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Optimum Maneuvers of a Skip Vehicle 
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Communicated by T. N. Edelbaum 

Abstract. This paper presents the analytical solutions of the problem of 
optimum maneuvering of a glide vehicle flying in the hypervelocity regime. 
The investigation is based on the approximation of Allen and Eggers; 
namely, that along the fundamental part of a reentry or ascent trajectory, the 
aerodynamic forces greatly exceed the components of the gravitational force 
in the directions tangent and normal to the flight path. 

The problem consists of finding an optimal control law for the lift 
such that the final velocity or the final altitude is maximized. This problem 
can be viewed as bringing the vehicle to the best condition for interception, 
penetration, or making an evasive maneuver. 

If  the range is free, the optimal lift control is obtained in closed form. 
If the lift control is bounded, then bounded control is optimal whenever it 
is reached. The switching sequences for different cases are discussed, and 
it is shown that there are at most two switchings. Bounded lift control is 
always at the ends of the optimal trajectory; for the case of two switchings, 
the optimal trajectory has an inflection point. 

1. Introduction 

In recent years, much attention has been focused on the problem of the 
opt imum maneuvering of a glide vehicle. However, few analytical results 
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have been obtained; most of the work has concentrated on numerical analysis. 
In the light of the excellent work of Contensou (Ref. 1), it appears that, 
if the acceleration of gravity is neglected (that is, if the approximation of 
Allen and Eggers is used, Refs. 2-3), a detailed analytical study of the problem 
can be achieved. Such analytical solutions may be less accurate than numerical 
solutions, but they are useful in many respects. They show the main 
characteristics of the optimal control law and permit a rapid comparative 
analysis of different trajectories. Also, in the region of the state space where 
the approximations are justified, analytical solutions give an adequate answer 
to the problem. 

In this paper, we consider the motion of a vehicle flying in the hyper- 
velocity regime in a vertical plane with engine shut off at all points of the 
flight path. The trajectory can be controlled by an elevator, thus varying 
the aerodynamic forces acting on the flying object. The system has one 
independent variable, the time t, and four dependent variables, namely, 
the horizontal distance x, the altitude z, the velocity V, and the path angle 7 
(Fig. 1). 

If we assume a drag function of the form D == D(z, V, L) and if the 
lift program L = L(t) is prescribed at all times, then, for a given initial 
condition, the trajectory of the vehicle is uniquely determined. The problem 
consists of finding an optimal control law for the lift and drag forces to bring 
the vehicle from a known initial condition to a terminal condition such that 
a certain flight element (the altitude or the velocity) is maximized. This 
problem can be viewed as bringing the vehicle to the best condition for 
interception, penetration, or making an evasive maneuver. 

Since the analysis neglects the gravitational force, it applies to the 
fundamental part of a reentry or ascent trajectory; this is the part in which, 
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V 
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Fig. 1. Geometry of the trajectory. 
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on the average, the aerodynamic forces greatly exceed the components of 
the gravitational force in the directions tangent and normal to the flight path. 
The flight path involves a relatively short range and altitude and, hence, 
can be investigated within the framework of the nonrotating, flat-Earth model. 

2. F o r m u l a t i o n  o f  the  P r o b l e m  

To define a control parameter, we assume for the vehicle a generalized 
drag polar of the form 

CD = CDo -]- K C L " ,  n > 1 (1) 

where the zero-lift coefficient C9o, the induced drag factor K, and the 
exponent n are assumed independent of the Mach number and the Reynolds 
number for the velocity-altitude range of the maneuver. For thin-winged 
configurations operating in the hypervelocity domain, n is close to 3/2. 

We define a control parameter A by the relation 

~" = [(n -- I) K/C~o] C~ (2) 

Then, for each value of A, the lift and drag coefficients are given by 

C L = C ' A ,  C D = (C * / n ) [n  -- l + A ~] (3) 

where CL* and CD* are the lift and drag coefficients corresponding to the 
maximum lift-to-drag ratio E*, that is, 

C* = [ C . o / ( n  - -  1)K] l m ,  C *  = [n/(n - -  I)] CDo, 

E *  = (1/n)[(n  - -  1)/CD0] 1-1m ( 1 / K )  ' /~ (4) 

We note that A = 1 corresponds to maximum lift-to-drag ratio. We may 
assume that the control space is bounded, that is, 

The motion is governed by the equations (Ref. 4) 

d x / d t  = V cos 7 

d z / d t  = V sin 7 

dT/d t  = g L / V W  

d V / d t  = - - g n / W  

(5) 

(6) 
(7) 
(8) 
(9) 
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where g is the acceleration due to gravity and W is the weight of the vehicle. 
I f  the time is eliminated and the path angle is chosen as the new independent  
variable, we have the state equations 

d¢/d 7 -= cos 7/oJh (10) 

aoJ/d 7 = -- sin 7/A (11) 

du/d 7 = --[n -- 1 -/A"]/A (12) 

where the following dimensionless variables have been introduced 

= x / t~  

~1 = z/fi, o~ = g f i C * p S / Z W  = (pogfiC*S/ZW) exp(--V) (13) 

u = tog[V/'V/(fig)] "E* 

In  Eq. (13), S is a reference area and p is the atmospheric mass density. 
T h e  constants/3 and P0 are chosen so that the best average fit is obtained 
for the exponential approximation of the density variation in the altitude 
range of the maneuver.  T h e  initial conditions are 

7 = n ,  ~ = , o = 0 ,  

and the final conditions are 

~' = 71,  ~ = 6 ,  

oJ = co0, u = u o (14) 

oJ = o J 1 ,  u = u a ( 1 5 )  

I t  is desired to find an optimal control Aov t to maximize a functional 
of the form 

] = C1~ 1 + C~ol + C~ul (16) 

For  this purpose, we form the Hamiltonian 

H : Pl cos 7/wA - -  P2 sin 7/A - -  ps[n -- 1 + A~']/~ (17) 

where the adjoint vector ( P l ,  P2,  Ps) is defined by the adjoint equations 

dpl/d7 =- --OH/O~ = 0 (t8) 

dpz/d ? = --OH/Ow = Pl  cos 7/w2A (19) 

ap~/a~ = -oH~e , ,  = 0 (20) 

with the additional end conditions 

Pi(7~) --- - -Ci ,  i ~- 1, 2, 3 (21) 
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The  solution is obtained by integrating the systems of state equations (10)-(12) 
and adjoint equations (18)-(20) using the end conditions (14), (15), (21) and 
a control h = hop t such that, at each instant, the Hamiltonian H takes its 
smallest value. 

First, from the adjoint equations we have the first integrals 

Pl = Const, Pa = Const (22) 

The  stationary condition of the Hamiltonian implies that 

pl cos 7/co --p2 sin 7 := (n -- 1)Pa(1 -- A) (23) 

where 
A ----- Aop , (24) 

By differentiating (23) and using the relations (11), (19), (22), we have 

Pl sin y/co + p~ cos y -- (n -- 1) pa(dA/dy) (25) 

Repeating the process, we have 

(n -- 1) pa(d~A/dy 2) + (P2 sin y -- p~ cos y/oJ) -- p a / ( J A  ~/'~) = 0 (26) 

Equations (23) and (25) can be solved for co and P2 to give 

e/~ = (n - 1)[sin y(dA/dy) + (1 -- A) cos y] (27) 

P2 = (n -- 1)pa[cos y(dA/dy) -- (1 -- A) sin y] (28) 

where the constant e is defined by 

e = P*/Pa (29) 

Finally, substitution of Eqs. (27)-(28) into Eq. (26) yields the following 
second-order nonlinear differential equation for the optimal control: 

~[dZA/dy z + A -- 1] = [(n -- 1)/A1/"][sin y(dA/dy) + (1 -- A) cos y]z (30) 

3. Ma x imum Final Velocity with Unconstrained Range 

One integrable case of Eq. (30) is obtained when the range is free. 
We have Pl = ~ = 0, and the optimal control is given by 

A s = 1 t-  a s i n y  (31) opt 



248 JOTA: VOL. 3, NO. 4, 1969 

where  a is a constant  of  in tegrat ion to be de t e rmined  by  satisfying ei ther  
the  al t i tude or veloci ty constraint .  Fo r  the m a x i m u m  final veloci ty  problem,  
we have the end  condi t ions  

Y = Y o ,  ~ : = 0 ,  ~ o = % ,  u = u  o 
(32) 

Y------Yl, o~ = % ,  u ~ m a x  

T h e  constant  of in tegra t ion  a is calculated f rom the  end  condi t ions in o~. 
By in tegra t ing  (1 i),  we have 

Aco = % --  O)o = --  (t q- -a sYn r )  1/'~ d r  (33) 

Here ,  we have  a choice of  a (q-)  or  ( - - )  sign in f ron t  of  the  radical.  Fo r  
posi t ive lift, the  t ra jec tory  is concave upward  and,  by  Eq.  (8), y is increasing.  
F o r  negat ive  lift, the  t ra jec tory  is concave d o w n w a r d  and y is decreasing.  
I f  a passes t h r o u g h  zero and changes sign, the  t ra jec tory  passes t h r o u g h  an 
inflection point ;  hence,  for  the  flight pa th  angle y .  at the  inflection point ,  
we have 

sin 7 .  = - - 1 / a  (34) 

Equa t ion  (33) is t ranscendenta l .  W h e n  n = 2, the  integral  is elliptic. 
For  o ther  selected values of the lift exponent ,  namely,  n = 4/3, n = 3/2, 
n = 5/2, n = 3, the integral  is hyperel l ipt ie .  Because of  the heat  and 
decelera t ion constraints ,  practical  maneuver s  are f lown at small pa th  angles. 
T h e n ,  Eq.  (33) is approx ima ted  by  the relat ion 

(n --  1)(2 --  I /n)  a~A~o = ::k [n - -  (n - -  1) at1](1 q- ayl) 1-1/r~ 

--  [n --  (n --  1) ayo](1 q- ayo) lq /n  (35) 

where  the  ( + )  sign co r responds  to the case of  t ra jec tory  wi thou t  an inflection 
point .  W h e n  the  t ra jec tory  has an inflection point ,  we take the  ( - - )  sign. 

In  the  special case n = 2, we have the  fol lowing single quar t ic  to 
calculate the  cons tant  a in bo th  cases: 

(81/16) Ao~4a 4 - -  (9/2) Ao~(rl a + y0 a) a a q- [(27/2) AJ (y~  2 + yo ~) + (yl a - -  yoa)q a ~ 

--  6(y, ~ - -  yo2)(yl a - -  y 0  3 )  a - -  36A~o e q- 9(yl ~ --  y0z) ~ = 0 (36) 

Fo r  n > 1, when  a ~ 0, the  m a n e u v e r  is p e r f o r m e d  at constant  angle of 
attack giving the m a x i m u m  l i f t - to-drag  ratio. No  inflection poin t  occurs  in 
this case, and the end condi t ions  satisfy the  relat ion 

% - -  cos ~1 = % --  cos Y0 (37) 
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Fig. 2. Optimum trajectories for maximum g l .  

Once the optimal lift control is determined, the range distribution is 
obtained by integrating Eq. (10) and the velocity distribution is obtained by 
integrating Eq. (12). 

Figure 2 shows the optimal trajectories in the (--Am, Yl) space with a 
negative initial path angle Yo = --10° and a final path angle Yl >~ Y0. The 
curves are obtained by taking n = 2 and using a as a parameter in Eq. (35). 
The results check accurately with an independent computation using tabulated 
elliptic integrals. The admissible space is divided into the regions (A) and (B) 
by the composite curve IJK. In the region (A), the optimum path is flown 
without an inflection point. Points in the region (B) are reached with an 
inflection point on the optimal trajectory. The inflection points are on the 
curve JK, whose equation is given below. 

For a terminal state along the curve I J, there exist two optimal trajec- 
tories, with two different lift controls, giving the same maximum final velocity. 
One trajectory is flown with a high lift coefficient and without an inflection 
point. This trajectory generates high drag, but it brings the vehicle more 
rapidly and in a shorter range to the terminal condition. A trajectory of 
this type easily violates condition (5) on the bounded lift control and is 
analyzed in Section 5. The second trajectory is flown with a lower lift 
coefficient and with an inflection point. This results in an increase in the 
range. This existence of two distinct classes of optimal flight paths was 
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detected through previous numerical investigations by Speyer, Mehra, and 
Bryson (Ref. 5). 

Figure 3 shows the opt imum velocity ratio ~ = nE* log(V0/V1) versus 
the final path angle for n =- 2, 7o . . . . .  10 °, and different values of Aco. 

When AoJ ~< 0, i.e., when the final altitude is higher than or equal to 
the initial altitude, there exists one value of the exit angle 71 such that the 
opt imum velocity loss is minimum. This value of 71 is given by 

d)" 1 - -  d~/1 ( l  ~J: a ~ l n  T ~ / n  d)" = 0 

or, if (33) is used, by 

.-[ ? } ° (,8> dT-- ~ Am + (1 + ~-SiIl-7) 1+1/~ d~ = (1 + a s~n 71) TM 
Vo 

By differentiating Eq. (33) with respect to 71, we obtain the relation 

da ¢~1 sin~7 sin )'1 
a7 (39) 

d)'---7 L. o n(] + a~)')1,-1/~ = (1 + a--77A£)'l)l/" 
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By eliminating Am and da/d~l from the two equations above and Eq. (33), 
we have 

f ~  sin27 . 
(1 + a sin rl) ,o (1 q- d sin~-y) l+lm ~y = 0 

Therefore, 
sin Yl = --1/a = sin y .  (4o) 

Hence, the optimum exit angle which gives the overall minimum vdocity 
toss for each Aco ~< 0 is the value of 71 such that the inflection point appears 
at the terminal position. This critical Yl is obtained along the curve J K  in 
Fig. 2. Its equation in the (--Am, Yx) space is 

f l l  sin r 
- -Aw = (1 - -  si y/ n yl) 1/" dy (41) 

Using the small-angle approximation, we have the equation of the curve 

(n  - -  1 ) ( 2  - -  1/n) Ao~ -= --yl[nyl + (n - -  1) y o ] ( l  - -  y o / y l )  1-1/" ( 4 2 )  

which is a quartic for n = 2. 
When Am > 0, i.e., when the final altitude is lower than the initial 

altitude, both a relative maximum velocity loss and a relative minimum 
velocity loss exist. The maximum occurs when we switch from optimum 
flight without an inflection point to optimum flight with an inflection point. 
For each Am, the corresponding value of Yl is given by the curve I J  in Fig. 2. 
The value of Yl for relative minimum velocity loss is given by Eq. (41). 

When 

[V/(2n -- 1) -- 1]~yo 2 1 + n 
Am > 4(n 1) V(2n 1) [2n -- g(2n -- 1) ]*-xm (43) 

- - 1 J 

the relative minimum ceases to exist and all the optimal trajectories are flown 
without an inflection point. If we also consider trajectories for which Yl < 9'0, 
then, for each Ao~ > 0, there is always a critical Yl < 70, given by Eq. (42), 
such that the overall velocity loss is a minimum. 

We also note that, for each final angle Yl, a value of Aaj exists such that 
the velocity loss is a minimum. The trajectory is flown at maximum aerody- 
namic efficiency (a = 0) and Ao~ is given by Eq. (37). The line ~ ---- n(y 1 --  Yo) 
is the envelope of the curves in Fig. 3. 

The trajectories presented in this section are optimal in the sense that 
they give the minimum velocity loss. Some trajectories require high positive 
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lift, and this is not admissible if the lift control is bounded. In these cases, 
bounded control can be optimal. Discussion of these trajectories is the subject 
of Section 5. 

4.  M a x i m u m  F i n a l  A l t i t u d e  w i t h  U n c o n s t r a i n e d  R a n g e  

In this case, the range is free and the optimal control is given by Eq. (31). 
We assume that the terminal flight path angle 71 and the velocity loss c~ are 
prescribed, and we wish to find the trajectory which maximizes the final 
altitude. The  end conditions are 

7 = ~ o ,  ~--- - -0 ,  U = U o ,  co =oJ  o 
(44) 

7 = 7 1 ,  U = U l ,  --C~l~-max 

The results are similar to those obtained in the case of maximum final velocity. 
First, the integration constant a is calculated from the end conditions in u. 
By integrating (12), we have 

f ; i  n + a s i n  7 
= hE* log(Vo/V1) = (1 + a si-~-~) TM d7 (45) 

For small path angles, we have the approximate equation 

(2 -- 1/n) as = ±(2n + ayl)(1 + ate) ~-~/" - (2n + a:¢0)(1 + aTo) 1-~m (46) 

where the ( + )  sign corresponds to the case of a trajectory without an inflection 
point. When the trajectory has an inflection point we take the (--)  sign. 
In the special case n = 2, we have the following single quartic to calculate 
the constant a in both cases: 

where 

(713 -- 7o8) 2 a 4 -- 9[(1/2)(71 ~ + 7o ~) 6 -- 47~7o(71 + 7o)(7~ -- 70) 2] a3 

+ 3[(27/16)  69 - 2771706 + 16(7  - 7 ° ) (7?  - 7o")] a2 

-- 108(71 + 7o) 3a -- 1443 = 0 (47) 

a = ~9 _ 40,1 _ 70)9 (48) 

For any n > 1, the opt imum path is flown at constant angle of attack giving 
maximum lift-to-drag ratio when the velocity loss is such that 

Vo/V 1 = exp[(71 -- 7o)/E] (49) 
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Fig. 4. Optimum trajectories for maximum final altitude. 

Once the optimal lift control is determined, the range distribution is 
obtained by integrating Eq. (10) and the altitude distribution is obtained by 
integrating Eq. (11). 

Figure 4 shows the optimal trajectories in the (% 71) space with a negative 
initial path angle 7o ~ --10° and a terminal path angle 71 >~ 70 • The curves 
are obtained by taking n = 2 and using a as a parameter in the approximate 
equation (46). The admissible space is divided into the regions (A) and (B) 
by the composite curve 1 J K .  In the region (A), optimal trajectories are flown 
without an inflection point. Points in the region (B) can be reached by optimal 
trajectories with an inflection point. The inflection point occurs along the 
curve JK, whose equation is given below. For a terminal state along the 
curve I f ,  there exist two optimal trajectories, with different lift controls, 
giving the same maximmn final altitude. One trajectory is flown with high 
lift and without an inflection point. This trajectory easily violates condition 
(5) on bounded lift control. The other trajectory requires lower lift and has 
an inflection point on it. In the graph, we notice a region (C) that no trajectory 
can reach. This region is below the line a ~ 0, that is, below the line 
c~ -~ n(71 - -  7o). Below this line, the prescribed velocity loss is too small for 
the vehicle to reach the given final path angle. This is the problem of optimum 
rotation from a given 70 to a given 71 with the least velocity loss while the 
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final position is not prescribed. Hence, it is a subclass of the problem treated 
in the preceding section. 

Figure 5 shows the altitude gain --A~o versus the terminal path angle )'1 
for n = 2, 7o = --10°, and different values of the velocity loss. For a given 
velocity loss, a maximum attainable final angle exists and is given by 

71 =: c~/n + V0 (50) 

When the given velocity loss is large enough, a terminal path angle 71 exists 
such that the opt imum altitude gain is a maximum. This angle is such that 
the inflection point appears at the terminal position. I t  is obtained along 
the curve J K  in Fig. 4, and its equation in the (~, 71) space is 

f ~l n -- sinv/sinyl - 
= vo [ 1 - - £ - s ~ 7 ~ / n c t v  (51) 

Using the small-angle approximation, we have the equation of the curve 

(2 -- 1/n)o~ = (25v1 - -  vo)(1 -- v0/Vl) 1-1in (52) 

which is a cubic for n = 2. When 

< --n[(2n -- 1)/(n -- 1)]1-1/'V o (53) 
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the maximum is only relative, since the final altitude is always below the 
initial altitude. When 

nyo [ 2 n -  1 H- n V ' ( 2 n -  1)]1-1/n 
<" ~/(2n -- 1) n - ' i  ' (54) 

the relative maximum altitude gain ceases to exist. 

5. O p t i m a l  Trajectories with Bounded Lift Control 

A simple check in Figs. 2 and 4 shows that, for certain prescribed terminal 
states, the constant a is such that ;~opt can become very large; hence, if 
condition (5) on the bounded control is enforced, the optimal trajectory is 
not admissible. In this section, we study the case where bounded control 
is optimal. For definiteness, we consider a negative initial path angle. If  an 
inflection point exists, the maximum angle 7 .  is such that 

-,~/2 < yo--.< 71 ~<7, <,~/2 (55) 

First, we consider the case of maximum final velocity; next, we consider the 
case of maximum final altitude. 

5.1. M a x i m u m  Final Velocity. 
velocity is to be maximized, 

P l ~ O, 

The control is given by 

Since the range is free and the final 

pe = Const = --(n -- 1)a, p~ = --1 (56) 

)t ~ = 1 + a sin Y (57) 

a ~ ~< &~x (58) 

The Hamiltonian (17) takes the form 

H ----- (1/7)[(n -- 1)(1 + a sin 7) + An] (59) 

Initially, A is positive; if an inflection point exists, A changes sign beyond 
the inflection point. Since the variable y decreases beyond the inflection point, 
we should change the sign of the right-hand side of relation (59). Hence, 
expression (59) is always valid if we take the positive sign for h. 

809/3/4-4 
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Figure 6 shows the variation of H with respect to A. The  curve has an 
absolute minimum at 

A = (1 + asinT) TM 

and is asymptotic to the curve H = A ~-1 for n > 1, A -+ c~. It  is clear that, if 

(1 + a sin T) TM > Amax 

then Am~ x is the control satisfying (58) while giving the min imum of H. 
Hence, Am~,: is the optimal control in this case. 

Figure 7 shows the variation of A% given by (57), with respect to 7 for 
a > 0. The  curve intersects the line A ~ =- A~ax at, at most, one point between 
A o and A 1 . There  is no inflection point in this case. Hence, if bounded control 
is encountered, the sequence is 

Variable control --+ Bounded control (60) 

To  calculate the constant a for variable control and the path angle 78 
at which we switch control, we first note that 7s is such that 

A~aax = 1 + a sin 7s (61) 

Next, if we integrate Eq. (11) from 70 to 78 with variable control (57), we 
have an equation of the form 

~os -- ~Oo -----fa(r0, r s ,  a) (62) 

H I I 

I / II ~ - ~  //-~ ASYMPTOTIC 
! 'i . /  CURVE 
1 / 

I / 
1 / 
I I /  

0 k=~/ l+a sin x k max 7" 
Fig. 6. Variation of the Hamiltonian with respect to L 
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where % is the altitude corresponding to 78, that is, the switching altitude. 
Finally, if (11) is integrated from 78 to 71 with ;~ = ~max, we have 

~1 - -  ~ s  = (COS Yl - -  COS ys) / ) tmax (63) 

Equations (61)--(63) permit the calculation of the constant a, the switching 
angle Ys, and the switching altitude % .  

If  the small-angle approximation is used, the equations are replaced by 

A~ax = 1 + ay~ 

0 ) 8  - -  % - -  [ n / ( n  - -  t)(2n -- 1) a2]{En -- (n -- 1) ay,](1 + ay,) ~-tl~ 

- -  I n  - -  ( n  - -  1 )  a~, '0](1  -@ a)¢o)  l - l : ; q }  

~o~ - o~,  = ( r ~  ~ - r ~ ) / 2 , G ~ x  

( 6 4 )  

For n = 2, the resulting equation is a quartic in a. 
Figure 8 shows the variation of )n, given by (57), with respect to y for 

a < 0. The  curve intersects the line A n =-- ;t~a x at, at most, one point. An 
inflection point may exist in this case, since ;t may vanish. I f  7~ > 7s, the 
optimal control sequence is 

Bounded control -~ Variable control (65) 
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Variable control may be flown with or without an inflection point. To 
calculate the constant a, the switching angle 78, and the switching altitude ~o s , 
we first integrate Eq. (11) from 70 to 78 with ~ = ;~max and next from 7s 
to ~'1 with the variable control (57). For small angles, we have the system 

) ~ x  = 1 + a 7 ~  

w, -- % = (7'o ~ -- y,~)/2Am~x (66) 

,,'x - o~s = [nl(n - 1)(2n - 1) a2]{i [n - (n - 1) ayl](1 + a71) 1-1m 

- [n - (n -- 1) ate](1 + aTs) :-lm) 

In the last equation, the (-t-) sign corresponds to the case of a trajectory 
without an inflection point. For n = 2, the resulting equation of the system 
is a quartic in a. 

I t  is possible that, for the case a < 0, the end conditions and the value 
of hm~ x are such that 7z < 7s (Fig. 9). For this case, it is necessary that 
an inflection point exists, as can be seen in the figure; the optimal control 
sequence is 

Bounded control --~ Variable control with an inflection point --+ Bounded control (67) 

To calculate the optimal elements involved, we integrate Eq. (11) using 
for ~ the optimal sequence (67). The  lift is positive before the inflection point 
and is negative afterward. 
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Case of two switchings. 

F o r  smal l  angles ,  w e  h a v e  t h e  s y s t e m  

A~ax = 1 4 - a y ,  

oJsl - -  o~0 = (y0 = - -  y,~)/2;~m~x 

~ o , 2  - -  oJ,in= --[2n/(n - -  1)(2n - -  1) a ~ ] [ n  - -  ( n  - -  1) a~,,](1 4- a~,,) l-tzn 

co 1 - -  oJ,2 = (et ~ - -  e,z)/2am,x (68) 

w h e r e  cos1 a n d  %2 are,  r e spec t ive ly ,  t he  first  s w i t c h i n g  a l t i tude  a n d  t h e  s e c o n d  
s w i t c h i n g  a l t i tude  (F ig .  10). 

SECOND SWITCHING 
X = - ~ y  ~ ~ L S , = s . ,  Vs. 

INFLECTION ~ 

7s, ~s,, Vsl 
FIRST SWITCHING 

Fig. I0. Optimal flight path with two switchings. 
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The  system can be solved to give 

- - ~ / [ 2  (1 -- n) A~ax + 2(2n-- 1);t~nax q - ( n -  l)(2n -- 1) ] a ~  (69) 
(n -- 1)(2n -- 1)(y0 ~ q- y~ -- 21A~o) , 

From this value of a, we can calculate 78, %~, %2 • I f  

a~nax < [2n -- 1 + n V/(2n -- 1)]/(n -- 1) (70) 

we must have 
~ < (to * + r,2)/2a~x (71) 

Otherwise, both inequalities reverse for real values of a. 
Since bounded control interferes only with high-lift trajectories, it is 

possible for the same end condition to find a lower-lift variety with a smaller 
velocity loss, as explained before. Hence, for the case of bounded control, 
we must compare the trajectory with an alternate lower-lift trajectory to 
find the true optimaI trajectory. 

5.2. M a x i m u m  F i n a l  A l t i t u d e .  For this case, the arguments are 
the same as for the case of maximum final velocity. The  integration of Eq. (11) 
is to be replaced by the integration of Eq. (12). Also, we note that only 
negative values of the constant a lead to a maximum final altitude. We give 
here the relations to calculate the optimal elements for the case of small 
path angles. 

In the case of one switching, we have the system 

n 
Amax~- 1 + a y s  

hE* log(Vo/Z,)  = [n -- 1 + Z~nax](y~ -- y0)/Amax (72) 

hE* log(V , /V l )  = [n/(Zn - -  1) a][±(2n q- ayl)(1 q- ayl)I-1/n 

- -  (2n q- a~,.)(1 ÷ a~,~) ~-~/'~] 

where V~ is the velocity at the switching point. In  the last equation, the ( + )  
sign corresponds to the case of trajectory without an inflection point. For 
n = 2, the resulting equation is a cubic in a. 

In the case of two switchings, the variable-lift portion of the trajectory 
is flown with an inflection point and the solution is obtained from the system 

)~nax = 1 ÷ ay. 

nE* log(Vo/Vsl ) := In -- 1 + A~nax](y, -- ~'0)/)tmax 

hE* log(V~l/Vs2 ) = [2n/(Zn - -  1) a](Zn + ays)(1 q- a>'s) 1-1/n 

hE*  log(Vss/Vl)  ---: In -- 1 -~ Z~a~x](y., -- ~l)/~max 

(73) 
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where V81 and V,= are, respectively, the first switching velocity and the 
second switching velocity (Fig. 10). The  system can be solved to give 

2 (n -- D a ~ -- 2(2n -- 1) ;~nax -- (n -- 1)(2n -- 1) a = -  j ~ x  (74) 
2n -- 1 [n -- 1 q- a~nax](7o "l- 7,) 47 amax ~ 

From this value of a, we can calculate 7 , ,  Vn ,  V82 • If  

we must  have 

Amax < [2n -- 1 47 n ~/(2n -- 1)]/(n -- 1) 

> --[n -- 1 q- A~ax](7o 47 yl)/Amax 

Otherwise, both inequalities reverse for a to have negative values. 

(75) 

6. C o n c l u s i o n s  

In  this paper, analytical solutions of some problems concerning the 
opt imum maneuvering of a lifting vehicle in the hypervelocity regime are 
obtained using the approximation of Allen and Eggers. The  characteristic 
properties of the optimal trajectories are proved in the most general form, 
using a generalized drag polar. 

When  the range is free, the optimal lift control is obtained in closed 
form. With this control law, a family of optimal flight paths is generated. 
It  is seen that two distinct classes of optimal paths exist. They  arise from 
widely different control strategies. One flight path uses high lift (and, hence, 
large drag) to bring the vehicle more rapidly and in a shorter range to the 
prescribed end conditions. The  other flight path is flown with low angle-of- 
attack to keep the drag small, but  it requires more time and range to get 
to the final condition. 

For the maximum final velocity problem, the control law is determined 
completely if only the initial and terminal altitude and path angle are known. 
For the maximum final altitude problem, the prescribed initial and terminal 
velocity and path angle are used to determine the optimal control. I t  is shown 
that there exists one opt imum exit angle. This angle is such that the lift 
vanishes at the terminal position. 

The  optimal flight path is flown with or without  an inflection point. 
The  study includes the case where the lift control is bounded.  In this 

case, bounded control is optimal whenever it is reached. The  switching 
sequences for different cases are discussed. It is shown that, for the case 
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of free range, there are, at most, two switchings. Bounded lift control is 
always at the ends of the optimal trajectory. 

When the range is prescribed, the problem consists of integrating a 
second-order nonlinear differential equation. 
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