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Abstract. This paper presents the complete analytical solution of several 
fundamental problems in orbital correction. The initial orbit is represented 
by a given point in the phase space, while the final orbit is constrained to stay 
in a given curve which can be bounded, unbounded, or composed of a finite 
number of segments of different curves. The inclusion of atmospheric 
maneuver as part of the optimum process is discussed; its analytical treatment 
can be carried out by modifying the final state to include the set of orbits 
having their perigee at the boundary of the atmosphere. 

The selection of the apogee and perigee distances as state variables gives 
a symmetric form to the problem and results in a linear differential equation 
of the first order for the ratio of the adjoint variables. The introduction of a 
curve of comparison, called the separatrix, facilitates the discussion of the 
existence of a corner on an optimal trajectory. 

1. Introduct ion 

Consider  a space vehicle initially in an orbit  E 0 around a spherical planet  
with center of at traction at O. T h e  initial orbit  is defined by its semimajor  axis 
a 0 and its eccentricity e 0 . I t  is proposed to br ing the vehicle, by  a series of 
orbital  maneuvers ,  into a final orbit  such that  its elements,  denoted by the 
subscr ip t  1, satisfy a relation of the fo rm 

f(al, el) = 0 (1) 
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Fig. 1. Osculating orbit. 

We seek to minimize the total characteristic velocity for the maneuver. Since, 
for a high-thrust propulsion system, the characteristic velocity provides a 
direct measure of the fuel consumption, the optimal trajectory considered in 
this paper yields the minimum fuel expenditure. 

We assume that the planet is surrounded by a spherical atmosphere with 
center at O and radius R (Fig. 1). In the search of the absolute minimum fuel 
consumption, we further assume that the duration of the maneuver is unlimited 
and that the thrust provided by the rockets on board the space vehicle is not 
bounded, that is, it can produce impulsive changes in the velocity. For the case 
where the thrust magnitude is limited, it can be made impulsive by the process 
of fractioning. Thus, the problem is of the class of time-free, impulsive 
orbital transfers. 

2. F o r m u l a t i o n  o f  the  P r o b l e m  

The problem is formulated as an optimal control problem. At the time t, 
the state of the vehicle is characterized by the row vector (Fig. 1) 

g = (%/3, co, u) (2) 

where ~ is the apogee distance, fl the perigee distance, co the longitude of the 
perigee, and u the characteristic velocity. The first three coordinates describe 

8o9/5/3-z 
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the osculating ellipse along which the vehicle is moving at the time t, that is, 
the Keplerian orbit which the vehicle would follow should the engine cease to 
operate at the time t. The  parameter u is a measure of the latent velocity 
expended since the initial time and is defined by 

u = f (T/m) dt >~ 0 (3) 
0 

where T is the instantaneous magnitude of the thrust  and m the mass of the 
vehicle. The  control is represented by the row vector 

~t = (v, ¢) (4) 

where v is the true anomaly and ¢ the thrust  direction with respect to the 
local horizon. 

The  equations of motion are derived from the classical equations of 
variations in celestial mechanics (Ref. 1). For a time-free problem, u is a 
convenient independent  variable. We have 

2c~ ~ F 

= [sin v sin ¢ -~ 
du nb(o~ q- fl) 

= fl(g, rl) 

d/3 
- -  2132 [sin v sin ¢ + - -  

du nb(o~ @ 5) 
=k(~,  ,~) 

&o 
du 

(o~ --/3) cos 2 v + 2(~ + 13) cos v + (a + 3fi) cos¢] 
( ~ + 5 ) + ( ~ - 5 ) c o s v  

(c~ -- fi) cos 2 v + 2(c~ + fi) cos v -- (3a + fi) cos¢l ] 
(~ + ~) + (~ - 5 )  cos  

(5) 

4c~/3 [cos v sine 2 ( c ~ - k [ 3 ) + ( ° ~ - - f i ) c ° S V s i n v c o s ¢ ] = f s ( g , n )  

du 
= 1 =fo(~, n) 

where 

b == v/(c~fl), n = X/[8/z/(c~-I-/3) 8] (6) 

respectively denote the semiminor axis and the mean motion, and where 
t z = G M  is the gravitational constant. The  end conditions are 

u o-=0,  a = % = a o ( 1  +eo) , /3 = f l o = % ( t - - e o ) ,  ~ o = 0  
(7) 

u =- ul ,  a = %, fl = i l l ,  co -- c% 
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and % ,  fil are such that  they satisfy a specified relation 

0(°~1,31) = 0 (8) 

The  problem is to find, at each instant u, the control ~ such that the 
characteristic velocity u I is a minimum. Using the maximum principle, we 
define an adjoint vector x = (A1, A2, Aa) such that its components satisfy the 
adjoint equations (Ref. 2) 

aa~/du = - -  aH/O% dAddu = --al l~a3,  aaa/du = - -aH/&, ,  = 0 (9) 

where the Hamiltonian H is given by 

H = a 0 + A~A + A2A + Aaf ~ (10) 

with 
A 0 = - - i  < 0 (1t) 

The  optimal trajectory is obtained by integrating the system of 
equations (5) and (9) subject to the end conditions (7), (8), (11), with the 
control parameters v and q~ selected such that, at each instant, H is an absolute 
maximum. 

3. A na l y s i s  

3.1. O p t i m a l  T r a j e c t o r i e s .  We note that oJ is an ignorable coordinate. 
Hence, if the final orientation of the orbit is not specified, A 3 = 0; the condition 
of optimality is the maximization of the reduced Hamiltonian 

Er = a~A + ~2A 

with respect to v and 4. 
I f  the angles v and ~ are not constrained (this situation is considered in 

this paper), then it is easy to verify that the stationary values of H correspond 
to v = 0 or v = ~r and ~ = 0 or 4 = 7r. Therefore, along an extremal arc, 

s i n v = s i n 6 = 0 ,  c o s v = i l  = q ,  c o s ~ =  E1 =Ez 

Along an extremal, the Hamiltonian (10) reduces to 

(12) 

H = A o + 4%[(1 + q)  ~2A 1 + (1 - -  q)/3212] (13) 
nb[(~ + 3) + q(~ - -  5)] 
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Fig. 2. Different types of switching. 

and, by elimination of u in (5), the equation of the optimal trajectory can be  
writ ten as 

[(1 @- E1)I[3 2] dfl : [(1 - -  E1)/o~ ~] do~ (14) 

and implies that 
= Const when ~t = --1 

/~ = Const when e 1 =  1 

In the a[3-space, with ~ >~ [3, the optimal trajectories are the lines parallel to the 
axes (Fig. 2). T h e  impulses are always applied tangentially at the apses. 

3.2. S w i t c h i n g  C u r v e .  Along an optimal trajectory, there may exist 
a corner  S (or switching) at which the trajectory changes direction. T h e  
direction of switching is of four possible types, as shown in Fig. 2. Using 
the letter A to designate an accelerative impulse and D for a decelerative 
impulse, we have the following types of switching: 

First type: AA--switching starting from the perigee. On the left of the 
corner  S, E 1 = 1, e 2 = 1. On the right of the corner, el = --1,  ez = 1. Le t  

W = AI/Az (15) 
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By writing that  the Hamil tonian (13) is cont inuous across a corner, we have, 
for the value of 7 t at the point  S, 

U s = ~/c~ (16) 

where ~ and/~ are the coordinates of the point  S. 

Second type: DD--switching starting.from the apogee. This  is the inverse 
operation of the previous one. On the left of the corner  S, we have E 1 = 1, 
E 2 = - -1 .  On the right, we have q = - -1 ,  E 2 = --1.  In  this case, the value 
of ~ at the point  S is also given by (16). 

Third type: AD--switching starting from the perigee. On the left of the 
corner S, ~1 = 1, e 2 = 1. On the right, we have q = - -1 ,  E 2 = - -1 .  T h e  
value of the ratio ku at the point  S for this type of switching is 

~V s = --/S/~ (17) 

Fourth type: AD--switching starting from the apogee. This  is the inverse 
operation of the preceding one. On the left, we have q = 1, e 2 = - -  1. On the 
right, we have q = - -1 ,  % = 1. T h e  value of ku at the point  S is also given 
by (17). 

For  a prescribed final state represented by Eq. (8), the locus of the possible 
switching point  S is a curve, called the switching curve. T h e  switching curve 
is obtained by integrating the adjoint equations (9) along the last subarc SK 
(Fig. 3) and using the corner condition at point S and the transversality 
condit ion at point  K. In  the figure, the final state is designated by Z. 

# 
./Separ atrix 

/ _ \  
/ ~ 1  K(a,,~,) 

H ~ state 

, ~. 

0 a 
Fig. 3. Switching curve and separatrix. 
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I n t e g r a t i o n  a long  ~ = Cons t ,  q ----- --1. Explicitly, we have 

aal/du = --(2~&lnb)[/3(2~ --/3)I~(~ +/3)] 

da=ldu = - -  (2e=),~/nb)[(4/3 + ~)/(a q-/3)] 

g/3 l du = ( 4,~/31nb ) 

Using/3 as the new independent variable, we have the equation for 7 t = AIiA2 

ah~/d/3 - -  [(4/3 -k a)12/3(a -k/3)] 7 j = (/3 -- 2~)/2c~(~ -k/3) (18) 

The general solution of this equation is 

= C a/[/3(~ +/3)~] --/3(2~ +/3)/~= (19) 

where the constant of integration C is to be determined by the appropriate end 
conditions. 

Since the last subarc is along ~ = Const, the switching is of the first type 
or the third type. For an AA-type, using the value (16) for W, we have for the 
constant C evaluated at the point S 

c + Vr/3(  (20) 

where ~ and/3 are the coordinates of the point S. For an AD-type of switching, 
the value (17) for W at the point S is used to calculate the constant C. We have 

C =/31~ e V'[/3(~ -{-/3)] (21) 

At the terminal point K, the vector (A1, A2) is orthogonal to the curve 
0(~ 1 ,/31) = 0, by the transversality condition. Then, the value of ~ at the 
point K(%,/31) is 

Wk = (30/3%)/(30/8/31) (22) 

Using this value to calculate C in (19), we have 

c = = c(%/31)  ( 2 3 )  

In the last relation,/31 can be calculated in terms of ~ by solving 

0(% ,81) == 0 (24) 

Finally, if the value of C in (23) is equated to the value of C in (20) or (21), 
depending on the type of switching, we obtain a relation between = and/3, 
which is the equation of the switching curve. 
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Integration along [3 = Const, q = 1. If  the last subarc S K  is along a iine 
13 = Const, the adjoint equations are integrated along this line, using ~ as 
independent variable. We obtain 

I/N = C ~/[c~(= + }3) a] -- ~(~ q- 2/3)//32 (25) 

Because of the symmetry of the state variables, this last relation can be easily 
obtained by replacing 7 t by 1/7" in Eq. (19) and interchanging ~ and 13. 

The switching now is of the second type or the fourth type. For a DD- 
switching, the value of the constant C evaluated at the point S is 

C = ~(~ q. 3/3)//38 a/[a(~ +/3)a] (26) 

For an AD-switching, we have 

C = ~//3~ ~/[~(c~ q-/3)] (27) 

At the terminal point K, by using the transversality condition (22), we 
have for the constant C evaluated at K(%,/31) 

c = c(~i , /~1)  = c ( % , / 3 )  (28) 

In the last relation, % can be evaluated in terms of [3 by solving 

0(%,/3) = 0 (29) 

Finally, if the value of C in (28) is equated to the value of C in (26) or (27), 
depending on the type of switching, we obtain the equation of the switching 
curve. 

In the following, the equation of the switching curve is represented by 

S(%/3) = 0 (30) 

In deriving the equation of the switching curve, we have assumed that no 
constraint has been put on the final state. If  the final state is constrained, then 
an optimal trajectory may have a corner which is not on the switching curve. 
In this case, the final orbit is always at the boundary of the final state. Another 
type of corner on an optimal trajectory may arise when atmospheric drag is 
used in the optimal transfer. This type of corner is discussed in Section 3.4. 

3.3. Sepa ra t r i x .  The application of the maximum principle only gives 
the necessary conditions for optimality. Therefore, for a specified problem, 
even in the case where the switching curve is real in the space ~ >//3 > 0, it 
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only means that, if the final state is not constrained and if a corner exists on an 
optimal trajectory, this corner has to be on the switching curve. To avoid the 
difficult task of proving the sufficiency for optimality, which requires the 
finding of the conjugate point, we introduce a curve called the separatrfx which 
can be used to rule out the existence of the corner in most cases. The separatrix 
is defined as a curve which delimits the domain where a transfer via parabolic 
orbits is more economical than going directly to the final state by applying 
an impulse at one of the apses. Like the switching curve, the separatrix depends 
on the final state. The discussion is illustrated in Fig. 3. For the initial orbit 
E0, the optimal trajectory to reach the final state Z is the trajectory EoH , 
obtained by applying a decelerative impulse at the apogee of E o . For, the 
possible corner S is in the domain where it is more economical to follow the 
line S P  to infinity rather than using the trajectory SK.  In turn, the composite 
trajectory EoSP is less economical than the true optimal trajectory EoH , since 
E o is on the other side of the separatrix. 

3.4. Use  of  A t m o s p h e r i c  D r a g .  For a transfer between a point and 
a final set which constitutes orbits outside the atmospheric sphere of radius R 
and when the change of orbital plane is not involved, we must ahvays have 
fi ~ R, as shown in Fig. 4. The proof of the statement is very simple. Assume 
that the curve A B C  is a possible trajectory. Then, the Hohmann transfer 
A B * C  is obviously superior. If  the trajectory to be considered is the curve 
DEGF with G inside the atmosphere, then it is better to use DEG*F, since the 
portion from E to F via G* can be realized without fuel consumption by using 

O a 
Fig. 4. Use of atmospheric braking. 
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atmospheric braking at the perigee distance ~ = R of the orbit E. We can 
notice that atmospheric braking is used only in the direction of decreasing ~. 

If the final state Z does not intersect the line/3 = R, using atmospheric 
braking as part of the optimal process, the last corner F can be found by 
minimizing the last impulse (to go from F to K) 

Au = V'[2t~Pl/al(al + ~)] -- X/[2t~R/a~(~l + R)] (31) 
subject to the constraint 

0(=1,~1 ) = 0  (32) 

If the final state intersects the line/3 ~ R, F and K coincide, and the last 
impulse is infinitesimal, just enough to bring the perigee distance of the final 
orbit above the level R, thus stopping the atmospheric braking. In this case, 
we can see that reaching the final state in the minimum time (here, minimum 
fuel consumption) is the same as optimally reaching the modified final state, 
which is composed of X with/31 ) R and the line/31 = R ,  o~ 1 ~ o~ f . 

3.5. O p t i m u m  Modes .  The optimal trajectories in the ~t3-plane 
( w i t h . / >  iS >~ R) are always of one of the four following modes (Fig. 5): 

R 

0 

~ E j  (I) 

...... ?° "T 
Es ~ Es 

El 

:-$ 

El 

(it)  
W 
Eo P 

A 
w v 

Eo (Ill) P 

(1 

Fig. 5. Optimum modes. 
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Case 1: Hohmann Mode. Generally, this mode has two impulses and 
one intermediary orbit E s with 

l~ if as=a1 
a s = m a x ( % , % ) ,  / 3 s=  if a s = %  

(%,  rio) and ( a l ,  i l l)  being the initial and final points. The  switching at 
(as , f l s )  is either of the DD-type (a~ < %,/31 </30) or the AA-type  
(al > %,/31 >/30) or one of the two AD-types.  The  corner E s is either on 
the switching curve or is such that E 1 is at one end of the final state, when it is 
constrained. 

We shall see that sometimes the Hohmann  mode degenerates into a 
one-impulse-at-the-perigee mode (/30 = /31) or a one-impulse-at-the-apogee mode 
(% = al) or a parabolic mode (a 1 = -]-(3(3). 

Case H:  Biparabolic Mode. There exists an infinitesimal impulse at 
infinity to transfer the vehicle from one parabola to the other. The  total 
characteristic velocity for the transfer is 

Un = "~/(2/z/]~0) - -  "~/[2/zao/]~0(a0 -~ •0)] -~- "~/(2/z//~1) - -  5¢/[2~al/fll(al + #1)] (33) 

Case 111: Parabolic Mode with Atmospheric Braking. The apogee of the 
intermediary orbit is theoretically at infinity and the total characteristic 
velocity is 

U l I I  = ~¢/(2/z/fi0) - -  "W/[2/£a0/fio(a0 - ~ - f i 0 ) ]  

+ ~/ [2~/=~(~  + ~)] -- ~¢/[2~R/=~(a~ + R)] (34) 

The  corner E s is found by minimizing the last impulse subject to the constraint 
0(a l ,  #1) = 0. 

Case I V :  Two-Impulse Mode with Atmospheric Braking. This mode of 
course requires a 1 < a o . The  total characteristic velocity is 

u~v = V[2~&/%(% + #o)] - V[2~R/%(% + R)] 

@ v/[2/xfll/%(al @ ill)] -- ~¢/[21xR/al(al @ R)] (35) 

The  corner E s is found by minimizing the last impulse. This  impulse is 
infinitesimal if the final state intersects the line/3 = R. 
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If (%,/30) and (~1,/31) are known, it is easy to compare the four optimal 
possibilities. For example, we may use the following conditions. 

Mode I requires 

max(ri0,/31) ~ 11.938 min(/30 , 131) (36) 

Mode II requires 

max(rio, ill) > 9 min(/3o,/31), 

Mode III requires 

Mode IV requires 

t31 >~ 4R(cq -t- R)/o~l (37) 

fix <~ 4R(al @ R)/cqt ~ fl~ ~ (2 q- 2 V'2) R 

/3 o > 4R{1 q- JR/max(%, %)]} 

0~ 1 ( C/0 

/30 ~< 4R(% + R)/% ~ rio <~ (2 ÷ 2 v/2) R 

a12(4R -- 131) + %R(4R + i l l )  ~- R2( R Jr- i l l )  ) "  0 :*" fll ( 5.879R 

These conditions are always sufficient to compare at least Modes II, III, IV, 

(38) 

(39) 

4. Appl ica t ions  

The foregoing analysis is applied in this section to solve several problems of 
orbit correction. The final state can be a portion of a curve, a curve with infinite 
branch, or a composite curve. It is denoted by the symbol N. In the first three 
examples, the existence of a corner on a switching curve is ruled out by using 
the separatrix as a curve of comparison. In the last two examples, a corner 
exists for certain types of transfer. 

4.1. Change  in the  Apogee.  Let d be the final apogee distance. The 
final state is a segment of a straight line parallel to the/3-axis (Fig. 6) 

~1 = d >~/31 > R (40) 

If % < d, the optimum mode is the one-impulse mode, accelerative at the 
perigee (orbit 1). If % > d, there are four possible optimal trajectories: 

(a) Hohmann type, bringing the vehicle to the circular orbit C of radius d. 
This transfer occurs only if/3 o > d (orbit 2). 
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Fig. 6. Change in the apogee. 

(b) Parabolic mode with atmospheric braking (trajectory from 3 to D). 
This mode occurs only when 

/30 > 4R(% ÷ R)/% (41) 

(c) One-impulse mode, decderative at the perigee (orbit 4). This mode 
occurs only when 

% > d >/30 (42) 

(d) Two-impulse mode with atmospheric braking (trajectory from 5 to D). 

4.2. Change in the Perigee. Let d be the final perigee distance. The 
final state is a ray parallel to the a-axis (Fig. 7) 

%~/31 = d > R  (43) 

If/30 > d, there are two possible trajectories: 

(a) If/30 ~< 4d(% -t- d)/%, the optimum mode is the one-impulse mode, 
decelerative at the apogee (orbit 1). 

(b) If/30 >~ 4d(% q- d)/%, the optimum mode is parabolic (orbit 2). 
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Fig. 7. Change in the perigee. 

If/30 < d, there are three possible trajectories: 

(a) One-impulse mode, accelerative at the apogee (orbit 3). This  mode is 
op t imum when 

% >~d 
(44) 

%/3o(3 % -/3o) 2 - 4%d(% --/3o)(% -- 3/3o) -- 4d2(% --/30) 2 ~ 0 

If/3o ~> 4d/9, the second inequality is automatically satisfied. 

(b) Hohmann  transfer (from 4 to C). This  mode is op t imum when 

0.3026d ~</3o ~< % < d (45) 

(c) Parabolic mode (orbit 5). 

4.3. C h a n g e  in  the  E c c e n t r i c i t y .  Let  e z be the final eccentricity. The  
final state is a straight line (Fig. 8), that is, 

/31 ~ k1~1, k I = (1 -- el)/(1 + el) (46) 

I f  e 0 < e I , the op t imum mode  is the one-impulse mode, accelerative at the 
perigee (orbit 1). I f  e 0 > e I , there are four possible trajectories: 

(a) One-impulse mode, accelerative at the apogee (orbit 2). This  mode 
occurs only when 

kl ~< [(1 ÷ ko)/2(1 -- ko)][I -5 x/(1 ÷ ko)] --  1 (47) 
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R - 

O cl 
Fig. 8. Change in the eccentricity. 

where 

k0 -- f10/% = (1 -- eo)/(1 + eo) (48) 

(b) If  the sign of Ineq. (47) is reversed (this requires ko < 0.3026, 
e o > 0.53533), the opt imum mode can be the parabolic mode without 
atmospheric braking (since Z has infinite branch) or parabolic mode with 
atmospheric braking (trajectory from 3 to D). 

(c) Two-impulse mode with atmospheric braking (orbit 4 to D). The  
second impulse is infinitesimal. This  mode occurs only when 

/~o "-~ 4R(% + R)/% (49) 

4.4. C h a n g e  in  t h e  M a j o r  Axis .  Let d be the final major axis. The  
final state is a segment of a straight line (Fig. 9) 

c~ 1 +/31 -- d, ~1/> 131 > R (50) 

If  % -¢-/30 < d, the opt imum mode is the one-impulse mode, accelerative at 
the perigee (orbit 1). If  % +/30 > d, there are four possible trajectories: 

(a) Two-impulse mode with switching of the DD-type (orbit 2). The  
perigee distance of the intermediary orbit is 

/3s = {--3%(% -- d) + 2% x/[d(2% + 3d)1}/(9% + d) (51) 
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Fig. 9. Change in the major axis. 

This mode occurs only when 

/30 > ~s > R (52) 

The equality/3 o = / 3 s ,  written without the subscript 0, is the equation of the 
switching curve. 

(b) One-impulse mode, decelerative at the perigee (orbit 3). This mode 
occurs only when 

R < ~0 ~</3s (53) 
(c) Two-impulse mode with atmospheric braking (orbit 4 and 5 to D). 

The second impulse is infinitesimal. 

(d) Parabolic mode with atmospheric braking (orbit 6 to D). This mode 
occurs only when 

/30 > 4R(% + R)/% (54) 

4.5. Change  in the  Angu la r  M o m e n t u m .  This is the same as 
changing the semilatus rectum. Let 2d be the final value of the semilatus 
rectum. The final state is a branch of hyperbola (Fig. 10) 

/31 = ~la/(~l - a), ~1 ~> 26 >~ ~1 > ~ (55) 
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Fig. I0. Change in the angular momentum. 

If  the initial angular momentum is larger than the final angular 
momentum, that is, if 

rio > %d/(% -- d) (56) 

there are four possible modes: 

(a) One-impulse mode, decelerative at the apogee (orbit 1). 

(b) Two-impulse mode with atmospheric braking (orbit 2 to D). This 
mode occurs and is optimum when 

d < R < 2d, % ~ o~ o ----- Ra/ (R --  g), rio < 4R(% q- R)/% (57) 

(c) Parabolic mode with atmospheric braking (orbit 3 to D). This mode 
occurs only when 

d < R < 2d, /30 ) 4R(% -]- R)/% (58) 

(d) Parabolic mode without atmospheric braking. This mode occurs and 
is optimum when 

R < d, /30 f> 4%2d/(% -- d)2 (59) 

We notice that, in the case where Ineq. (56) and the first of Ineqs. (57) are 
verified, the strategy is to go in an optimum way from the initial orbit to the 
final state represented by the composite curve CDF.  
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If the sign of Ineq. (56) is reversed, that is, if the initial angular momentum 
is less than the final angular momentum, there are three possible modes, none 
of them involving atmospheric braking: 

(a) Two-impulse mode with switching (orbit 4). This mode occurs and is 
optimum when 

P0 > (4/9)d, 

S(%,/30) = (9/30 -- 4d) %3 + 6rio(rio _ 2d) %2 + fio2(fio _ 12d) % -- 4fio~d ~ 0 (60) 

The equality written without the subscript 0 is the equation of the switching 
curve. The apogee distance of the intermediary orbit is obtained by solving 
S( s , 80) = o. 

(b) When S(~o, 8o) >~ O, the optimum mode is the one-impulse mode, 
accelerative at the apogee (orbit 5). 

(c) Parabolic mode (orbit 6). This mode occurs and is optimum when 

R < rio ~< (4/9) d (61) 

5. Conc lus ion  

This paper presents the complete analytical solution of several 
fundamental problems in orbital correction. The initial state is a given point 
in the phase space, while the terminal state is a segment of a curve, a branch 
of a curve, or a composite curve. The possible use of atmospheric braking is 
discussed; and, by modifying the final state to include the line 8 = R, the 
problem again can be solved by the same method. The selection of the apogee 
and perigee distances as state variables gives a symmetric form to the problem 
and results in a linear differential equation of the first order for the ratio of the 
adjoint variables. 

The applications of the solution derived in this paper are not restricted to 
the examples which have been selected. The solution can be applied to the 
problem of optimum disorbit (Ref. 3), optimum ascent into an orbit (Ref. 4), or 
optimum orbit correction involving more than two orbital elements (Ref. 5). 
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