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Similarity of Percolation Thresholds on the
HCP and FCC Lattices
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Extensive Monte Carlo simulations were performed in order to determine the
precise values of the critical thresholds for site ( phcp

c, S=0.199 255 5\0.000 001 0)
and bond ( phcp

c, B=0.120 164 0\0.000 001 0) percolation on the hcp lattice to
compare with previous precise measurements on the fcc lattice. Also, exact
enumeration of the hcp and fcc lattices was performed and yielded generating
functions and series for the zeroth, first, and second moments of both lattices.
When these series and the values of pc are compared to those for the fcc lattice,
it is apparent that the site percolation thresholds are different; however, the
bond percolation thresholds are equal within error bars, and the series only
differ slightly in the higher order terms, suggesting the actual values are very
close to each other, if not identical.

KEY WORDS: percolation; hcp lattice; fcc lattice; exact enumeration; series
expansion.

I. INTRODUCTION

The percolation model is used to describe many problems that include a
connectivity probability, particularly flow through porous media.(1, 2) The
three-dimensional lattices that are often used to model porous media,
include simple cubic, body-centered cubic, face-centered cubic (fcc) and
hexagonal close-packed (hcp).

In a recent paper, Tarasevich and van der Marck(3) pointed out that
the critical thresholds for site and bond percolation on the hcp lattice were
equal within the known error bars to the thresholds for the fcc lattice.
However, the values for the hcp lattice ( phcp

c, S=0.1199 24\0.000 05, (4)
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phcp
c, B=0.120 15\0.000 05(4)) are not as precise as those found for the fcc

lattice ( p fcc
c, S=0.199 236 5\0.000 001 0, (5) p fcc

c, B=0.120 163 5\0.000 001 0(6)).
This raises the very interesting question of whether or not the thresholds
of these two lattices might in fact be identical, or at least the same to a very
high precision.

The similarity of the critical thresholds for the hcp and fcc lattices
could be explained by the relative similarity of the hcp and fcc structures.
In Fig. 1, the hcp and fcc structures are shown in relation to one another.
The two structures share the same first two layers (referred to as A and B in
Fig. 1). The difference between the two structures occurs in the third layer.
The third layer of the fcc is a unique layer which fills the holes in the first

Fig. 1. Comparison of the layers that form the hcp and fcc structures. Both of the structures
have the empty circles (A) as one layer. However, the hcp lattice has a layer of the darkened
circles (B) above and below that layer; whereas, the fcc lattice has a layer of the darkened
circles (B) above and a layer of the X's (C) below.
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layer which were not filled by the second layer (labeled C in Fig. 1), but the
third layer of the hcp is the same as layer A.(7) The structure of the hcp
crystal can then be summarized as A, B, A, B, A, B,... and the fcc crystal is
A, B, C, A, B, C,.... Therefore, we pondered whether it took higher precision
to see this structural difference or if that difference has no impact on the
percolation thresholds of the two lattices.

In order to extend this study to higher precision we used a growth or
epidemic analysis to determine precise values of the critical thresholds of
the hcp lattice, which were then compared to those of the fcc lattice. We
also carried out an exact enumeration study, because we couldn't find any
such series expansions for the hcp and fcc lattices in literature; we could
only find an exact enumeration study of a modified fcc lattice.(8)

In the following sections, we report on the determination of the new
values of pc for the hcp lattice and the details of the exact enumeration. The
results are summarized and discussed in the conclusion section.

II. PERCOLATION THRESHOLDS

Precise values of the thresholds for bond and site percolation on the
hcp lattice were found using procedures similar to those outlined for site
percolation in ref. 5 and for bond percolation in ref. 6. A virtual lattice of
20483 sites was simulated, using the block-data method first described in
ref. 9. We distorted both lattices so that all sites fell on a simple cubic
lattice. On these lattices, we grew individual clusters by a Leath-type algo-
rithm which used the unit vectors shown in Table I for the hcp and fcc
lattices. For the hcp lattice, the unit vectors in the plane are always the
same, but the unit vectors needed to check the nearest neighbors above or
below a certain site depend on which level the site is located (A or B). In
Table I, the unit vectors required to check the nearest neighbors in the
plane and when going from layer A to B and from B to A are shown for
the hcp lattice. The critical thresholds were identified using an epidemic

Table I. Unit Vectors Used to Describe the Neighbors in the fcc and
hcp Lattices

Lattice Vectors

fcc (1, 1, 0), (1, &1, 0), (&1, &1, 0), (&1, 1, 0), (1, 0, 1), (&1, 0, 1),
(1, 0, &1), (&1, 0, &1), (0, 1, 1), (0, &1, 1), (0, 1, &1), (0, &1, &1)

hcp (in the plane) (1, 0, 0), (1, 1, 0), (0, 1, 0), (&1, 0, 0), (&1, &1, 0), (0, &1, 0)
(A to B) (0, 0, 1), (0, 0, &1), (0, &1, 1), (0, &1, &1), (1, 0, 1), (1, 0, &1)
(B to A) (0, 0, 1), (0, 0, &1), (&1, 0, 1), (&1, 0, &1), (0, 1, 1), (0, 1, &1)
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Fig. 2. Plot of s{&2P(s, p) versus s_ for bond percolation on the hcp lattice. The curves
plotted here represent p=0.120 170 0, p=0.120 163 5, and p=0.120 160 0 (from top to
bottom) respectively.

scaling analysis. In order to determine the critical thresholds at the reported
precision, about 2_107 clusters were generated utilizing about 1013

random numbers, which required a few weeks worth of computer time on
ten workstations.

The simulation was used to find the fraction of clusters P(s, p) that
grew to a size greater than or equal to s sites. When p is near pc , one
expects P(s, p) to behave as

P(s, p)tAs2&{f (( p& pc) s_)rAs2&{[1+C( p& pc) s_+ } } } ] (1)

where { and _ are universal exponents.(1, 10) We assumed the values
{=2.189 and _=0.445, which are consistent with other three-dimensional
percolation studies.(5, 6, 11, 12) Plots of s{&2P(s, p) versus s_ for site and
bond percolation on the hcp lattice were used to find the value of the per-
colation threshold which corresponds to horizontal behavior for large s.
The results are plotted in Figs. 2 and 3 and imply the following values for
the critical thresholds for site (S) and bond (B) percolation:

phcp
c, S=0.199 255 5\0.000 001 0

(2)
phcp

c, B=0.120 164 0\0.000 001 0

964 Lorenz et al.



File: 822J 247905 . By:XX . Date:07:01:00 . Time:08:38 LOP8M. V8.B. Page 01:01
Codes: 1733 Signs: 1053 . Length: 44 pic 2 pts, 186 mm

Fig. 3. Plot of s{&2P(s, p) versus s_ for site percolation on the hcp lattice. The curves
plotted here represent p=0.199 260 0, p=0.199 255 5, and p=0.199 250 0 (from top to
bottom) respectively.

For the fcc lattice, we previously found the values:(5, 6)

p fcc
c, S=0.199 236 5\0.000 001 0

(3)
pfcc

c, B=0.120 163 5\0.000 001 0

The site thresholds for these two lattices differ by only 0.000 019, which is
statistically significant being nearly 10 combined error bars apart. The
bond thresholds, on the other hand, are identical within the error bars.

III. EXACT ENUMERATION STUDIES OF THE HCP AND
FCC LATTICES

The similarity of the thresholds for the hcp and fcc lattices led us to
also carry out an exact enumeration calculation, to see how the series of
the two lattices compare. In exact enumeration, the problem is to find gst ,
the number of clusters containing s occupied sites and t vacant neighboring
sites or bonds. Knowing gst , one can find the number of clusters (per site)
containing s occupied sites by

ns( p)=:
t

gst psqt (4)
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the total number of clusters per site,

N=M0( p)=:
s

ns=:
s, t

gst psqt (5)

the percolation probability,

P(q)= p&M1( p)= p&:
s

sns= p&:
s, t

sgst psqt (6)

(for small q), and the susceptibility,

S( p)=M2( p)=:
s

s2ns=:
s, t

s2gst psqt (7)

where q=1& p. To calculate all these quantities, it is useful to construct
the generating function

G( p, q)=:
s, t

gst psqt (8)

To find gst , we developed a rather simple enumeration method based
upon the cluster-growth algorithm, but using a deterministic sequence to
decide whether each successive site (or bond) is occupied or vacant. After
a cluster was finished, we stepped back to the last vacant site and made it
occupied (if s was below the cutoff ), or stepped back through the last
group of occupied sites to first vacant one before it, and made that site
occupied (if s was at the cutoff ), and then returned to the growth algorithm
again. In this way we went through a binary search of all possible growth
scenarios. This method is similar to the algorithm described by Redner.(13)

We tested our algorithm with published results(14) in 2- and 3-dimensions,
and found agreement. Although slower than Merten's Fortran code, (14) our
program was easy to code and generalize for the different lattices and both
site and bond percolation. We found the various series to s=9 in a few
days of computer time.

For bond percolation, we consider that s represents the number of
occupied sites in a cluster, irrespective of the number of bonds that are
needed to connect them, and t represents the number of vacant bonds. We
thus define gst as the number of clusters containing s occupied sites and t
vacant perimeter bonds. Note that no bond is placed in internal, redundant
locations. A cluster containing s occupied sites and t vacant perimeter
bonds has a weight gst ps&1qt, because only s&1 occupied bonds are
needed to connect the s sites. Therefore, in bond percolation, all definitions
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(4)�(7) should actually be divided by p on the right-hand-side, or equiv-
alently those definitions actually give pMn( p).

First consider the gst itself, which we represent by the generating func-
tion (8), where the coefficients of ps are the perimeter polynomials. Up to
order s=5, the results are:

G fcc
S = pq12+6p2q18+ p3(8q22+12q23+30q24)+ p4(2q24+27q26+48q27

+96q28+144q29+158q30)+p5(24q28+6q29+132q30+264q31

+423q32+780q33+1194q34+1212q35+846q36)+ } } }

Ghcp
S = pq12+6p2q18+ p3(q21+6q22+13q23+30q24)+ p4(8q25+21q26

+48q27+90q28+150q29+158q30)+p5(q27+12q28

+36q29+114q30+303q31+357q32+801q33+1140q34

+1278q35+840q36)+ } } }

G fcc
B = pq12+6p2q22+ p3(8q30+16q31+42q32)

+p4(2q36+6q37+36q38+84q39+219q40+249q41

+326q42)+p5(30q44+120q45+372q46+792q47+1596q48

+2328q49+3576q50+3072q51+2739q52)+ } } }

Ghcp
B = pq12+6p2q22+ p3(8q30+16q31+42q32)+p4(2q36+6q37+36q38

+84q39+219q40+249q41+326q42)+p5(q42+4q43+34q44

+114q45+357q46+780q47+1611q48+2382q49+3513q50

+3090q51+2739q52)+ } } }

For site percolation, the differences between the two lattices start to
show up with s=3. For example, the term for s=3 and t=21 occurs for
the hcp but not the fcc lattice. This corresponds to the cluster of three sites
in a triangle on the plane, as shown in Fig. 4. For bond percolation, the
first difference does not occur until s=5.

First we compare the moments for site percolation, writing each
moment for the two different lattices adjacent to each other for easy com-
parison:

M fcc
0, S= p&6p2+8p3+ p4&6p5+30p6&4p7+105p8+79p9 } } }

M hcp
0, S= p&6p2+8p3+ p4&6p5+30p6+2p7+33p8+513p9 } } }
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Fig. 4. A triangular cluster of three sites (gray colored circles) on the (a) hcp and (b) fcc
lattice. In (a), the empty circles represent vacant sites in the plane of the cluster, the black
circles represent vacant sites above and below the plane. Neighboring this cluster, there are
9 perimeter sites in the plane, 6 perimeter sites in the plane above and 6 in the plane below,
yielding t=9+6+6=21 total perimeter sites. In (b), the black circles represent the sites
above the plane, and the X's represent the sites below the plane. This lattice has 9 perimeter
sites in the plane, 6 in the plane above, and 7 in the plane below, yielding t=9+6+7=22
total perimeter sites.

M fcc
1, S�p=q12+12q18&12q19+24q22&12q23+50q24&168q25+222q26

&140q27+252q28+ } } }

M hcp
1, S�p=q12+12q18&12q19+3q21+12q22+6q23+30q24&109q25

+78q26+41q27+44q28+ } } }

M fcc
2, S= p+12p2+84p3+504p4+3012p5+17142p6+96228p7

+532028p8+2918388p9+ } } }

M hcp
2, S= p+12p2+84p3+504p4+3014p5+17148p6+96072p7

+533286p8+2911166p9+ } } }

For the first moment, we report M1 �p, which gives somewhat simpler
expressions for the q series than M1 . Note that the series are identical up
to order p6 for M0 , q19 (three terms) for M1 �p, and p4 for M2. The coef-
ficients for M2 differ a small amount between the two lattices for higher
order. Note that the series for M1(q) is actually given up to order 38 by the
enumerations for s�9.
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For bond percolation, the corresponding series are:

pM fcc
0, B= p&6p2+8p4+33p5+132p6+554p7+2514p8+13152p9+ } } }

pM hcp
0, B= p&6p2+8p4+33p5+132p6+553p7+2526p8+13116p9+ } } }

M fcc
1, B=q12+12q22&12q23+24q30+54q32&204q33+126q34+8q36

+96q38&32q39+276q40&768q41+608q42&1800q43+3066q44

&1304q45+360q46&480q47+1056q48&3360q49+ } } }

M hcp
1, B=q12+12q22&12q23+24q30+54q32&204q33+126q34+8q36

+96q38&32q39+276q40&768q41+613q42&1800q43

+3036q44&1314q45+450q46&480q47+1061q48&3480q49+ } } }

pM fcc
2, B= p+12p2+132p3+1356p4+13344p5+127548p6+1194864p7

+11033256p8+100692522p9+ } } }

pM hcp
2, B= p+12p2+132p3+1356p4+13344p5+127548p6+1194944p7

+11033544p8+100697070p9+ } } }

Here we find an even closer agreement between the series of the two
lattices than we found for site percolation. The series for both pM0 and
pM2 agree between the two lattices up to order 6 and then differ by a very
small amount for the three orders beyond that, while the series for M1

agree up to order q41 (first 12 terms). While it is impossible to prove or dis-
prove that the thresholds for the fcc and hcp lattices are identical from
these results, they clearly suggest that if the thresholds are indeed different,
then they should be much closer for bond percolation than site percolation,
as indeed we have found numerically.

IV. CONCLUSIONS

As a result of this work, we have shown that the critical thresholds for
site percolation on the two lattices are definitely different. The value of pc

on the hcp lattice (0.199 255 5\0.000 001 0) is nearly ten combined error
bars away from the previously reported value(5) for the fcc lattice
(0.199 236 5\0.000 001 0). Also, the exact enumeration series for the two
lattices begin to differ at relatively low order terms for site percolation.

On the other hand, even at high precision, the critical thresholds for
bond percolation on the hcp and fcc lattices have the same value, within
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the error bars (0.120 164 0\0.000 001 0). Although the series for bond per-
colation on the two lattices do differ, the difference is incredibly small and
does not occur until higher order terms. While this difference does not
rigorously rule out equality of the thresholds, we guess that the thresholds
are in fact slightly different, but by an amount too small to be seen in our
numerical simulations.
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