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CHAPTER 1
.~ INTRODUCTION

‘1, Statement of the Problem,

The study of the thermal instability (onset of natural
convection) of a fluid having homogeneously distributed
heat sources.is of interest as it has some bear ing to the
design of nuclear reactors, Of equal importance is the
“fact that when results of such a study are compared with
other investigations, a conclusion as to the qualitative
influence of the variation of the temperature gradient on
the general problem can be obtained.,

In the present work the stability of d viscous fluid
confined between two hor izontal boundaries and with homo-
geneously distributed heat sources is examined., The fluid
under éonsideration has the state of rest as an equilibrium
‘state, but can become unstable if a critical value of the
Rayleigh number is exceeded, The ensuing motion is one of
maintained natural convection. The Rayleigh}number is
defined to be gub3(A®)/V¢ , in which g is the gravi-
tational comnstant, o the coefficient of thermal expansion,
b .the depth of the fluid layer, A() the temperatufe dif-
ference between the center of the fluid and ome of its
boundaries, ) the kinematic viscosity, and K the thermal
diffusivity. The value of the critical Rayleigh number is
shown to depend upon the nature of the fluid's boundaries
(e.g., free or rigid; conducting or adiabatic).
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A mathematical solution of the problem has been achieved
by employing an approximation technique, and an experi-
ment has been performed for one boundary configuration

to verify the analysis.,

2. Historical Background.

Stability problems in the field of fluid mechanics
have occupied the attention of a host of authors since
the latter part of the nineteenth century. The scope of
the investigations covers the many aspects»@fﬁsecondary
laminar flow and initial transition to turbulence. The
influence of velocity profile, boundary shape, accelera=-
tion, pressure gradient, temperature variation and magnetic
fields, are but some of the facets of the general problem
which have received consideration. Specific applications
of the obtained results are employed by aeronautical
engineers and naval architects. The improvement of lift
and the lessening of drag through boundary layer control
has been the result of extensive exper imental and mathe-
matical work dealing with the stability of the flow in
the boundary layer. Our knowledge of convective heat
transfer has been broadened by including the influence
of temperature variation on the fluid motion and studying
the resulting stability problem. In this case the tem-
perature variations causea density variation which in turn
can bring about natural convection., Meterologists are
combining the thermal and rotational effects on secondary
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flow to gain an insight into the mechanisms of storm
systems and the jet stream. Scientists interested in
the earth's magnetic field are studying the secondary
flows that could be induced in the earth's molten core.
These geophysicists, along with astrophysicists study-
ing the atmosphere around the planets and physicists
engaged in developing nuclear reactors utilizing an
ionized plasma have done much to develop the science
of magnetohydrodynamics,

The present thesis deals with a problem which is
akin to that studied by Bénardg Jeffreys, Low, Rayleigh
and others. The subject of that probleﬁ is the maintained
convective motion in a fluid that is heated from below
(hereafter referred to as the Bénard problem). Pellew
and Southwell (1) were able to obtain an exact solution
for the mathematical formulation of the problem, while
Chandra (2) and Schmidt and Milverton (3) previously
obtained experimental data which are in agreement with
the analytic solution. The equations for the Bénard
problem are directly related to the classical problem
for the stability of viscous flow between rotating
cylinders, first studied by G. I. Taylor (4), for the
case in which the difference in radii of the two cyl-
inders is small comgared totheir mean, and the speeds
of rotation of the cylinders are nearly equal. Chandra-
sekhar (5) solved the resultant equations for these
problems by an approximation technique - even though
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the exact solution of Pellew and Southwell was already
available - to show the power of the method and the

rapid convergence of the attendant solution. 1In a recent
paper by Reid and Harris (6) the various exact and approx-
imate methods of solution for the Bénard problem are
discussed with a view to giving some insight into the
relative merits of the approximative methods that are
available for solving those problems which do not have

an exact solution.

For the problem that is presented in this thesis
the method of Chandrasekhar (5) is utilized for solving
the governing differential equations., These equations
do not lend themselves to an exact solution of the type
given by Pellew and Southwell.

A study of the Bénard problem was of value in the
work of this thesis not only because the method of solu-
tion is relevant but also because the quantitative results
of that solution can be used to reveal the role played
by the temperature distribution upon the stability of the
fluid., For the case of the fluid being heated from below
the mean temperature variation is linear; whereas for
distributed heat sources the mean temperature variation
is parabolic if the thermal diffusivity is considered

to be constant.

3. Related Literature,

It was stated at the beginning of the previous section
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that problems of hydrodynamic stability have attracted

the interest of investigators in many fields of the
physical sciences. To present a list of all the work

that has been done in this area is not only impractical
but also unnecessary. The book by Lin (7) is an excel-
lent introduction to the subject and contains an extensive
bibliography of 258 entries. A paper by Ostrach (8) deals
with convection phenomena and makes reference to 38 other
papers. A short summary of the work in heat transfer,
including natural convection, that has been done in the
last two years is presented by Eckert, Hartnett, and
Irvine (9). The subject of magnetohydrodynamics has
recently been outlined in book form by Cowling (10).

In this field there have been new papers by Nisbet (11)
and Yih (12). The work of Malkus (13) and Stuart (14)

is significant for they obtain solutions for the equations
governing hydrodynamic stability in which the non-linear
terms have been retained. With this work available, it is
now possible (as suggested by Pellew and Southwell) to
predict the shape of the convection cell, a fact that
cannot be ascertained if the equations are 1linearized,

tand which, therefore, must be arbitrarily assumed.



CHAPTER 11

MATHEMATICAL SOLUTION OF THE PROBLEM

1. The Governing Equations

Consider a horizontal layer of fluid with a depth b,
confined between two parallel planes x3 =0 and x3 =b,
These planes are solid, heat conducting and of equal tem-
perature. The fluid has uniformly distributed heat sources.
The equations of motion and heat conduction applicable to

this problem are .

R e

and

100_% _)e
kDt 4
2
in which the subscripts in the Navier-Stokes equations
have values of 1, 2, and 3 for the coordinate direc-
tions, and the repetition of a particular suffix implies
the summation convention of tensor analysis; L& is the
component of the fluid velocity in the (™ coordinate
direction; /J is the mass density of the fluid; A ’

a Lamé constant; %/ the gravitational constants 13

the pressure in the fluid; /A and ) , the dynamic and



kinematic viscosities; ELS the Kronecker delta, being
zero for L # 3 and unity for L = 33 and ZX the symbol
for the Laplacian operator. Also, in the foregoing equa-
tions ({) is the absolute temperature of the fluid, K

is the thermal diffusivity; %5 is the time rate of heat
generation per unit volume of fluid, ’h is the thermal

conductivity, and D_ is the substantial derivative:

Dt

_9 '5 _ 9 ? 2
5=t 9%, 7+U‘75'1+u2 R, %,

The coordlnate system employed for this problem is

presented in Fig. 1 along with the mean temperature dis-

tribution in the fluid layer.
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Schematic Drawing of Fluid Layer with
the Mean Temperature Distribution and
the Coordinate System

In writing equation (2) the dissipation of mechanical
energy into heat is considered small and therefore neglected.

This assumption will be reviewed later.

The density of the fluid can be expressed as

/O=/0°{1’0<(®—®°)} (3)



if the temperature differences in the fluid are small.

In equation (3) {06 is the density at the reference tem-

perature, ®), ; and X is the coefficient of thermal

expansion., \ fr
Under equilibrium conditions the fluid layer is quieqs-

cent and the heat liberated by the fluid is carried to the

boundar ies by conﬁuﬁ\:‘ion alone., Accordingly, equations

(1) and (2) can be solved for this condition and by assum-

ing constant thermal properties one has

:b-ll"‘\; 0 (4)

® =Z_"%(bx3- X5 ) + ® (5)
e

3 2

®,,= é%?é + ®, (6)

% --d(4p) )

in which the bar over a symbol denctes a mean quantity,

and hence the value associated with the quiescent state,

®, is the temperature at the middle of the/ fluid layer
while pure conduction is taking place, and ®), is the
temperature of the uppef and lower boundaries of the fluid.
The boundary temperatures will ‘be forced to remain constant

regardless of the motion of the fluid. The symmetry of the
8



temperature about the mid-plane of the fluid is a conse-
quence of the assumed constant thermal properties., This
constancy could result from the nature of the fluid itself
or from the fact that only small temperature variations are
being considered., With equations (3) and (5) it is possible

to write the mean density as

f'=/oo{i-%%(bx3—x§)}. .

Now consider small departures in the values of the
temperature, pressure, density, and velocity from those
existing during the conduction state. The values of these

quantities will be

O=0+0 b= P+’

(9)

/0=/5+/0’, Uy = U

if a linear perturbation is employed, and the primed
quantities-arg these perturbations. »

The perturbedAvariabies (9) are then substituted
into equations (1) and (2) and equations result
from which a solution for the perturbations can be obtained.
The solution will be examined to determine the conditions

under which a perturbated qpantity can have a steady-state
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value other than zero. The equation resulting from the

substitution of (9) into equation (1) is

by _ g (%/5)—;—( >\+/u 9“1) YA
(10)

In writing this equation the primed quantities are con-
sidered to be small and all products of perturbation
qpantitiesvcan be ignored because their magnitude will
be very much smaller in comparison with the other terms
in the equation. The result of this simplification is
three scalar equatibns which are linear.

By introducing @, from (9)vinto equation (3) and by
comparison with the expression for f) given in (9), one

can conclude that

F=r. ()

Recalling the series expansion for the reciprocal

715_

(11)

of (1-X) it is possible to write

{1425 (be- xs)} .

-as

bk
For the case that the term %%é?— is small and the fluid
depth b is also small, the second term in the brackets
can be neglected in comparison with unity and equation

(10) reduces to

-10-



(12)
The value of ) in the above equation is considered to be
constant for the small variation in temperature which will
be encountered.

The equation of continuity, or mass conservation, is

ng._

ot o

and can be written as _&

%QM%M/O@XL

if the perturbated variables of (9) are employed and the

(13)

N (’7{1; )

(14)

terms consisting of products of two perturbation quantities
are neglected as before.

Substitution of equations (8) and (11) for'/ﬁ and

f{ , respectively, into equation (14) gives the follow-

ing result for the divergence of the perturbated velocity

field,

ou,_ {at+ 8- “3)}

_ﬂgﬁ bx3" X3 (15)
U,
76?%?

is small in comparison w1tﬁaqband L@ , if @ and

For the case that X is sufficiently small

-11-



U; are of the same order of magnitude., One can draw the

conclusion from (15) that for time-independent solutions,

%%g © is small compared to U; ., The equation
L : ,

Wi_ o

M

(16)

can be used in the sense that

‘au[

X

< \ua\

By introducing the perturbated quantities into equation
(2) to account for heat conduction, it is possible to write

after neglecting the perturbation terms of the second power

Foh e 28 (M)

'B@ .|_ 9@ —_ A@l — éy,,u/,/w&/ Vi
€\ot o]

a7)

since

and

-\ _
N u@@ LN\ +
CKOXp
)

from equation (5).
Equations (12) and (17) can be used to solve the
stability problem if the terms associated with the pressure

12



contained in (12) can be eliminated. This is achieved by
cross-differentiation of the three scalar equatiens of
motion and making appropriate combinations of the terms
in conjunction with the continuity equation givem in
equation (16). Thus, writing out the scalar equations,

one obtains

Wy _ 19 oy,
ot ,09( ep ’“’Au‘

(12a)
e _ 1D [ (N4u)Y;
I

(12b)
Ws_ 19 [ (Mep0%)s pAUs + qu®
e ,ooax_,,(? [Aep )9X}“) >+ 40

(12¢)

By operating on equatioms (12¢), (12a), (12¢) and (12b)
with -

/DZ ,3-2 . 92 92
o e o nek,

respectively, one obtains

B[P )=13 Jo-(ap)) 1 p 2y
W\ 00K, ,%%@ X /M @x;ax3

-13=-

(19)



YA i IR M P R V. T
%‘t(“o?: 3“’% " ,Zio'oaxsfax:(F (“/“)Fa'ij "’”W(A“*”)
(20)
Eﬁﬁ --i@im. ! %u P
Tt(%”’bz’@)" (oo‘ax;axf(? -(A+ ia )%‘ +o 3’5_ Au?_)
(21)

A subtraction of equation (19) from (18) and equation (21)

from (20), and then adding the two remainders gives

‘bt{?a;‘f ‘"37 o0 ’fb();i gxs%?(: %Xa 0% ?ég:ﬂ ?(A@
s >+%;,,A J )
@Xé(f) (/\ ) sz(AUL) +@(ﬁﬂﬂ (22)

One notes that the terms which are underlined in the above
equation have been introduced for convenience and do not

change the value of the expressions., Equation (22) reduces

to

(b A
’%t(ﬁur 3( )) ?TdA®+DA(AU3”%;3%‘E)) (23)
fa’“ '51"
O, ®><,,

~14«

in which [\ =



From equation (15) it was possible to conclude that
‘buk/ﬁaxL is an infinitesimal of an order higher than
u3° Thus, while %%i_ may not be exactly zero,
it is assumed that éﬁg%%%) will be small in compar ison
with.[lus , and may be neglected in terms that also
contajxnlﬁu3 . The validity of this assumtion will be
examined when the solution for the velocity components is
obtained., After neglecting the derivative of the

divergence of the perturbed velocity, equation (23) becomes

%(Aug) - g"?Ai/ YA
’ | (232)

A rearrangement of the above result gives the second of

the two desired governing equations as

: /
2 AAY = T N
|t .
(24)
The solution of equations (17) and (24) - along with
the appropriate boundary conditions = is necessary for the
determination of a stability criterion for the flow under

study. The attendant boundary conditions are

~15<



/
®=0 at %=0,b;

(25i)
U5=O a‘}- X3=O)b‘)

(25ii)
by | (25iii)

The first four of these conbitions result from the fact
that the upper and lower boﬁndaries are isothermal and
rigid, hence allow no variation of the surface tempera-
turgs, and no velocity components perpendicular to the
boundary. Prom the fact that U, and U, are zero every-
where on the boundary due to the presence of viscosity,
the last two boundary conditions can be obtained with the
help of the continuity equation,

It is possible to proceed directly with the solution
of the problem given 5y equations (17) and (24) in con~
junction with the restrictions of (25), but it is ﬁore
convenient, and the results more general, if the equations

‘are non-dimensionalized by setting

t=t-§-_ ) (X;‘gp})? (% ) %E >3<53)
- Emb, ;Fs._ﬁg_,==\£5k@y.
T TR e, 4

(26)
w]6=



By employing these new variables in equations (17) and

(24) the following is obtained

(
:&_——K7Z>T.==—'4NJ(1_ZJ) /,\&ﬂ
(% ‘ 27)
and
¢ vz)vzw-—- 5[ @0, |7 T F
(ME %Z/? i )i (28)

° o z' Z e y @

in which \/ and \, are now the Laplacian operators with
respect to the new coordmates ‘»&j “and (X.‘Z), res‘pec.,.
tively,

The boundary conditions (25) become

T=0 af 3‘—-’-0) 153 | (291)
w=0 at 3(”0)15 (29ii)
w =

%}"O ot 3”0’ L (29iii)

Por the solution of partial differential equations of
the type given by equations (27) and (28), the method of
separation of variables can'be used, If W and T are

assumed to have the separable form

W = )M o (30)

ATT
:F (31)

in which ]r_ is a function of X and %/ only, the functions
W and T‘ are dependent only on Z , and 0 has real

w7 o



and imaginary parts (. and(ggj , respectively, For (.
greater than zero the solﬁtion (representing the disturbance)
will grow exponentially with time, and for (. less than
zero, the perturbation will decay. If G{ is non-zero the
perturbation quantities will be Oscillafor'y°

Upon substitution of the assumed form of the solutions

into equation (27) ome has
f W AR K ]tﬁ;}” - & Lefo1-23)

in which the subscripts denote partial differentiation in
accordance with standard practice. The above result can

be written as

‘,j_X.X_iw Q/\@ 1- 27 +_fﬁ} T=4
. (32)

in which d 1is a dimensionless constant characterizing
the mode of the disturbance. This constant is called the

"cell number'. The last equation yields

‘ I, HCW +adtf =0

(33)

and @

(34)

~18«



in which D= %%‘

The substitution of the assumed form of the solution,
equations (30) and (31), into equation (28) yields, with
the aid of equation (33),

(o= i --Few
‘ (35)

in which

R= 945 (®r®) _ gab’
Vopk B¢

(36)
At the threshold of instability it is clear that the
solution neither grows nor decays. Hence Q; must be zero.
The value of (j cannot be assigned a priori but in certain
problems (5) and (15) it has been shown that at neutral
stability GI must be zero. In these cases the differen-
tial system is self-adjoint. For a large class of prob-
lems the governing differential equations are not self-
adjoint and it is impossible to show mathematically that
GI is zero without extensive and detailed calculation.
It is assumed in those cases for which the value of Cq
cannot be determined simply, that (; is zero, when - (O
is zero. This is the assumption of the "principle of the

exchange of stabilities™, Por the present problem this

principle will be invoked and (J| is taken as being zero

~10-



at neutral stability.
Hence the system of ordinary differential equations

which must be solved is simplified to

/D a) % 123

(37)
(D™ a) 4R, (38)
The boundary conditions for these equations are
N .
T=0 @ 3=o)13 (391)
w=0 at 7=0 1 (39ii)
A
%V_%'—'_Q at =04 (301ii)

2. Method of Solution.

The solution of the governing differential equations
can be obtained readily by the method of Chandrasekhar.
This numer ical technique provides a means of solving
problems for which there is no simple exact solution.

The pfocedure is straightforward and is not too involved,
so that one need not resort to electronic computing devices
to obtain the solution. A brief outline of the method is
presented in this section.

The thermal boundary conditions (39i) will be satis-
fied by a function "l/'\‘ having a Four iér series expansion

of the form

o<

:ZAH%HWZ N= 1,2‘,’3,“' .

n=1 (40)

w2 (e



Using the above expression in conjunction with equation

(38) permits one to solve for GQ o

V=R Ay Bruchag+C, sinhapD3 sinhag Egjinha
) [ EshapiCo s gsinhs ok

+,i SVnnnz} ‘41)

in which
2
Ny = (m)z+ a.
(42)

The velocity boundary conditions (39ii) and (39iii) when

applied to equation (41) and its derivative require that

Bp=0 | (43)

¢ -l 3+ sinka]
"Nk sinh?a-a* |

(44)
(45)
__nmala+ly) L) sinhd
En= NZ wd&a 3 a ' \.,
v | AR e S \, (46)

G _
. . . A A
Substituting the series equivalents for T and W ,

equations (40) and (41), into equation (37), ane gets

w2l



oD

Z(— Nn)An'Si/rLﬂTTZ = 4 RiAn{Cn(l-Z?) Wa}

Nn=4 .

+Dn3 23 smhag%wE nlf- ﬁ *)escha #(_—%L)Mnﬂj}
" (47)

If this equation is to be true, the coefficients of
Sbﬂ,ﬁﬁz on both sides of the equation must be equal for
all N . (Note: the terms on the right hand side of the
equation could be expressed as an infinite series of sine
terms). The method for equating these coefficients consists
of multiplying both sides of equation (47) by sxnm'nﬂTz
and integrating from zero to one, the range of Z . This
method is the standard one for determining the coefficients
of a Fourier series, The equation resulting from the

prescribed integration is then

_:Z NNA# [ ;/n ”“?;SW"“Zdj 43 (RZA { f t-23) swwn}/mka

+D[( 2 mmng%azd?}

¥ Eyf(%—zaz} SWWHT} Ma?jdz

+ 4 N foi ZZMnTr?jsmmrzdg}

(48)



Because of the orthogonality of the sine function, the

above equation can be written upon integration as

@

,oo»/

S g

m

M M
+ ggﬂjéiraﬂﬁa_iﬂda H zzmn+mgmnN
Myﬁn ‘ Mm k\ﬁ 882
(49)
in which

2
My= (T
X =0 f m=n,

=0 f mtn 15 even m=n,

aSmn { .
o —2MR F min 15 odd

gmn= ! POPY“=Y\i.
=0 {'OF m%ﬂ' ‘

(The integration of the terms on the right hand side of

equation (48) is lengthy, but in no way difficult. The

details of these integrations are given in Appendix I.)

=23



The non-trivial solution of this system of "l homo-
geneous equations with N terms requires that the deter-

minant of the coefficients of A, wvanish:

Cn{mv( )swﬁa

m WL

42T ' tosha - 1}}

o 2t fokerds 2 fsnkalt B

—

vE {Mm( {"cntha - emn( )ma-s—fm( {Jlestha- 1}%]}

(50)
The works of Chandrasekhar (5) and Yih (15) have
shown that the solution of the infinite order secular
equation can be.closely approximated by evaluating the
determinant for a finite N . 1In essence, the series
solutions, eqﬁations ({0) and (41), are truncated after
N terms and the solu%ion is determined from the finite
number of terms that are retained. In order to simplify

the subsequent writing of the secular determinant, let

sz_mW( )m$mha..45mv{()mumka—i} )

Mm Mm (51)
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" 2
D=~ —TZfAmT'—P(-i)mMm 1} 4 o ()" {H 16—57;4—}%5 )
m M M M

(52)

S R S G

Mm M Mh
(53)
and
"o oM e g X, oml
CnCm-i- DD+ E4E T+ £””+ A '—"Amn‘ - O

NE T B8R
(54)

With this notation, equation (50) becomes
“l An ‘ -0 (55)

In his original paper which described the method of
solution, Chandrasekhar found that tpg solution could be
approximated élosely by solving théwrr by N determinant
(55) for N equal to one! The accuracy of the solution
improves as N increases but in the case of the Bénard
problem and one considered by Yih (15) the improvement
is less than 10 per cent. However, in the present problem
the solution for AAiiz'O indicates that the system is
always stable, whereas higher approximations give a finite
Rayleigh number as the stability criterion. This is due
to the lack of symmetry of the convection so that the first

term (associated with fﬁi ) is inadequate to describe the

convection. The difficulty with using ,411=() as a
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possible solution becomes apparent as the required numerical
calculations are carried out, but it follows directly from
the definitions of C,, C™, D, D", E

At
B3R

m
E®, and X, . Then

n? n?

and setting this first element of the

Aii becomes

determinant equal to zero results in an infinite value for
[R , for a non-zero wave number d . It can also be

shown that Amﬂ:O for m+ N an even number (M#N),

and  Ayn= 8Ig]%”nz\for m=n .

These results simplify the evaluation of the secular
equation and are given in Appendix II.

Therefore, one is forced to consider the solution of
a 2 by 2 determinant in order to get a first approximation
to the particular problem at hand. To obtain the required
solution - the minimum value of [R as a function of d
in equation (50) - one assumes values of d and solves
for B . A gré.phical presentation of these solutions
determines the value of the minimum, or critical;Rayleigh
number, Fig.p 2 shows the result of such a series of cal-
culations. 'The numer ical procedure was carried out for a
2 by 2, 3 by 3 and 4 by 4 determinant in order to improve

the accuracy of the solution. A summary of the pertinent

conclusions are given in Table I.
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TABLE I

Summary of Computations of Neutral-Stability Curve for a Fluid
Having Homogeneously Distributed Heat Sources Contained Between
Horizontal Boundaries That are Rigid and Isothermal

2.0 2.5 3.0 3.5 4.0 4.5 |

(First Mode)
First Approximation 7818 6000 5143 4885 4654 4731

~ Second Approximation } 5201 4684

Third Approximation 4669

B e, s
el 003
;1; | g:; ::'1 i};;;ii:;)) 0.9967

»qu



3. Temperature and Velocity Distribution in the Fluid Layer,

The solution just carried out for the critical Rayleigh
number involved the non-dimensional temperature and velocity
functions ﬁl and Cb , defined by equations (40) and (41).
These functions depend only on the vertical coordinate, Z/
The nature of %l and <Q can be seen by examining Fig. 3.
The curves presented in this Figure were obtained in the
following manner:

If the series in equation (40) is truncated at
N=4, one can write four equations involving A;, Ay, Aj,
and A,. These equations are, in the notation of equation

(54),

AjAg 1+ Ao+ AgAg3+ AyA1,4= 0 (56)
AjAgq* Aghgot Aghoat Aphsy= 0 (57)
AqAgy+ AgAgpt AgAzzt Agfigy= 0 (58)

Ayhgy* Bohgo* Aghyst Aghgy= 0 (39)

This is the set of homogeneous equations that were used to
591ve for the critical Rayleigh number in the last approxi-
mation achieved. The last three equations can be used

to solve Ay, A3, and A, in terms of A;. After this is done

. A AN .
the expressions for W and T will contain only one

arbitrary comnstant, Al, which is the amplitude of the

per turbation. The magnitude of A; cannot be determined
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if a linear analysis is used. The recent non-linear work
of Malkus (13) and Stuart (14) is capable of giving a

solution for A;. The coefficients Ay, A3, and Ay are

Agg Ay3 Apg

-A;| Az Az3 Azg

Ay = | Ay Ays Aga | s (60)

-Aq Azp Azl Azy

Az = | Ayp A Agg | s (61)
A22 Ap3 Agy
=Aq| Az2 Az3 A3l
Ay = | Ag A3 Ag1 | (62)
and ZX
Ay Ays Aoy
A= Azp Az3 Azy
Aa Maz s

These determinants can be slightly simplified by
recalling that A3y, Apy, and Ayoare equal to zero. The

values for the various/4mn are obtained by substituting
the critical Réyleigh number and the associated critical

«3l=



cell number into equations (44)-(46) and (51)-(54).
For this particular problem the critical Rayleigh
and cell numbers are obtained from Fig. 2 and are 4672
and 4,0, respectively. The solutions to the three equations

(60), (61), and (62) are then

Ay = = Aq (1.429777501) (63)

Az = - Ay (0,2251148661) (64)
and

Ay = = Ay (0.05253886715) (65)

A
In view of the above, | , the part of the non-
dimensional perturbation temperature that is z-dependent,

is

A . . .
T=A [sm?(— L4ATTTS0 SLTY +0.2251148 661 Sin 3Ty

} 0.05253886715 svnmr?d .
(66)
© ° L] o o A
This is the expression that is plotted in Fig, 3 for T .
)
With the evaluation of the first four AWLS in terms
A
of Ai the first four terms in the series for W become

-cf. equation (41)
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é%ﬁ = Al[C1 sm}taw Dijwhaz + Eljcodﬁajwtinf S(%W?ﬂ

—Ai[(i.42--')Czw1ha}+(1.4z--)Dzjsv'nfmajnL(i.dz--)Ez?)mﬂaag
+( 1—4’”T) Sim zvz]
Nz

+ Ai[(o.zz.--)cslsMaZ{Jr(’o.zz-»')Q}Waf(o.zzu) Esjcmhazf
+ (0_[2\12,5_ ) Sin 37?]
+ A {(0.05--‘) QWwa;ﬁ(&OSw)DﬁWaT (0. 05°--)E43,mﬁtag

: (&_ﬁ%‘:)w“fm

in which only the first two decimal places of the constants
given in equations (63), (64), and (65) have been written
for the sake of economy.
A
W
3R

This expression for can be rearranged for more

efficient evaluation as

33



‘_\fv_=A1ﬂsMa3}{C ~(1.42+)Cy + (0.22-)Cy + (0. 05 C4}
+{Bsx/n}naﬁ{ - (4.42-)0,+ (022 )0, +(0.05-)D) }
ok 6}{5 (142 )E,+ (0.2 )Eg+ (0.5 )E4}

4 SinTy _ (L4Z )sszerr (0.2 )sin3T +(o.05-~)svn41r]
2.4 2
Ny N Ny Ny

(67)
in which R = 4672 and a = 4 as before, and the coeffi-

cients Cys Coy Cg Cyqs Dyy Dy, etc., are determined from

equations (44), (45), and (46). The evaluation of the
above equation for Cb as a function of Z’ is shown in
Fig. 3.

The solution that has been obtained for CQ is
deficient in one regard. The direction of 65 at the center
of the cell is indeterminate. Whether the flow is upward
or downward at the cell's center could be learned from an
exper iment. For the Bénard problem the flow is downward
at the center and upward along the sides of the cell.

The recently developed non-linear analysis is capable of

predicting the flow direction for the Bénard problem -

-3l



and does so in agreement with the exper imental observation!
After CL and ﬁl have been determined, there remains
only the specification of f in equations (30) and (31)
to completely describe W and | (up to the undetermined
amplitude, Aq ). The quantity f‘ nmust satisfy equation

(33) which is rewritten here for convenience:

}cxx +)Lw+azf =0 (33)

This equation is amenable to solution if f’ is considered

to be a separable function of X and %, s l.e€.y

f=qh, 9=9(x), h=hly). (68)
(Only the spirit of the solution for f’ will be given here
so that the form of the f‘ that was assumed will be clear).

When f , from equation (68) is incorporated in

equation (33) one obtains

Il i
Y
% Ard=c

or
%"Jcm?(:o ) 4= Rsmcx+ Bowex, (6o
and '
il ) . ‘
h+ (az—cz)ﬁ =0, = S simVar-c* 4* +3, taVa-c* %
(70)
Thus

f=[Piswcx + @mcx}[qmw%ﬁ Szm\/ﬁ?«j,}.
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The specification of the constants in this equation is
achieved by imposing the necessary boundary conditions on
f . These conditions can be obtained from a knowledge of
the desired velocity field.
The conditions on T are determined by consider ing
equation (31) in conjunction with equation (16). This
latter equétion can be rewritten in non-dimensional form

by recalling

%u - {ﬁi -{-%_ul +/._a_u_3 =0
W Ox e
(16)
and
=-Ef> etc U= %ét>) e+C

whence

u /aV =0 .
ox f&% ’93
At the conditions of neutral stability (i.e., =0 )

-

and equation (33) is valid so that

A
Multiplying this last equation by div s one has

I




%%si } 942({(3 3%;3%}1 gk ?fﬂ

(71)
which, upon compar ison with equation (16), becomes
Y [
D), A, A _
‘)X 9% 9?(
if
=L 2w
a* ox di-/
‘ (721)
and
o L Of 4
3oy d
AZ( z/ (72ii)

Because there is no coupling of U , V , and W
in the equations of motion (10),U and V can be
chosen in the manner above.

One must prescribe the location of the cell boundaries
in the X-%/ plane and the required vanishing of the components
of U and V perpendicular to those gpundaries will create
the related restrictions on é%( and %?;- so as to specify
the function f - In solving for f the separation
constants d and C enter into the problem via equations
(69) and (70). As a consequence of this fact, a ratio
exists between the dimensions of the cell

=37 =



in theX-ﬂ%»plane and the height of the cell in the 'ﬁ
direction. It seems logical, therefore, to call d the
cell number in view of the role it plays in the cell's
geometry.

The solution of | for the case of a hexagonal
tesselation was obtained by Christopherson (16). For this

configuration :f has the form

f= %fo[m%ﬁlr(\/é’m Xz )+ m%(\/?xi—xzh wd%%rxz}

in which fo is a constant, L is the length of one side
of the hexagon, and 13 is an integer. The equation relat-

ing L/b and @ is

-5

Thus "f can be written as

= SRy oo 3Ty iy
- (73)

It is this function of T that was utilized to complete
the efaluation of W and T in equations (30) and (31).
A hexagonal cell shape was specified because that shape was
exper imentally observed by Bénard for the problem bear ing
his name. However, when exper imentally studying the Bénard
problem for cases in which the fluid layer is confined
between solid vertical boundaries that are closely spaced,
it is found that the shape of the boundary influences the

=38



shape of the cell. Thus, for a horizontal region that has
a diameter of 8 inches, the cell shape consists of concentric
rings; for a square boundary with a side of 6 inches the
cell shape consists of many cells which are approximately
square in shape. In view of this, the form of any stream-
lines that are constructed by assuming a priori an f 0
may not have any physical counterpart in a particular
exper iment. It should be noted, however, that the inde-
terminatecy of f for the present problem, which was
treated by a linearizing process, in no way affects the
stability criterion that was obtained.

The streamlines in the vertical,planes of symmetry
of the cell can be found with the help of equations (71),
(72), and (73). For the motion in the plane for which
%:(),\J=O because of the symmetry. Consequently,

assuming a stream function, ¢ , such that

u=—(& ) W:%)

one obtains, upon compar ison with equation (69),

ow

__ oot 1
Lq) aZ gx.%:o a%8X

T '
(74)
In the same manner the stream function, ' , which exists

in the plane X=0 , is

=30~



{ Ow
V=227,

X=0

g

(75)
Equations (67), (73), and (74) are now employed to determine

the streamlines in the4?=0 planes

i 588 e s

v

-ﬁ@ﬁﬁm%ﬁv}3

whence

b (v onEX

and for 3a=4

bV suyE % wdVBX -

The streamlines in the plane of symmetry'?:o are plotted
in Fig. 4 by using equation (76).

It can be seen from this figure that the mean parabolic
temperature distribution has resulted in a flow that is
asymmetrical with respect to the mid-plane of the fluid
layer, whereas in the Bénard problem the flow is symmetrical

about this plane,

4, Heat Transfer Aspects of the Solution.

Once the temperature distribution | 1is known for
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The cell pattern in one plane of
symmetry at the onset of convection for

. the first mode and for an assumed hexa-

gonal tesselation,



the convection (or unstable) state the temperature gradient
can be found along the upper and lower boundaries of the
fluid layer. By integrating this temperature gradient over
the entire hor izontal fluid boundary, it is possible to
determine the fraction of the total quantity of heat
transferred across each of the two horizontal boundar ies.
Hence, to evaluate the quantity of heat flowing across

the lower boundary one writes

(77)
in which the integration is carried out over the hexagonal
lower boundary of one convection cell, and the subscript
on CQ denotes this lower boundary., From the definition

of () , the vertical temperature gradient is

20 _ 20 o0 _ 20, (0x®)9T
X5 O ’ax3 @xg, b 93

N®_ D (07 ®,) W
-0, (81 8
N | (78)

The heat transferred, equation (77), can be rewritten as

Q.= {&fmbdxldx +12<® @ _Oﬁfdxd%

in which the first integral represents the amount of heat

transferred by the mean temperature distribution - a value

D=



which because of the symmetry of the temperature distri-
bution is the same at the upper boundary - and the second
integral represents the increase (or decrease) in the
amount of heat transferred at the boundary due to the
perturbation.

If the second integral is examined in more detail
itg mégnitude can be obtained without the necessity of
a formal evaluation. With the aid of equation (33),

this integral becomes

[t =Tl S

and by means of Green's Theorem the area integral can be

written as a line integral such that

jffdxd% = - a%f%% d«é(—%-r];(dx

A

in which the integral on the right hand side is evaluated
on the hexagonal closed curve comprising the boundary of
the cell in the'X—%/ plane. The line integral can be given
a vector interpretation which is convenient for its evalua-

tion -- cf., Kaplan (17). Consider a vector

in which [ and j are base vectors in the X and '%T

directions, respectively. A unit vector normal to the
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hexagonal boundary can be written as
=91 - 5%
idl s

in which S 1is the distance along the boundary. Con-

sequently,

—

in which Fj is the component of F in the N direction,

Then

Of dy 2 dx| =j§;rnd \‘
%X &g as =P

It will be noted that the vector defined as ﬁ? is
the témperature gradient in the)@%r plane (the lower
fluid boundary for the situation under discussion). The
integral just obtained requires that the component of the
temperature gradient which is perpendicular to the hexagonal
boundary be integrated along the boundary. Examination
of the dimensionless perturbation temperature, | , shows
that, for a prescribed value of 'g , the isotherms are
everywhere perpendicular to the hexagonal boundary. Hence,
the temperature gradient has no component perpendicular

to the boundary and

jﬁﬁds=o .

wl =



One concludes from this result that there is no net
change in the amount of heat transferred at the lower fluid
boundary as a result of the onset of convection,

By direct analogy it is apparent that this same con-
clusion holds for the upper fluid boundary. The fact that
the sum of the heat transferred to both boundaries must
remain a constant, regardless of whether conduction or
convection takes place is to be expected, and required,
since the amount of heat liberated by a unit volume of the
fluid in an interval of time is a property of the fluid
that is considered to be independent of the type of motion,
However, it seems reasonable that under convection condi-
tions there would be more heat transferred to the upper
fluid boundary than the lower boundary if both were kept
at the same temperature., The question can evidentally
not be resolved by a linear theory, It can be speculated

that a non-linear analysis might bear out this conjecture.

5. Review of Assumptions

In the course of developing the governing equations
a number of assumptions were made which resulted in a set
of linear differential equations that were subsequently
solved. These assumptions were the following:
a, The thermal properties of the fluid would remain
constant, despite the presence of small temper-

ature differences in the fluid.



b. The viscosity of the fluid would remain a
constant over the range of temperatures exist-
ing in the fluid layer.

c. The Laplacian of Uz would be large compared

to ZL— Z&Q) with the result that the
0%\ 0X;

latter could be neglected by comparison with
the former.

d. The conversion of mechanical energy to heat
éould be neglected in writing the energy equa-
tion.

The validity of the first of these assumptions can
be verified with a list of the physical properties of the
fluid in question. Water, which was used in the experi-
mental work, has thermal properties which satisfy this
assumption. These are -- cf., Handbook of Chemistry and

Physics (18).

Temperatqre“(oc) 15° 20°
Thermal conductivity, k 0.00144 0.00143
(Cal/cm/sec/OC)

Specific neat,"cp 0.99976 0.99883
(Cal/g/°C)

Density, ( 0.999099 ~  0.998203
(g/cn) |

The coefficient of thermal expansion for water is

also constant for small temperature variations. Its value

-46-



At 20° C is 2(10%)/° c,

The validity of the assumption regarding the constancy
of the viscosity is borne out less well. For the temper-
ature range 15-200 C the dynamic and kinematic viscosities
vary approximately 12 per cent. However, if the temper%
ature variation in the fluid were about 2° C, the resultant
variation in viscosity would have a minor effect on the
problem,

When considering the third assumption it is con-
venient to employ K]Z&v in the calculation of qua .
Thus

v P Pw W oA

and from equation (33)

chx\/A\’ HL%@/ = ‘aZJC\?/ .

Therefore
2 ZIA LA W CA

It follows that from (67)

=g+ aZ{RA{ZaSWaa} +2a7 sinh s

_onTy Ay s 2Ty As a3ty Ay s 4Ty
NLU Ai NZ ’ A\i N3(/ Aj_ {\‘4. U )



in which the constants 5 and | are the coefficients
of }Way and 30)&16?{ given in equation (67). The

above equation can be written more simply as
A A
Wy = W + 3 RA[P

in which

m A
P=2aS toshoy+ 2T sinhay— S - A
i 8

. Wgﬂg_ Ay Smdry )
At Na© Ap Ng¢

Thus

VZW - (az {RAi) pj:

and
A% =—§? (aZ[RAl) P][ .

From equation (15) one can write for steady-state con-

ditions
o %%y (b2
@—XE ~ i '3( | 3) ;
and
9 [2Us) n “F |20y + [ b-2%,) 2%
9X3(®XL " ‘z{ 3 ( 5)@)(% )




or

To compare the magnitude-onXL@ and Tab
7 Mz /

one can calculate their ratio as

Du, 1k P |
9 ou} bm% -2 /5t RA,+ (0 Yoyt "RAG

The denominator contained in the bracket will be referred

to henceforth as L . Thus

A‘us th P
AT

The function l. can be readily computed once ()?‘
't
J

is determined. Again using equation (67) one has

7, h 32,

___(QQH\Mag-l— S sumh 6,-;-5\»( 6

A 4L
. LA
Aff\i:u«’ ‘*"““"i/)/ “\

A s
+al2 w{ﬂ%azr—r"r Wity z“zzmm’?’(—? -
’\]f Ai { /"*-.1 A Ai

49w
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in which (& is the coefficient of 5&%%_62» in equation
(67).

The ratio P/L was computed for0é2$1 and the
results are shown in Fig, 5. By using the physical
constants for water, it can be seen that only in the
minute regions 0,,86/\3( 0,87 and 0,288 <?< 0,291 does

the ratio |ZX%*%%(F%%Q| fall below the value of 200, In
3\ 7

fact, in almost the entire region the ratio exceeds 1000,

Hence, it can be concluded that, except for a small region

at ? = 0.865 and a smaller region at 3— = 0,290, the

assumption ,[&quﬁZ>t2—~Q£&' is justified,
XK,

In writing the equation for heat conduction the term
fepresenting the viscous dissipation of mechanical energy
to heat (Rayleigh Dissipation Function) was omitted. This
omission is reasonable in a problem for which the veloci-
ties and the velocity gradients are small. Not only is it
to be expected that the dissipation function will be small
but its effect will be further reduced by multiplying it

by the dynamic viscosity and dividing by the Joule comstant.,

=50=
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CHAPTER II1I

‘MATHEMAT ICAL FORMULATION AND SOLUTION OF
RELATED STABILITY PROBLEMS

The stability of a fluid with homogeneously distri-
buted heat sources that is confined between two horizontal
boundar ies can be studied for boundary conditions other
than those used in Chapter II. The mathematical boundary
conditions on the velocity and temperature that can be
imposed at the upper and lower surfaces of the fluid
corresponds to the various physical conditions which can
exist at these surfaces. These new boundary conditionms
will result in different solutions, even though the govern-
ing equations are the same or similar, because the solution
must satisfy the differential equation and the applicable
boundary conditions. In this chapter, two additional
solutions are obtained for the thermal stability of a heat
generating fluid. In treating these two problems the
notation and assumptions adopted in Chapter II are retained.

1., Rigid Thermally Conducting Upper Boundary and Rigid
Thermally‘Insulat1ng Lower Boundary.

<§§\~ ermall ‘onduquggg %i%&é 52un§ary¢\

0 B
Xs *9 b
| ®, ¢

// xz\\f\\“\\\\\*\ \x\\&g\\\\\\\\\i\an
X

Thermally Insulating, Rigid Boundar
|
Fig.6 Schematic Drawing Of Fluid Layer With The
Mean Temperature Distribution And The
Coordinate System.
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For the first problem to be considered, Fig.6 , the

mean temperature is given by

@:%(tﬁx;‘) + @,
(79)

The method of deriving the governing equations is
identical to that previously employed:
a, Perturbation variables for U, , @ , ‘F
and /O are introduced into the equations of
motion (1) and heat conduction (2).
b, All products of perturbation variables and their
derivatives are neglected as being small.
c. The equations of motion are cross-differentiated
and selectively added and subtracted to eliminate
‘Po
¢, The term gi-[ﬁkg] is neglected by compar ison
®X3 @XJ _

with Z§u3 in conjunction with magnitude con-
siderations arising out of the continuity equation,
The governing differential system that results from these

operations is

P__DA}A%: %&Ai/
ot (80)

and

ol - e

(81)
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The boundary conditions are

‘OUs
O%3

2 _
D

@:’:

=0

O

‘Cﬁ’ X3 =0, b;

5+ X3‘~"'~C‘S

a+ X3::b.

(821)

(82i1)

(821ii)

(821iv)

The dimensionless variables, (9), can be introduced so

that the governing equations are

and

with

Ka — @Oﬁg((@n'@o)
{p% V}VW “

0 LW
kA

w=0" af 2=Q13

Dw_p oat 3=0,1;5

o

@I—O at j=03

Ky

VT

(83)

(84)

(851)

(85ii)

(851ii)



T=0 af 3=15
(85iv)

The solution of the problem posed by equations (83)
and (84) is achieved by the method of separation of

variables so that

A GT
W=TWE
AN
T=7T€

in which 'f is a function of X and ﬁ? and the functions
A A

W and [ are z-dependent. With the velocity and tem-

perature so defined the governing equations and associated

boundary conditions are

3
{%o--(az—az)}([f—-az)@ =%Z‘7b 00,2 T|=-+RT
(86)
and
{G’*(DZ-EIZ’) '/']\_ = Zj W
(87)
with
w=0 at i 0,13 (881)
—raﬁ-: O a* z: O) i )
93 (88ii)
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dT_p a 30 ;

(88iii)

\
T=0 a3 2=,
J (88iv)

The boundary condition (88iii) results from the prescrip-
tion of an insulated lower surface,

The "principle of exchange of stabilities" is employed
as before so that Q=0 , and the equations which must be

solved reduce to

2
(O=d' )& = *RT
(89)

and

A
z _L N\
(D-a )T =—2?fw.
(90)
The solution of the problem stated by (88), (89),

and (90) is achieved by the approximative method used in

VAN
Chapter II. The assumed form for T is

o=
A .
T:ZAn O ng/ n=1,3,5,"
n (91)
allows the thermal boundary conditions to be satisfied,

Equations (89) and (91) are combined to yield
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= aL)RZAnﬁBnWaerCnMaj + Dn}si/mka}

o NI
+EH?M53+N4H n=1,3,5,

in which

Ny=(om| 4
“\Z

The velocity boundary conditions require

L
d.

_ ynhal- (“W)sm T+ tpohal+d
N (smh’a —a*)

)

Dp=—Bn— (Cnt Ep)(estha)

In order that the two series given by (91) and (92)

(92)

(93)

(94)

(95)

(96)

can show the equality stated in (90) the following secular

determinant must be satisfied:
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Ban+ Cncm+ Dan+ EnEm + X%'l” - gm“N" =0

Nn 46ZR
(97)
in which
Y43 -
B"= (m/2 )1 T{Wa-—za‘fﬁd‘a )
= m
Mm ]
(98)
w N
O (ML) Ma sl
LA z,(Wle/z,)L
My L
" M (99)
m ﬂ%? (0 2
D= (mjz)-1) Wa{i—z(mm—a + @4
M ME M
Y%i Z 22 2,
_ 43 (VHTF/ﬂ(fH woha + 4a (mz) + E_(WT/A—E{ ) ,
My Min My (100)
‘ﬁj+_3 1 ~og
Em=(mﬁ&%4jlwgmi1+6a—2mﬂéﬂ
| Z
M M
w43
_ a8 (e )1) Feuha |
/8
M (101)
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. L for m=n

- —4 for ntm even and m%m
"qukmﬁ-' L
~ 4 for'ﬂ%@- odd and me#n (102)

= Pl

Smn= i '{ror‘ N=m ) | ‘ :
=0 for ngm, (103)
and

Mm=(mm&r+am'

The relationship between @ and R which must be
maintained for a solution of (97) is obtained by solving
successively this determipant for m = n =1, m=n = 3,
m=mn =35, etc, The results of such computations are
given in Fig, 7 . The functions '/l\' and W are plotted
in Pig, 8.

2. Pree Thermally Conducting Upper Surface and Rigid
Thermally Insulating Lower Boundary. ———

\ Thermally Conducti ree Surface:
NMNRTE LRy RO\

ng,

i)
Rigid Boundary>®

Xz NThermally INsulating,

Fig,9 Schematic Drawing Of Fluid Layer With The
Mean Temperature Distribution And The
Coordinate System,

LR



The problem described by Fig. 9 can be solved in
exactly the same manner as the two previously discussed.
Indeed, the governing equations are those given by (89)
and (90), i.e.,

2
(R A S A A
(D—a)w = a" RT
and

(0~ azyi\‘ =- sz’tx .

The boundary conditions for this particular case are

‘/\ .

N =0 at Z-:O) 15 (1041)
A

QW =0 at 1=0)

R !
; (104i1)
LA

E—W?f;:»—cz\';\\lﬁ() a% le‘)

@3 (104iii)
A

0T -0 af §=OS

‘@3 | (104iv)
A

T=0 & i L

(104v)

Boundary condition (104iii) results from the free surface
which requires that there be no shear present,

. 2 N
The variables | and W have the forms

T2 A1) (10%)

n=135, 6



W =a" [RZ AnﬂBn Waﬁ*l‘ ana?fr Dn?ysmh aj

+Eqwf«ag + “—“‘(Lfv@ﬂ y o N=13)5

N
(106)
in which
L2
Ny = (T/2) +a",
- 3CdUta'
Bn=Dn T (107)
Cn=-—iz, ) (108)
NE
_ 3 suh 23
Dn"" N2 )
NZ (sunhza-2a) (109)
En= =3B (110)
The secular determinant which must be solved is
m m m m Egmn SﬁnNn
B.R +CC +DOD+EE + - =(
" ) " ‘ Ny 43R (111)

in which the B, , etc., are obtained from (107)-(110) and
the Ep , etc., are those given by (98)-(103).
The result of solving this determinant for \= 1, 3,

and 5 is given in Fig. 10 .
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3. Other Related Problems.

In Chapter II, one stability problem for a fluid with

homogeneously distr ibuted heat sources that is confined

between hor izontal boundaries is discussed in detail. Two

additional problems have been briefly dealt with in the

present chapter. These last two problems were the result

of imposing different mathematical boundary conditions

at the upper and lower surfaces of the fluid layer. These

boundary conditions correspond to different physical

situations, and additional cases can be studied. A differ-

ent solution would result from having:

a.

C.

€.

Conducting free surfaces at the upper and lower
boundar ies,

Conducting free surface at the upper boundary

and insulated free surface at the 1lower boundary,
Conducting free surface at the upper boundary and
conducting rigid lower boundary,

Conducting rigid surface at the upper boundary and
conducting free surface at the lower boundary,
Conducting rigid surface at the upper boundary and

insulated free surface at the lower boundary,

All of these cases would permit a time-independent,

stable state to exist. The solution to these problems

could be obtained in the same manner as those treated in

this and the preceeding chapter. For those cases in which

both surfaces are heat conducting, equations (37) and (38)
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would be the governing relationships. The Bm% , etc.,
to be used in (50) would be the same as those listed by
equations (51), (52), and (53). These coefficients are
listed in Appendix III, The various Bés , etc., would
come from the particular boundary conditions,

The cases for which the lower boundary is insulated
could be studied by using equations (89) and (90). Once
again the boundary conditions would determine the Bés ’
etc., but the Bmgi , etc., are independent of these con-

ditions and are found also in Appendix III ,

4, Problems Similar To Those Discussed,

A set of problems which are related to those described
by Figs. 6 and 9 consists of studying the thermal in-
stability (in the sense of secondary flow) of water at
4° Celsius. At this point the density-temperature relation-
ship has a first derivative of zero which results in the
well-known fact that water at 0° C. is less dense than at
4° C, The density-temperature relationship is approximately
parabolic in the neighborhood of its maximum point as can
be seen from Fig., 11 . It is this fact which makes the
problems similar to those just studied since the density
variation induced in the heat generating fluid is also
parabolic. However, one item keeps the two, seemingly
similar, situations from being equivalent. For the heat
generating fluid there is a term in the heat conduction

equation that is not present in ‘the problem of water at
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40 C, Consequently, it can be expected that the equations
governing the stability of water near its freezing point
will be different from those given by (37) and (38) or

(89) and (90). Because a discussion of this new stability
problem is germain, but not completely relevant, to the
stability problems of a heat generating fluid, the solution

is given in Appendix IV .



CHAPTER IV

EXPER IMENTAL VERIFICATION OF ANALYSIS

An exper iment was performed to verify the critical

Rayleigh number which is a consequence of the analysis

in Chapter II. The result of this experiment is in sub-

stantial agreement with that given by the analysis.

1. Description of Apparatus

The apparatus, shown schematically in Figure 12 ,

consists of the following:

a,

b.

C.

d.

€,

Two copper plates, 11.5 inches square and

0.5 inches thick.

Three plastic plugs of predetermined height
which separate the copper plates and thereby
form the test chamber.

A lower cooling chamber in which cooling water
is circulated so as to keep the plate at a
constant and uniform temperature,

An upper cooling chamber which functions as

c, above,

An acrylic plastic housing which

contains the copper plates and cooling chambers
and permits viewing of the test region.

Water, having suitable electrical conductivity,
placed in the test region between the copper

plates,
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Also employed in the work were a variable output
voltage transformer (Variac), copper-constantan thermo-
couples (#36 wire), a potentiometer (Leeds & Northrup,
K-2), a voltmeter and an ammeter,

The copper plates were hand-lapped so that they
were smooth and flat to within 0.5 inches of each edge.
These edges were slightly rounded as a result of the
shearing operation which cut the plates to size., It
was the opinion of Assistant Professor K. Moltrecht,

Depar tment of Mechanical Engineering, that any machining
which would be extensive enough to result in having the
plates flat over their entire surface could result in
serious warpage of the cold-rolled plates. Consequently,
the plates were hand-lapped only where necessary and the
surface was flat over an area 10.5 by 10.5 inches.

The fluid layer that existed between the copper
plates was heated by passing an alternating current
through it by means of the transformer. This transformer
allowed the power dissipated in the film, and consequently
the temperature distribution, to be varied.

?he surface temperature of each plate was measured
and in the case of the lower plate, at least three thermo=
couples were installed so as to be sure that the plate was
at a uniform temperature. These thermocouples recorded
the temperature at the fluid-plate surface. In addition,
the temperature of the fluid at the mid-plane of the
layer was measured and also at a point intermediate to the
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copper surface and the mid-plane. The location of these
thermocouples was determined with a depth gauge prior to
the experiment.

The thermocouples were made of #36 wire, each strand
of which was nylon coated and the two insulated wires
jacketed together in nylon. These thermocouples were
calibrated against a steam and an ice point. In addition,
a test was made to determine the characteristics of the
thermocouples between 0° and 300 C. These tests were
conducted in the Sohma Laboratory, College of Engineering,
University of Michigan. The results of these calibrations
were used in interpreting the potentiometer readings dur-
ing the stability test.

Commercially distilled water was used in the test
section 6f the apparatus. This fluid has sufficient
electrical conductivity to permit its use and its well-
tabulated values for viscosity and thermal conductivity
made it a desirable medium.

The cooling chambers that kept the plates at a
constant and uniform temperature contained a spray system
so that fine jets of water were directed toward the plates,
In this manner the coolant was kept in an agitated state
and any dissolved air that came out of solution would be
swept away before it had an opportunity to become a large
insulating bubble. The fluid was removed from each cool-

ing chamber at 4 locations which were near the copper plates.
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This was done to facilitate air removal and to increase
the '"'scrubbing" action of the coolant.

In order to observe the fluid motion, prior and sub=-
sequent to convection, manometer fluid with a specific
gravity of 1.000 at 20° C was injected into the test
region. A #25 hypodermic needle was used for this
injection, and the small bore of the needle resulted
in extremely fine o0il particles. Prior to convection,
these particles would eventually move to one of the
copper plates to which they would attach themselves,

This migration resulted from the minute difference in
density between the o0il and the distilled water in the
test section. After the onset of convection the oil
particles moved in a regular and continuous flow pattern.

In order to observe the particle motion the test
chamber was lighted from the back side so as to silhouette

the particles.

2, Experimental Procedure

Cooling water was allowed to circulate so as to
bring the entire apparatus to a uniform temperature.
Readings of temperature were taken to confirm this
uniformity, A small potential difference was applied
across the plates and after a 10 minute interval the
thermocouple outputs were recorded, These readings

were repeated 5 minutes later to determine whether
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equilibrium had been achieved. Oil was injected and the
particles observed to determine whether they had any per-
sistent and regular motion., If the particles eventually
camé to rest it was concluded that convection had not
commenced. Under these conditions the voltage across the
plates (and consequently the power dissipated in heating)
was increased a small amount and readings were recorded.
This procedure continued until convection was observed.
After convection state was established, the power
was slowly reduced until the conduction state reappeared.
In the course of lowering the power dissipation, thermo-
couple readings were taken so as to establish that equi-
libirum conditions (in the mean) were present whenever
the nature of the fluid motion was being observed,
Several experiments were conducted to verify the analy-
tical work and the fluid depth b was varied as a
parameter. It will be recalled that this dimension

enters the Rayleigh number to the third power.

3, Results of Experiment

The results of the experiment shown in Table II,
are in substantial agreement with the analytical work.
It can be noted that the exper imentally determined
critical Rayleigh numbers are higher than predicted.
The inability to observe the exact instability point

by means of dye or the oil particles and also the
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TABLE II

SUMMARY OF EXPERIMENTAL DATA

(Data Associated with the Onset of Natural Convection in
a Fluid with Homogeneously Distributed Heat Sources which
is Confined Between Two Rigid, Isothermal, Horizontal
Boundaries)

Plate Spacing, b
(Inches) 0.250 0.500 © 0,745

Fluid Temperature at

Mid-plane, (), ,
(°F) 69.0 63.8 61.4

Fluid Temperafure at
Solid boundary, @,
(°F) 65,5 63.2 : 61.1

Average Coolant
Temperature (°F) 64,8 e 61.1

Applied Voltage
Volts 40.0 24 11,0

Current (Amperes) 3.5 1.2 0,4

Kinematic Viscosity
(Ft2/Sec) 1.135(i0=3)  1,17(10-5) 1,20010=5)

Coefficient of
Thermal Expansion '
(1/°F) 1(10=%4) 1{10-4) 1{10=4)

Thermal Diffusivity .
(Ft2/Sec) (1.55)(107%) (1.55)(10"6)  (1.55)(10"6)

Rayleigh Number
Experimental 5800 7700 12,600

Theoretical 4672 4672 4672



influence of the vertical boundaries on the instability
would tend to give a critical value that was higher than
predicted. A more sensitive test for the onset of con-
duction could be employed by using an apparatus similar
to that of Schmidt and Milverton (3). This equipment
utilized the defraction of a light beam that passed
through the fluid, Under conduction conditions the light
beam was defracted uniformly across the plate but during
‘convection the light beam was defracted non-uniformly
across the plate as a result of the temperature variations
that are associated with the convection cell. It is
anticipated that the apparatus that was constructed can
be used to test and explore other convection phenomena,
including the behavior of non-Newtonian fluids. For

such experimental work a light~technique should be de-

veloped and employed.

=76~



CHAPTER V

RESULTS OF THEORETICAL ANALYSIS AND EXPER IMENTAL
- INVESTIGATION

The theoretical analysis for the various cases treated
shows that there is a critical Rayleigh number that marks
the transition to laminar natural convection from a quies-
cent state. This Rayleigh number is different for each set
of velocity and temperature conditions that can exist at the
horizontal fluid boundar ies.

a. For the case of two rigid and isothermal boundaries
the critical Rayleigh number is 4672 and the associated
cell number is 4,0,

b, If the lower rigid boundary is adiabatic while the
upper rigid boundary is isothermal, the critical Rayleigh
number is 1393 and the concomitant cell number is 2.5,

¢. The critical Rayleigh number is 810 and the atten-
dant cell number is 2,25 if the lower boundary is rigid and
adiabatic, and the upper boundary is free and isothermal,

From the above results one can see that a free surface
at the upper boundary of the fluid, case (c), is less sta=-
bilizing than a rigid boundary,.case (b). It is possible
to interpret the results from the case of the heat generating
flqid contained between isothermal horizontal boundaries,
case (a), in terms of the role played by a free surface on

stability. The mid-plane of this layer can be thought of
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as being a free surface, below which there is a fluid with

a stable temperature distribution (i.e., positive gradients).
Above the mid-plane there is a fluid with an unstable tem-
perature distribution, This layer has a depth of d

which is one half of the full distance between the plates,

b . At the interface of these two fluids, the mid-plane,
neither the velocity nor the temperature is prescribed. By
using the half depth, d , as the characteristic length
for the upper layer, the criterion for stability of this
layer is one-eigth of that found for case (a). The result
is a Rayleigh number of 584,

Hence, a free upper surface condition is destabilizing
and a free lower surface upon which neither the temperature
nor its gradient is specified is also destabilizing,

The analysis carried out in Chapter III for two problems
with non-positive temperature gradient shows that the
critical Rayleigh number for those problems is less than
1709, the value associated with the Benard problem, (Indeed,
this result holds for the problem of Chapter II if our atten~-
tion is directed to the layer in the top half of the region
for which, as was discussed previously, the critical Rayleigh
number is 584), Thus, it can be concluded that the mean
temperature distribution, and not just the average temperature
difference between the upper and lower surfaces, affects the
thermal stability of the fluid. From this result one can con-

jecture that the thermal instability of a fluid which has a
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changing temperature distribution (e.g., transient heating)
may not be solely governed by the overall temperature differ-
ences incurred.

It should be pointed out that the boundary condition on
the perturbation temperature in Chapter III is not the same
as that for the Bénard problem, In the cases whiéh were
examined the vertical temperature gradient was required to
remain zero (i.e., an adiabatic surface) and in the Bénard
problem, as well as for all isothermal boundary conditions,
thé perturbation temperature must remain zero at the boundary.
However, a calculation (not presented herein) was performed
for the problem described in Fig. 6 but with the artificial
thermal boundary condition at the lower surface which re-
quired that the perturbation temperature be zero there,

This calculation also yielded a critical Rayleigh number

which was less than 1709 and thereby substantiated the

belief that the higher local temperature gradients associated
with a non~linear temperature distribution tend to destabilize
the system.

For the problem in Chapter II which has a positive mean
temperature gradient over the lower half of the region, the
critical Rayleigh number is increased over that of the
Bénard problem, if the characteristic length is the full fluid
depth, b . Thus, a local positive temperature gradient,
favorably placed can have a stabilizing effect on the system.

The experimental work described in Chapter IV and sum-
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mar ized in Table II is in agreement with the analytical
predictions, Therefore, the assumption of the 'principle

of exchange of stabilities" was justified in the solutions.

The cell shape has not been measured.
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CHAPTER VI
CONCLUSIONS

1. Por the case of a fluid with homogeneously distri-
buted heat sources contained within horizontal boundar ies,
the onset of laminar natural convection is governed by a
critical Rayleigh number, the magnitude of which depends
upon the velocity and temperature conditions existing at
the horizontal boundaries. A free upper surface is de~-
stabilizihg and a lower surface upon which neither the
temperature nor its gradient is specified is also desta-
bilizing, A local positive temperature gradient, favorably
placed, can be stabilizing.

2, The Rayleigh number associated with the onset of
instability for the fluid under consideration is determined
not only by the overall mean temperature difference but also
by the mean temperature distribution in the fluid.

3, Detailed relationships between the Rayleigh number
and the cell number have been obtained by an approximative
method for three problems dealing with a fluid having homo-
geneously distributed heat sources. The results of these
solutions are presented herein via graphs,

| 4, An experimental study of one of the problems which
was treated analytically yielded a Rayleigh number which was
in general agreement with the analytical prediction., The

result of this experiment justified the use of the "principle
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of exchange of stabilities" in the mathematical solutions,
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APPENDIX I

EVALUATION OF INTEGRALS WITH TR IGONOMETRIC
AND HYPERBOLIC INTEGRANDS
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APPENDIX IT

SIMPLIFICATION OF SECULAR DETERMINANT FOR SOLUTION
OF A PARTICULAR INSTABILITY PROBLEM
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T theaha - 0T ph'y + b 9 sha tha 1 sy 43 - 4rshadha - lmo&a}
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X,= (, 5“ 48T (1hg-3) + fi.!ff\(@u) }
iL M Ma

Qi«za - ML-— 4= éaﬂ’(@&aﬂ S _§_rr s@l«au ~Mﬂm(fﬂb;§ 4 ))
o Mi Mo Mx Mz
£ | T tha - n;aw +OT (that)(4"-1 )
, My My Mo )( o ! }

=Gt{ o pha- 80T Whs 4 83T 4 NaTURs + haT oha - shatha
T Ve T T S /M TR
- ST Hatha + 8T phathd + 147 0ha + Har - 27048

Mz Me ML Mo Me
- 3173 shg + 8T oha + Lrphaths - 1L WM 4+ ‘30139%40%
[ | Me My I My
-8 phatha - 5278'0ha + ET LA }
A‘L ML MZ
Oy, = gSaﬂr (Qha+3) FleT B (|- 48 ) }
My My [
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2,0

-0.199332868

-0.1859343827

-0.1891785569

Appendix IIT

Coefficients for Approximative Solution to Problems Concerning the
Instability of a Fluid with Homogeneously Distributed Heat Sources

SOME COEFFICIENTS FOR EQUATION (5k4)

2.5 3.0 3.5 5.0
-0.3168172263 -0.4960498810 -0.7698450147 -2.798851197

1.00748%4995

-0.2886579660 -0.4428650738 -0.6761169067 -2.391378528

0.7702893738

-0.287920011 -0.439758093 -0.6716829603 -2,386097261

0.7977948156

Te5

-23. 44290547

-19.97481865

-19.97099443
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APPENDIX IV

SOLUTION FQR THE THERMAL INSTABILITY OF
WATER AT 4° CELSIUS

CONSIDER THE FOLLOWVING SYSTEM;
®_, b

% NSNS s rriiers ). SRAACE NN
e 1
N e

4
D\ 2D AT AT P AR EAS AN

FOR "THIS SYSTEM

® =49 %X3 )

(8-4)= - (p-a),  (ch Feu)

(6-4)% = (Xsf)z
IN WHICH '

ﬁ = ( @a ‘4) / 6J ‘

w= 125 (/0°) /°c)z/7m /cm‘;;

fi = 0999973 gm fem®
PAND THE BAR OUER A SYMBOL DENOTES A MEAN QUANTITY
SUBSEQUENT USE OF PRIMED SYMBOLS Witt. DESIGNATE A
FPEEZTURBATION GQUANTITY IN ACCORDANCE WITH THE NOTATION
OF CHAPTER. II. THUS |

®= + @l, F=f9‘+P’) lo: (5'46/ ) Y= u[l
AND

i (J,,(/_{e‘xf/wm) g‘f‘(’“fj)éia

THE INTEODUCTION OF THE PERTURBED VARIABLES INTO THE
NAVIER= STOKES EQUATIONS, AND THE NEGLECTING OF AlL
PARODUCTS OF PERTURBATION TERMS YIELDS
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3_1_,(-;=_,L29 /__!_a__l__ _él@ .
ot 3(@%:))(3@ fe QXL[P ()Hb/ﬂ/L QKJJ]*?)AML

IN WHICH
/
Plz. -@2 (,4§® J (04 o~ (5

BY SUTABLE CROSS-DIFFERENTIATION TO ELIMIMATE 74:/ ONE CBTAINS

0~ DNAw o —[289) x,A0 4]
| ¢ Zf@ '
w2 ..9.3:; IS SMALL COMPARISON WITH A%a
ks \ DX

THE CONTINUITY EQUATION IS WEITTEN AS

a‘) /
dus = |2B0/0)| 58+ BB )
2L G [/ = X 64”/@ &)
AGAN ONE HAS FOR A STEADY STATE SOLUTION

,<<|‘“|

5

©THE HEAT CONDULTION CAN BE WRITTEN AS

o R

4 <o'- uf 4

(F PRODUCTS OF TWO PERTURBATION TERMS ARE NEHECTED,
EQUATIONS (A) anD (8| can 8 noN-DmvEN SIONAL 128D

BY INTRQDUCING
T= @/{“’J W= u;b/gj T= f«/bz-

oy 3l %,8)



THESE VARIABLES YIELD

(1) 5:& «-V =~ 2 ’% a,v T
AND (_@__ﬁ B
aT
IN WHICH
zbb’
% (7)ch0] .
BY SETTING
A .
W:fv/beﬂf‘"t ) T“‘ {T IG‘L
NVE HAS
qu F\w N a?{ =0 )
o= (D% &7 T = -
AND « A 3 A
5 i = 28T

JE THE "PeINCIPLE OF EXQ‘/ANGF OF STABIITIES 1S ASSHIED,
a- =0, AND
A A
0% & T = w
2 A PREA
[0*-3'w = -2 %ﬁ 3T,

THE BOUNDARY CONDITIONS FOR RIGID |SOTHERMAL SULELLES 4@E

W=0 AT 3791 M/aa.:o AT 320,

A
[ =0 AT Z:

THE THERMAL BOUNDARZY CONDITIONS AbL SATISFIED BY
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/\ o=

ZA va\.rm'% , 0 =123
Nz

WITH TIHIS RELATIONSHIP AND THE EQUATION OF AMOTION

W= -2 Z;An cmﬂ\a%+CnWa%+Dﬂ?M}\d%

| C
+En3/doﬂﬂ\a3f +EZ_45 Bira, 1T + -‘-‘-?\%r % mr?‘) ‘

THE HEAT CONDUCTION EQUATION REQUILES THAT

“;i.A“N"W“’B‘ —Zazzf:i'l\n
+ D,,'&Wa& r Eq a/cw)’\&’a,

Loz T o4d i)
t N;T%M mi& + —D— WV\W&

MULTIPLYING BOTH SIDES OF THIS EQUATION BY  lim, ﬂfm'af AND

INTEGRATING FeoMm ZERO TO ONE YIELDS

0=) AdByB™+ CoC™ DnD™+ EnE™ 4 Xy + Anrluy

= Cgrm Nn) NW N“
45
IN WHICH %
Bﬂ= - 'f:“g/
Cﬂ = "’J%& )
_ _l_ 4nr| 40T - Gehg
D 5 Ma) NE ( mid a )
E - 43 +26nh23 - 40 n7[atshar smha|- Nn/4.)]
n 3% nh's
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BM

1l

(—”muwha '|y1

‘ mw
Mm

C" = [ wiha

mu
Mo
DA %B’“,

E" = —(—ﬁ)( a )"‘wa) - 'ZM%.CM |

Xon = Zm'\.( (")M") , m#n
Wl(hf~nﬂz

AND
Yﬁn = 0) m+n = EVEN

_Zm
T

a

u

USING THESE COEFFICIENTS AND THE METHOD OF
CHANDRASEKHAR. , ONE CBTZINS A MINIMUM HHLUE OF 2%L
As

’%:/70/ AT F=3.0

4 SEOND APLROXNIMATION WHS USED 7O OBTAN THIS VALUE,
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