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Unconstrained Optimization1,2
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Abstract. We propose a new inexact line search rule and analyze the
global convergence and convergence rate of related descent methods.
The new line search rule is similar to the Armijo line-search rule and
contains it as a special case. We can choose a larger stepsize in each
line-search procedure and maintain the global convergence of related
line-search methods. This idea can make us design new line-search
methods in some wider sense. In some special cases, the new descent
method can reduce to the Barzilai and Borewein method. Numerical
results show that the new line-search methods are efficient for solving
unconstrained optimization problems.
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1. Introduction

Let Rn be an n-dimensional Euclidean space and let f :Rn→R1 be a
continuously differentiable function. Line-search methods for solving the
unconstrained minimization problem

min f (x), x ∈Rn, (1)
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have the form defined by the equation

xk+1=xk+αkdk, k=1,2,3, . . . , (2)

where x1 ∈Rn is an initial point, dk is a descent direction of f (x) at xk,
and αk is the stepsize. Let xk be the current iterative point, k=1,2,3, . . . ,
and x∗ be a stationary point which satisfies ∇f (x∗)= 0. We denote the
gradient ∇f (xk) by gk, the function value f (xk) by fk, and the function
value f (x∗) by f ∗.

Choosing the search direction dk and determining the stepsize αk

along the search direction at each iteration are the main tasks in line-
search methods. The search direction dk is generally required to satisfy

gT
k dk <0, (3)

which guarantees that dk is a descent direction of f (x) at xk. In order to
guarantee global convergence, we require sometimes that dk satisfies the
sufficient descent condition

gT
k dk≤−c ‖gk ‖2, (4)

where c > 0 is a constant. Moreover, we need to choose dk to satisfy the
angle property

cos<−gk, dk >=−gT
k dk/(‖gk ‖ · ‖dk ‖)≥η0, (5)

where η0 ∈ (0,1] is a constant and <−gk, dk > denotes the angle between
the vectors −gk and dk.

The commonly-used line-search rules are as follows.

(a) Minimization Rule. At each iteration, αk is selected so that

f (xk+αkdk)=min
α>0

f (xk+αdk). (6)

(b) Approximate Minimization Rule. At each iteration, αk is selected
so that

αk=min
{
α|g(xk+αdk)

T dk=0, α >0
}

. (7)

(c) Armijo Rule. Set scalars sk, β,L > 0, σ with sk = −gT
k dk/(L ‖

dk ‖2), β ∈ (0,1), and σ ∈ (0,1/2). Let αk be the largest α in
{sk, βsk, β

2sk, . . . } such that

fk−f (xk+αdk)≥−σαgT
k dk. (8)
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(d) Limited Minimization Rule. Set sk = −gT
k dk/(L ‖ dk ‖)2. αk is

defined by

f (xk+αkdk)= min
α∈[0,sk ]

f (xk+αdk), (9)

where L>0 is a constant.
(e) Goldstein Rule. A fixed scalar σ ∈ (0,1/2) is selected and αk is

chosen to satisfy

σ ≤ [f (xk+αkdk)−fk]/αkg
T
k dk≤1−σ. (10)

It is possible to show that, if f is bounded below, there exists
an interval of stepsize αk for which the relation above is satis-
fied; there are fairly simple algorithms for finding such a stepsize
through a finite number of arithmetic operations.

(f) Strong Wolfe Rule. αk is chosen to satisfy simultaneously

fk−f (xk+αkdk)≥−σαkg
T
k dk, (11)

|g(xk+αkdk)
T dk|≤−βgT

k dk, (12)

where σ and β are some scalars with σ ∈ (0,1/2) and β ∈ (σ,1).
(g) Wolfe Rule. αk is chosen to satisfy (11) and

g(xk+αkdk)
T dk≥βgT

k dk. (13)

Some important global convergence results for various methods using the
above-mentioned specific line-search procedures have been given; see e.g.
Refs. 1–7. In fact, the above-mentioned line-search methods are mono-
tone descent for unconstrained optimization (Refs. 8–12). Nonmonotone
line-search methods have been investigated also by many authors; see for
example Refs. 13–15. In fact, the Barzilai-Borwein method (see Refs. 16–
19) is a nonmonotone descent method which is an efficient algorithm for
solving some special problems.

In this paper, we extend the Armijo line-search rule and analyze the
global convergence of the corresponding descent methods. This new line-
search rule is similar to the Armijo line-search rule and contains it as a spe-
cial case. The new line-search rule can enable us to choose larger stepsize at
each iteration and reduce the number of function evaluations at each step.
This idea can make us design new line-search methods in some wider sense
and find some new global convergence properties. In some special cases,
the new descent method can reduce to the Barzilai and Borwein method
(Refs. 16–19), which is regarded as an efficient algorithm for un-constrained
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optimization. Numerical results show that these new line-search methods
are efficient for solving unconstrained optimization problems.

The paper is organized as follows. In section 2, we describe the new
line-search rule. In sections 3 and 4, we analyze its convergence and con-
vergence rate. In Section 5, we propose some ways to estimate the param-
eters used in the new line-search rule and report some numerical results.
Conclusions are given in Section 6.

2. Inexact Line-Search Rule

Throughout the paper we make the following assumptions.

(H1) The function f (x) has a lower bound on the level set L0 =
{x ∈Rn|f (x)≤f (x0)}, where x0 is given.

(H2) The gradient g(x) of f (x) is Lipschitz continuous in an open
convex set B that contains L0; i.e., there exists L such that

‖g(x)−g(y)‖≤L‖x−y‖, ∀x, y ∈B.

We describe first the algorithm model.

Algorithm Model A.

Step 0. Given some parameters and the initial point x1, set k :=1.
Step 1. If ‖gk‖=0, then stop; else go to Step 2;
Step 2. Set xk+1=xk+αkdk, where dk is a descent direction of f (x)

at xk and where αk is selected by some line-search rule.
Step 3. Set k :=k+1; go to Step 1.

In this section, we do not discuss how to choose dk at each itera-
tion, but investigate how to choose the stepsize αk. Some useful line-search
rules have been mentioned in the previous section. We describe here a new
inexact line search rule which contains the Armijo line search rule as a
special case. We will find that the stepsize defined in the new line-search
rule is larger than that defined in the original Armijo line search rule. In
other words, the stepsize defined by the new line-search rule is easier to
find than that defined by the original Armijo line-search rule.

In particular, the stepsize defined in the modified Armijo line-search
rule must be greater than the stepsize defined by the original Armijo line-
search rule.

(c′) Modified Armijo Line Search Rule. Set scalars sk, β, Lk, µ, and
σ with sk =−gT

k dk/Lk‖dk‖2, β ∈ (0,1), Lk > 0, µ ∈ [0,2), and
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σ ∈ (0,1/2). Let αk be the largest α in {sk, βsk, β
2sk, . . . , } such

that

f (xk+αdk)−fk≤σα[gT
k dk+ (1/2)αµLk‖dk‖2]. (14)

Remark 2.1. Suppose that αk is defined by the line-search rule (c)
and that α′k is defined by the line-search rule (c′); then, α′k ≥αk. In other
words, let Ac denote the set of the Armijo stepsize and let Ac′ be the set
of new stepsizes; then, we have Ac⊆Ac′ . In fact, if Lk≡L and there exists
αk satisfying (8), then αk is certain to satisfy (14).

Moreover, if µ=0, then the line search rule (c′) reduces to the Armijo
line search rule (c).

In Algorithm Model (A), the corresponding algorithms with line-
search rule (c′) is denoted by Algorithm (c′). In what follows, we analyze
the global convergence of the new line-search method.

3. Global Convergence Analysis

Theorem 3.1. Assume that (H1) and (H2) hold, the search direction
dk satisfies (3), and αk is determined by the modified Armijo line-search
rule. Algorithm (e′) generates an infinite sequence {xk} and

0<Lk≤mkL, (15)

where mk is a positive integer and mk≤M0 <+∞, with M0 being a large
positive constant. Then,

∞∑
k=1

(
gT

k dk/‖dk‖
)2

<+∞. (16)

Proof. Let

K1={k|αk= sk}, K2={k|αk <sk}.

If k∈K1, then

f (xk+αkdk)−fk ≤σαk[gT
k dk+ (1/2)αkLk‖dk‖2]

=−σ
[
gT

k dk/Lk‖dk‖2
] [

gT
k dk− (1/2)µgT

k dk

]

=− [σ (1− (1/2)µ)/Lk]
(
gT

k dk

)2
/‖dk‖2;
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thus,

f (xk+αkdk)−fk≤− [σ(1− (1/2)µ)/Lk]
(
gT

k dk

)2
/‖dk‖2, k∈K1. (17)

Let

ηk=−σ(1− (1/2)µ)/Lk, k∈K1;

by (15), we have

ηk=−σ(1− (1/2)µ)/Lk

≤−σ(1− (1/2)µ)/mkL

≤−σ(1− (1/2)µ)/M0L<0.

Let

η′ =σ(1− (1/2)µ)/M0L.

This and (17) imply that ηk≤−η′ and

fk+1−fk≤−η′
(
gT

k dk/‖dk‖
)2

, k∈K1. (18)

If k∈K2, then αk <sk. This shows that sk cannot satisfy (14) and thus αk≤
βsk. By the modified Armijo line-search rule (e′), we assert that α=αk/β

cannot satisfy (14) and thus

f (xk+αkdk/β)−fk >σαk/β[gT
k dk+ (1/2)αkµLk‖dk‖2/β].

Using the mean-value theorem on the left-hand side of the above inequal-
ity, we see that there exists θk ∈ [0,1] such that

αkg(xk+ θkαkdk/β)T dk/β >σαk/β[gT
k dk+ (1/2)αkµLk‖dk‖2/β];

therefore,

g(xk+ θkαkdk/β)T dk >σ
[
gT

k dk+ (1/2)αkµLk‖dk‖2/β
]
. (19)

By (H2), the Cauchy-Schawarz inequality, and (19), we obtain

αkL‖dk‖2/β≥‖g(xk+ θkαkdk/β)−gk‖ · ‖dk‖
≥ [g(xk+ θkαkdk/β)−gk]T dk

>−(1−σ)gT
k dk+ (1/2)σµαkLk‖dk‖2/β.
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Therefore,

αkL‖dk‖2/β >−(1−σ)gT
k dk,

which implies that

αk≥− [β(1−σ)/L]gT
k dk/‖dk‖2, k∈K2. (20)

Letting

s′k=− [β(1−σ)/L]gT
k dk/‖dk‖2, k∈K2,

we have

sk >αk >s′k, k∈K2. (21)

By (14) and (21), we have

fk+1−fk ≤σαk

[
gT

k dk+ (1/2)αkµLk‖dk‖2
]

≤σ max
sk≥α≥s′k

{
α

[
gT

k dk+ (1/2)αµLk‖dk‖2
]}

≤σ max
sk≥α≥s′k

{
α

[
gT

k dk+ (1/2)skµLk‖dk‖2
]}

=σs′k(1− (1/2)µ)gT
k dk

=− [σβ(1−σ)(1− (1/2)µ)/L]
(
gT

k dk/‖dk‖
)2

.

Letting

η′′ =σβ(1−σ)(1− (1/2)µ)/L, (22)

we have

fk+1−fk≤−η′′(gT
k dk)

2/‖dk‖2, k∈K2. (23)

Let

η′0=min(η′, η′′);
by (18) and (23), we have

fk+1−fk≤−η′0
(
gT

k dk/‖dk‖
)2

, ∀k. (24)

By (H1) and (24), we can obtain that {fk} is a decreasing sequence and
has a bound from below. This shows that {fk} has a limit. By (24), we
prove via (H1) that (16) holds.



432 JOTA: VOL. 127, NO. 2, NOVEMBER 2005

Corollary 3.1. If the conditions in Theorem 3.1 hold, then

lim
k←∞

(
gT

k dk/‖dk‖
)2=0. (25)

In fact, Assumption H2 can be replaced by the following weaker assump-
tion:

(H2′) The gradient g(x) of f (x) is uniformly continuous on an open
convex set B that contains L0.

Theorem 3.2. Assume that (H1) and (H2′) hold, the search direction
dk satisfies (3), and αk is determined by the modified Armijo line-search
rule. Algorithm (e′) generates an infinite sequence {xk} and

0<Lk≤M ′0, (26)

where M ′0 is a large positive constant. Then,

lim
k→∞

(
−gT

k dk/‖dk‖
)
=0. (27)

Proof. Similarly as in the proof of Theorem 3.1, if k ∈K1, by (18),
we can prove that

lim
k∈K1,k→∞

(
−gT

k dk/‖dk‖
)
=0. (28)

In the case of k∈K2, by (14), we have

f (xk+αkdk)−fk ≤σαk[gT
k dk+ (1/2)αkµLk‖dk‖2]

≤σαk[gT
k dk+ (1/2)skµLk‖dk‖2]

=σαk(1− (1/2)µ)gT
k dk.

By (H1), we have

lim
k∈K2, k→∞

(
−αkg

T
k dk

)
=0. (29)

If there exist ε0 >0 and an infinite subset K3⊆K2 such that

−gT
k dk/‖dk‖≥ ε0, ∀k∈K3, (30)
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then by (29) and (30), we have

lim
k∈K3, k→∞

αk‖dk‖=0. (31)

By (19), we have

g(xk+ θkαkdk/β)T dk≥σgT
k dk, k∈K3, (32)

where θk ∈ [0,1] is defined in the proof of Theorem 3.1. By the Cauchy-
Schwarz inequality and (32), we have

‖g(xk+ θkαkdk/β)−gk‖=‖g(xk+ θkαkdk/β)−gk‖‖dk‖/‖dk‖
≥ [g(xk+ θkαkdk/β)−gk]T dk/‖dk‖
≥−(1−σ)gT

k dk/‖dk‖, k∈K3.

By (H2′) and (31), we obtain

lim
k∈K3, k→∞

(
−gT

k dk/‖dk‖
)
=0,

which contradicts (30). This shows that

lim
k∈K2, k→∞

(
−gT

k dk/‖dk‖
)
=0. (33)

By (28), (33), and noting that K1
⋃

K2 = {1,2,3 . . . }, we assert that (27)
holds.

Since (H2) implies (H2′), Theorem 3.1 is essentially a corollary of
Theorem 3.2.

4. Linear Convergence Rate

In order to analyze the convergence rate, we assume that the sequence
{xk} generated by the new algorithm converges to x∗. We make further the
following assumption.

(H3) ∇2f (x∗) is a symmetric positive-definite matrix and f (x) is
twice continuously differentiable on a neighborhood N0(x

∗, ε0)

of x∗.
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Lemma 4.1. Assume that (H3) holds. Then, there exist ε >0 and 0<

m′ ≤M ′ such that (H1) and (H2) hold for x0 ∈N(x∗, ε)⊆N0(x
∗, ε0) and

m′‖y‖2≤yT∇2f (x)y≤M ′‖y‖2, ∀x, y ∈N(x∗, ε), (34)

(1/2)m′‖x−x∗‖≤f (x)−f (x∗)≤ (1/2)M ′‖x−x∗‖2, ∀x ∈N(x∗, ε), (35)

M ′‖x−y‖2≥ (g(x)−g(y))T (x−y)≥m′‖x−y‖2, ∀x, y ∈N(x∗, ε). (36)

Thus,

M ′‖x−x∗‖2≥g(x)T (x−x∗)≥m′‖x−x∗‖2, ∀x ∈N(x∗, ε). (37)

By (37) and (36), we obtain also from the Cauchy-Schwarz inequality that

M ′‖x−x∗‖≥‖g(x)‖≥m′‖x−x∗‖, ∀x ∈N(x∗, ε), (38)

and

‖g(x)−g(y)‖≤M ′‖x−y‖, ∀x, y ∈N(x∗, ε). (39)

Its proof can be seen from e.g. Refs. 7–8 or Refs. 21–22.

Lemma 4.2. If (H1) and (H2) hold, the search direction dk satisfies
the angle property (5) at each iteration, Algorithm (c′) generates an infi-
nite sequence {xk}; then, there exists η>0 such that

fk−fk+1≥η‖gk‖2, ∀k. (40)

Proof. By Theorem 3.1, (5), and (24), we have

fk+1−fk ≤−η′0
(
gT

k dk/‖dk‖
)2

=−η′0
(
gT

k dk/‖gk‖ · ‖dk‖
)2 · ‖gk‖2

≤−η′0η
2
0‖gk‖2.

Let

η=η′0η
2
0;

we obtain that (40) holds.



JOTA: VOL. 127, NO. 2, NOVEMBER 2005 435

Theorem 4.1. If (H3) holds, the search direction dk satisfies the angle
property (5) at each iteration, Algorithm (c′) generates an infinite sequence
{xk}, and xk ∈N(x∗, ε) for sufficiently large k. Then, {xk}→x∗ at least lin-
early.

Proof. By (H3), Lemma 4.1, Lemma 4.2, and (38), it follows that

lim
k→∞

xk=x∗.

By (38) and Lemma 4.1, we obtain

fk−fk+1≥η‖gk‖2
≥ηm′2‖xk−x∗‖2
≥

(
2ηm′2/M ′

)
(fk−f ∗).

Setting

θ =m′
√

2η/M ′,

we can prove that θ < 1. In fact, by the definition of η and noting that
M ′ ≤L, we obtain

θ2=2m′2η/M ′ ≤2m′2η2
0η
′
0/M

′ ≤2m′2η′0/M
′

≤ 2m′2η′/M ′ ≤ [σ(1− (1/2)µ)/M0L]
(

2m′2/M ′
)

= [2σ(1− (1/2)µ/M0]m′2/M ′2≤ (2σ/M0)<1.

Set

ω=
√

1− θ2;

obviously, ω<1; we obtain from the above inequality that

fk+1−f ∗ ≤ (1− θ2)(fk−f ∗)
=ω2(fk−f ∗)
≤· · ·
≤ω2k(f1−f ∗).

By Lemma 4.1 and the above inequality, we have

‖xk+1−x∗‖2≤ (2/m′)(fk+1−f ∗)
≤ω2k

[
2(f1−f ∗)/m′

] ;



436 JOTA: VOL. 127, NO. 2, NOVEMBER 2005

thus,

‖xk+1−x∗‖≤ωk
√

2(f1−f ∗)/m′;

therefore,

R1{xk}= lim
k→+∞

‖xk−x∗‖1/k

= lim
k→+∞

[
ωk−1

√
2(f1−f ∗)/m′

]1/k

=ω lim
k→+∞

[√
2(f1−f ∗)/m′

]1/k

=ω<1,

which shows that {xk} converges to x∗ at least linearly.

5. Numerical Results

In this section, we discuss the implementation of the new algorithm.
The technique of choosing parameters is reasonable and effective for solv-
ing practical problems in both theory and numerical aspects.

5.1. Parameter Estimation. In the modified Armijo line-search rule,
there is a parameter Lk which must be estimated. As we know, Lk should
approximate the Lipschitz constant M ′ of the gradient g(x) of the objec-
tive function f (x). If M ′ is given, we should certainly take Lk=M ′. How-
ever, M ′ is not known prior in many situations. Lk needs to be estimated
in some cases.

First of all, let

δk−1=xk−xk−1, yk−1=gk−gk−1, k=2,3,4, . . . ,

and estimate

Lk=‖yk−1‖/‖δk−1‖ (41)

or

Lk=max {‖yk−i‖/‖δk−i‖|i=1,2, . . . ,M} , (42)

whenever k≥M+1, where M is a positive integer.
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Next, the BB method (Refs. 16–19) motivates us also to find a way
of estimating M ′. Here, BB stands for Bazzilai and Borwein. Solving the
minimization

min ‖Lkδk−1−yk−1‖,

we obtain

Lk= δT
k−1yk−1/‖δk−1‖2. (43)

Obviously, if k≥M+1, we can also take

Lk=max
{
δT
k−iyk−i/‖δk−i‖2|, i=1,2, . . . ,M

}
. (44)

On the other hand, we can take

Lk=‖yk−1‖2/δT
k−1yk−1 (45)

or

Lk=max
{
‖yk−i‖2/δT

k−iyk−i | i=1,2, . . . ,M
}

, (46)

whenever k≥M+1.
There are many other techniques of estimating the Lipschitz constant

M ′; see Ref. 8. We will use (41)–(46) to estimate M ′ and the corresponding
algorithms are denoted as Algorithms (41)–(46) respectively.

5.2. Numerical Results. In what follows, we will discuss the numeri-
cal performance of the new line-search method. The test problems are cho-
sen from Ref. 20 and the implementable algorithm is stated as follows.

Algorithm A.

Step 0. Given some parameters σ ∈ (0,1/2), β ∈ (0,1), µ∈ [0,2), and
L1=1, let x1 ∈Rn and set k :=1.

Step 1. If ‖gk‖=0, then stop; else, go to Step 3.
Step 3. Choose dk to satisfy the angle property (5); for example,

choose dk=−gk.
Step 4. Set xk+1 = xk + αkdk, where αk is defined by the modified

Armijo line search rule.
Step 5. Set δk=xk+1−xk, yk=gk+1−gk, and Lk+1 is determined by

one of (41)–(46).
Step 6. Set k :=k+1; go to Step 1.
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Table 1. Iterations and function evaluations, µ=1.

P n Armijo New (41) New (43) New (45)

P5 2 8, 12 6, 9 7, 11 7, 8
P13 4 25, 38 18, 22 16, 25 17, 26
P14 4 36, 50 28, 34 26, 33 30, 42
P16 4 14, 72 16, 63 12, 58 11, 56
P20 9 12, 17 12, 13 12, 13 11, 11
P21 16 18, 21 16, 23 12, 14 11, 15
P21 100 21, 30 17, 22 16, 25 15, 20
P23 8 30, 42 28, 34 26, 36 26, 38
P23 100 36, 58 30, 34 28, 32 30, 52
P23 200 55, 87 43, 67 48, 72 42, 61
P24 20 52, 67 45, 59 38, 38 47, 52
P25 50 11, 121 11, 32 16, 78 9, 83
P26 50 14, 30 14, 19 12, 16 15, 18
P30 20 13, 22 11, 18 10, 19 12, 19

In the above algorithm, we set

σ =0.38, β=0.87, µ=1

and set the same parametric values in the original Armijo line-search
method with L= 1. We will find that the stepsize in the new line-search
method is easier to find than in the original one. In other words, the new
line-search method needs less evaluations of gradients and objective func-
tions at each iteration. We tested the new line-search methods and the
original Armijo line-search method with double precision in a portable
computer. The codes were written in the visual C++ language. Our test
problems and the initial points used are drawn from Ref. 20. For each
problem, the limiting number of function evaluations is set to 10000 and
the stopping condition is

‖gk‖≤10−6. (47)

Our numerical results are shown in Tables 1–4, where Armijo, New
(41), New (43), New (45) stand for the Armijo line-search method and the
new line search methods with Lk given by (41), (43), (45) respectively. The
symbols n, In,Nf mean respectively the dimension of problems, the num-
ber of iterations, and the number of function evaluations, respectively.

The unconstrained optimization problems are numbered in the same
way as in Ref. 8. For example, P5 means Problem 5 in Ref. 20.
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Table 2. Iterations and function evaluations, µ=1.5.

P n Armijo New (41) New (43) New (45)

P5 2 8, 12 6, 7 7, 10 6, 8
P13 4 25, 38 17, 20 16, 21 15, 23
P14 4 36, 50 23, 28 24, 31 25, 36
P16 4 14, 72 16, 43 12, 49 11, 38
P20 9 12, 17 12, 13 12, 13 11, 11
P21 16 18, 21 16, 21 11, 13 11, 14
P21 100 21, 30 16, 18 16, 22 15, 18
P23 8 30, 42 25, 33 26, 32 23, 32
P23 100 36, 58 28, 33 26, 28 30, 47
P23 200 55, 87 40, 58 42, 61 38, 56
P24 20 52, 67 43, 48 36, 38 42, 48
P25 50 11, 121 11, 28 16, 43 9, 67
P26 50 14, 30 14, 19 12, 16 15, 18
P30 20 13, 22 11, 16 10, 16 12, 17

Table 3. Iterations and function evaluations, µ=1.

P n Armijo New (41) New (43) New (45)

P21 1000 98, 562 66, 320 58, 187 63, 213
P21 5000 143, 736 74, 421 87, 325 82, 288
P23 1000 120, 984 93, 437 78, 529 84, 512
P23 5000 185, 2842 126, 933 126, 922 113, 847
P23 8000 224, 3827 140, 1250 123, 1541 118, 1628
P24 5000 283, 6250 186, 4212 236, 3238 178, 2694
P25 5000 217, 8364 158, 2472 154, 3312 126, 3269
P26 5000 163, 1923 112, 1283 125, 1538 105, 1163
P30 5000 149, 926 121, 612 119, 583 108, 581

Table 4. Iterations and function evaluations, µ=1.5.

P n Armijo New (41) New (43) New (45)

P21 1000 98, 562 58, 274 53, 148 63, 162
P21 5000 143, 736 68, 317 62, 236 78, 242
P23 1000 120, 984 82, 329 78, 412 81, 468
P23 5000 185, 2842 118, 726 118, 821 103, 687
P23 8000 224, 3827 132, 984 112, 965 116, 1263
P24 5000 283, 6250 147, 2872 182, 2893 158, 2476
P25 5000 217, 8364 127, 1963 128, 2305 114, 2129
P26 5000 163, 1923 112, 1132 126, 1259 105, 982
P30 5000 149, 926 98, 263 103, 321 89, 283
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(P5) Beale Function. Here,

f (x)=
3∑

i=1

fi(x)2,

fi(x)=yi −x1(1−xi
2), i=1,2,3,

y1=1.5, y2=2.25, y3=2.625.

x1= (1,1)T , x∗ = (3,0.5)T , f ∗ =0.

(P13) Powell Singular Function. Here,

f (x)=
4∑

i=1

fi(x)2,

f1(x)=x1+10x2, f2(x)=51/2(x3−x4),

f3(x)= (x2−2x3)
2, f4(x)=101/2(x1−x4)

4.

x1= (3,−1,0,1)T , x∗ = (0,0,0,0)T , f ∗ =0.

(P14) Wood Function. Here,

f (x)=
6∑

i=1

fi(x)2,

f1(x)=10(x2−x2
1 ), f2(x)=1−x1,

f3(x)= (90)1/2(x4−x2
3 ), f4(x)=1−x3,

f5(x)= (10)1/2(x2+x4−2), f6(x)= (10)−1/2(x2−x4).

x1= (−3,−1,−3,−1)T , x∗ = (0,0,0,0)T , f ∗ =0.

(P16) Brown and Dennis Function. Here,

f (x)=
20∑
i=1

fi(x)2,

fi(x)= [x1+ tix2− exp(ti)]2+ [x3+x4 sin(ti)− cos(ti)]2,

ti = i/5, i=1,2, . . . ,20.

x1= (25,5,−5,−1)T , f ∗ =85822.2 . . . .
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(P20) Watson Function. Here,

f (x)=
31∑
i=1

fi(x)2,

fi(x)=
n∑

j=2

(j −1)xj t
j−2
i −

⎛
⎝

n∑
j=1

xj t
j−1
i

⎞
⎠

2

−1,

ti = i/29, 1≤ i≤29,

f30(x)=x1, f31(x)=x2−x2
1 −1.

x1= (0, . . . ,0)T , f ∗ =1.39976 · · ·10−6.

(P21) Extended Rosenbrock Function. Here,

f (x)=
n∑

i=1

fi(x)2,

f2i−1(x)=10(x2i −x2
i−1), f2i (x)=1−x2i−1.

x1= (ξj ), ξ2j−1=−1.2, ξ2j =1.

x∗ = (1, . . . ,1)T , f ∗ =0.

(P23) Penalty Function I. Here,

f (x)=
n+1∑
i=1

fi(x)2,

fi(x)=a1/2(xi −1), 1≤ i≤n,

fn+1(x)=
⎛
⎝

n∑
j=1

x2
j

⎞
⎠−1/4, a=10−5.

x1= (ξj ), ξj = j.
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(P24) Penalty Function II. Here,

f (x)=
2n∑
i=1

fi(x)2,

f1(x)=x1−2,

fi(x)=a1/2 [exp(xi/10)+ exp(xi−1/10−yi ] , 2≤ i≤n,

fi(x)=a1/2 [exp(xi−n+1/10)− exp(−1/10)] , n< i <2n,

f2n(x)=
⎡
⎣

n∑
j=1

(n− j +1)x2
j

⎤
⎦−1,

a=10−5, yi = exp(i/10)+ exp[(i−1)/10].

x1= (1/2, . . . ,1/2)T .

(P25) Variably-Dimensioned Function. Here,

f (x)=
n+2∑
i=1

fi(x)2,

fi(x)=xi −1, i=1, . . . , n,

fn+1(x)=
n∑

j=1

j (xj −1),

fn+2(x)=
⎡
⎣

n∑
j=1

j (xj −1)

⎤
⎦

2

.

x1= (ξj ), ξj =1− (j/n).

x∗ = (1, . . . ,1)T , f ∗ =0.

(P26) Trigonometric Function. Here,

f (x)=
n∑

i=1

fi(x)2,

fi(x)=n−
n∑

j=1

cosxj + i(1− cosxi)− sin xi, i=1,2, . . . , n.

x1= (1/n, . . . ,1/n)T , f ∗ =0.
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(P30) Broyden Tridiagonal Function. Here,

f (x)=
n∑

i=1

fi(x)2,

fi(x)= (3−2xi)xi −xi−1−2xi+1+1, i=1, . . . , n,

x0=xn+1=0.

x1= (−1, . . . ,−1)T , f ∗ =0.

We set dk = −gk at each iteration. In this case, if αk = sk at each
iteration, then New (43) and New (45) will reduce to the BB methods
(Refs. 16–19), because of

αk= sk=−gT
k dk/Lk‖dk‖2=1/Lk

=‖δk−1‖2/δT
k−1yk−1,

corresponding to (43), or because of

αk= δT
k−1yk−1/‖yk−1‖2,

corresponding to (45).
This shows that the new line-search method contains the BB methods

and has global convergence, while the BB method has no global conver-
gence in some cases. Thus, the new method is promising and will challenge
the BB method in some sense.

In Table 1, a pair of numbers means that the first number denotes the
number of iterations and the second number denotes the number of func-
tion evaluations when reaching the same precision (47), that is, the pair of
numbers is (In,Nf ). It can be seen that, for some problems, the three new
algorithms need less number Nf of function evaluations than the origi-
nal Armijo line-search method; On the other hand, for some problems,
the Armijo line-search method performs as well as the new line-search
method. Overall, our numerical results indicate that the new line-search
methods are superior to the original Armijo line-search method in many
situations. In particular, the new method needs less function evaluations
than the original Armijo line-search method when reaching the same pre-
cision; i.e., in many cases, αk often takes sk in the new line-search rule.
Moreover, the estimation of Lk and thus sk is very important in the new
algorithm. In the numerical experiment, we take dk=−gk, which is a very
special case. We can take other descent directions as dk at each step.

In the new line search method, there are some parameters σ ∈
(0,1/2), β ∈ (0,1),µ∈ [0,2) which need to be set in concrete algorithms. In
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practical computation, µ is a key parameter because the new method per-
forms better when it increases in [0,2). The numerical results in Table 2
show the fact.

It is obvious that the numerical results in Table 2 are better than
those in Table 1. The reason is that, when µ increases, sk is easily accepted
as the αk and the function evaluations will decrease at each iteration. The
results of Tables 1–2 show that the new algorithm works better than the
original Armijo algorithm when the dimension n of the problem increases.
We can increase the dimension n of some problems and conduct many
more numerical experiments.

It can be seen from Tables 3 and 4 that the three new algorithms have
better numerical performance than the original Armijo algorithm. When
the dimension n of the problems increases, the new method works better
than the original Armijo line search method. We can also see that, the
greater µ∈ [0,2) is, the better the new method performs.

6. Conclusions

A new line-search rule is proposed and the related descent method is
investigated. We can choose a larger stepsize in each line-search procedure
and maintain the global convergence of related line-search method. This
idea can make us design new line-search methods in some wider sense.
Especially, the new method can reduce to BB method (Refs. 16–19) in
some special cases. As we can see, the Lipschitz constant M ′ of the gra-
dient g(x) of the objective function f (x) needs to be estimated at each
step. We have discussed some techniques for choosing Lk. In the numer-
ical experiment, we take dk=−gk at each step. Indeed, we can take other
descent directions as dk.

For further research, we can establish other similar line-search rules
such as the Goldstein rule and Wolfe rule. Of course, we hope in less eval-
uation numbers of the gradients and objective functions at each iteration.
Since the new line-search rule needs to estimate Lk, we can find other
ways to estimate Lk and choose diverse parameters such as σ,µ,β so as
to find available parameters in solving special unconstrained optimization
problems.
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