10)  
) 

We use this reciprocal identity for several calculations in the sequel. 
The complete family of conserved quantities for two-dimensional 

M H D  is (39) 

E=~o �89 IBI-~ + FvI 2) dx (2.11) 

F , = I  J)( ~ ) d x  ( ~ = C u r l  'B )  (2.12) 

K,=~I, o)f~(~b)dx'=IB.Vf:(~b)dx (co = curl V) (2.13) 

The total energy integral E =  E,,,,,g + Ek~,l coincides with the Hamiltonian 
functional for the system. The families of conserved quantities F; and K i, 
indexed by i, are Casimir functionals that arise from the degeneracy of the 
(noncanonical) Hamiltonian structure. ~tS~ In both of these families, f i (~ )  
denotes an arbitrary (regular) real function defined on the range of the flux 
function if(x, t). This range is invariant under evolution by (2.4). It suffices 
to let i be a continuous index running over some interval L that param- 
etrizes the flux levels ~ = a; realized by all the magnetic surfaces in D. 
The physical meaning of the Casimir functionals is revealed by choosing 
J;(~)  = 1 c,~>-,l, the unit step function on the interior of the magnetic sur- 
face qs = a;. Then F; equals the mass and K~ equals the circulation inside 
the flux tube with index i~L That these quantities are constants of the 
motion can be verified directly from the flux and vorticity Eqs. (2.4) and 
(2.5). We refer to the integrals Fi and K~, in which f,.(~) is a general 
(regular) real function, as the generalized flux and generalized cross-helicity, 
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respectively. The second form of Ki noted in (2.13) follows upon an integra- 
tion by parts. The classical cross-helicity integral results from the particular 
choice.f'i(~b) = 1. (Here and throughout the sequel, prime denotes d/d~b.) 
We expect that E, Fi, K~ exhaust the set of global conserved integrals for 
the ideal dynamics, apart from those that arise from special spatial sym- 
metries depending on the domain geometry and boundary conditions. 

Both for analytical and numerical reasons, it is convenient to 
approximate the continuously hTfinite families of generalized flux and cross- 
helicity integrals by the linear combination of a finite number of such 
integrals. Accordingly, we choose some finite basis of functions ji(cr), 
i =  1 ..... h, with argument a ~ R ,  having suitable regularity and growth 
properties, and we retain only the corresponding integrals F~ and K~ for 
i =  1 ..... h. We then retrieve an arbitrary f ( ~ )  in the approximate sense that 

f ( f f l )  ~,~'= I C i j ; ' (~ )  for an appropriate set of constants G. Even for a fairly 
small h, we expect this approximation to be quite accurate, owing to the 
natural regularity of ~b. ~'- 38)We therefore adopt it throughout the sequel 
to ease the technical complications associated with continuously infinite 
families of constraints. 

2.2. Macroscopic Descript ion 

The evolution of an ideal magneto fluid is turbulent in the sense that 
the field-flow state Y= Y(x, t) spontaneously develops finite-amplitude 
fluctuations on small scales, even when its initialization y o =  Y(x, 0) varies 
smoothly over the domain. This behavior of the deterministic governing 
Eqs. (2.1)-(2.2) is strongly supported by direct numerical simulations, 
which necessarily pertain to a slightly dissipative perturbation of the ideal 
equationsj4-7.31.2t~ An extrapolation of these simulations to the ideal limit 
suggests that as time proceeds the fluctuations of Y reside on smaller and 
smaller scales around each point x, and that the correlations between these 
fluctuations at two separated points x and x' become weaker and weaker. 
In constructing a model of the final state of ideal turbulence, therefore, we 
are led to a description in which the fluctuations of Y= (B, V) have finite 
variance, occur on an infinitesimal scale around each point x, and are 
uncorrelated between distinct points x and x'. This turbulent state is not 
homogeneous, however, as it exhibits a nonzero mean field-flow Y= (B, V) 
that emerges on the macroscopic scale among the microscopic fluctuations. 
Indeed, high-resolution computational studies clearly demonstrate that a 
long evolution produces a coherent structure that varies on the scale of the 
domain size. c5' 34, 21) 

On the basis of these qualitative observations, we are now able to 
formulate our continuum model of ideal turbulence. We defer a rigorous 
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derivation of the model from the principles of equilibrium statistical 
mechanics until Section 4. Below we are content to derive a statement of the 
maximum entropy principle governing the model from intuitive, physical 
considerations. 

We base our continuum model on two postulates: an ergodic hypothesis 
and a separation-of-scales hypothesis. The ergodic hypothesis recognizes 
that the long-time average of the microscopic dynamics can be represented 
macroscopically by an ensemble average, which is defined by a statistical 
equilibrium measure. The separation-of-scales hypothesis implies that this 
measure can be factored into x-local probability measures on the fluctu- 
ating microstate Y(x). In other words, we express the microstate 
Y-- Y+ Y' in terms of the mean Y and the fluctuations Y', and we assume 
that Y varies on the scale of the domain, while Y' consists of finite 
variance, uncorrelated fluctuations localized at each point of the domain. 
Together these two hypotheses allow us to introduce a simple macroscopic 
description of the ideal MHD system. Namely, we consider the probability 
distribution p.,.(dy) on the values y~R 4 of the microstate Y(x, t) at each 
point x eD. This x-parametrized probability measure is defined by the 
property that 

f ,rdxf  l f f  p.,.(dy)= lim [{x~.~': Y(x,t)~".9}ldt (2.14) 
. : l l  T~,/. -T ) 

for all measurable sets f c D and ~ c R4; here, [5:[ denotes the 2-volume 
of a subset 5: of D. This definition means that for any spatial cell dx 
around x and any cell dy in the range of Y, the probability p.,.(dy) equals 
the average over dx of the statistical frequency with which Y takes values 
in dy; in symbols, 

-- lim lim 1 fro [x'edx" Y(x',t)Edy[ 
p,.(dy) ,,/.,-I~,, 7- . . . .  T Idxl dt (2.15) 

Alternatively, p,.(dy) can be interpreted as the time (or ensemble) average 
of the local volume fraction around x over which Y lies in dy. The macro- 
state p.,.(dy)" furnishes a macroscopic description of the field-flow state, 
which complements the microscopic description inherent in Y(x, t); it 
constitutes a "coarse-grained" version of the "fine-grained" field-flow state 
Y=(B, V). Our separation-of-scales hypothesis permits us to pose the 
continuum model in terms of this single-point, local probability distribution 
p.,.(dy) rather than a joint probability distribution over many points 
x~ I ..... x ~ m, with N--+ oo in the continuum limit. 
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Henceforth we shall use the probability density p.,.(y) of p.,.(dy) with 
respect to the 4-volume element dy as the macrostate for the system. In 
terms of p.,.(y) the defining identity (2.14) can be put in the simple form 

p,_(y) lim 1 r|r = 6 ( y -  Y(x, t)) dt (2.16) 
T ~ ' I _  - T  JII 

where 6 is the unit delta function o n  R 4, and the convergence is in the weak 
sense with respect to both x and y. This formal statement means that 

Ii I a(x ,y)p. , . (y)dxdy= lim 1 fc ~ f R~ r .... T dt I~ a(x, Y(x, t ) ) &  (2.17) 

holds for all bounded, continuous test functions a(x, y) on D x R 4. This 
identity is equivalent to the ergodic hypothesis, which equates the time 
averages with the ensemble averages of any functional having the form 
A( Y) = ~ ~) a( x, Y(x))dx. This special form of the test functionals A is 
dictated by the separation-of-scales hypothesis. In postulating the weak 
convergence of the empirical measures in (2.16), we also require that they 
satisfy a uniform integrability condition c3~ which ensures the convergence 
of their moments. In particular, this mild condition implies that the mean 
and variance of Y at x e D, namely, 

Y(x) := IR, YP"(Y) dy, v a r Y ( x ) : = f  [y-Y(x)['-p., .(y)dy (2.18) 
R 4 

are achieved as limits in (2.17) by taking a = ~(x) y and a = d(x) [y - Y(x)[-', 
respectively, for all test functions ~(x) on D. 

The various scalar and vector fields participating in the microscopic 
description of the ideal MHD system have distinctly different local statisti- 
cal properties. On the one hand, the variance of Y= (B, V) is expected to 
be finite in the continuum model. This fact is fundamental to our construc- 
tion of the macrostate p. On the other hand, the potentials ~ = Curl - ~ B 
and ~b = Cur l -  ~ V are expected to have infinitesimally small variance in the 
continuum limit, by virtue of the separation-of-scales hypothesis. Indeed, 
the insensitivity of ~b to the local fluctuations in B, which are uncorrelated 
at different points, can be seen heuristically by applying the law of large 
numbers ~ to the integral representation 

~(x) = I Curl,. g(x, x').  B(x') dx' 
D 
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where g is the Green function for - A  on D. As a means of formulating the 
continuum model, therefore, we assert that at each x e D 

~(x) = Curl '/~, var 44x) = 0 (2.19) 

A rigorous estimation of the variance of ~b constitutes a crucial part of the 
analysis given in Section 4. The analogous expressions also hold for ~b(x). 
Thus, the flux function and stream function coincide with their means. By 
a similar reasoning, we see that j and oJ are expected to fluctuate with 
unbounded variances in the continuum formulation, and accordingly their 
local statistical properties are not quantified in the continuum model. 

The statistical equilibrium macrostate p is taken to be the entropy- 
maximizing state subject to the constraints imposed by the conservation of 
energy, flux, and cross-helicity. In other words, the system relaxes on the 
macroscopic scale into the most probable state satisfying the given initial 
values of the conserved quantities. The entropy functional compatible with 
the separation-of-scales hypothesis is 

t" t" S(p) = - j , ,  j,r p, .(y/log p a y ) d x  dy (2.20) 

This classical Boltzmann-Gibbs-Shannon formula ~'-'~ admits the usual 
interpretation as the logarithm of the number of microscopic realizations of 
the macrostate p. Alternatively, it is identical with the Kullback-Liebler 
entropy c ~  the measure p, . (dy)dx on D x R 4 of relative to the spatially 
homogeneous measure dx dy. Its form is dictated by two properties of the 
ideal turbulence: (1) as an integral in x, it imposes independence on the 
fluctuations at separate points in D; (2) as an integral in y, it puts uniform 
weight on the entire range R 4 of the fluctuations. The full justification of 
these postulated properties rests on the Liouville property of the underlying 
dynamics, as is shown in Section 4. 

The entropy serves as the objective functional in the maximum 
entropy principle which determines the statistical equilibrium state. The 
constraints in this principle, which give the system its special character, are 
imposed on the following functionals of p: 

E(p) = f~, fR~ "(- Ibl-" + Ivl 2) P.,.(Y) dx dy (2.21) 

FAp) = f~ f,.(~(x)) dx (2.22) 

Ki(p)= I,, fe b . vf',((k(x)) p.,.( y) dx ely r 

g2Z87 3-4-14 
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in which b and v each run over R 2 with y = (b, v), and ~ is defined by (2.19). 
These expressions are derived by applying the time-averaging identity (2.17) 
along with the property (2.19) to the conserved quantities (2.11)-(2.13) for 
the microscopic dynamics. Again, the rigorous derivation is delayed until 
Section 4. 

With the objective and constraint functionais in hand, we finally arrive 
at the maximum entropy principle for the statistical equilibrium state p: 

S(p)  --* max over E ( p ) = E  ~ Fi(p)  = F  ~ K j ( p ) = - K  ~ i (2.24) 

where the constraint values E ~ F} ~, and K ~ are derived from a given 
microstate yo. Of course, p must also satisfy the positivity condition, 
p.,.(y) i>0, and the normalization constraint, IR, P.,.(Y)dy= 1 for all x e D .  
This constrained optimization problem completely specifies the continuum 
model. Its solution p represents the final state that emerges after a tur- 
bulent evolution from a given initial state. 

3. PROPERTIES OF STATISTICAL EOUILIBRlUM STATES 

3.1. Analysis of Solutions 

The equilibrium equation satisfied by the solution to the maximum 
entropy problem is obtained from the Lagrange multiplier rule 

3S = fl 6E + ~ oL, OF, + Z 7', OK, (3.1) 
i i 

which holds on the subspace of variations 6p satisfying the local normaliza- 
tion J6p, .(y)dy=O. Here 6~ denotes the first variation of a functional 
�9 (p) with respect to p. The multipliers /7, ~ ,  ~,~ for the constraints are 
analogous to the "inverse temperature" in usual statistical mechanics/~ -'> 
We calculate the functional derivatives appearing in (3.1) to be 

c~S= - f f  [log p.,.(y)] c~p.,.(y)dx dy (3.2) 

6E=II �89 + Ivl 2) 6p.,.(y) dx dy (3.3) 

6E = f~ b . curl - ' J"~( ~s ) 6p.,.(y) dx dy (3.4) 

6K,=fIb.{f',(~s)v+curl-t[B. Vfi '( .~)]} 6p,.(y)dx-dy (3.5) 
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where each double integral extends over x eD and y = ( b ,  v )~R 4. The 
calculations (3.2) and (3.3) are straightforward, while (3.4) and (3.5) 
deserve some explanation. We obtain (3.4) by the following steps: 

,SF, = f f ' , ( ~ ) a ~  dx 

= f i (q / )Curl  -I c~/~dx 

f cu r l - '  f ' ; (~) .  6/~ c/x 

f f  cur l - '  f ' j (~) ,  b (Sp.,.(y) dx dy 

in which we appeal to the adjoint formula (2.10). We get (3.5) by a similar 
sequence of steps, which now involve the mean cross-helicity density 

B. V ( x ) : = f  b.vp.,.(y)dy (3.6) 
d R 4 

Upon substitution of these expressions into (3.1), we deduce that the 
statistical equilibrium macrostate p has the local canonical form 

p.,.(y) = Z.,7' exp[ -flq(Y; 2(~),/~(~))] (3.7) 

with 

Z,-= IR, exp[ -flq(y; 2((J),/t(~))] dy (3.8) 

Here we introduce the quadratic tbrm 

q( y; 2,/t) '=  �89 Ibl 2 + Iv] 2) 

- b  .curl -I 2 ( ~ ) - b .  {/t(~) v + cur l - J [B �9 V/J'(~)] } (3.9) 

and the profile functions 

2(a) := - f l - '  ~ o~if',(a), lt(a) = - f l - '  Y. y,j",(a) (3.10) 
i i 
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We see immediately that the solution p.,.(y) is a Gaussian density in y 
for every x~ D. We also note that the covariance matrix for these local 
distributions depends implicitly on the mean field ~(x). Moreover, this 
dependence is nonlinear and nonlocal, owing to the presence of the 
(nonlinear) profile functions 2 and p and the (nonlocal) operator curl-~. 

We extract the mean field-flow Y =  (B, V) and the fluctuations 
Y ' =  Y - Y  from the basic formula (3.7) by introducing the variables 
b ' =  b- /~(x) ,  v '=  v -  if(x), in terms of which we get the normal form 

q = � 8 9  ' - t -v t t (~) - -~_[1-p(~) ; ]  IB[ 2 (3.11) 

and the mean field-flow equations 

/~= cur l - ' [2(~)  + B. Vp'(~)]  +p(~b) V 

V=~(~) B 

The equilibrium macrostate is then given by 

(3.12) 

(3.13) 

after some straightforward manipulations. We now proceed to analyze 
these equations for the joint Gaussian distribution on B and V. 

The 4 x 4 covariance matrix for Y at x ~ D is readily deduced from 
(3.14), giving 

varB, =var  B_, =var  V, =var  V2=f l - ' [1  - / t ( ~ )  2] -j  (3.15) 

cov(Bj, VI) =coy(B2, V z ) = f l - ' / l ( ~ ) [ 1 - p ( ~ ) - ' ] - '  (3.16) 

along with cov(B~,, Bq)=cov(Vt,, Vq)=cov(Bl , ,  Vq)=0 for p r  From 
these formulas we see that p(~b) is the magnetic-velocity correlation, 

c~ Vt') ( p -  1, 2) (3.17) /.t(~) = corr(Bp, V r ) : = ~  ~ V~, 

We observe that these expressions require that 0 < f l <  ov and - 1  < 
I t (5)  < 1, with equality in degenerate cases only. 

The energy density and the cross-helicity density are given by 

�89 + I VI-') = �89 + ] El2) + 2 p - ' [  1 -~(~)- ' ]  - '  (3.18) 

B.  V = B .  V +  2 f l - '  p(~)[  1- /~(~)- ' ] - '  (3.19) 

2 exp ,v,2_ } ,314, 
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using (3.15 ) and (3.16), respectively. Consequently, the equilibrium expres- 
sions for the energy and generalized cross-helicity are 

1 2 1 E=f~(IBl2+lVl2)dx+-flf l_lz((k)2dx (3.20) 

2 K,=IB. Vf:((J)dx+-~f l_~(~)2f',((J)dx (3.21) 

These expressions exhibit the partitioning of E and K; into mean and 
fluctuation parts. By contrast, the generalized flux F i resides entirely in the 
mean. 

The mean field-flow Eqs. (3.12)-(3.13) reduce to a single equation for 
the mean magnetic field, upon eliminating ff and substituting (3.19) for 
B.V: 

[1--/~(@)2]B=curl-'[2(@)W/~(@)/g(@){I/~12-t-2fl '[1--/~(@) 2] '}] 

(3.22) 

In turn, this equation simplifies to a scalar equation for ~, by taking curl: 

]-it((J) c0 = A(~) :=  2 (~)+  2fl- 'kt(~)/t '(~)[ 1 _/~(~)2] -, (3.23) 

We draw the important conclusion that the mean field-flow (B, V) is a 
steady solution of the ideal MHD Eqs. (2.4)-(2.5), since V=/~/~ and 
B-V(]-~oS)  = 0  in D. 

We obtain the following expression for the total pressure head 
P = p + �89 V2: 

J i" = 2(o) da + p - '  s(~) + const (3.24) 

where s(~) is the equilibrium entropy density 

4~ 2 
s(~(x)) = --fR4p.,.(y) logp.,.(y)dy=2 +log fl2[l_it(~(x))2 ] (3.25) 

We verify this equilibrium relation by referring to the steady version of 
(2.2), from which we recognize that A((J)=dP/d~. The equivalence of 
(3.24) with the definition of A in (3.23) then follows immediately. Accord- 
ingly, we see that the profile function ;t(~) represents the contribution to 
the pressure gradient from the mean field, while fl-~ds/dg/ represents the 
contribution from the fluctuations. 



676 Jordan and Turkington 

2.2. Predictions of the Continuum Model 

In general, there is a nontrivial coupling between the equation for the 
mean field-flow and the probability distribution for the local fluctuations in 
the statistical equilibrium problem. Indeed, the equilibrium equation for 
the mean flux function ~ contains the inverse temperature fl and the 
correlation/~, while the energy and generalized cross-helicity constraints, 
which determine those parameters, also involve ~. For this reason, we 
cannot expect to solve the mean field-flow equations independently of the 
global constraints on E, F;, and K;, even though these equations are identi- 
cal with the steady ideal MHD equations. Rather, the profile functions 
occurring in those equations, which are arbitrary from a deterministic 
standpoint, are required to satisfy the family of constraints in the maximum 
entropy principle. A complete solution of this problem, therefore, appears 
to require a numerical method of solutions--say, an iterative procedure 
that alternates between solves in ~, ~ ..... ~j, and solves in fl, ),~ ..... Yh. We 
shall not attempt to develop such a method in the present paper. Instead, 
we shall be content to describe some of the general qualitative features of 
the constrained solutions. 

The simplest case to analyze is the magnetostatic case, in which the 
mean velocity field vanishes (V=0) .  By virtue of (3.13), this case 
corresponds to the vanishing of the correlation profile function ll, which 
holds whenever the cross-helicity constraint values K7 are taken to be zero, 
as is evident from (3.21). From (3.12) we obtain the following equation for 
the mean flux function q~: 

- A ~ = 2 ( ~ )  (3.26) 

where the profile function 2 is given by (3.10). Equation (3.26) is the well- 
known Grad-Shafranov equation from plasma physics, t4-24j in which 
2 = dp/d~ defines the pressure profile. It is identical to the variational 
equation for the following multiconstrained minimization problem: 

E(~k)=�89 over F ; (~ )=F , .  ~ ( i = 1  ..... h) (3.27) 

in which 2(q~)=Zi 2;f ' ;(~) is determined by the multipliers 2; for the flux 
constraints. The mean-field problem can therefore be viewed as a nonlinear 
elliptic eigenvalue problem with many parameters 2;. For each admissible 
vector of constraint values F ~ = (F ~ ..... F~,), a solution pair (~, 2) exists and 
is regular. ~2~ The uniqueness of this solution is not assured in general, 
however, since the solution branches can bifurcate. Nevertheless, robust 
numerical algorithms are available to solve variational problems of this 
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kind. ~'-'38~ Accordingly, we will consider the mean field /~ as essentially 
determined by the given constraint values of flux functionals Fi, leaving 
aside the precise description of solution branches. 

The variance of each component of the field and the flow in the 
magnetostatic case is equal to f l - t ,  where fl is the energy multiplier or 
inverse absolute temperature. All of these components are uncorrelated, as 
is immediate from (3.16). Equation (3.20) for the total energy simplifies to 

E~ 2fl 'IDI (3.28) 

Thus, the temperature fl ~ is determined uniquely by the constraint value 
for the energy functional E. Now we see that the statistical equilibrium 
state with vanishing cross-helicity is completely specified whenever 
E ~ t> E(~). 

When we split the energy into its magnetic and kinetic parts, we find 
that E m ~ , g = E ( ~ ) + f l  -~ ]D[ and Ek~ ,=f l  -~ ID]. It follows that the differ- 
ence between the total energy E ~ and the energy of the coherent structure 
E(~) resides in the local fluctuations, where it is equipartitioned into 
magnetic and kinetic parts equal to fl ~ IDI. This result is clearly in good 
agreement with the picture of ideal turbulence as a sea of high-wavenumber 
random Alfven waves34~ A noteworthy consequence of this result is the 
prediction that the equilibrium value of the ratio Em,g/Ek~ . is always 
greater than one. This prediction of our continuum model is in excellent 
agreement with the results of direct numerical simulations, ~5-7~ which 
provide convincing evidence for the relaxation of this ratio to a final value 
near unity, even for initial values as small as 1/25. Figure 1 shows one such 
result taken from ref. 6. 

For  these magnetostatic solutions, we observe a qualitative difference 
between the high-energy regime [ E ~  and the low-energy regime 
[E~ On the one hand, as E~ +0% we find that f l ~ 0 ,  and 
hence that the variance of B and V diverges. The equilibrium state there- 
fore resembles homogeneous turbulence: the variance of its local fluctua- 
tions is large and constant over the domain D, while its mean field is 
bounded. The coherent structure is thus obliterated by the fluctuations. On 
the other hand, as E ~  E(~), we have that fl ~ + or, and hence that the 
variance o f 'B  and V tends to zero. This means that the field-flow state 
relaxes into a nonturbulent magnetostatic equilibrium, in which the fluc- 
tuations about the coherent mean field are negligible. These features of the 
typical final state agree well with the results of direct numerical simulations 
with small p.~s 7.,_~ 

The effects of B - V  correlations are readily examined by considering a 
simplified version of the maximum entropy problem in which the classical 
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Fig. l. Relaxation of the ratio of magnetic energy E M to kinetic energy E r, as demonstrated 
by the direct numerical simulations of Biskamp and Welter "~ of slightly dissipative 2D M H D 
in a periodic box. The different ctu'ves correspond to simtdations with identical initial condi- 
tions and different levels of dissipation. With increasing Reynolds number, E r I E  r appears to 
converge to a wdue between 1 and 2. 

quadratic cross-heliciO, constraint K ~  I B. V dx is imposed, rather than 
the full family of generalized cross-helicities. As this simplified version of 
the statistical equilibrium problem is analyzed in detail in a companion 
paper, ~91 wo content ourselves here with a brief discussion of its main 
predictions. Most importantly, the magnetic-velocity correlation defined in 
(3.17) becomes the constant It =-) ' / f l ,  where ), is the multiplier for the 
quadratic cross-helicity constraint. As a result, the equilibrium probability 
density p,.(y) has a constant covariance matrix. Furthermore, the mean 
field-flow Eqs. (3.12)-(3.13) simplify when it is constant, in the same manner 
as in the magnetostatic case. Again the mean magnetic field is a critical 
point of the magnetic energy functional E(~), subject to the given flux 
constraints. The energy and cross-helicity constraints take the simple forms 

E O = (  1 +/ t2 )E(~)+ 2 I O l  (3.29) 
fl( 1 - lz  2)  

21t ]DI 
K ~  2/tE(~) + (3.30) 

fl(1 -/22) 

We note that # has the same sign as K ~ and that It tends to zero as K ~ --, 0. 
The entropy of the statistical equilibrium density p is found to be 

S (p )=  [DI l o g { [ E ~  + /22)E(~) ]2_[KO_2l tE(~) ]2}  +const  (3.31) 
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where the constant depends only on ]D]. This expression is obtained by 
substituting (3.29) and (3.30) into the general formula (3.25). From it we 
draw the interesting conclusion that the relaxed state p balances two com- 
peting tendencies: the one, to maximize the fluctuation part of the energy; 
the other, to minimize the fluctuation part of the cross-helicity. Since the 
mean field/~ is fixed by the flux constraints, this balance is achieved by the 
correlation l*, which is the only free parameter in the entropy expression 
(3.31 ). Hence, we find that r is the solution of the associated critical point 
equation 

E(~) p3 _ (E(~) + E ~ p + K ~ = 0 (3.32) 

Under some restrictions on E ~ and K ~ this equation can be shown to 
admit a unique solution ll ~ ( - 1 ,  1). Once gl is known, fl is found from 
either (3.29) or (3.30), and the statistical equilibrium state p is thus com- 
pletely determined. The details are presented in ref. 19. 

Of particular interest is the regime in which B and V are strongly 
correlated. Provided that E ~  the above analysis shows that the 
correlation IL approaches 1, and the variance f l -~(1-/ . t  2) ~ approaches 
E ~  as the prescibed ratio K~ ~ goes to 1, its largest possible 
value. Consequently, the field and the flow become completely correlated in 
this limit, and the marginal distributions of B(x) and V(x) converge to the 
same Gaussian distribution with mean B and componentwise variance 
E ~  In short, the field and the flow become statistically indistin- 
guishable in this degenerate limit. This vivid effect is confirmed by direct 
numerical simulations, ~36~ which show that the field and flow tend to align 
dynamically when the initial ratio of quadratic cross-helicity to energy is 
taken above a certain threshold value. Similarly, as K~ ~ goes to - 1 ,  its 
smallest possible value, the correlation/~ tends to - 1, and the field and the 
flow become anti-aligned. 

In the general case in which the profile function/x(a) is not constant, 
the properties of the constrained solutions are difficult to extract from the 
statistical equilibrium equations. Nevertheless, we can infer the following 
qualitative features. First, we note that in all regimes the equilibrium ratio 
E,,,~,~/Ekin is. greater than one, regardless of its initial value. The model 
therefore captures the amplification and saturation of the magnetic field 
observed in turbulence simulations when the initial ratio is small. ~6~ 
Second, we see that the relationship V=/xB is always predicted, and that 
the scalar factor between the mean field and flow is identified with the 
correlation ~l(~) for their fluctuations. Third, we deduce from (3.15) and 
(3.16) that large fluctuations of both B and V are expected wherever this 
correlation is strong. This prediction is especially interesting when/.t(a) is 
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nonconstant, since then the variance of the fluctuations is enlarged near 
those flux surfaces where p (~ )2~  I. Furthermore, the current density is 
predicted to peak at these flux surfaces, owing to the presence of the second 
term in the profile function A exhibited in (3.23). This behavior is in accord 
with the observed behavior of turbulent states, which show the concen- 
tration of fluctuations around definite magnetic surfaces usually connected 
with X-points/531~ The analysis of this effect, however, requires that we 
determine variability of the equilibrium profile function p(a) in the con- 
strained solutions. We defer such an analysis to subsequent work. 

4. JUSTIFICATION OF THE C O N T I N U U M  MODEL 

4.1. Discrete Model 

The formulation of the continuum model in Section 2 relies on two 
postulates: the ergodic hypothesis and a separation-of-scales hypothesis. 
Under these hypotheses we are able to describe the typical state of tur- 
bulence macroscopically by the x-parametrized probability density p.,.(y). 
Our derivation of the maximum entropy principle (2.24) that determines 
the most probable macrostate Px(Y), however, is heuristic rather than 
rigorous. In three particular respects the formulation requires further 
justification: (1) the neglect of correlations between points, which allows us 
to use the single-point distributions; (2) the specific form of the entropy 
functional, which is based on an a priori distribution that is uniform on 
D x R4; (3) the vanishing of the variance of 4, which permits us to express 
magnetic surface quantities in terms of the mean flux function ~. In this 
section, we therefore develop a lattice model of ideal magnetofluid tur- 
bulence, which tends in the limit to the continuum model. In the course 
of this development, we justify the continuum model rigorously and we 
connect it to some standard concepts in statistical mechanics TM 2. i~ and 
fluid turbulence. < m. 221 

Throughout this section we restrict our attention to a doubly periodic 
spatial geometry. These familiar boundary conditions allow us to utilize the 
relationship between the discretization of x-space and the truncation of 
k-space in a simple and concrete way. We let 

D = {x = (x, ,  x2)eR2: Ix,I <L,/2, Ix2l < L2/2} 

be the fundamental period domain, and we normalize its area IDf = 
L~L2= 1. For large, even integers N~ and N2, we introduce the discrete 
domain D~, consisting of equally spaced nodes x,, =(n~ dx~, n2 dxz) with 
Ax,=L,/N~ and ,4x,_=L2/N,_, where the multi-index n=(n~,n2) runs 
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over the integral lattice with - N I / 2  < n~ <~ N~/2, -N~ /2  < n2 <~ N2/2. The 
discrete grid D N then contains N := N t N_, nodes. 

Any microstate Y(x) defined for x e D  can be sampled at the nodes 
x,, ~ D,v to produce the discretized state vector Y= (Y,,) whose components 
represent the nodal values Y(x,,). The discretized phase space is therefore 
R 4N. The Euclidean inner product on this space will be denoted by 

(r, 2 Y,,. L 
H 

where the factor 1/N is included to maintain contact with the continuum 
limit. The Euclidean norm will be written as II YII~,=(Y, Y),v. Here and 
throughout the sequel, sums over n are understood to extend over the N 
nodes in D,v. 

The discrete Fourier transform of a microstate Y on D^, involves the 
N wavevectors k,,, = (ml Akl, rn2 Ak2) with Akt = 2n/Lt and Ak 2 = 2n/L 2, 
where m = ( m ~ , m 2 )  is a multi-index running over -N~/2<m~<~N~/2, 
- N 2 / 2  <m2 <~ N2/2. The inversion formula for the transform reads 

1 
Y,,=}-" l~ke 'k ...... with g : = ~  Z Y,, e-sk ...... (4.1) 

k tt 

Here and henceforth sums over k extend over the N wavevectors k =k,,,. 
This formula establishes a linear, one-to-one correspondence between the 
real state vectors Y and those complex amplitude vectors I~ which satisfy 
the compatibility conditions 1~_ k = I~'*. The Parseval identity for (4.1) is 

1 ] 2  9 
~ ~ IY,, ~ I1~kl- (4.2) 

in which I l~k 12 = l~'k " I7"* uses the Hermitian dot product. By virtue of this 
identity, the discrete Fourier transform constitutes an isometry between 
Euclidean space R 4N and the subspace of the Hermitian space C 4^' defined 
by the compatibility conditions. We refer the reader to standard texts 135' 91 
for detailed "treatments. 

While the doubly periodic boundary conditions are natural and 
convenient in formulating a discrete model, they suffer from the minor 
drawback that they permit arbitrary x-translations. Rather than including 
additional conserved quantities as constraints in the statistical equilibrium 
model, we shall eliminate these x-translations by imposing some finite sym- 
metry conditions on the microstates. These conditions amount to posing 



682 Jordan and Turkington 

the problem on the quarter domain D+=Dn{Xl,X2>O} with ideal 
boundary conditions on OD +. The continuous microstate Y=(Cur l  ~b, 
Curl ~b) then possesses the symmetries in x~ and x_~ inherited from those of 

and ~b, on which we impose ~, = 0 = ~b on OD +, and which we extend to 
D by odd reflection in x t and x 2. In other words, we imagine the physical 
domain to be D + and assume that OD § is a perfectly conducting and slip- 
ping boundary. The Fourier representations of ~ and ~b then become sine 
expansions. The components of Y are similarly extended to D by reflection 
(even or odd, depending on the component and the variable), and so are 
represented by reduced expansions (cosine or sine expansions). In what 
follows we shall enforce these symmetry conditions on the continuous and 
discrete versions of the problem. We note specifically that the k - 0  Fourier 
amplitudes vanish. 

We can take the discretized microscopic dynamics to be governed by 
the truncated spectral form of the primitive equations. This form, which is 
often described in the literature, defines the evolution of the complex 
amplitudes I~k(t). The detailed equations for IYk are not needed for our pur- 
poses. We use only the Liouville property satisfied by the truncated k-space 
equations: the phase flow conserves (Hermitian) phase volume. This crucial 
property is demonstrated by several authorsJ 2"-' 23~ By invoking the inverse 
discrete Fourier transform we can map this dynamics from the truncated 
k-space to the discrete x-space. In this way we can define the microscopic 
dynamics in the discretized primitive variables Y,, over D,v. Since the 
mapping between 17" and Y is a linear isometry, we immediately infer that 
the induced phase flow on the x-space R 4N is volume-preserving. In other 
words, our discrete x-space dynamics satisfies the Liouville property. 

We now approximate the conserved quantities for the continuum 
equations by their discrete analogues, namely, 

1 ~ ~ 1 Z t2 E=~-~ZIB,,I-+IV,,]-= ~ l/~k I-" + / I?k (4.3) 
s t  

1 
F , = ~  ~ f~(@,,) (4.4) 

t t  

1 
K ; = ~  ~ B,,- V,,f;(~,,,) (4.5) 

I t  

The energy E is conserved exactly by the discretized dynamics, as an 
analysis of the detailed equations shows. The generalized fluxes F i and 
cross-helicities K;, however, are conserved only in the limit as N ~  co, 
unless very particular basis functions are used [f(~b)=~- ' /2 for F and 
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f(O) = ~b for K]. Even though the nonlinear and nonlocal dependence of 
these quantities on ~b destroys their exact conservation, we shall adopt 
these approximate dynamical invariants as the constraints for our lattice 
model. 

We note that the flux function used in (4.4) and (4.5) is defined by the 
k-space relation 

(bk = i lkl-2 k x/~k (4.6) 

Together with the discrete Fourier transform, this relation provides the dis- 
cretized form of the operator CurI - ~. We shall denote this x-space operator 
by ~'  and its adjoint with respect to ( . , . )x  by d*.  

4.2. S e p a r a t i o n  of  Scales 

With a discrete microscopic model in hand, we now consider a macro- 
scopic description in terms of a probability distribution pU(dy) on the 
phase space R 4N. For the sake of definiteness, we write pU(dy)= pN(y) dY 
and take the macrostate to be the probability density pU(y) with respect 
to 4N-volume dY. Any functional A(Y) on the discrete phase space then 
defines a random variable whose expectation (mean) is denoted by 

( A )  = J fR~" A(Y) pN(y) dY  

We seek a probability density that describes the statistical equilibrium state 
for the discrete dynamics. In accord with the standard ergodic hypothesis, 
we define this state to be the density pX that maximizes the entropy 

- 1  
S(p N) = ~ J[n4,~ p N(y) log p N(y) d Y (4.7) 

subject to the constraints associated with the conserved quantities 
E, Fi, Ki. ~L2"~s~ The form of this entropy functional is dictated by the 
Liouville property for the discrete dynamics, which demands that the 
density pU(y) be relative to the invariant measure dY. Thus, the objective 
functional ill our maximum entropy principle is uniquely determined up to 
a multiplicative factor, which we take to be 1/N in order to have a finite 
entropy in the continuum limit. 

Unlike the usual canonical ensemble, however, the constraint func- 
tionals for flux and cross-helicity are not simply taken to be the expecta- 
tions (F i )  and (Ki)  of the functionals in (4.4) and (4.5). This unorthodox 
aspect of our model is dictated by the particular form of the dynamical 



684 Jordan and Turkington 

constraints for ideal turbulence. In contrast to the energy functional E, 
which is simply quadratic in B and V, the functionals F s and Ks involve the 
flux function 0, which has distinctly different statistical behavior from that 
of B and V. Consequently, the usual canonical measure formed from a 
linear combination of E, Fs, and K s can fail to provide a meaningful 
continuum limit as N ~ oz. 

Before giving our formulation, therefore, let us briefly review the theory 
of absolute equilibrium distributions, ~3"2-'~ in order to explain the role of 
the additional dynamical constraints in the Gibbs measure. This theory is 
derived from the usual canonical ensemble based on energy E, quadratic 
flux F [with f ( 0 )  = ~92/2] and classical cross-helicity K [with f(~,) = ~].  
A straightforward computation yields the following results) ~3"22" 34) First, 
these statistical equilibrium distributions have zero mean: ( f ' k ) = 0  for 
all k. Second, they predict that the given energy E"  splits into a part OE" 
that equipartitions among all the modes k , , , .<[k[  ~<k ..... and a part 
( 1 -  0 ) E  ~ that resides in fluctuations at Ik[ =kmm. From these properties, 
we see that the theory fails to predict a nontrivial coherent structure in the 
mean. Instead, it puts some energy into a fluctuating eigenmode at the 
lowest wavenumber. While the equipartition of energy among the high 
wavenumbers is consistent with the ideal model, the presence of finite fluc- 
tuations at the lowest wavenumber violates the principle on which the 
canonical ensemble rests, since the fluctuations of the energy about its 
prescribed mean value do not tend to zero as k ...... --. co. In other words, 
the equivalence of ensembles breaks down. Moreover, the prediction of a 
zero mean state is inconsistent with the microcanonical ensemble when E" 
is close to the minimum energy subject to given values of F ~ and K". In 
such cases the microscopic constraint surface becomes disconnected into 
two components distinguished by the sign of the eigenmode at k =k in , .  
The microcanonical ensemble for one fixed component then produces a 
nonzero mean state with small fluctuations in every mode. The usual 
canonical ensemble, however, predicts finite fluctuations around the zero 
state in the lowest mode. 

These considerations motivate our particular formulation of the 
constraints on flux and cross-helicity in the maximum entropy principle. 
We base our model on the separation-o/'-scales hypothesis, which we now 
articulate precisely. In our discrete model, we separate the modal energy 

I ^ -i  density _~(IYal-) into mean and fluctuation parts, which we require to 
satisfy 

�89 f'k)12 ~<ek where ~ek<~E" 
k 

�89 ( f ' k )12 )  ~< CE~ 

(4.8) 

(4.9) 
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for a sequence of constants ek and a constant C, both independent of N as 
N ~  ~ .  These conditions imply that the given energy E ~  ( E ( Y ) )  resides 
partly in a uniformly square-integrable mean state ( Y )  and partly in fluc- 
tuations, where it is partitioned uniformly (up to a constant factor) among 
all the N modes. For  large N, therefore, we see that the separation of scales 
imposed in (4.8)-(4.9) causes the mean to concentrate in the low wave- 
numbers and the fluctuations to spread out to the high wavenumbers. We 
emphasize that these conditions constitute a hypothesis used to derive the 
model, not a conclusion deduced from it. Nevertheless, this single 
hypothesis is the only special ingredient needed to arrive at our model. In 
what follows we denote fluctuations by a prime: Y '=  Y - ( Y ) ,  and so 
forth. 

A crucial consequence of the separation of scales is the asymptotic 
smallness of the fluctuations of ~b. From (4.6), we obtain the estimate 

k 

- < Z l k l  2 < I ?;,I-'> 
k 

<. C s  y' Ikl --" 
k 

= O(N -~ l ogN)  (4.10) 

recalling that the sums are evaluated over the two-dimensional lattice of 
wavevectors k = k,,,. We conclude that in a strong sense the fluctuations of 

are negligible for large N. Of  course, an analogous statement holds 
for $. 

We can now infer the correct form of the constraints on Fi and Ki, by 
making a formal expansion in $ around (~b). For  the flux constraints 
we get 

1 1 
(F,(Y)) = ~  ~ .l)((~,,)) +~TN ~ f~'(($"))(($,,,)2> + ...  

i i  t l  

= F ; ( ( Y ) ) + O ( N  ~logN) (4.11) 

assuming that J'~' is uniformly bounded over the range of the mean flux 
function. For the cross-helicity constraints, using a similar but more 
involved analysis, we obtain 

1 (K~(Y)) =-~ ~,(B,,. V,,) f'i((l[6,))+O(N-"2(logN) ''2) (4.12) 
I t  
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In view of these expansions, we formulate our statistical equilibrium model 
by retaining the leading terms for (F ; )  and (K;) ,  rather than the full 
expressions for each of them. This procedure, which we prove in Section 4.4 
to be consistent with the desired properties of the ensemble, effectively 
enforces the separation-of-scales conditions on the solution pU(y) to the 
maximum entropy problem. 

4.3. Impl ic i t  Canonical  Ensemble 

We define a statistical equilibrium macrostate pN(y) to be a solution 
to the multiconstrained optimization problem 

S(p x) --* max subject to: 

i 
2--N ~ (IB"[2 + I v"12> = g "  (4.13) 

t t  

1 
-~ ~J)((~, , ))=F~'  (4.14) 

t t  

1 
Y~ <&,. v,,> f;(< q,,,>)=K? (4.15) 

s t  

Unlike the usual maximum entropy principle, the density pN e n t e r s  into the 
constraints (4.14) and (4.15) nonlinearO,. Consequently, we refer to the 
solution as the "implicit canonical measure," emphasizing that it is deter- 
mined by solving the statistical equilibrium equations implicitly in pN. This 
implicit dependence acts through the mean flux function ( ~ b ) = d ( B ) ,  
with the result that the nonlinearity occurs in the mean-field equations. 
Accordingly, this implicit canonical measure defines a certain "mean-field 
theory" for the Gibbs measure associated with ideal magnetofluid tur- 
bulence. The purely quadratic dependence of the constraints (4.13) and 
(4.15) on the primitive variables B and V results in Gaussian distributions 
without spatial correlations. This property, which reflects the separation-of- 
scales hypothesis, makes the problem tractable. 

The variational equations for this discrete model parallel those for the 
continuum model (Section 3.1), with the difference that pN(y) is now a 
joint probability density on the phase space R 4N. In terms of the discrete 
inner product (.,.)U and norm [1" [[,v and the linear operators .~r and ~*, 
which are the discretizations of Curl-~ and curl ~, we find that 
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cSS='~--NlflogpNcSp N dY 

f (118)I + II vll dY 

(4.16) 

(4.17) 

6F, = I (B, d+J"i( (~)  ))N fipN dY (4.18) 

f f B "r OK,= j ( , J , ( ( O ) )  (4.19) V +~+[ ( B �9 VS JI."((~))])NfipN dY 

As in the continuum calculations, we let fl, %, )'i be the multipliers corre- 
sponding to E, Fi, Ki, respectively, and we introduce the profile functions 
2(c~) and p(~) defined as in (3.10). We then obtain the (implicit) partition 
function 

Z = Ije4., exp( - f lNQ(Y))  dY (4.20) 

where Q is the quadratic form in B,,, V,I given by 

Q =  �89 IIBll ~,+ ' tl VII~,-(B, ,4+),)x--(B, pV+ J + [ < B .  V> P '])N (4.21) 

Here, 2,,=2(<~,15), and similarly for p. A straightforward calculation 
yields the implicit canonical density 

pN(Y) = H p,,(Y,,) 
n 

= H ' - ' -' ' - - 2 p , i  B , I .  ( 1 -IC,) exp ~ (IB,,l + IV,, I g',1) (4.22) 

with mean field ( B )  and mean flow ( V )  satisfying 

( B )  = ~'+(2 + ( B .  V) p')  + # ( V )  (4.23) 

( V )  =p( B) (4.24) 

(a prime denotes d/da, when applied to a basis function f,. or a profile 
function 2 or p). 

The decisive result of these calculations is the statistical independence 
of the Gaussian fluctuations Y',, at each node x,, ~ D N. This property of the 
maximum entropy solution pN is a direct consequence of the particular 

822,,87,3-4-15 
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form of the constraints (4.13)-(4.15). We see therefore that the desired 
separation of scales follows from these implicit dynamical constraints. The 
nodal densities p,(Y,,) are clearly a discretization of the local probability 
densities p,.(y) in the continuum model. 

The analysis now follows exactly as in the continuous model. Equa- 
tions (4.23) and (4.24), being the analogues of (3.12) and (3.13), are 
reducible to a mean-field equation that is the discrete version of (3.22). 
This equation determines ( B )  (or equivalently ( r  implicitly in terms of 
the profile functions 2(a) and #(a), which in turn are determined by the 
constraints. In equilibrium, the constraints for the discrete model are 

-~72 ~ 1 , = E" (4.25) E ( ( B ) ,  ( v)  I + , , , ,  1 -u ; ,  

F~(( B) ) =r~' (4.26) 

2 ,~ #,, , f '~((~b, , ) )=K] (4.27) K,( ( B), ( V) ) +-~ 1-#;, 

using an analysis as in Section 3.1. The further comments made in Section 3 
about how to solve the statistical equilibrium problem carry over to this 
discrete case without any substantive changes. 

4.4. C o n c e n t r a t i o n  P r o p e r t y  

We now complete the justification of our continuum model by showing 
that as N ~  oo the implicit canonical density pU concentrates around the 
manifold defined by the microscopic constraints: E(Y) = E " ,  Fi(Y) = F I  ~, 
K;(Y)=KCi ~. In other words, we establish an equivalence between the 
microcanonical ensemble and our implicit canonical ensemble. This 
rigorous demonstration justifies the formal procedure used in Section 4.4 to 
construct the implicit canonical measure. 

Our proof of the concentration result assumes that the (B,, V,) distri- 
butions are nondegenerate, in the sense that the correlation #,, is bounded 
away from + I uniformly over x,, eD  x as N-~ co. In the discussion that 
follows, therefore, we impose the condition that max,, ]M,,] ~<#, < 1 for 
all N. This limit condition for the discrete model amounts to a regularity 
condition on the solution to the continuum model, as is evident from the 
discussion in Section 3. We theretbre adopt the view that it can be verified 
tt posteriori. Under this condition on the B - V  correlation, the mean field- 
flow (Y,,)  and the variance ([ Y',,I 2) remain uniformly bounded over D,v 
as N ~  oz. Moreover, since the distributions of the Y, are Gaussian, all 
higher moments are similarly bounded in terms of the mean and variance. 
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We begin our analysis by showing that the variance of ~,, for each n 
tends to zero as N ~  ~ .  This property, which constitutes the discrete 
version of (2.19), is fundamental to our theory. We first express the flux 
function as a convolution o v e r  DN, 

1 ~,,=~ Z rN(x,,-x,,)xB,, 
i ,  

using the Green function 

N "~ " /-" ( x , , ) = ~ i l k l  - ke'* ...... 
k 

This formula follows easily from (4.6). Next, we calculate the variance of 
each component of B, to be fl ~(1-lt~,) -~, using the discrete analogue 
of (3.15). Since the B, are statistically independent, we then conclude that 

1 
0,, ~/~( IF (~,,- x,.)l- var 1 --/~,) N 2 E,, ,v . , 

1 

- f l (1  - / ~ . ) N  ~. 

= O ( N -  ~ log N) (4.28) 

where we used the fact that I/~7"1 = O( Ikl-~). 
We claim that the statistical equilibrium density p,V satisfies 

( [ E ( Y ) - - E ~  ( [ F i ( Y ) - F ~ ) ] 2 ) ,  ( [ K ; ( Y )  - K(~)] 2 ) --*0 (4.29) 

as N ~ c~. This property clearly means that the implicit canonical measure 
is a consistent approximation to the statistical behavior of the underlying 
microscopic dynamics, assuming the ergodicity of these dynamics over the 
microcanonical manifold. We proceed to give the proof of each of these 
three limits. 

The energy functional is treated in a routine fashion, since Y= (Y,) 
consists of independent Gaussian random vectors. Namely, 

( [ E ( Y ) - E ~  2) = (E(Y)2)  _ (E(Y)>-~ 

1 
- 4 N  ~_ ~, ~ < l Y ,  I 2 I Y,.12> - ( I y,,12~< I y,.12> 

i t  i, 

1 
= 4 N  2 ~ ( I Y , , 1 4 ) - ( [ Y , , [ 2 ) 2 = O ( N  ') (4.30) 

t t  
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The generalized flux functional is expanded in ~,,, using the estimate 
(4.28). We assume that the basis functions f 'Aa) are bounded for all a ~  R, 
and we obtain 

~< C max var ~,, 
n 

= O ( N - i  log N) (4.31) 

where ~,, denotes some intermediate value between ~,, and < qJ,>. 
The generalized cross-helicity functional is analyzed by combining the 

techniques used in (4.30) and (4.31). First, we write Ki(Y)=Gi(Y)+ 
HA Y), where 

1 
GAY) : = ~  Y 'B , .  V,,f'A< ~b,,>) 

/ I  

1 
H;(Y) := ~ ~ B, .  V,,[ f';(~b,,) --f ';( < ~b,,> )] 

n 

Then we see that 

<[K~(Y)-K~ 
<G~> - <G~> 2 +4<G~> '/~ <H2> ,:.2 + <H~> 

where we note that the constraint is equivalent to < G;> = K ~ 
It suffices therefore to estimate < G ~ > - < G ; >  ~ and <H~>, the treat- 

ments of which follow (4.30) and (4.31), respectively. First, we have 

< G~> -- < Gi> 2 ~N-~_ E { <(B,,. vn)2> - <B n �9 Vn> 2} f';(< @,,> )2 
n 

C 
<~  Z <[Y,,I'> + <[ Y,,[~>~ 

n 

= O(N- ' )  
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Second, we assume that the basis functionsf~' (a) are bounded for all a e R, 
and we get 

]2> <Hf> B,, " - ' = �9 V,,fi (@,,) qJ,, 

~ c  <I<I~> max <(~,,,) > 
I t  

~< C max var ~,, = O(N - ~ log N) 
It 

Putting these estimates together, we obtain 

< [ K~ (Y) - K~/] 2 > = O(N - ,.z( log N) '  '-~ ) (4.32) 

The conditions we place on the basis functions in this analysis are 
mild. Indeed, these functions define the flux constraints, which actually 
apply over the range of the mean flux function ~. But this range is fixed a 
p r i o r i  by the initial state Y" that determines the constraint values. Conse- 
quently, we can merely extend the basis functionsJ].(a) to be defined for all 

~ R with the desired growth conditions. 

4.5. Cont inuum Limit 

We end our analysis of the lattice model by indicating how the statisti- 
cal equilibrium measures  p N =  ]-'I P,, converge to the solution p , . ( y )  to the 
continuous maximum entropy problem (2.24). For  each N, we define an 
x-parametrized probability density ai~r(v) on y ~  R 4 by interpolating the 
discrete measure pU fi'om the lattice model. It suffices to set cr~'(y)=p,,(y) 
whenever x lies in the Ax~ x A x  2 cell at the node x,,. This piecewise- 
constant macrostate cr~)'(y) then has the same entropy as pU: 

s(.A' l  = - f,, . : : I , , l  log d.,- + 

' f - ~. p.(y) log p.(y) dy 
N It I~4 

1 
f pX(y)  log p..V(y) d Y  

= S ( p  N) 
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By standard probability theory ~3~ we can ensure that the densities alV(y) 
converge in the usual weak sense to a density p.,.(y) along a sequence 
N ~  oe. The uniform bounds on the (local) moments of all orders of O "N 

guarantee that the limit density p satisfies the constraints on energy, cross- 
helicity, and flux. By virtue of the upper semicontinuity of the entropy 
functional, we can then infer that p, .(y) is the solution of the continuous 
maximum entropy problem (2.24). Thus, we can demonstrate that pX con- 
verges in an appropriate weak sense to a solution p of the continuum 
model. We omit the details of this proof. 

5. C O N C L U S I O N S  

We have fornmlated, analyzed, and justified a statistical equilibrium 
model of coherent states in two-dimensional magnetofluid turbulence that 
respects the complete family of conserved integrals for the ideal dynamics. 
By requiring a separation of scales between the microscopic fluctuations 
and the macroscopic mean inherent in the turbulent state, we are able to 
describe it in terms of the x-local probability densities p,.(y) on the primi- 
tive field-flow state Y(x, t)=(B, V). The constrained maximum entropy 
principle defining our continuum model, which is derived intuitively in 
Section 2 and substantiated rigorously in Section 4, determines the most 
probable macrostate p.,.(y). We have found that this statistical equilibrium 
state is a Gaussian probability density, and that its mean is a steady solu- 
tion of the ideal MHD equations. 

Our statistical equilibrium theory has the virtue that it can be for- 
mulated directly as a continuum model in x-space. Nonetheless, its lull 
justification requires both a discretization of x-space and a dual representa- 
tion in k-space. For this reason, we have constructed a lattice model with 
N grid nodes, and we have proved that it tends to the continuum model 
as N--* m. With the aid of the discrete Fourier transform, we are able to 
represent the separation-of-scales hypothesis for the model in a k-space 
form. This hypothesis allows us to deduce the constraints for the maximum 
entropy principle that defines our lattice model, using a mean-field approx- 
inaation consistent with the continuum model. The resulting lattice model 
is determined by what we term the "implicit canonical measure," the most 
probable distribution on the discrete phase space subject to those con- 
straints. We have proved that this measure has a concentration property 
with respect to the microcanonical constraint manifold at N--. cry. This 
property, combined with the demonstrated Liouville property for the 
discretized dynamics, constitutes a rigorous justification of our model. 

To the extent that comparisons between our model and numerical 
studies of magnetofluid turbulence are meaningful, we have found a rather 
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striking agreement. The detailed studies of 2D magnetofluid turbulence by 
Biskamp et al., cs`7~ in particular, support the conclusions of our model in 
several respects. First, these simulations confirm the Gaussianity of the 
local fluctuations in the magnetic and velocity fields. Second, they verify a 
direct cascade of energy to small scales and an inverse cascade of (quad- 
ratic) flux to large scales. While these nonequilibrium cascades have no 
place in our equilibrium model, they are strongly indicative of the forma- 
tion of macroscopic coherent structures and they support the separation- 
of-scales hypothesis on which our continuum model is built. Third, the 
simulations clearly display the relaxation of the ratio of magnetic to kinetic 
energy to an equilibrium value greater than l, even for small initial ratios. 
This saturation effect is a quantitative prediction of the statistical equi- 
librium model. 

The model also captures the qualitative behavior of the coherent states 
over the range of admissible energy values. For  small energy values, the 
simulations of Biskamp et al. reveal a dominant, large-scale structure in the 
mean magnetic field, which forms through the process of quasistatic 
coalescence of flux tubes. For large values of initial energy, on the other 
hand, a typical state resembles homogeneous turbulence in the sense that 
fluctuations predominate. Our analysis of the statistical equilibrium states 
has exhibited similar qualitative behavior in these regimes. Indeed, when 
E ~ is close to its minimum possible value, achieved at the deterministic 
equilibrium, the equilibrium state consists of a macroscopic mean state (a 
magnetic island with flow) together with small-variance fluctuations. On 
the other hand, when E ~ is much greater than the minimum possible 
energy, the variance of the fluctuations is correspondingly large, and so the 
equilibrium state is dominated by turbulence. 

In a similar manner, the model predicts the dependence of the ideal 
turbulent state on the value of cross-helicity relative to energy. We have 
shown that the proportionality between the mean fields/~ and V is identi- 
cal with the B - V  correlation. For small cross-helicity values, the equilibria 
are nearly magnetostatic, and the model becomes a perturbation of flux- 
conserving equilibrium theory/24~ For large cross-helicity values, however, 
the mean field is nearly equipartitioned into magnetic and kinetic parts, 
and the fluctuations in B and V are highly correlated. This result explains 
the B - V  alignment effect observed in numerical simulationsJ 36~ 

There are two aspects of the model and its discretization that we have 
not addressed. First, it would be theoretically attractive to construct a 
discrete dynamics that conserves M quantities exact ly  for finite N, with 
M ~  co as N--* oo. Instead, our model imposes approximate dynamical 
constraints whose truncation errors go to zero as N ~  oo. In this respect, 
our approach to discretization is similar to the "pseudo-spectral method, ''~9~ 
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which is often used to compute the microscopic evolution. Second, it would 
be interesting to build lattice models which approach the continuum model 
asymptotically as N ~ m, but which have nonvanishing spatial correlations 
for finite N. A model of this kind might give a more realistic picture of the 
turbulent relaxed state for a slightly dissipative magnetofluid. Among such 
models, our lattice model would be merely the simplest discretization of the 
continuous statistical equilibrium problem. 
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