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Optimal Interception with Time ConstrainP 
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Abstract. This paper considers the problem of  minimum-fuel inter- 
ception with time constraint. The maneuver consists of  using impulsive 
thrust to bring the interceptor from its initial orbit into a collision course 
with a target which is moving on a well-defined trajectory. The intercept 
time is either prescribed or is restricted to be less than an upper limit. 

The necessary conditions and the transversality conditions for 
optimality are discussed. The method of solution amounts to first solving 
a set of equations to obtain the primer vector for an initial one-impulse 
solution. Then, based on the information provided by the primer vector, 
rules are established to search for the optimal solution if the initial 
one-impulse trajectory is not optimal. The method is general, in the 
sense that it allows for solving the problem of three-dimensional inter- 
ception with arbitrary motion for the target. 

Several numerical examples are presented, including orbital inter- 
ceptions and interception at hyperbolic speeds of a ballistic missile. 

Key Words. Orbital transfer, optimal interception, primer vector 
theory, hodograph theory, Lambert°s problem, interception of  ballistic 
missiles. 

1. Introduction 

The p r o b l e m s  o f  i n t e r cep t ion  and  r endezvous  with t ime cons t r a in t  are  
two f u n d a m e n t a l  p r o b l e m s  in space  maneuver ing .  We shal l  cons ide r  the  
first p r o b l e m  in this pape r .  In the fo l lowing  content ,  bo ld face  no ta t i ons  
r ep resen t  vectors ;  p l a in f ace  no ta t ions  s t and  for  the magn i tudes  o f  the  

~This research was supported by US Army Strategic Defense Command, Contract No. 
DASG60-88-C-0037. 

2 Professor of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan. 
3 Research Associate, University of Michigan, Ann Arbor, Michigan, 

361 
0022-3239/90/0900.0361506.00/0 © 1990 Plenum Publishing Corporation 



362 JOTA: VOL. 66, NO. 3, SEPTEMBER 1990 

corresponding vectors and scalar variables. The product of two vectors is 
understood as inner product. 

The interceptor is initially in a motion defined by its position vector 
r0(t) assumed known. At a certain time to, called acquisition time or 
sometimes initial time, the target is at the position rr(to) with velocity 
Vr(to), assumed known. Hence, if its subsequent motion is uncontrolled 
and is subject only to a Newtonian gravitational attraction, it is well 
determined by the two functions r r ( t )  and Vr( t )  which can be computed 
from the given data. It is proposed to intercept the target at a final time 
ty > to so that the characteristic velocity required for the transfer is minimum. 
The specific assumption on to and t s will be given later when we consider 
the different types of  interception. 

It should be noticed that, for the sake of generality, the function ro(t) 
can be completely arbitrary. It may represent an orbital Keplerian motion 
for the interceptor or an atmospheric ascent trajectory for a rocket or an 
airplane which carries the interceptor. Likewise, we can simply assume that 
the function r r ( t )  defining the motion of the target is known. On the other 
hand, we shall assume that, in the time interval [tl,  tf], where the time fi, 
to <- t~ < t I, is the instant of the first ignition of the control engine, the 
interceptor is subject only to the inverse-square force field and a controlled 
action of a propulsive force F. 

2. Necessary Conditions for Optimality 

We consider the general problem of transfer. A rocket, considered as 
a mass point with varying mass, is governed by the equations 

/ '=V, (la) 

~ ' = g + F ,  (lb) 

/.) = F, (lc) 

where g is the acceleration of gravity, a function of the position, and U is 
the characteristic velocity spent since the initial time, 

U = F dt, (2) 
to 

with U = F /m being the thrust acceleration. For a high-thrust propulsion 
system, U is a measure of the fuel consumption. 

Consider the Hamiltonian of the system, 

H = p r V + p v ( r + g )  + p u F ,  (3) 
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where the adjoint variables Pr, Pv, and Pu satisfy the equations 

Pr = -OH~Or, (4a) 

Pv = - O H / O V  = - p r ,  (4b) 

[Tcj = - o g / o u .  (4c) 

To maximize H with respect to the control vector F, we first maximize the 
product  pvF .  Then, F must be selected parallel to Pv, and hence 

H *  = prY+ p v g +  (Pv  + p u ) F ,  (5) 

where Pv is the length of  Pv. 
The thrust acceleration is now linear, subject to 

0<-- [ ' ~  Fma×. (6) 

Consider the switching function 

K = p v + p v .  (7) 

Then, 

if K > 0, select F = F~,x (boost arc); 
if K < 0 ,  select F = 0  (coast arc); 
if K - 0, select F = variable (sustained arc). 

We have Lawden's  optimal  law for the thrust control (Refs. 1 and 2): (i) 
whenever the engine is operating, the thrust direction is parallel to the 
vector Pv, called the pr imer  vector; and (ii) if K > 0, we use F = Fmax; if 
K < 0, we use F = 0; the thrust is switched on and off at K = 0. 

The problem is solved if we know the time history of  Pv and the 
switching function •. For example,  if we plot the function K versus the 
time, we have the typical variation shown in Fig. 1. We use the maximum 
thrust directed along Pv between tl and t 2 and then between t3 and t4. The 
remaining arcs are coast arcs. Of  course, the terminal conditions must be 

tj .~t z t~t4 ~* 

Fig. 1. Switching function for finite thrust. 
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satisfied. For very high thrust, we can use the approximat ion Fmax- oo. The 
time interval At for each boost arc tends to zero, and we shall have the 
typical variation of K in Fig. 2. The thrusting phases are approximated by 
the impulses I1 and 12. For impulsive thrust, by changing the independent 
variable f rom t to U, it can be shown that, across an impulse, the functions 
r(t) ,  g(r), Pr, and pv are continuous (Ref. 2). On the other hand, we write 

d V /  d U  = g/Fma x q- Pv/Pv  --> Pv/Pv.  

Hence, integrating across an impulse, we have a discontinuity in V, 

AV = V 2 - V ,  = ( pv / Pv )A  V, 

where A V is the characteristic velocity change across an impulse. 
The adjoint Pu satisfies the equation 

Pt: = - a H * / a  U = - ( a / a  U)[F*K ]. 

On a coast arc, F* = O; on a sustained arc, K = O, and we have Pu = const. 
But on a boost arc, with F * =  Fmax(U), we consider the equation for the 
variation of  the mass, 

d m / d t  = - Fmax/c - - - - -  - -  mFmax/c, 

where c is the constant exhaust velocity for a high-thrust propulsion system. 
By integrating the equation, we obtain 

m = mo e x p ( - U / c ) .  

Hence, 

Fma~(U) = Fma~/m = (Fmax/mo) e x p ( U / c ) .  

The adjoint equation for Pu becomes 

j6 U = -FmaxK/C. 

Ij 12 

0 

Fig. 2. Switching function for impulsive thrust. 
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Since K > 0 on a boost arc, Pu is decreasing along a boost arc. For the case 
of  infinite thrust, since across an impulse U has a finite variation, we write 

d p u / d U  = - K / c .  

Across an impulse, K = 0; hence, we also have Pu = const. We conclude 
that, in the impulsive case, in the closed interval [to, ty], Pu = const; and, 
from the transversality condition in the next section, 

Pu --= Puf = -1 .  

It is then sufficient to consider Pv on coast arcs for impulsive thrust, since 
we have K = p v + P u - < 0 ;  therefore, p v -  1 on the interval [to, ty]. 

The solution for Pv on a coasting arc has been obtained by Lawden 
for a Newtonian central force field in Ref. 1 and by Vinh for a general, 
time-invariant force field in Ref. 3. 

Along a coasting arc, we consider a rotating coordinate system M S T W  
with M at the rocket, the S-axis along the position vector, positive outward, 
the T-axis in the plane of  the motion, orthogonal to the S-axis and positive 
in the direction of  motion, and the W-axis completing a right-handed system 
as shown in Fig. 3. Notice that 0 is the true anomaly measured from the 
perigee of  the osculating orbit. 

Let S, T, and W be the components of  the primer vector pv. "We have 
(Ref. 1) 

S = A cos 0 + Be sin 0 + CI1, 

T = - A  sin O + B ( l + e  cos 0) 

+ ( D -  A sin 0)/(1 + e cos 0) + CI2, 

W =  (E cos O + F  sin 0)/(1 + e cos 0), 

(8a) 

(Sb) 

(8c) 

$ 

T M 

PERIGEE 

Fig. 3. Rotating coordinate system. 
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where 

[1 = [1/(1 - e2) ] [ -cos  0 + 2 e / ( 1  + e cos 0) 

-3x/(tz/p3)te 2 sin 0], (ga) 

/2 = r cos O/ep sin O+(p/er sin 0)I1. (9b) 

Here , /z  is the gravitational constant and e is the eccentricity of  the ballistic 
conic with semimajor axis a and semilatus rectum p, 

p = a(1 - e2), elliptic case, (10a) 

p = a(e 2-1),  hyperbolic case. (10b) 

It is important  to notice that, in Eq. (9), t is the time since the passage of 
the perigee. The coefficients A, B, C, D, E, and F are constants of  integration 
to be determined. 

For the analysis, we also need the components  of  the adjoint vector 
Pr = - [ ) v .  On the rotating axes, we have the components  of  the derivative 
of  Pv, 

where 

S=[x/--(~/r2][(Asin O - D ) / ( l + e  cos O)-B+CI3] , ( l l a )  

T =  ( x / ( ~ / p 3 ) [ - A ( e + c o s  O)+De sin 0 +  C cos 0], ( l l b )  

fV = x/(/x/p3)[F(e + cos 0) - E sin 0], (1 lc) 

/3 = (e sin 2 0 - c o s  0 ) / [e  sin 0(1 + e  cos 0) 2] - I 1 / e  sin 0. (12) 

We conclude this section with a clarification on the constant C. In a 
time-invariant force field of  attraction, the Hamil tonian is constant, and we 
write Eq. (5) as follows: 

H *  = p , V + p v g + F * K  = C. 

Since the equation is valid over the whole optimal trajectory, it suffices to 
evaluate the constant on a coast arc with F* = 0. Lawden's  solutions for Pv 
and p,. = - P v  as given in Eqs. (8) and (11) apply separately for each coast 
arc, with 0 = 0 and t = 0 at the perigee of the transfer orbit. When connecting 
several arcs by impulses, the constants of  integration A, B , . . . ,  F and time 
t have to be adjusted accordingly. In particular, using Eqs. (8) and (11) 
for Pv and Pr, with the components  on the M S T W  system 

V = ( ~ / ( ~ / p ) e  sin 0, (~,/~-~/r, 0), 

g = ( - I ~ / r  2, O, 0), 
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by substituting the above equations and (8) and (11) into the Hamiltonian, 
we arrive at 

- ( txe /p2)C = C, 

where C = H* is the global constant, and C is the constant on each coasting 
arc with eccentricity e and semilatus rectum p. For this reason, whenever 
H* = 0, we simply take C = 0. 

Across an impulse, the term F*K has the indeterminate form co x O. But 
this term is zero before and after an interior impulse, since we have then 
either a coasting arc or a sustained arc. Hence, since Pr and Pv are continuous 
across an impulse, 

H * -  = prV- + Pvg = P,.V + + Pvg = H *+. 

Because F* is parallel to Pv, so is AV; hence, 

V + = V- + (pv/Pv)A V. 

From the two equations above, we obtain 

PrPv =0.  

Hence, 

Pvt~v = PvPv = --PvPr = 0. 

It follows that 

K = t ~ = 0  

for an interior impulse as shown in Fig. 2. As pointed out by Lawden, this 
is not necessarily true at the end points to and tf if an impulse occurs there. 
This leads to the fact that 

F*~¢ = 0  

for an interior impulse and 

H * = p r V + p v g  

in the entire open interval (t0, tf). 

3. Transversality Conditions 

In general, the acquisition time and states as well as the final time and 
states may be constrained to satisfy a certain relation of  the vector form 

~(ro ,  Vo, to, rf, Vt, ty) = 0. (13) 
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For instance, in the interception problem one of the equations in (13) will 
be 

ry=rr(ty). (14) 

Equation (13) leads to a number of transversality conditions which must 
be satisfied by the states and the adjoint variables at the endpoints. 

In the following application of the maximum principle, we adopt the 
Pontryagin-Contensou convention of maximizing the Hamiltonian for a 
minimum of  the characteristic velocity. Hence, the performance index to 
minimize is J = Use, which is equivalent to the maximization of  the final 
mass for an impulsive propulsion system. Let I be the augmented function 

I = J +  (p,.i:+pveg+p~.(J-H) at, (15) 
10 

where H is defined by (3). Then, besides the necessary conditions in Section 
2, for a stationary value o f / ,  we must have the variation 

6I = 6J + (p,Sr+ pvrV  + p u r U -  HSt) f =  O, (16) 

with all the variations satisfying 812 = 0. This is called the transversality 
condition. The constraint imposed at the endpoints in the form (13) renders 
the problem more difficult, more challenging to solve. We shall examine 
some realistic and practical situations. 

First, since U I is arbitrary, ~sur in (16) is arbitrary and independent. 
We have 

pt~r=- l ,  for 8J+puySUy=(l+pt~f)SUy=O. 

The transversality condition is reduced to 

61 = (prSr + pvrV - Hrt) fo = O. (17) 

Following Ref. 2, with some modification, we render explicit (17) in the 
following cases of  interest. 

Since for an interception problem the final velocity Vy is arbitrary, we 
have the condition pvs= 0. The last arc is a coasting arc; hence, F*(t~)= 0. 
Consequently, 

H.~ ~ = p rsVp. (18) 

I f  the initial time to, ro, and V0 are fixed, Eq. (17) becomes 

prf6rf -- H76tr = O. 

The condition is trivial if t r is fixed. If t s is not prescribed, the constraint 
(14) requires that 3rj = V~:rrtr and we have the orthogonality condition 

p,y(Vry-Vr)  = 0. (19) 
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It should be noted that, from (18) and (19), the Hamiltonian is not 
necessarily equal to zero because of  (14), even if t r is free in this case. 

Another practical constraint is that to <- tf-<-- T, for some T > to, with 
to, ro and V0 specified. If  an optimal t~ < T can be found, (19) remains 
valid. Otherwise, t~ = T; the transversality condition is modified as (Refi 4) 

p ~ ( V v - V s ) :  ~, (20) 

with a being a multiplier. 
In the case where to is free and no impulse occurs at to, 

6r0 = Vo6to, 6V0 = g06t0; 

the transversality condition is simply 

Ho* = p,oVo + Pvogo. 

Suppose that an optimal t* is found and the first impulse on the optimal 
trajectory occurs at tl > to*. The impulse is an interior one; therefore, 

p,( t l )pv(q)  =0.  

Apparently, any t -< tl (in particular, h) can also be taken as optimal initial 
time, because [to, h) is a coast period. On the other hand, if to* = q ,  any 
t < tl can also be the optimal initial time, provided that the optimal control 
for the interval [t, fi) is taken as zero. In conclusion, when to is free, we 
can always take to* as the point where the first impulse occurs, and accord- 
ingly p,(t*)pv(to*)= O. Note that, in choosing to do so, the relation 

p,(to*)pv(t*o) = 0 

replaces 

HO* = p,oVo + Pvogo. 

Finally we consider the situation where ry is fixed but not the final 
time tr. This amounts to considering the target as fixed. In this case, we 
have trivially H~ = 0, that is, C = 0. 

4. Method of  Solution 

From the discussion in the preceding sections, we see that the primer 
vector Pv plays an essential role in finding the optimal solution. In this 
section, we shall present an analytic method for obtaining the primer vector 
on a one-impulse trajectory. Based on the information provided by the 
primer vector, we shall show, if this one-impulse trajectory is not optimal, 
how it can be improved to approach the optimal solution. 
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We consider the general three-dimensional case. Let to be the initial 
time. We initiate the interception by application of  an initial impulse at to. 
The initial position is ro = r0(to) and the initial velocity is Vo = f0(to). At the 
final time {f, let r s = r r ( t y )  be the final position. Notice that, for any given 
to and ty, we can evaluate ro and rl, and consequently the transfer angle A 
as well as the initial velocity Vo before the application of the impulse. 
Figure 4 displays the maneuver by one impulse changing Vo into V~-. All 
the elements are now evaluated along the transfer orbit, which is well defined 
after solving the associated Lambert problem. In this respect, the numerical 
scheme developed by Battin in Ref. 5 proves to be very efficient. Since Vo 
and Vo are known, we can compute the required impulse AVo, and hence 

pv(to) = AVo/aVo. 

Explicitly, if the initial motion of the interceptor is Keplerian, let eo 
and Po be the eccentricity and semilatus rectum of this orbit; and let fo be 
the true anomaly defining the position ro as measured on this orbit. After 
the impulse, we have the corresponding elements e, p, and Oo of the transfer 
orbit obtained by solving the Lambert problem. Let i be the angle between 
the initial orbital plane and the plane of the transfer orbit. Then, if u, v, 
and w are the components of the impulse AVo in the M S T W  system attached 
to the transfer orbit, we have 

u = x/-~[(e/x/p) sin 0o - (eo/v~o) sin fo], 

v = (v/~/ro)(~/p-  ~ o  cos i), 

w = (4( t zpo) / ro)  sin i. 

The characteristic velocity for the transfer is 

A Vo = x/(u2--} - / )2+  w2). 

(21a) 

(21b) 

(21c) 

(22) 

a V o  

0 rTO) " ~  

Fig. 4. Intercept trajectory. 
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Since Pv is a unit vector in the direction of  AV, its components S, T, and 
W are its direction cosines, and we have explicitly 

S = u / ~ V o ,  T = v / A V o ,  W = w / A V o .  (23) 

By writing Eqs. (8) with t = ro and 0 = 0o, where ro is the time corresponding 
to 0o on the transfer orbit ( r  = 0 when 0 = 0), we have three linear equations 
for the six constants A, B, . . . ,  F. For the interception problem, the final 
velocity is free, hence pv(ts) = 0 as pointed out in Section 3. Then, by writing 
Eq. (8) with 

t=~'s=ro+(t l - to) ,  0 =  0 y = 0 o + ~ ,  

and putting 

SI=Tf=Wy=O,  

we have three more linear equations for evaluating the unknown constants. 
In particular, from Eq. (8c), we obtain 

E = p W  sin Os/ro sin A, (24a) 

F = - p W  cos Os/ro sin zX. (24b) 

For the rest of the unknown constants, C is obtained from 

C = N / G ,  (25) 

where 

N = (p/ro) T + S[ e sin 0o - 2 tan(A/2)],  (26a) 

G = {[ 1 + e 2 + 2e cos 0o -  2e sin 0o tan (A/2)] / (e  sin 0o sin 0i)} 

x [II(ro) sin 0s - l~('(r) sin 0o] +sin A/e sin 0o sin 0j. (26b) 

A, B, and D are then solved from the following system: 

A sin 2x = S sin 0 s - C[I~(To) sin Of- I i (Tf)  sin 0o], (27) 

Be sin ix= - S  cos 0s+ C[I~(ro) cos Os-I~(rl) cos 0o], (28) 

~ [ [ ( 2 e +  (1 + e 2) cos 0s) ] 
De sin A = - c  ~ [ - -  sin 0 s 

[Ii(ro) sin 0 I - Ii(rj)sin 0o] +(cos  0Js in  0f)sin ~,} x 

+ S[2e + (1 + e 2) cos Oj-]. (29) 
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With the constants evaluated, we can use Eq. (8) to calculate the magnitude 
of the primer vector along the transfer orbit, 

p v (  t) = 4 ( S 2  + 7r2 + W2).  (30) 

In the computation, the time t can be computed from Kepler's equation, 

x / ( t x / a 3 ) t  = E - e sin E; (31) 

here, at little risk of confusion with the constant given by (24), E denotes 
the eccentric anomaly such that 

tan(0/2) = v/I(1 + e)/(1 - e)] tan(E/2) .  (32) 

Once the magnitude of the primer vector is computed by the above 
procedure, three types of typical behaviors of p v ( t )  are plotted (see Fig. 
5). They are representative, if not exhaustive. In the case (a), all the necessary 
conditions are satisfied; the one-impulse solution is thus a candidate of 
optimal solution. Although in the following sections we shall see that this 
is the case for many realistic geometrical configurations of interception and 
reasonable interception time At = ty- to ,  it is not conclusive; so, we cannot 
exclude cases (b) and (c). In both of these cases, the proposed one-impulse 
interception is not optimal. However, the following arguments show that, 
for case (b), a coasting arc prior to the application of the impulse will 
reduce the cost; hence, the optimal solution consists of an initial coasting 
arc. More than one impulse are needed for the optimal solution for case (c). 

First, from the calculus of variations, the first-order variation 61 of the 
augmented function (15) is obtained from two neighboring trajectories 

I 

o ( b ) tt "t 

Fig. 5. 

o ( a }  t f  "~t 

I 

Typical function pv(t). 
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which satisfy the equations of motion (1) and the end conditions. But by 
(15), it is straightforward that, if the equations of motion are obeyed, the 
integral in (15) yields zero; thus, any variation in I is a variation in J, 
namely ~I = 6J. By the expression (17), only considering the change in cost 
due to initial variations because they are independent of the final variations 
in an interception problem, we have the variation in J 

+ 

6J -- ~I = -pvoBVo - profro+ Ho 6to, (33) 

where the + sign indicates the right limits of the involved functions. Since 
+ + " 

Ho = proVo + PvoVo, Vo6to = 8Vo, 8ro = Vo~to, 

where 9 ~ - = 9 o  is assumed, which is generally true if ro(t) is Keplerian 
motion, Eq. (33) leads to 

~J = pro(V~- - V o ) 6 t o  = proAV0~to = A VoProPvo6to. (34) 

For 6to > 0, we see that 

6 . /<0 ,  if -proPvo=PvoPvo=Pvo>O. 

In other words, if the Pv exceeds unity immediately after to as in case (b), 
an initial coast will reduce the cost. 

As for case (c), suppose that T is the trajectory defined by r*(t)  with 
an initial impulse at to; T' is a neighboring trajectory, defined by r(t) ,  which 
passes through r*(to) at to and r*(ts) at tr with one initial impulse at to and 
a midcourse impulse at some t,~ ~(to,  tl). According to Ref. 6, such a 
trajectory can always be constructed provided a nonsingularity condition 
is satisfied. Along T', 

Also, 

r(tm)----- r*m + ~rm, 

/'-(tin)-rm-"* + aVT., 

~+(tm) = / ' * + a V ; ,  

~xvm = r+(tm)- ~-(tm) = a V ; -  aV;.. 

U(to) - i'-(to) = [/'*(to) +/~Vo] - i'*-(to) = AVo + 6Vo, 

where 3 stands for the small variations from 7". 
The cost on T is 

J=AVo, 

and the cost on T' is 

J'=  I~Vo+ ~Vol + t~v+~- av :.L. 
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To first order, the difference is 

8J = J ' -  J ~ (AVo/A Vo)SV0 + tSV+~ - 8V~t. 

Since pv( to)=  AVo/A V o, we have 

~J = pv( to)~Vo +l~v+~ - ~ v ~ l .  (35) 

By a property of  the adjoint variables, it is known that, along T, 

pr~r+ pvSV = const. 

In particular, 

pr( to)3ro + Pv( to)SVo= pr( tm)Srm + pv( tm)SV~,, (36a) 

pr( tf )Srf + pv( tf )SVf = p,( tm)Srm + pv( tm)SVL . (36b) 

Noticing that Pv(tc)=O and 8ro=rrc=O, we add a vanishing term 
-pv( tr )svr  to (35); and, with the aid of (36), we obtain 

8J = pv(to)SVo-pv(tf)t~Vf+ I~V + - 8V~[ 

: -pv(tm)($V + - 8V~) + [SV + - 8V~ I 

= -pv(tm)AVm+AVm. 

Let d be the unit vector in the direction of AV,,, 

8J = A V,~(1 - pv(t,~)d). (37) 

Therefore, if there exists t,~z(to, tr) such that pv( t , , )>l ,  a midcourse 
impulse can always be selected so that 8J < 0; the greatest descent is when 
pv(tm) is maximum and d is in the direction pv(tm). 

Note that, in Ref. 6, a proof  has been given for a two-impulse trajectory, 
which states that, if Pv > 1 between two impulses, a midcourse impulse can 
reduce the cost, while some modification is adopted in the above treatment 
for our specific objective of  interception. Combining the two results, we 
have the rule to search for an optimal multi-impulse trajectory, if necessary, 
by starting with a simple one-impulse solution. 

5. Interception at Elliptic Speeds 

The necessary conditions in Section 2 and the computation of the 
primer vector in Section 4 are perfectly general; that is, they are applicable 
to a minimum-fuel three-dimensional interception problem, for any given 
pair of arbitrary functions ro(t) and rT(t) describing the initial motion of 
the interceptor and the motion of the target. If  to(t) is non-Keplerian, it is 
sufficient to replace in Eq. (21) ~(lx/po)eosinfo and ~ p o ) / r o  by the 



JOTA: VOL. 66, NO. 3, SEPTEMBER 1990 375 

components on the S and T axes in the initial plane of the current velocity 
Vg. The explicit transversality conditions derived in Section 3, while they 
allow arbitrary motion of the target, specify that the initial motion of the 
interceptor is Keplerian. With slight modification, we can derive similar 
conditions for arbitrary ro(t). 

To reduce the number of parameters involved in the examples in this 
section, we consider the initial orbit of the interceptor as circular and take 
ro = 1 as the unit distance. By taking the gravitational constant/x = 1, the 
characteristic velocity is normalized with respect to the circular speed at 
the distance to. Then, 2~r is the dimensionless orbital period of the inter- 
ceptor in its initial orbit. Although the dimensionless time and distance are 
used, to have a physical understanding of the results obtained, from time 
to time, we shall choose some Earth's orbits of particular altitudes in 
kilometers as reference to interpret. 

Problem 1. The target is in an inner coplanar circular orbit at distance 
ry. the initial time is preset, without loss of generality, equal to 0. This is 
the same as specifying the angular distance w at the time to (Fig. 6). The 
final time tf is subject to the constraint 

tf <- P, (38) 

where P is the period of the target orbit. Alternatively, it is required to 
intercept the target before it completes another revolution. By the explicit 
transversality conditions in Section 3, if an optimal t~ < P can be found, 
Eq. (19) should be met, i.e., 

pr/(VT/-Vf) = 0. (39) 

Fig. 6. Geometry of interception for Problem 1. 
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Otherwise, if t~ = P, Eq. (20) holds. It should be noted that, if (38) is not 
present, the problem may have an optimal solution with t f > P. As we shall 
see, after (38) is reinforced, the constrained optimal solution does not 
necessarily take t f  = P, depending on the initial lead angle to. Of course, 
the unconstrained optimal cost is generally better than the constrained 
optimal cost. 

To solve this problem, we apply the technique discussed in Section 4. 
An initial impulse is to be applied at to. We take the transfer angle A 
between ro and a trial r r as parameter. For any given A, we can compute 
the time of  flight from 

x/(tx/ r/)ty = r/(to + A ). (40) 

After the associated Lambert problem is solved, the direction and the 
magnitude of  the corresponding initial impulse are known. We can evaluate 
the constants in (8) by the method presented in Section 4 and then compute 
Pv and p~ by (8) and (11). To find a solution with t ~<  P, (39) is used for 
iteration to determine the correct A, and hence tf from (40). Although all 
transversality conditions pv( t / )=0  and (39) are satisfied, for the solution 
to be optimal pv(t) must be of  case (a) in Fig. 5. Figures 7(a) and 7(b) 
show pv(t) for ~o = 20 ° and 34.78°; and Fig. 7(c) shows pv(t) for ~o = 50 ° 
(solid line), with ro/r/= 1.25. For the first two values of w, the one-impulse 
solution is optimal and the optimal launch time coincides with to = 0. Notice 
that pv(0) = 0 for w = 34.78 °. The corresponding A angles are 225.76 ° and 

~ 

ta.  

~ 1  ! , , * I "J@ I f ' ' 
'=0.00 0,80 1,60 2,/*0 3.20 4.00 ~.00 a.80 L60 2.40 3,2~ 4100 

OIMENSIONLESS TIME OIMENSIONLESS TIME 

~.00 Q.e~ 1,ee 2:4o 3.~ 
OIMENSTONLESS TIME 

,:00 

Fig. 7. Function pv(t) of Problem 1. 
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180 ° . The dimensionless final times are 3.071 and 2.684; the dimensionless 
characteristic velocities are 0.07139 and 0.05719; for an initial interceptor 
orbit with an altitude of  2000kin, they translate into 62.14minutes, 
54.31minutes, and 0.493 km/sec,  0.394km/sec, respectively, while the 
period of the inner orbit is P = 90.97 minutes. But in the case w = 50 °, the 
solution is not optimal. By the analysis in Section 4, we know that the 
behavior of p v ( t )  plotted in solid line in Fig. 7(c) suggests a coasting arc 
prior to the application of  the impulse. To gain more insight, we look at 
the case where oJ = 34.78 °. This lead angle is special, in the sense that a 
tangential retrograde impulse is optimal and the transfer angle A is exactly 
or, i.e., a Hohmann-type transfer. This special lead angle is given by 

w* = or{x/[(I/a)(1 + ro/rf) 3] - 1}. (41) 

When the initial w is greater than o)*, the optimal strategy for the interceptor 
is to coast on the initial orbit until w* is formed due to relative motion, 
then launch. The coast time is computed from 

tl = (w  - oJ*) /D,  (42) 

where Ft is the relative angular speed, 

a = , /0 , / r} ) - , / (~ f  rg). 

After such a coast arc is added, p v ( t )  for ~o = 50 ° is shown in Fig. 7(c) in 
dashed line. The optimal characteristic velocity is the same as in the case 
where w = w* = 34.78°; the final time is 67.83 minutes; and the coast time 
is tl = 13.52 minutes. 

Taking into account the constraint (38) and the fact that the Hohmann- 
type transfer requires 2~ = ~r, we can easily have the range of  the initial lead 
angle w within which the Hohmann-type optimal interception is possible, 

a~* ~ o~ <_ rr{,J[(t/8)(1 + t / n )  3] -2/,/-n-Sn3 + 1}, (43) 

where n is the ratio 

n = to~ rf. (44) 

Whenever w is within the range given by (43), the optimal characteristic 
velocity is the same, 

a V = , / ~ / r o )  -~ /[21xt ) / ( ro(ro+ t)))]. (45) 

When 0<--w <w*,  we find that the initial one-impulse solution is always 
optimal, and always to< P. When oJ exceeds the upper bound in (43) and 
is less than about 127 ° , we find that an initial coast is still needed, but of 
course is not given by (42) and the impulse is no longer tangential. Moreover, 
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(~ = P; thus, condition (20) applies instead of (19). When to is larger than 
about 127 °, no initial coast is optimal, and t~ = P. 

The dimensionless optimal characteristic velocity for different oJ rang- 
ing from 0 ° to t80 ° is plotted in Fig. 8. It is seen that AV depends on the 
lead angle to and can be prohibitive for large to. This dependence is due to 
the constraint (38). If tf is free, the interceptor can always stay on the initial 
orbit and launch when to* is formed, no matter what the initial configuration 
at to is. The Hohmann-type interception is then performed, and the charac- 
teristic velocity is always the same, only depending on n. The launch time 
0-< tl is explicitly given by 

f(too - to*)/f~, if too -> to*, 
ti = ~ [(27r+(o~0-to*))/f~,  if to0<to*, 

(46) 

where too is the initial lead angle and to* is defined in (41). It is a simple 
exercise to show that the Hohmann transfer satisfies the conditions 

pr(tl)pv(tl) = 0, (47) 

la,((r)(Vrf -Vs )  = 0. (48) 

For Hohmann transfer, V s is parallel to VTS. Then, (48) is equivalent to 

H 7  -- p , s v s  -- 0, 

ca 

¢d 

c ~ e a  

LIJ 

~ t o  

=o.oo 4o.oo 

Fig. 8. 
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Optimal characteristic velocity of Problem 1. 
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hence  C = 0. I f  fu r the rmore ,  

A = 0, (49a) 

B = (1 - e ) /4e ,  (49b) 

D = - ( 1  + e)2(1 - e ) /4e ,  (49c) 

where  

e = ( n - 1 ) / ( n + l ) ,  

then since 00 = 180 ° and  0 / =  0 ° on the t ransfer  orbit,  we see that  pv(ty) = 0 
and (47) holds.  In  addi t ion,  S ( t l )= O and T ( f i ) = - 1 ,  which is the charac-  
teristic o f  H o h m a n n  transfer .  But since C = 0, we see f rom (26) that  N = 0; 
hence,  

2S  tan(A/2)  = ( p / t o )  T = - p / t o .  

From (27) 

A = - ( p / r o )  sin Or~[4 sin2(z~/2)], 

B = (p / t o )  cos 0s / [4e  sin2(A/2)],  

O = - (p / ro ) [2e  + (1 + e 2) cos Or]/[4e sin2(A/2)].  

Let  h = 180 °, O r = 0 °, and  p~ ro = 1 - e. We have  (49). 

Prob lem 2. When  either or bo th  orbits o f  the in terceptor  and  the target  
are elliptic, the basic  t echnique  and  analysis remain  appl icable  though there 
m a y  be no explicit  relat ions like in the case o f  two circular  orbits.  I f  the 
in tercept  t ime  is cons t ra ined  by  (38), the op t ima l  solut ion is also expected  
to show dependence  on the initial configurat ion.  

Let us consider  the case where  the in te rceptor  is still in a circular  orbit  
def ined by  ro = 1, but  the target  is on an inner  cop lana r  elliptic orbit  with 
eccentr ici ty  er and  semila tus  rec tum Pr  (Fig. 9). It should  be not iced that,  
a l though  the orbits  are well  def ined geometr ica l ly  by the quant i t ies  to, e-r, 
and Pr,  the mot ion  with respect  to the t ime on these orbits can be arbitrary.  
We assume that  these mot ions  are known.  Tha t  is, at  to, let rt be the !ead 
angle o f  the in te rceptor  with respect  to the per igee of  the target  orbit;  let 
o) be  the lag angle  o f  the target  with respect  to the perigee. Both r t and  to 
are known.  For  a given 7/, different w represents  different initial configur- 
ation. 

As for  numer ica l  example ,  we consider  a target  orbit  such that  er = 0.2, 
P r  = 0.6, and  select the t ime to such that  ~7 = 30 °. The  angle o) is t aken  as a 
varying pa ramete r .  The  m e t h o d  o f  solut ion is s imilar  to that  descr ibed in 
P rob lem t ,  with the flight t ime t / - t o  for  a t ransfer  angle A evalua ted  by 
Kep le r ' s  equa t ion  a long the target  orbit,  ins tead of  (40). 
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Fig. 9. Geometry of interception for Problem 2. 

The verification of  the funct ion pv(t) against  the discussion in Sect ion 4 
reveals that ,  for  a given ~7, there exists an we, in our  case wc = 101.008 °, 
such that,  when  w-< we, the initial one- impulse  solut ion is opt imal .  A 
coast ing arc is needed  for  opt imal i ty  when oJ > we. Fur thermore ,  in our  
case, for  148.4°~ w < 176.6 °, t f  = P = 3.1046 with a coast ing pr ior  to the 
impulse.  For  o) > 176.6 °, t f  = P without  coasting. Figure 10 gives the op t imal  

~ |  

I I I I I 
~ . 0 0  40.00 80.00 120.00 160.00 200.00 

OMEGA 

Fig. 10. Optimal characteristic velocity of Problem 2. 
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&V vs w for 0 ° -  < to -< 160 °. It should be noted that, in the present situation, 
the optimal characteristic velocity shows stronger dependence on w as in 
Fig. 10, unlike in Problem 1 where to in a certain range yields the same ~ V. 
There exists an overall optimal AV corresponding to w * <  w~, in our case 
w*=  98.437 °. The special aspect of  the optimal solution for to* is that the 
optimal transfer trajectory intersects tangentially the target orbit at the 
intercept point. We shall show that this particular trajectory is also the 
minimum fuel transfer trajectory from the position to(to) to the target orbit 
without considering interception. 

Because of  the tangency of  the two orbits, V.~/ is parallel to V/. The 
transversality condition (19) is equivalent to 

H f  = prt Vr = O. 

Hence, C = 0 and N = 0. From (26), we have 

(p/ro) T+ S[e sin 00 -2  tan(A/2)] = 0, (50) 

where S and T are the components of pv(t0) which are proportional to 

(1 + e cos 0o)211 - 1/4(1 + e cos 0o)] 

= e sin 00[2 tan(A/2) - e sin 00]. (51) 

In deriving (51), we have used the polar equation, 

p~ r o = 1 + e cos 0o, 

to eliminate p. Next, by writing the condition for collinearity of  the two 
vectors 

Vj- = ( (vr(77~e sin 0t, (x / (~ /r / ) ,  

Vr /= ((x/~7-Pr)er sin(~7 + A), ~ / r / ) ,  

we have 

(ro/pr)(1 + e cos Oo)er sin("q + A) = e sin(0o+ ~X). (52) 

Finally, we express the equality of the radii on the two orbits at t¢ as 

(ro/pr)( l+e cos Oo)[l+er cos(rt +~ ) ]  = l + e  cos(0o+ A). (53) 

The three equations (51), (52), and (53) can be solved for the unknowns 
e, 0o, and 4*. The angle w* can then be deduced from the Kepler equation. 

The problem of finding a minimum fuel transfer orbit from a given 
position with one impulse to a given orbit is in the area of parametric 
optimization. We consider the problem of minimum fuel transfer from the 
position to(to) to the target orbit by following the hodograph theory presen- 
ted in Ref. 7. We look at the condition required for the velocity V(to) after 
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the impulse for leading the transfer trajectory to a point on the target orbit 
at the down range angle h with radius ry. Let x and y be the components  
of  the normalized velocity V(to)/v/(-~/to) on the M S T  system. On the transfer 
orbit with eccentricity e, semilatus rectum p, and true anomaly 0, we have 

x = ~ / ( r o / ~ e  sin 0o = e sin 0o/,J(1 + e cos 0o), (54a) 

y = ~/(p/r-~ = x/(1 + e cos 0o). (54b) 

At the final point, 

yj- = ,d~p-~/ry = , , /~ / -p)  [ 1 + e cos(0o + 2~)]. (55) 

Let 

n = ro/ry. (56) 

From (54)-(56), we have the equation for x and y in the M S T  system, 

( n - cos A)y 2 + xy  sin ~ - ( 1 - cos A) = 0. (57) 

Equation (57) shows that the tip of  the velocity V(to) must be on a hyperbola  
with asymptotes M S  and M M f  (Fig. 11). Since the initial normalized velocity 
has the components  (0, 1), the minimum ~ V  corresponds to the shortest 
distance from this point to the hyperbola (57) for prescribed r I and 2~. When 
r s varies as a function of  ~ (Fig. 9), we have a family of  hyperbolas defined 
by 

f ( x ,  y, A) = {(ro/PT)[l  + eT COS(~7 + A)] --COS A}y 2 

+ x y  sin h- - (1  --cos A) =0.  (58) 

S ~ \~HYPERBOLA 
x x ~o- 

rf Mf 
Fig. 11. Hodograph of V o. 
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This family of hyperbolas has an envelope, which is obtained by eliminating 
A between (58) and equation Of/OA = O, 

[sin ~ - ( r o / p r ) e r  sin(~7 + A ) ] y 2 + x y  cos A - s i n  A =0. (59) 

After elimination of  ~ between (58) and (59), we arrive at 

c~y2 + x2 + 2/3xy+ y =0,  (60) 

where 

a = 1 + (ro/pr)2(e~ - 1) - 2 ( r o / p r ) e r  cos 7/, (61a) 

= - ( r o / p r ) e r  sin ~7, (61b) 

y = 2[(ro/pr)(1 + er cos r/) - 1]. (61c) 

S ince /32-  a > 0, the curve (60) is also a hyperbola. The terminus of the 
optimal velocity V(to) must be on this envelope. The shortest distance from 
the point (0, 1) to (60) is obtained by solving (60) and the equation for 
orthogonality, 

x / ( x  + BY) = (Y - 1 ) / ( a y  +/3x). (62) 

If  we use an auxiliary variable z defined by 

z = x / y  = e sin 0o/(1 + e cos 00), (63) 

by combining (60), (62), and (63), we obtain a quartic equation in z, 

Aoz4+ A Iz 3 + A2 Z2 q- A3z + A 4 = 0,  (64) 

where 

Ao = 1 + y32, (65a) 

a~ = 4/3 - 2/33,(1 - a) ,  (65b) 

A2 = a + 5/32 + 3'[(1 - a)2 _ 2/32], (65c) 

A3 = 2a/3 + 2/33 + 2/3y(1 - a),  (65d) 

A4 =/32(a + 3')- (65e) 

Upon solving (64), the components of the optimal V(to) are 

x = - ( z + / 3 ) z / [ / 3 z 2 + ( a  - 1)z-/3] ,  (66) 

y = - ( z  +/3)/[/3z 2 + (ce - 1)z -/3].  (67) 

From (59) and with the aid of (60), (61), and (63), the optimal transfer 
angle is 

tan(~/2) = - y / Z ( z  +/3). (68) 
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To compare the above results with the results from optimal interception, 
we first notice that using definition (54) to expand (53) leads to (58). 
Likewise, (52) directly yields (59), consequently (60). Finally, using (51) 
and (52) to eliminate A, after some algebraic manipulation, the quartic 
equation (64) is recovered. 

We conclude this section by providing some explicit equations for 
computing the critical values tot where an initial coasting arc starts to appear. 
This happens when at the time of the impulse 

ss+ ri'=o. 

Using this relation and noticing that, in this case, 

H * -  = H? = - t zCe /p  2, 

we have a condition, 

ke ( Ce / p 2) = x/-(( IX / to) T + (tz / r~) 5;. (69) 

Making this equation explicit and simplifying, we have the relation 

2(p/ro) 3/2 sin A+ (p/ro)3K - Q sin A = 0, (70) 

where 

K = Ii(ro) sin Of- I~(r:) sin 0o 

= [1/(1 - e2)][-sin A+Ze(ro/p) sin Of-2e(r f /p)  sin 0o 

+ 3(x~/p3)Ate 2 sin 0o sin Or] , (71a) 

Q = 1 + e 2 + 2e cos 0o- 2e sin 0o tan(A/2). (71b) 

In deriving these equations, we have used the simplification of an initial 
circular orbit. On the other hand, if we write the transversality condition 
(39), we obtain explicitly 

(p/t?)2[(p/ro)3/2K +sin A] 

× [ex/(pr/P) sin Of--x/-(-(p/pT)eT sin07 + h ) ]  

= [Q-(p/ro)3/2][e sin Of--(~T)eT sin(~q +A)] sin A. (72) 

This equation is the general, time-free transversality condition for intercep- 
tion from initial circular orbit. In the case of to = we, Eq. (70) can be used 
to eliminate K, and we have the simple relation 

( p / r f ) 2 [ e ~  sin 0r --(~/-(-~-pT)eT sin('0 + A)] 

= (p/ro)3/2[e sin 0r-('f(-~-PT)eT sin07 + A)]. (73) 
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Now, if we use Eqs. (70) and (73), with Or= 0o+A and the time of flight 
At computed from Kepler's equation along the transfer orbit, and Eq. (53), 
we have three equations for the three unknowns e, 0o, and A. The value wc 
then is computed from Kepler's equation along the target orbit. When 
o) = o91 >toc, the value 77 = r/1 which determines the required coasting arc 
becomes an additional unknown, but we can always solve the inverse 
problem by fixing r/1 for solving the three equations and then computing 
the corresponding critical w for adjustment of ~1. 

As special cases, we first notice that, for tangential interception, Eq. 
(52) applies and (72) is reduced to Q =  (p/ro) 3/2, w h i c h  is precisely Eq. 
(51). For both tangential interception and w = o)c, Eq. (73) leads to sin Oj. = O. 
To satisfy all necessary conditions, we must have sin 0o = 0, sin ~ = 0. The 
transfer is of the Hohmann type. 

Finally, we notice that, if the target orbit is circular, er  = 0 and the 
lead angle is irrelevant. Ruling out the very rare case of non-Hohmann type 
transfer where e sin 0 s = 0, we obtain from Eq. (72) 

(p/r f )3/2[(p/ro)3/2K +sin A] = [ Q -  (p/ro)  3/2] sin A. (74) 

Equation (74) is the general transversality used in Problem 1 when t] < P. 

6. Interception at Hyperbolic Speed 

In this section, we consider a case of  realistic importance when rT(t) 
represents the motion of  a ballistic missile. The time ty is then finite and is 
usually the time before the missile reaches its maximum altitude. The initial 
to cannot be arbitrary, usually some time after the detection of the motion 
of a hostile missile. Thus, both to and tf are specified and the intercept time 
At = i f -  to will be considerably short. 

The geometry of interception is shown in Fig. 12. The interceptor is in 
its initial circular orbit with radius ro = 1. No extra difficulty will be present 
if an elliptic orbit is assumed, except for more parameters involved. At ty, 
the target is at the position defined by the polar coordinates rl, 6, and q~, 
with 6 being the longitude and q~ the latitude as measured from the position 
of the interceptor at to. The initial orbital plane of the interceptor is taken 
as the reference plane, the inclination angle between the reference plane 
and the interceptor-target plane at to is given by 

tan i =  tan q~/sin 6, (75) 

and the angular distance between the interceptor and the target is given by 

cos A = cos ~ cos 8. (76) 
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/ v. 

Fig. 12. Geometry of interception at prescribed tf. 

Again, the technique presented in section 4 is applied here. Because all end 
conditions are given, no transversality condition is involved. When At is 
relatively short, the transfer trajectory is generally hyperbolic. The applica- 
tion of the technique of Section 4 shows that, in the hyperbolic region and 
the elliptic region where At is not excessively long, the function p v ( t )  
generated by an impulse applied at to always falls into case (a) of Fig. 5, 
so the initial one-impulse trajectory is optimal provided that the one-impulse 
transfer trajectory will not intersect the surface of the Earth, which is true 
for most of practical intercept situations. Only when At is quite large do 
we have p v ( t )  belonging to case (b) of Fig. 5 where an initial coasting phase 
is required. 

Figure 13 shows AV as a function of At for a specified downrange 
longitude 6 = 45 °, using the latitude ¢ as parameter, with 20 ° increment for 
an interception of altitude ry = 0.95. To have some physical feeling, an initial 
orbit of altitude 600 km is chosen; ry corxesponds to an altitude of 251.23 km. 
The intercept times range from 2 to 15 minutes. 

We repeat the experiment with a value ry = 1.05, which corresponds to 
an altitude of 948.77 km for the same initial orbit. The results are illustrated 
in Fig. 14. 

In each figure, we have plotted a dashed line separating the elliptic 
and hyperbolic interceptions. This is obtained by solving the equation for 
parabolic transfer, 

6 v ~ A t  = ( to+ ry + c) 3/z - (ro + ry - c) 3/2, (77) 

where e is the chord length, 

c 2= r2+rZr-2rory cos 6 cos q~. (78) 
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Fig. 13. Optimal characteristic velocity, rf / r  o = 0.95. 
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For each transfer time At and downrange longitude 6, it is obvious that, as 
we increase the latitude ~p, the transfer angle A increases and the fuel 
consumption increases. 

We notice that, for any given 6 and ~, or in general for any prescribed 
transfer angle A, there exists an optimal transfer time At for overall minimum 
characteristic velocity. This particular transfer can be obtained as follows. 

In the present formulation of  the problem, allowing At to vary is the 
same as fixing ro and ry and letting tf free. By the final remark in Section 
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Fig. 14. Optimal characteristic velocity, rf / r  o = 1.05. 
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3, this leads to H~ = 0, hence C = 0. By (50), we have 

(ro/p)[2 tan(A/2) - e sin 00] = T / S  = v/u. (79) 

It has been shown in Section 5 that, for a velocity V0 to be such that the 
trajectory passes through the prescribed final point with radius ry and 
downrange A, its normalized components x and y must satisfy the constrain- 
ing relation (57). In general, let g and 37 be the components, along the 
S-axis and the T-axis, of  the velocity Vo/x//z/ro before the application of  
the impulse. We have 

= ~/(ro/Po) eo sin fo, (80a) 

37 = v/Cpo/ ro) cos i. (80b) 

Notice that g and 37 are known quantities. Rewrite (79) by using definitions 
(21), (54), and (80), 

( y - 3 7 ) / ( x -  ~) = (1/y2)[2 t a n ( a / 2 ) -  xy]. (81) 

The two equations (57) and (81) can be solved for x and y. Explicitly, we 
solve for x from (57), 

x = [(1 - c o s  A) - ( n  - c o s  A)y2]/y sin A. (82) 

Upon substituting into (81), we have a quartic equation for y, 

Aoy4+ Aly  3 + A2y2+ A3y + A4 = 0, (83) 

where 

Ao = 1 + n 2 - 2 n  cos A, (84a) 

A~ = sin A[(n - cos h)~  --37 sin A], (84b) 

A2 = 0, (84c) 

A 3 = .g(1 - c o s  A) sin A, (84d) 

A4 = - (1  - cos A) 2. (84e) 

After solving for x and y, we deduce the relevant elements of the transfer 
orbit from 

p~ ro = y2 = 1 + e cos 0o, (85a) 

e sin 0o = xy, (85b) 

tan Oo=xy/ (y2-1) ,  Oy= 00+A, (85c) 

e2= (xy)2+ (y2_ 1)2, (85d) 

a = ro/[2 - (x z + y2)]. (85e) 
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The minimum overall characteristic velocity is computed from (21) and 
(22), where now 

u = J(/z/ro)(x - g),  (86a) 

v = , / ( tx / ro) (y  - .9) .  (86b) 

The optimal time of flight At is obtained from Kepler's equation, 

, / ( t z /  a3)At = ( Ey - Eo) - e(sin Ey - s in  Eo), (87) 

where (32) is used to evaluate the eccentric anomalies Eo and El. The  
computation using these explicit equations indeed gives the points of 
minimum AV in Figs. 13 and 14. 

7. Conclusions 

In this paper, we have presented the complete solution of the problem 
of interception with time constraint for an interceptor with high-thrust 
propulsion system. The necessary conditions and the transversality condi- 
tions for optimality were discussed. The method of solution amounts to 
first solving a set of equations to obtain the primer vector for an initial 
one-impulse solution. Then, based on the information provided by the 
primer vector, rules are established to search for the optimal solution if the 
initial one-impulse trajectory is not optimal. The approach is general, in 
the sense that it allows for solving a problem of three-dimensional intercep- 
tion with arbitrary motion for the target. 

Several numerical examples are presented, including orbital intercep- 
tions and ballistic missile interception. Since impulsive thrust is assumed, 
whenever it is convenient, the results from optimal control theory are verified 
by parametric optimization using hodograph theory. In the important case 
of short-time interception of a ballistic missile, it is found that the intercept 
trajectory is usually hyperbolic and, for a minimum fuel trajectory, a single 
impulse is to be applied immediately at the acquisition time. 
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