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On Optimal Structural Remodeling 1 
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Communicated by W. Prager 

Abstract. We present the problem of remodeling a given structure such as to 
improve structural performance optimally within a specified available resource. The 
development pertains to all types of problems where the mode of structural response 
is governed by an extremum principle. A variational formulation is used, and the idea 
is illustrated for maximum-stiffness remodeling of single-purpose structures. 
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1. Introduction 

The demonstration in Refs. 1-3 that fundamental variational principles 
of structural analysis provide an excellent basis for the mathematical formu- 
lation of various optimal design problems has greatly contributed to the 
development  of the field of optimization; see Ref. 4. The impact ranges from 
the derivation of specific optimality criteria to the establishment of basic 
optimality theorems; see, for example, Ref. 5. 

Variational principles of structural analysis also constitute the basis for 
the problem of optimal structural remodeling to be discussed in the current 
paper. The label structural remodeling identifies the sort of design problem 
where the objective is to predict an appropriate modification to a given 
initial design. Optimal remodeling refers to the best form of modification 
within an allotted resource. 

This type of problem seems to be somewhat broader  in formulation 
than conventional optimal design problems. For example, the initial design 
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may be regarded as a wide concept. It may be an existing structure to be 
improved by remodeling, but it may as well be the design skeleton 
exclusively expressing geometric minimum constraints for a constrained 
optimization problem, or (for example) the design obtained at a certain stage 
of an incremental or iterative procedure of optimization. 

Our development is written in terms of maximum-stiffness (minimum- 
compliance) remodeling of one-dimensional or two-dimensional elastic 
continuum structures. However, the results are available by similar means 
for discrete as well as continuum structural forms and for various design 
constraints, e.g., Euler stability, plastic collapse, vibration frequency, or 
stationary creep. 

The latter sort of generalization depends only on the availability of an 
extremum principle cover for the respective mode of structural response. 
One may expect that additional considerations such as discontinuous design 
variable (Refs. 6, 7), self weight (Ref. 8), multiple eigenvalues (Ref. 9), or 
nonconservative loads (Ref. 10) may be accommodated in an optimal 
remodeling formulation without difficulty. 

The paper consists of two parts. In Section 2, considering remodeling 
through reinforcement only, we derive the necessary conditions governing 
the optimal distribution of reinforcement that, within a specified amount of 
available material, minimizes the structural compliance for a specified load. 

In Section 3, the optimal remodeling idea is extended to the case where 
simultaneous removal and addition of material may take place in separate, 
unspecified subregions of the structure. For this optimal compound 
remodeling, a total resource (cost) is specified, which is based on different 
unit cost factors for removal and addition of material; such factors have been 
used earlier in the context of other structural optimization problems (e.g., 
see Refs. 11-13). 

The necessary conditions derived for both optimal remodeling formu- 
lations presented are shown to be also sufficient conditions for global 
optimal remodel design, if the structural stiffness depends linearly on the 
design variable. 

2. Formulation for Reinforcement Only 

We consider linearly elastic continuum systems with the property that the 
stiffness S(x) varies with some power n -> 1 of the design variable D(x). 
Structural response for design D(x) is associated through the familiar 
extremum principle for such systems with the functional: 

H = [ [S(D)n - p u ]  dx. (t) 
.IR 
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Here, rt [u(x)] represents specific energy, 4 and the integral and its argument 
quantities are to be interpreted in form according to the particular type of 
one-dimensional, or two-dimensional systems. 

For the optimal remodeling problem allowing only reinforcement, the 
starting design, say Do(x), is regarded to be inviolable. In other words, the 
net design 

must satisfy 

D(x)=Do(x)+Dr(x) 

D(x) >- Do(x), 

whereby the remodeling is constrained to meet 

Dr(x) >- O. (2) 

Note that, as a result of this constraint, the degree of statical redundancy in 
the remodeled design Do + Dr will not be less than the degree in the initial 
design Do. Constraint equation (2) is interpreted using the slack function 
o-(x): 

Dr(x) - o-2(x) = 0. (3) 

The optimal remodeling design problem is stated in the following form: 
Within a specified amount 

R D r d x =  V 

of material available for remodeling, determine the distribution Dr that 
minimizes compliance for a specified load. The optimal remodel and asso- 
ciated response are identified with stationarity of the functional 

F = II-A[ fn Drdx- V] + fR,~[Dr-o-2] dx. (4) 

Therefore, the optimal solution must satisfy 

&,F=-8.II=O, x~R,  (5-1) 

[SS(x)/SDr(x)]r~(x)-A+A(x)=O, x c R ,  (5-2) 

,~ (x)o'(x) = 0, x~R,  (5-3) 

IRDrdx O, (5-4) V=  

4 Specific energy identifies energy per unit volume. 
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as well as the constraint equation (3). Solutions of the switching equation 
(5-3) are associated with regions of remodel (o- # 0, A = 0) and of unaltered 
design (o---0, A-->0). Weierstrass-Erdmann corner conditions provide 
additional equations for the boundaries of these regions. 

It is to be verified in what follows that, for the case n = 1, the additional 
requirement 

A ~- 0, (6) 

together with Eqs. (5) and (3) are necessary and sufficient to predict the 
optimal remodel design. Taking (/}, ~) to label the remodel design and 
associated response which satisfy Eqs. (5) and (3), minimum compliance is 
expressed in terms of total strain energies as 

U(D, u ) -  U(I), t~)>-O. (7) 

Comparison designs D are arbitrary within the boundary-value problem 
(5-1) and constraint (5-4). 

To facilitate the proof, 5 Eq. (7) is reduced as follows. By the governing 
minimum principle, since response t~ is admissible for structure D, we can 
write 

II(D, ~ ) - I I ( D ,  u)->0. 

To simplify this expression, expand the first term a'nd note that 

II(D, u ) =  -U(D, u). 

Thus, the semi-inequality becomes 

(t)- f p(¢ dx + U(D, u)>-O. U(D, 
JR 

Also, 

Rpg~ dx = 2 U(/) ,  ~), 

whereby we obtain 

U(D, u ) -  U(1), a) > - U(19, a ) -  U(D, ~). (8) 

5 A similar form of sufficiency a rgument  is presented in a different context  by Mrdz in Ref. 14, 
6 For brevity the S-D proportionality factor is set equal to unity. 

Thus, Eq. (7) will be met if it can be proved that 

U(1), ~ ) -  U(D, t?t)>--O. (9) 

Applying Eqs. (3) and (5-3), Eq. (5-2) may be interpreted as 6 

A, for x ~R~, 
~ = rl(u) = A-A,  for x oR0.  (10) 
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Here,  
R =R~wR6, 

with R ~ and R 6 representing respectively the unions of subregions in which 
the remodel function/}~ # 0 and/}~ = 0 (at intersection points or curves both 
cr = 0 and ). = 0). R~ and Ro have similar meaning for the comparison 
remodel design Dr. Taking R o6, R o~, R ~6, R re to represent regions of overlap 
between Ro and R 6, Ro and R ~, Rr and R0, Rr and R ~, respectively, Eq. (9) is 
written specifically in the form 

-[fR DFIdx+fR DfTdx+f Dfldx+[ Di~dx]->O, (11) 
0~) O? Rt  b d Rr~ 

where the relation S ocD has been used. 
By substitution for D and/~  in terms of Do , /~ ,  Dr, and by application 

of Eq. (10), Eq. ( t l )  is reduced to 

I(no¢+R~) A15"dx-[ f(n,o+R~; AD~dx- fn~ AD~dx] ~ 0" 

The first two terms are cancelled using constraint Eq. (5-4), whereby 

fR AD~ dx ~ O. (12) 
~5 

Since D~->0 for x ~Rrs, A->0 is sufficient to have Eq. (12) satisfied. 
Since Dr is arbitrary, the condition A >- 0 is necessary for (12) as well. This 
follows, since it would alwa;Cs be possible to find a remodel Dr that is zero 
everywhere in R~6, except where A < 0, thereby violating Eq. (12). We note 
that the (exceptional) possibility A ~- 0 in Rr6 corresponds to the case where 
the given design Do is already optimal in that region. We note as well that, 
for n > 1, the necessity and sufficiency of Eqs. (3), (5), (6) can be developed 
in similar form based on variation fiDr, to demonstrate local optimality of the 
remodel function/~r. 

The proof establishes uniqueness of the remodel  design, for resource of 
available material V - 0 .  We note that, for some value (say, V = V*), the 
remodeling may transform the starting structure to a configuration cor- 
responding to unconstrained optimal design of the entire structure. The 
value V* depends on initial design Do(x). For increment 

AV= V -  V*>O,  
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the remodeling reflects a uniform stiffening over the structure, i.e., the 
remodeled structure is similar to the initial form. 

We observe that the maximum-stiffness remodel design for statically 
determinate (zero redundancy) systems is at the same time the strongest 
design, where the strongest structure is defined as the design of given volume 
of material that will carry maximum load without violating an upper bound 
on stress. The bound on (octahedral shear) stress is expressed by 

.q __< ~, 

r~ specified. This result is verified simply by noting that the shifting of 
material from within region Re necessary to obtain any design Dr #/~r  
results in 

r />  (max ~7) = A. 

Example 2.1. For a straight bar with axial force distribution p(x)  and 
deflection u (x), we have 

1 t2 
"r/ = ~U , 

and (5-1) is identified with the equilibrium equation 

(ED(x)u ' ) '  + p(x)  = O. 

Taking 

Do(x) = A[2 + cos(57rx/2L)], 

see Fig. la,  and assuming the bar to be subjected to tensile forces 

P = 2 E A  

at x = 0 and x = L, the results of remodeling with 

V1 = 0 .08AL and Vz = 0 .8AL,  

respectively, are illustrated by the Dr curves in Figs. lb  and lc. The solid 
curve in Fig. 2 indicates the specific energy distribution ½u '2 before 
remodeling, while the dashed and the dashed-dot ted  lines illustrate how the 
specific energy is decreased to a constant level (given by A) in remodeled 
(sub-) regions. The example structure is taken to be statically determinate;  
therefore,  in nonremodeled subregions, the specific energy is unaltered. 

3. Compound Remodeling 

A problem of somewhat different form arises if the remodeling should 
provide for simultaneous removal and addition of material. An inter- 
pretation is given first for the case where the amounts of added and removed 
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Original design Do and optimal reinforcement distributions D, corresponding to 
V1 = 0.08AL and V~ = 0.8AL in Example 2.1. 

material are constrained to be equal. The means to compare this form of 
modification with the remodeling of Section 2 is established through the 
introduction of a relative unit cost index; see Refs. 11-13. With the use of 
this factor, it becomes possible as well to cover the more extensive problem 
comprised of a sequence of a first modification based on shifting of material 
as just described (internal remodeling), followed by a stage of stiffening 
through the addition of virgin material. This combined modification is 
termed compound remodeling. 

Symbols D,w and Dw are designated to represent components of 
remodeling corresponding respectively to stiffening and weakening of 
original design Do. The functions are constrained according to 

fR (D,w - D w )  O, (13) dx 

while the net cost of stiffening by this means is expressed as 

rfu D,,~ dx = Gw. (14) 

The aforementioned relative unit cost index r is introduced here to facilitate 
subsequent interpretation. 
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Fig.2. Specific energy functions ~7 for original and remodeled structures in 
Example 2.1. 

Restricting the remodel functions to nonnegative value as before, the 
optimal internal remodeling is governed by the functional 

G = fn[S(Do + Dsw-Dw)~7 -pu] dx-F[rIRDswdx-Csw] 

- K [ f  R (Dsw-Dw)dx]+ IR [T(Dsw--r2)+ k(Dw-w2)] dx. (15) 

Necessary conditions comparable to Eqs. (3), (5) take the form: 

a.G = O, (16-1) 

(aS/aDsw)n(x) = rF + K - y(x), (16-2) 

(oS/oDw)n(x) = - K  - k(x), (16- 3) 

3,(x)r(x)=O, (16-4) 

k(x)w(x)=O, (16-5) 

Dsw(X)-7"2(x)=O, (16-6) 

Dw(x)-w2(x)=O, (16-7) 
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along with Eqs. (13)-(14). Appropriate solutions of the switching equations 
(16-4) and (16-5) predict intervals of strengthening, weakening, or no 
modification; corner conditions apply as mentioned in Section 2. We note 
also that, if 

(oS/aSsw) = - (aS/aD~v) ,  

Eqs. (16-2) and (16-3) lead to 

k(x) + 3'(x) = rF, (17) 

i.e., the functions k and 7 become dependent. 
A sufficiency proof for remodeling covered by functional G is available 

for the case where stiffness is linear in the design function, i.e., n = 1. The 
argument follows the same lines as the proof given in Section 2. To be brief, 
we simply cite the result: 

7 ( x ) - 0 ,  k(x)~-O, (18) 

together with the necessary conditions already identified, comprise neces- 
sary and sufficient conditions for the optimal internal remodeling. 

The constant K in Eq. (16) represents the level of specific energy in 
subregions where material has been removed in the remodeled structure. In 
the reinforced subregions, the value of specific energy is given by rF + K. 
The qualitative behavior of solutions for the subject internal remodeling 
[within the mild restriction of Eq. (17)] is indicated in Fig. 3; the curves 
represent initial and remodeled specific strain energies as they would appear 
for a statically determinate Do. Separate subregions of weakening and 
strengthening are labeled Rw and R,, respectively. If the extent of remode- 
ling is measured in terms of 

iq. 

r F÷K 
K ~ . _ _ .  _ original t / ~ . 7  ~ 

remodeled ~ f 

K 0 0 L ~ R w  z 
Rs 

Fig. 3. Specific energy functions rt for original and internally remodeled structures. 
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one might identify a value V* for internal remodeling corresponding to the 
V* defined in Section 2. The value of specific energy corresponding to 
extent V* of remodeling is labeled K* in Fig. 3. 

In order to describe compound remodeling, we introduce an expression 
for the total cost C in the form 

C~+C~w = IR(D,~+rD, w) dx = C. (19) 

Here, C~ and Ds~ represent respectively the cost and the remodel function 
for reinforcement only (i.e., virgin material) remodeling. The parameter r 
measures the relative unit cost of internal versus virgin material reinforce- 
ment. The optimal remodeling will take one form or another, depending on 
the value of the relative unit cost index r, as follows. For a given initial design 
Do, there exists a value, say P, such that: (i) if r > ~, the optimal remodeling 
consists of reinforcement only modification alone or (ii) if r < f, the optimal 
remodeling consists of either internal modification alone, or of a sequence 
comprising internal followed by reinforcement only remodeling. 

The limit value P is that value of r which results in equally stiff optimally 
remodeled structures, for small equal cost increments of remodeling of the 
two types (i) and (ii). The use of a comparison between equal-cost-equal- 
merit optimal systems in this context is treated in Ref. 13. We note as well 
that, for some value of cost, say C*, the optimal remodeling of Do leads to a 
configuration that corresponds in form to the unconstrained optimal design 
of the entire structure (for r < P, C* is bounded, in contrast to V* of Section 
2). The choice under the option within (ii) depends, for given C <- C*, on the 
magnitude of f - r ;  for sufficiently large values, the first option results, while 
P - r  less than some value leads to the latter form of optimal remodeling. 

4. Discussion 

This paper demonstrates that structural performance in a deterministic 
manner can be changed optimally for a specified available resource. The 
variety of structural types and behavior considered in the references illus- 
trates potential areas for application of the optimal remodeling ideas. In 
addition to obvious applications for structural elements, the ideas may prove 
to be useful for large-scale structural systems, where a given set of local 
improvements may differ greatly from the optimal consumption of a 
remodel resource. 
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The particular variational formulation used to express the optimal 
remodeling problem is an augmented form of the familiar extremum prin- 
ciple from structural analysis. The minimum principle of analysis becomes a 
max-min problem in the extension for optimal design. 

The prediction from remodeling theory for the way that a structure 
becomes reinforced with ever-increasing resource (quantity of materiaI) is 
intuitively appealing. We speculate that the analytical support for this result 
might prove to be useful in the design of solution procedures. 
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