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Optimal Laser Heating of Plasmas 
with Constant Density I 

J. E. V I T E L A  2 A N D  A. Z. A K C A S U  3 

Communicated by C. T. Leondes 

Abstract. The laser heating of a plasma with constant density is 
analyzed using optimal control theory. Heating strategies that minimize 
the total energy spent, the heating time, or a linear combination of the 
two, for several values of  weighting coelficients, are obtained by deter- 
mining the optimal laser intensity associated with each point of  the 
phase plane. A numerical example is used to illustrate the application 
of the theory. In this particular example, savings in the energy spent 
up to 75%, compared with the energy required using a constant laser 
pulse, are obtained when minimum energy trajectories are implemented. 
Strategies that minimize the heating time, however, did not yield a 
significant reduction in the heating time. Numerical results may depend 
strongly on the initial state of the system as well as on the final ion 
temperature of the plasma. 

Key Words. Optimal control theory, plasmas, laser heating, singular 
controls. 

1. Introduction 

This paper  is concerned  with the opt imal  heat ing o f  plasmas by a laser 
beam, in order  to minimize the total laser energy required to increase the 
ion temperature  to a desired value, within acceptable  heating times. The 
opt imizat ion problem arises because the laser energy is first absorbed by 
the electrons, increasing thus the electron temperature.  Overheat ing the 
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electrons reduces the electron-ion energy transfer rate and the coupling of 
the laser beam to the electrons, while increasing the radiation losses. Further- 
more, certain types of instabilities may be excited (Ref. 1), if the difference 
between the electron and ion temperatures becomes too large. Hence, the 
application of the maximum laser intensity available may not always be 
desirable. This suggests heating strategies by modulating the laser intensity 
during heating, to achieve various conflicting objectives. For example, one 
may try to maximize the electron-ion energy transfer rate to minimize the 
heating time, or one may want to minimize the total energy necessary to 
heat the ions by maximizing the coupling between the laser beam and the 
electrons, while minimizing the bremsstrahlung losses. 

In 1975, Vagners et al (Ref. 2) solved the problem of minimum ion 
heating time in a plasma confined in a strong solenoidal magnetic field, 
neglecting bremsstrahlung radiation losses and the work done by the plasma 
during expansion against the magnetic field. They assumed a given total 
laser energy available for heating the plasma ions and determined the 
optimal laser intensity profile that minimizes the heating time for only one 
set of initial conditions. 

In this paper, we extend their work by including bremsstrahlung radi- 
ation losses but assuming constant plasma density. Here, we do not constrain 
the total energy spent during the heating time, since this may lead to cases 
with no solution; instead, we minimize a linear combination of the total 
energy spent and the heating time with appropriate weighting coefficients. 
By adjusting the latter, one may obtain physically reasonable heating time 
and total laser energy within permissible limits. 

The solution of the problem described above requires the use of optimal 
control theory (Refs. 3 and 4). To give an idea about the type of information 
one obtains by resorting to optimal control, we pose the following question: 
A fully ionized plasma is produced initially in equilibrium at 10 eV with a 
density of 2 x 10~7/cm 3. It is desired to raise the ion temperature to 5 KeV 
using a CO2 laser, with a maximum intensity I0 = 2.25 x 1030 eV/cm 2 s, (a) 
in a minimum time, (b) with minimum laser energy. If the full intensity is 
used, the heating time is T=101.65/zs and the total energy is E-- 
22.87 x 1025 eV/cm 2. When the heating time is minimized, one finds (see 
Table 1) T = 100.75/zs and E = 22.13 x 1025 eV/cm 2, with a little gain in the 
total laser energy. However, when the total laser energy is minimized one 
finds T = 771.17/zs and E = 5.18 x 1025 eV/cm e, with a saving of the order 
of 75% in laser energy at the expense of heating time. Figure 1 shows the 
time dependence of the optimal laser intensity in the above two cases. By 
minimizing a linear combination of the heating time and the total energy, 
we obtain heating strategies leading to significant savings in the total laser 
energy requirement with a small increase in the heating time. For example, 
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Table 1. Heating data corresponding to the optimal trajectories in Fig. 10. 

G/C2Io Switching Switching Switching Switching Heating Heating 
time time time time time energy 

Ureas-' Us Us-" Umax Us -~ Umin Umax'* Umin (tzS) (1025eV/cm2) 
(ps) (~s) (~s) (~s) 

0 0.02 - -  695.87 - -  771. t 7 5.818 
10 -4 1.62 - -  617.49 - -  692.60 5.826 
I/5 28.4 - -  98.36 - -  147,15 8.216 
1/2 30.1 - -  79.53 - -  124,58 9.811 
1 30.1 - -  70.62 - -  113.82 11.51 
2 31.1 21.84 - -  69.90 106,97 13.66 
5 31.2 7.99 - -  78.32 102,70 16.57 
eo 31.3 3.26 - -  - -  100,75 22.13 

Constant pulse . . . .  101,65 22.87 

in one o f  the cases in Table 1, we found  T =  113.8/zs and a total energy 
of  E = 11.51 x 102s eV/cm 2, implying 50% saving in energy with only 11% 
increase in the heating time. 

This paper  provides  a complete  solut ion o f  the opt imal  laser heat ing 
problem,  for  the p lasma m o d e l  described below, by obta ining the opt imal  
laser intensity profile for  any  initial and f i n n  state. 

2. Mathematical Description of Plasma Heating 

We assume that  the laser radiat ion il luminates the p lasma co lumn 
uni formly  and that  electrons and ions are always Maxwell ian with uni form 
temperature  Te(t) and T,.(t), respectively, and constant  densities ne = ni = n. 

In underdense  plasmas (plasmas with densities tess than that in which 
the laser f requency equals the p lasma frequency) ,  the index of  refract ion 
is less than one and increases in regions o f  lower  p lasma densities. Hence,  
the laser light will be refracted toward low-densi ty regions o f  the p lasma 
(Ref. 5). By assuming,  as we ment ioned  earlier, that  the laser radiat ion 
illuminates the p lasma co lumn uniformly,  we virtually neglect this effect at 
the outset. In  addit ion,  the laser f requency is taken to be greater than the 
p lasma f requency so that  reflection losses at the vacuum plasma b o u n d a r y  
are minimal.  

As poin ted  out  by Yuen et al (Ref. 6), in the process o f  laser heating 
o f  futly ionized plasmas,  the laser energy is main ly  absorbed  by the electrons; 
and the dominan t  absorpt ion  mechanism is that  o f  inverse bremsstrahlung 
as shown by Dawson  et al (Ref. 7). 



126 JOTA: VOL. 52, NO. 1, JANUARY 1987 

1.2 

1.0 

0.8 

0 
m 

0.6 

o_ 
0.4 

0.2 

0.8 

0 

x 0.6 

~ 0.4 

0.2 

- -  ! III I I I  ...... 
! I '""""i ! I I I I I 

® ~ ~ ..~ 

! 

8 

0 
I 1 . . . . . . . . . .  i I I . . . .  I - I - I . I 

20 40  6 0  80  100 

Time (microseconds) 

I _ 

120 

' I I ! t ~" ! I " ! I I ! T ! ~ ' I 

100 200 

b 

~lq3 
300 400 500 600  700 

Time (microseconds) 

800 

Fig. 1. Top: Laser pulse that minimizes the heating time. 
Bottom: Laser pulse that minimizes the heating energy. 
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The equations describing the laser heating of the plasma under the 
above assumptions are the following: 

( 3 / 2 ) ( d / d t ) ( n T e ) =  g J ( t ) - ( 3 / 2 ) n [ ( T ~ -  T,~)/%]-~n2Tte/2, (1) 

( 3 /2 ) (d /d t ) (nT~)  = (3n/2)[( Te - T~)/%]. (2) 

These equations represent the energy balance in the electrons and ions, 
where K~ and re are the absorption coefficient of the laser radiation and 
the electron-ion equilibration time, given by 

I,;~ = an2~ TY  2, (3) 

~'e = rT~/2/n.  (4) 

The numerical coefficients a,/3~ 3' are explicitly given by 

a = 8KTrer/eue(27rme) 3/z, (5) 

[3 = 321rg(27r)I/Ze6/33/2m3e/2c3h, (6) 

y-~ = 8(27r)~/%4ml/2 log A/3m~. (7) 

In Eq. (5), K is a constant of the order 10, me and m~ are the electron and 
ion masses, h is the Planck's constant, c is the speed of light, e is the 
electron charge, u is the frequency of the laser light, g is a quantum 
mechanical correction factor, and finally log A is the Coulomb logarithm. 

In order to apply the methods of  optimal control theory, we should 
simplify the notation in Eqs. (1) and (2). Thus, substituting the coefficients 
K~ and ~-e, from (3) and (4), in Eqs. (1) and (2), and defining the new 
variables Z1, Z2 as 

z~ =- L ,  z 2 -  T,, U( t )  =- X(t), (8) 

where Z~ and Z2 are referred to as the,state variables and U ( t )  as the 
control variable, the equations describing the laser heating of a plasma are 
then reduced to 

( d / dt )Z~ = A,  U ( t ) / Z~/2 - Az(  Za - Zz)  / Z~/2 - A3Za,/2, (9) 

( d /  dt)Z2 = A2( Z~ - Z2) /  Z 3/2, (10) 

where the coefficients A1, A2, A3 are defined as 

A~ = (2/3)an, A2 = n / y ,  A3 = (2/3)/3n. (11) 

Equations (9) and (10) are referred to as the equations of state or plant 
equations. This system of equations will represent our mathematical model 
of the laser-plasma interaction. 
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For the purpose of illustrating the application of the optimal control 
theory in this problem, we will consider a plasma composed of ordinary 
hydrogen ions and electrons and heated by a CO2 laser beam of  maximum 
intensity Io = 2.25 × 103° eV/cm 2 s, where the density n is 2 × 1017/cm 3. Under 
these conditions the numerical values of the parameters are 

A1 = 2.667 x 10 -17 eV 3/2 c m  2, A2 = 6.349 x 10 9 eV3/2/s ,  (12a) 

A3 = 1.404 x 104 eV/s. (12b) 

3. Optimal Control Formulation 

3.1. Hamilton's Equations. The optimal control problem can be for- 
mulated as follows: From all the control values that satisfy 0 < - U(t)  < - I0, 
find the control strategy U°P( t )  which minimize the functional 

fo J =  [ C , + C z g ( t ) ]  dt (13) 

and brings the system, through Eqs. (9) and (10), from an initial state 

Z,(O) = Teo, Z2(0 ) = T/o , (14) 

to a final state with specified ion temperature T¢; this condition on the final 
state can also be expressed as 

M ( Z , ,  Z2) = Z2 - T~f = 0. (15) 

The final time T, which is the heating time, and the final electron 
temperature are not specified. The necessary conditions for optimality 
require the use of  the Hamiltonian H, made up of the state variable Z~, Z2 
and the adjoint variables or Lagrange multipliers hi ,  ;t2 as follows: 

A~[A1U/Z~ - A 2 ( Z i - Z : ) / Z I  - A 3 Z  1 ] H = C1 + (?2 U + 3/~ 3/2 i/2 

+ AEAE[(Z~ - ZE)/Z]/2]. (16) 

The optimal solution should satisfy the following equations (Ref. 4): 

( d / dt)Z~ = A,  U( t ) /  Z~( 2 - A2( Z~ - Z2)I Z31/z - A3Z~/z, 

( d / dt)Z2 = AE( Z1 - Z2) / Z 3/2, 

( d / dt ) A1 = (A j EZ~/2)( 3 AI U -  AzZ~ + 3 A2Z2 + A3Z ]) 

+ (A2/2z~/E)A2(Z~ - 3Z2), 

( d / dt ) A2 = ( A2/ Za/2)( A2-  Zl). 

(17) 

(18) 

(19) 

(20) 
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The optimal control is obtained from 

~Xo, 
0, 

U°P(t)=l  Us(t) ' 

if (22 + A1A1/Z 3/2 < O, 
if C2+A12tl/Z~/2> 0, 
if C2 + A1A1/Z31/2 = O, 

(21) 

where U, is the singular control (Refi 8), to be discussed below. The 
transversality conditions (Ref. 4) for this problem are 

H(,~, ~)]r = 0, (22a) 

hi(T) = 0, (22b) 

As(T) = ~, ~ free, (22c) 

Z2(T) = T~¢, T,y fixed, (22d) 

where ,~ and ~ are vectors with components Z~, Z2 and ~ ,  h2, respectively. 
The initial conditions are given by Eqs. (14). 

In addition, the Hamiltonian is a constant of motion along the optimal 
trajectory, because it is not an explicit function of time (Ref. 4), Hence, we 
have 

H(Z, h) =0, 0-< t _  T. (23) 

The set of Eqs. (16)-(23) constitutes a two-point boundary-value prob- 
lem involving nonlinear differential equations. Thus, it is impossible to 
obtain analytical solutions. However, the analysis that we present here 
enables us to obtain the necessary conditions that optimal trajectories must 
satisfy in order to minimize the prescribed functional. From these conditions, 
we will generate the so called switching curves in the phase plane Z 1 -  Z2, 
that determine the optimal control switching points. These curves will be 
obtained numerically by flooding the phase plane with optimal backward 
trajectories that start on the target curve. The switching curves depend, as 
will be shown later, on the final ion temperature as well as on the ratio 
C J  C2 of the weighting parameters, but they are independent of the initial 
state of the system. This fact will permit us to obtain the optimal control 
law in terms of the instantaneous position of the state (Z~, Z2) in the phase 
plane, regardless of whether it is an initial state or an intermediate state. 

Candidates to optimal trajectories have to satisfy the above conditions. 
However, in order to isolate a unique optimal candidate, is necessary to 
analyze the possible existence and optimality of singular subarcs (Refs. 8 
and 9). 
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3.2. Singular Subarcs Candidates. Following Gabasov and Kirillova 
(Ref. 8), we divide the Hamiltonian in two parts, 

H = Ho(Z, A) + Hi(Z, X) U, (24) 

where 

Ho = C1 + ( A1/ Z~/2)( A2Z2 - A2Z, - A3Z~) + ( A 2/ Z 3/2) (AzZ1 - A2Z2), 
(25) 

Hi = Cz + A~A1/ Z 3/2. (26) 

The singular subarc may exist if the switching function H~ vanishes in 
an interval of time of positive length. If  the phase space trajectory is to 
satisfy this condition, then the higher-order total time derivatives of HI 
should also vanish. It can be easily shown that these derivatives o f / /1  can 
be written as 

(a" /a tm)HI=a ,~ (Z ,X)+/3 ,~ (Z ,X)U,  m = 0 ,  1 , . . . , 2 q ;  (27) 

this process continues until, for some integer number q, the coefficient/32q 
does not vanishes identically. The singular control problem is said to be of 
order q. 

In our problem, am and/3, ,  are obtained using (26) as 

ao = C2+ AxA1/ Z 3/2, (28) 

13o-= 0, (29) 
4 2 oq = ( A1/ 2Z1)( 2A2A ~Z~ + 4A3A ~Zl + A2A 2Z1 - -  3A2A2Z2), (30) 

/3~--~ 0, (31) 

12 = - ( 4 1 1 /  Z~/2)(-A2Z1 + A2Z2 - A3 Z2) 

1 1 / 2  2 2 + (A~/2Z~ )(8A2A~Z2- 4AzAIZ1 - 11A2A3AxZ~ 

- 2A~A2Z1 + 2A~A2Z2 + 14AzA3A 1Z2Z1 
2 3 2 - 6A3A 1Zl + A2A3A2Z1 - 6A2A3A2Z2ZO, (32) 

/32 = -41~Aa/Z~/2+(A~/2Z~I/2)(5A2A1+A2A2+ 14A3AIZa). (33) 

Since /32 does not vanish identically, we have a singular problem of 
order 1. By requiring that, on the singular arc, the switching function is to 
remain equal to zero in an interval of time of positive length, the singular 
arc is then specified by 

C2 + A1A1/ Z~/2=O, (34) 

2A2A1Zx + 4A3AIZ] + A2A~Z1 - 3A2Z2A2 = 0. (35) 
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To obtain the singular control we shall solve first the above equations 
for A1 and A2, as follows: 

,~ = -CzZ3/2/ A1, (36) 

)h = (2C2Z~/2/A~A2)[(A2 + 2A3Z~)/(Z1 - 3Z2)], Z1 # 3Z2. (37) 

Substituting now the above equations in the equations for a2 and/32, the 
singular control is obtained by requiring the second-order time derivative 
of the switching function to be equal to zero. Thus, we have 

Us : [24Az(Z~ - Z2)Z2 -~- 2A~Z~(21Z2 - 5Z1) 

+ A2A3Zl (67Z2Z1 - 42Z 2 - 5Z[)]/ 

x [A~(15A2Z2-3A2Z~- lOA3ZZ+42A3Z~ZJ]. (38) 

The above equation yields the general rule for the singular control law, 
which is not explicitly dependent on the weighting parameters C~ and (72; 
nevertheless, the implicit dependence lies on the fact that, as will be shown 
later, the state (Z~, Z2) should lie on the singular arc, and this depends on 
the ratio C1/C2. 

3.3. Optimality of the Singular Subarcs. In order to be considered an 
optimal candidate, a singular subarc should satisfy the generalized 
Legendre-Clebsh (GLC) condition (Ref. 9). For a singular control problem 
of order 1, this condition reduces to 

(0/0 U)( d2H~/ dt 2) <- O, 

o r  

(39a) 

/32(Z, ~) -< 0. (39b) 

To determine if the singular subarc satisfies the GLC condition (39), 
we will use the fact that the Hamiltonian is a constant of motion along 
trajectories that satisfy the necessary conditions for optimality. Using (16), 
(23), and (36), we obtain the following alternative expression for A2 along 
singular subarcs: 

A2=[CeZ3/2(A2Z2_AaZ _AsZ~ ) 3/2 A -A1C,  Z ,  ]/[ 1A2(Z, -ZJ] .  
(40) 

Substituting the above expression together with (34)and (35) in the corre- 
sponding expression for/32 in (33), the GLC condition becomes 

3A2 (72 + (A3 (]2 Z2 + A, C,)/2(Z,  - Z J  + 7A3Z, C2 >- O. (41) 

It is obvious from this expression that, in the region of the phase plane 
where the ion heating takes place (i.e., ZI>Z2),  the GLC condition is 
always satisfied. 
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3.4. Equation of the Singular Arc. The algebraic equation specifying 
the singular subarc is obtained by equating the expressions for A2 given in 
(37) and (40); thus, after few algebraic steps, we get 

0 = 3A2CzZ~ - [C2(6A2Z1 + 7A3Z 2) + 3A1CI]Z2 

+ 3A2C2Z 2 + 5A3 C2Z 3 + A, C~Zt. (42) 

The above expression for the singular subarc depends on both Ca and C2, 
as expected. 

We should point out here that, although this equation was obtained 
using (37), which requires Z~ ~ 3Zz, it reduces to the correct expression for 
the singular arc in the limiting cases of minimum time subarcs (C2 = 0, 
C1~0) and minimum energy subarcs (C~=0, C2~0), which are, 
respectively, 

0 = Z1 - 3Z2 (minimum time), (43) 

0 = 3A2Z 2-  (7A3Z~ + 6A2ZI)Z2 + 3A2Z 2 + 5A3Z~ (minimum energy). (44) 

From the general expression for the singular subarcs, in (42), we can 
solve for Z2 in the cases where C2 ~ 0. We obtain 

Z2 = ZI + 7A3Z2/6A2 + A1C~/2A2C2 

- (1/6A2)[49A2Z~ + 24A2A3Z 3 

+ (C1/C2)(42A~A3Z~+ 9A2C~/C2+ 24A~A2Z~)] ~/2, (45) 

where we have chosen the negative sign in the root square (in order for 
energy transfer from electrons to ions to exist, it is necessary that Z1 > Z2). 

It is possible to substitute Z2 either from (43) or (45), depending on 
the particular case, in the equation for the singular control (38). The singular 
control then becomes only a function of the ratio CI/C2 and the electron 
temperature Z~. For the particular case of minimum time trajectories 
(C2 = 0), the expression of the singular control reduces to 

Us = (8A2Z, + 3A3Z2)/3A~. (46) 

When C2 = 0, the singular subarcs are specified by Z~ = 3Z2. The latter 
has the following physical meaning: It is easily shown that the energy 
transfer rate, between Maxwellian electrons and ions given by the term 
A2(Z1-Z2) /Z  3/2, is maximized when the corresponding temperatures 
satisfy the above relation. 

Due to the constraint in the maximum laser intensity available [recall 
Umin<_ U(t)<- Umax with U~in=0 and U~ax = Io], there is always one state 
on the singular arc in which the singular control is equal to Ureas, i.e., the 
maximum value allowable. Thus, every singular trajectory has an upper 
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bound which depends on the ratio Cff C2, called laser saturation state. The 
higher the maximum laser intensity available, the higher the upper bound 
is located. 

Figure 2 shows different singular subarcs for several values of C1/C2. 
The values of the coefficients A1, A2, A3 used to obtain these curves are 
given in Eq. (12). 

As is expected, the behavior of singular arcs shows a transition between 
minimum time singular arcs, Z1 = 3Z2, which maximize the energy transfer 
rate between electrons and ions, and minimum energy subarcs, which 
maximize the laser-electrons coupling, while minimizing the radiation 
losses. It should be pointed out that, if no radiation losses were included 
in the model, A3 = 0, the minimum energy singular arcs degenerate into the 
Z1 =Z2 straight line (the upper dashed curve). This is expected; when 
Z1 = Z2, the coupling of the laser beam to the electrons is maximum, and 
the heating time is infinite, since the energy transfer rate between electrons 
and ions becomes infinitesimal. 

3.5. Terminal and Control Switching Conditions. One can show, by 
analyzing the transversality conditions (22) and the behavior of the switching 
functions//1, that the set of conditions to be satisfied at the final state and 
at the switching points can be summarized in three different cases as follows. 
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Minimum Time Trajectories, C~ = 1, C 2 = 0. The final state Case  (i). 
of  a minimum time trajectory must satisfy the following conditions: 

ZI( T) > Zz( T), (47) 

Z2(T) = T~y, T~y fixed, (48) 

)tl (T) = 0, (49) 

A2(T) = -[Z~/2/Az(Z, - Zz)]r. (50) 

The value of the optimal control at the final time t = T can be found as 
follows4: 

[ Um~x, i fZ~(T)<3Z2(T),  (51a) 

U °p= ~0, i fZI (T)>3Zz(T) ,  (51b) 

/ Us, if Z I ( T ) -  3Z2(T), (51c) 

~0, i fZ~(T)=3Z2(T).  (51d) 

At a control switching time q, if any, the following conditions should 
hold: 

;~l(t,) =0, 

)t z( ts) = - [  Z]/2/ A2( Z, - Z2) ],,. 

The optimal control switching should be of the form 

Umax ~ Umin, if S < 0, 

Umin -~ Um,x, if S > 0, 

Uma~Us  or U~,in ~ Us, if S = 0. 

The singular function S is given by 

S = Z1 - 3Z2. 

Case  (ii). Minimum Energy Trajectories, 
state, minimum energy trajectories should satisfy 

Z~(T) ~ Z2(T), 

z~(T)  = r,  s, 

(52) 

(53) 

(54a) 

(54b) 

(54c) 

(55) 

C1 = 0, C2 = 1. At the final 

(56) 

(57) 

4 Equation (51c) holds, provided this state lies at or below the laser saturation state. Equation 
(51d) holds, provided this state lies above the laser saturation state. 
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ax(T)  = 0, (58) 

a2(T)={0 ,  if Z,(  T) > Z2( T), (59) 
free, if ZI(T) = Z2(T). 

At the final state, the optimal control is always 

U°P(T) = 0. (60) 

Here, any state on the Umi, trajectory that crosses the state in which 
Z~(T) = Zz(T)  and lies above the singular arc, i.e., where S <0 ,  may be a 
switching point. In all cases, the following conditions should be satisfied 
at the switching point: 

h,(ts) = -(Z~/2/A,) ,s ,  (61) 

&(tA  = x,(t~)[ 1 + A 3 Z ~ / A 2 ( Z ,  - Z2)],s. (62) 

The optimal control switching, if  any, should be of the form 

Um,~ ~ Umi~, if S < 0 ,  (63a) 

Umi, --> Um~x, if S > 0 ,  (63b) 

Um~-~-- Us or Umi~<~- Us, if S = 0. (63c) 

The singular function in this case is given by 

S = 3A2Z~ - (7A3 Z2 + 6A2Z,)Z2 + 3A2Z~-t- 5A3Z 3. (64) 

We should point out here that the value of A2(T), which is not specified 
in (59), is to be chosen such that the conditions in (61) and (62) are satisfied. 

Case Oil). General Case, Ca > O, C2 > O. 
sponding optimal trajectories should satisfy the conditions 

Z, (T)  > Z2(T), 

& ( T )  = ~s, 

)tl(T) = 0, 

h2(T) = -[CIZ~/2/Az(Z~ - Z2)]T. 

The final optimal control at any final state is given by 

U°P(T) = O. 

At the final state, the corre- 

(65) 

(66) 

(67) 

(68) 

(69) 
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At the control switching time ts, if any, the following conditions on 
the adjoint variables should hold: 

Xl(t,) = -(C2Z]/2/A1),,, (70) 

A2(ts)=AI(t,)[I+A3Z2/A2(Z1-Z2)+AIC1/A2C2(Z1-Z2)]t. (71) 

The optimal control switching should be of the form 

Umax ~ Umin, if S < 0, (72a) 

Umi~O Umax, if S > 0 ,  (72b) 

Umax~-- t_,, or Ur, i.~- ~-- U,, if S = 0. (72c) 

In this case, the function S is given by 

S(Z~, Z2, C1, C2) = 3A2C2Z~ + 3A2C2ZZ + 5AaC2Z3 + A1C~ZI 

- 7A3CzZ2Z~ - 3Aa CaZ2 - 6A2C2ZIZ2. (73) 

3.6. Switching Curves. In this section, the necessary conditions that 
any optimal trajectory should satisfy at the final state were used to generate 
optimal backward trajectories, in order to find the switching curves, i.e., 
the set of points in the phase plane where the optimal control switching 
occurs. The backward trajectories start on the target curve. The switching 
points for each optimal backward trajectory are located where the switching 
conditions summarized in the last section are satisfied. 

Each backward trajectory was obtained by numerical integration of 
Eqs. (17) through (20), using a simple corrector-predictor method. 

The objective of generating the switching curves is to separate the phase 
plane into regions of well-defined optimal controls. In order to illustrate 
this, in Fig. 3 a final ion temperature of 5 keV and a ratio of weighting 
parameters C1/C2 = 5U~ax were chosen, and optimal trajectories were 
obtained for different sets of initial conditions. The set of points where the 
optimal trajectories switch to a different optimal control is shown at the 
bottom of this figure (dashed lines). These set of points in the phase plane 
form the so called switching curves. The shape and location of the switching 
curves in the phase plane depend on the ratio of the weighting parameters 
C1/C2, as well as on the final ion temperature. 

Figures 4 and 5 show switching curves corresponding to minimum time 
trajectories (i.e., when C1 = 1 and C2 = 0. It should be noticed that in this 
case, if the laser saturation state lies below the target line, all singular 
trajectories have an exit point on the singular arc that lies below the laser 
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saturation state and depends only on the final ion temperature. On the other 
hand, if the target line lies below the laser saturation state, then singular 
trajectories may be final optimal subarcs, as discussed before, and no 
bang-bang switching curves exist. 

In Fig. 6, switching curves corresponding to minimum energy trajec- 
tories, C1 = 0 and (:?2 = 1, are shown for several final ion temperatures. For 
the particular final ion temperatures chosen in this figure, the laser saturation 
state lies always above the target line; thus, the exit point from the singular 
arc corresponds to the intersection point between the singular arc and the 
Umi n trajectory leading to thermal equilibrium of ions and electrons at the 
desired final ion temperature. 

Figure 7 shows the behavior of the switching curves corresponding to 
a ratio CI/C2/-/max = 1, where C~ and C2 Umax are both dimensionless, for 
several values of the final ion temperature. The solid line in this figure 
corresponds to the singular arc, and the curves marked with different 
temperature values are the switching curves corresponding to different final 
ion temperatures. We can observe in this figure that, in all cases, a switching 
curve located above the singular arc exists, which corresponds to U,,,xO 
Umi, transitions, and from now on it will be referred to as upper switching 
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curve. When the upper switching curve intersects the singular arc above, 
the laser saturation state, another switching curve appears below the singular 
arc and corresponds to Umi,-> Umax transitions, referred to as lower switching 

curve. One of the extreme points of this latter switching curve is the 
intersection point between the singular arc and the upper switching curve; 
the other extreme lies somewhere on the singular arc below the laser 
saturation state. 

We should point out that, in both cases, i.e., when only the upper 
switching curve exists or when both switching curves exist, singular trajec- 
tories contain always an exit point that lies below or at the laser saturation 
state and corresponds to transitions of  the type Us--> U~in in the first case 
or U, ~ U~ax in the latter case. This characteristic is due to the fact that, 
when C2 > 0, singular trajectories can never be optimal final subarcs. 

In Fig. 8, a fixed final ion temperature of  5 keV was chosen to show 
the behavior of the switching curves when the weighting parameters C1 
and C2 vary between the limiting cases of  minimum energy trajectories, 
(C1 =0,  C2 = 1) and minimum time trajectories (C1 = 1, C2 =0).  

The objective of the switching curves, as mentioned earlier, is to separate 
the phase plane into regions according to the optimal control associated 
with each point of the phase plane. In general, we can separate the problem 
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of determining the optimal control in two cases, which are illustrated in 
Fig. 9. In the first case, only the upper switching curve exists; in the latter 
case, both the lower and upper switching curves exist. 

When only the upper switching curve exists, the optimal control law 
can be specified as follows: If the state of  the system is located in the region 
bounded by the singular arc, the upper switching curve, the Z2-axis, and 
the Z2 = T¢ straight line, then the optimal control is Umax- If the state is 
located to the right-hand side of  this region, the optimal control is Umin. 
When the state of  the system lies on the singular arc, in the boundary 
between these two regions, the optimal control is Us. 

When lower and upper switching curves exist, the optimal control law 
is specified as follows: If the state of the system lies in the region bounded 
by the singular arc, the lower and upper switching curves, the Z2 = T~ s line, 
and the Z2-axis, the optimal control is /-/max. If the state is located to the 
right-hand side of this zone, the optimal control is Umi,. When the state is 
located on the singular arc corresponding to the boundary between these 
two regions, the singular control is then optimal. 

As we can notice, in both cases, if the state of the system is located in 
the region Z1 < Z2, the optimal control is always Umax. This is reasonable, 
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because in that region no ion heating occurs, and it is desirable to quickly 
heat the electrons in order to avoid energy transferred from the ions to the 
electrons, which is considered undesirable, since our objective is to heat 
the ions. On the other hand, if the electron temperature is larger that the 
ion temperature, it may be possible that the optimal heating strategy is to 
leave the electron and ion temperature to relax, i.e., with U°P= 0. 

In the next section, the implementation of the optimal control strategies 
described above and the way how optimal switching curves should be used 
for this purpose will be illustrated. 

4. Optimal Trajectories 

In this section, typical optimal trajectories for several ratios C1/C2 of 
the weighting parameters are obtained following the optimal control strategy 
presented in the last section, An initial state corresponding to a temperature 
of 10 eV for both ions and electrons and a final ion temperature of 5 keV 
was used in all of  the following cases, in order to compare the total energy 
spent and the heating time in the process, when different sets of weighting 
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parameters are used. The set of weighting parameters that were used corre- 
sponds to those utilized to obtain the switching curves in Fig. 8. 

When the optimal control strategies discussed in the last section were 
implemented, the optimal trajectories in the phase plane shown in Fig. 10 
were obtained. We can observe that, due to the choice of the initial state, 
all the trajectories contain a singular subarc. Initially the optimal control 
in each of the optimal trajectories is Umax, until the corresponding singular 
subarc is reached; due to the smallness of these initial arcs, these cannot 
be observed in this figure. 

As is expected, the tendency of the minimum energy trajectory is to 
keep the electron temperature as small as possible, because this increases 
the coupling between the laser beam and the electrons, while reducing the 
bremsstrahlung radiation. It should be pointed out once again that, if no 
bremsstrahlung radiation were included in the model, the singular arc for 
the case of minimum energy trajectories reduces to the straight line Z1 = Z2. 
This is due to the fact that, since no energy losses exist, the heating time 
may grow indefinitely without affecting the penalty function; thus, reducing 
the electron temperature increases the et~ciency in the absorption of the 
laser energy by the electrons. In this case, however, the energy transfer rate 
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between electrons and ions in the plasma becomes infinitesimally small; 
consequently, the heating time becomes infinite, since [see Eq. (38)] the 
singular control becomes zero. 

Minimum time trajectories, on the other hand, keep the electron tem- 
perature three times larger than the ion temperature along the singular 
subarc, since this condition maximizes the energy transfer rate from electrons 
to ions. The exit point f rom the singular arc appears  below the laser 
saturation state, contrary to what we could have expected on the basis that 
the singular trajectory would be optimal all the way until the laser saturation 
state is reached. This is due to the fact that the Uma~ trajectory is tangent 
to the singular arc at the laser saturation state, so that the electron tem- 
perature is always smaller that three times the ion temperature after this 
point. Although the reduction in the electron temperature decreases the 
denominator  of  the energy transfer rate term, given by A2(Z1-Z2)/Z~/2, 
the reduction of the electron and ion temperature differences overwhelms 
this effect, yielding in the long run an overall smaller energy transfer 
efficiency. This explains why the exit point lies below the laser saturation 
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state. The exact exit state is determined by the final conditions, in this case 
by the final ion temperature. These features are depicted in Figs. 3 and 4. 

The other trajectories constitute a compromise between the energy 
spent and the heating time, for different weighting coefficients. 

The optimal laser intensity profiles that drive the plasma from the initial 
state to the final state along the optimal trajectories shown in Fig. 10 are 
plotted as a function of time in Figs. 11 and 12. 

Table 1 shows the control switching times, the heating time, and the 
total energy spent in the heating process for the different ratios C1/C2 used 
in the calculations. 

Figure 13 shows the behavior of the logarithm of the heating time in 
microseconds and the fraction of the energy spent in the heating process, 
relative to the energy needed when a constant laser pulse is utilized. Both 
are plotted as functions of the ratio Ca/C2 Umax. A possible use of these 
results may be demonstrated as follows. Suppose that the initial state of 
the plasma corresponds to an equilibrium state at 10 eV, for both electrons 
and ion, and that the maximum energy available E,, and the maximum 
laser intensity I0 have been given for the laser system being used. Then, the 
maximum value of the ratio C1/C2 can be determined from Fig. 13 with 
the given E,,,/E . . . .  t. This value of CI/C2 yields the minimum heating time 
possible for the given total energy. If a smaller value of C1/(?2 is chosen, 
compared with the above maximum, then the heating time will be larger; 
however, the energy spent in the heating process will be smaller. 

Another possible use of Fig. 13 is that it allows one to determine the 
minimum energy necessary to heat the ions from the initial state to the 
desired final ion temperature. Thus, if there is a constraint in the total energy 
available, we can always determine whether it is enough to heat the ions 
to the desired temperature and, if so, we can find the most convenient 
heating strategy by choosing an appropriate value of the ratio CJ C2. 

5. Conclusions 

We have shown that, for plasmas of constant density, a significant 
reduction in energy spent in the heating process may be attained with only 
a slight increase in the heating time, when optimum laser intensity profiles 
are used, as compared to the total energy required when the maximum laser 
intensity is used to heat the plasma. This result is the primary motivation 
for resorting to the optimal control theory. 

On the other hand, minimum time trajectories may not yield a significant 
reduction in heating time as compared with the use of a constant laser 
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pulse, as can be seen by comparing the last two lines in the last two columns 
in Table 1. 

The minimum energy necessary to heat the plasma ions to the desired 
temperature can be obtained by appropriately shaping the laser pulse, 
although this procedure yields relatively large heating times, which may 
not be reasonable if the plasma confinement time is smaller than the heating 
time obtained with the minimum energy trajectories. 

The method described here can be applied to more realistic plasma 
models. An extension that includes the expansion of  the plasma against the 
magnetic field, as well as the bremsstrahlung radiation losses, will be 
reported later. 
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