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Optimal Switching in Coplanar Orbit Transfer’
Neuven X. Viva? anp Rosert Duprey Cuoip?

Communicated by T. N. Edelbaum

Abstract. The set of all controls that satisfy the Weierstrass necessary
condition for optimality in the problem of time-open, coplanar orbit transfer
via impulses is presented, along with the switching relations that must be
satisfied at a corner in an optimal trajectory. This includes detailed data for
eccentricities near unity. This study takes advantage of recently discovered
closed-form solutions for the switching surfaces of this problem.

1. Introduction

The recent formulation of closed-form expressions for the switching
conditions (Refs. 1-2) has rendered complete the solution of time-open,
optimal, coplanar orbit transfer under conditions of unlimited thrust. The
advances in this problem were made by applying the Weierstrass necessary
condition and the Weierstrass—Erdmann corner condition in order to eliminate
all but a small portion of the possible controls as nonoptimal. The results of
this procedure for orbits with eccentricity less than 0.925 were presented in
Ref. 3, along with a discussion of the method.

This approach may be viewed in a number of ways. It is an application
of the maximum principle in a step-by-step manner. It may be considered
as the enforcement of the triangle inequality on the characteristic velocity
metric in the state space of coplanar elliptical orbits. Thus, the metric is
completed by the smallest possible convex hull. The developable surface that
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forms this hull has generators which are the optimal switches sought. The
previously published results (Ref. 3) did not include the region of eccentricities
larger than 0.925 because the switches began to include triple-point switches
there. The computation by means of tangent planes was much more compli-
cated. Also, the interest in such a large eccentricity was not high at that time.

The complications in the computation for high eccentricity have been
eliminated by the appearance of the closed-form solutions to the switching
function. Interest in the large-eccentricity results has increased particularly
because of the problem of transition through highly eccentric orbits from a
hyperbolic arrival velocity. The previous results (Ref. 3) have proven valuable
in constructing a near-optimal controller for terminal orbit tailoring starting
from hyperbolic arrival for the Viking mission. This required the extension
of the complete numerical data to high eccentricities.

2, Orbit Transfer as a Control Problem

In this orbit transfer problem, there are two control variables, one speci-
fying the position of the vehicle on the orbit and the second specifying the
direction of the velocity impulse. The position on the orbit is measured by
the true anomaly & counted positive in the direction of the velocity in the
orbit. The direction of the impulse is given by the angle f measured up
from the local horizontal in the same manner as the flight path angle (Fig. 1).
The conditions of optimality considered here are local conditions and depend
only on the eccentricity and the control variables. The impulse magnitude
enters only to determine the elements of the osculating orbit as the impulse
is increased from zero to its final magnitude.

Oi 0

Fig. 1. Geometry of a switching.
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The controls that satisfy the necessary condition for optimality may be
represented by regions in efiy-space. The dependency on the orbit appears
only as the dependency on the eccentricity. For a given eccentricity, these
regions of optimal controls represent the convex portions of the characteristic
velocity metric. The boundary surfaces of these regions are the points at
which an optimal control is discontinuous in & and . These switches (or
corners) can be described by a mapping of the value of the true anomaly
before and after the corner, 8, and 8, . Since e does not change during a
switch, the surfaces in efi-space provide the complete corner once 8; and 8,
are known.

3. Optimal Switching Relations in Closed Form

The problem of determining the optimal trajectories thus leads to the
key task of determining the switching surfaces in efif-space along with the
mapping of 6, to 6, . While this can be handled indirectly, the discovery by
Marchal (Ref. 2) of an exact relation among the control variables before a
switch (8, and ;) and those after the switch (8, and ¢,) has made the compu-
tation much simpler. Marchal’s relation is

sin(f, — 6;) — 2 cos(0, — 6;) tan(ihy — i)

coslhs +49) = a4 B L costle — Ol — by )

and is remarkable in that it is independent of the orbit’s eccentricity.

Vinh (Ref. 1) has developed the exact relations for the optimal switching
into such form as to make the computation purely routine. That paper
includes a comprehensive discussion and tabulation of the switching relations
to such an extent as to render redundant any further consideration of this
problem. Vinh has supplied an exact expression for the eccentricity in terms
of the control variables across a corner which makes possible the computation
of the switching relations for all eccentricities, including e near unity, in a
straightforward manner. We have

& sin?(4 — o)[1 — cos(d — a)][sin(d + «) 4 3 sin o]
= (1 — cos &)[1 — cos(d + «)][2 sin 4 cos « - {3 — cos 4) sin «]
4 [1 — cos{d — a)][1 ~ cos 4 cos o« — 2 sin 4 sin «f
% [sin 4 cos? o + (3 -+ cos 4) sin « cos o — sin 4 cos « -+ 2 cos 4 sin o]
<4 3sin o1 — cos A)[1 — cos(d — )][3(1 -+ cos 4) cos® « -} 4 sin 4 sin « cos
~— 2 cos 4 sin? o], {2)
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where
4=0,—4, a =y — . (3)

Finally, two expressions derived from the tangency requirements on
the generators of the developable surface that covers the nonconvex portions
of the characteristic velocity metric can be used to determine 8 in terms of
the other variables. We have

Asinf + Beosf - C =0, (4)
where
A = e cos Ji(cos y — D), = —e sin Y(cos f — D), = —sin (2 cos  — D).

In the above relations, the control variables 8 and ¢ are either all subscripted 1
or subscripted 2 and, when used for the first end of the switch,

D, = [sin iy — sin 43 cos(fy, — 0;)]/sin(8, — 6,) (5)
and, for the second end,
Dy = [sin iy cos(fy — 6,) — sin o, ]/sin{6, — 6,). ®

The equations of this section are sufficient to determine the control
variables across a corner as a function of the orbit through the eccentricity.

4. Results

The controls that satisfy the necessary condition for optimality and
relations for the controls that form an optimal corner are presented in
Figs. 2-10. In all of these figures, upper signs go with upper signs, and lower
signs go with lower signs. For a given eccentricity, the necessary condition
is that the direction of the impulse must lie between the two bounds presented
as the curves of ¢ versus # in Figs. 2-3, (eccentricities less than (0.925).
Figure 2 represents the maximum deviation from the horizontal which an
optimal impulse may take. The dashed line is the locus of the Lawden points,
and its equation is

tan 0 = dn(2n + 1) V(1 — m®)f(n — (8% +5n + 1), n=cos2 (7)

Figure 3 represents the minimum deviation. The dashed line is the locus of
the symmetric points, and its equation is

tan 2¢ = —2(sin 26)/(3 — cos 26). (8)
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Fig. 2. Maximum deviation from the horizontal for the direction of an optimal impulse
for eccentricities up to the eccentricity limit of 0.925. The dashed line is the locus
of the Lawden points.

Hence, the optimal thrust angle for symmetric switching passes through a
maximum equal to

tan g = (V3 — V2), = £17.6333°, +162.3667°. ©)
This corresponds to
e = 3(V6 — 1))5 = 0.86969, 0 = 144.7333". (10)

The switching relations are given in Figs. 4-5. Figure 4 represents the
switches from one point on the surface of Fig. 2 to another, Figure 5 is the
mapping for Fig. 3. These corners follow the general rule that the second
impulse must yield a lower rate of increase in energy of the orbit than the first
(Ref. 3).

These four figures correspond to the regular topology of the curves for
the necessary condition as discussed in Ref. 1. As the eccentricity approaches
unity, the curves representing the upper and lower bounds on the angle of
impulse intersect, producing an interval of 8 on which no impulse is optimal.
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Fig. 3. Minimum deviation from the horizontal for the direction of an optimal impulse
for eccentricities up to the eccentricity limit of 0.925. The dashed line is the locus
of the symmetric points.

The value of the eccentricity for which these curves first touch has become
known as the eccentricity limit. Starting from this value, there exists a triple
switching where the developable surface contains a plane. The values at this
limit are

e = 0.92498988,

0, = 0, = -4-122.3120845°,

Py = by = +4-26.037475° or its supplement, (11)

iy = 4-9.72974135° or its supplement,

8, — 0, = 77.754163°.

The curves representing the necessary condition and the switching
relations for values of e greater than 0.9 are given separately for e = 0.925,
e = 0.950, and e = 0.975 in Figs. 6-10. As can be seen, near periapsis, the
necessary condition becomes essentially a line. The width between the upper

and lower bounds is only a small fraction of a degree. In Fig. 6 (e = 0.925),
the bounding curves are tangent at the Lawden point. For Figs. 7-8 (e = 0.950
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Fig. 4. Mapping between 8, and 8,, which represents the switching relations
for the surface of Fig. 2. Switches are between two forward or between
two rearward impulses only.
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the surface of Fig. 3. Switches are between a forward first impulse and a
rearward second impulse.
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Fig. 6. Bounds on the optimal controls for ¢ = 0.925, The two bounds touch at
the Lawden point.
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Fig. 7. Bounds on the optimal controls for ¢ = 0.950. The three circled points represent
the triple switch condition. The dashed lines are the unsatisfiable bounds on the
optimal controls. The Lawden point is indicated by the square.
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Fig. 8. Bounds on the optimal controls for ¢ = 0.975. The three circled points re~
present the triple switch condition. The dashed lines are the unsatisfiable
bounds on the optimal controls. The Lawden point isindicated by thesquare.

and e = 0.975), the three points circled in each figure represent the three
simultaneous corner points discussed by Vinh (Ref. 1). The developable
surface covering the metric in this region is formed by a triangle defined by
these three points. The heavy lines in these figures represent the bounds
where optimal impulses exist. The dashed lines represent the unsatisfiable
bounds in the regions where the curves have crossed and no optimal impulse
can exist. Figs. 9-10 give the switching relations for the upper and lower
bounding curves, respectively, for these high eccentricities.

There exist several exact relations among the elements at the three
simultaneous corner points. Let Cy(6;, ), Cy(fy, ), and Cy(f;, ) be
these points (Figs. 7-8). First, the general equations (1)~(6) are always valid
for any switching pair, with the appropriate subscripts used. In addition, we
have the following relations, which characterize the triple switching configura-
tion:

_ (sin® ¢y + sin?4,) cos 4 — 2 sin gy sin ¢y
" (sin® b, + sin® ) — 2 sin iy sin g, cos 4

cos &,

(12)
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Fig. 9. Mapping between 8, and 8,, which represents the switching
relations for the upper curves in Figs. 6-8. Switches are between
two forward or between two rearward impulses only.

or, in terms of o and 4,

sinacosasind 4 (1 4 cos a)(1 + 2 cos a) cos 4 — 3 cos a1 + cos o)
sin « cos e sin 4 — (1 + cos a)(2 -+ cos o) cos 4 + 3(1 4 cos @)

(13)

cos f; =

Another relation is
tan(}a) tan(30;) -+ tan(34) tanfd(y + $)] = 0. (14)
For the third optimal thrust angle, we have
sin ¢y = (sin 8; sin ¢, — sin b, sin ¢y)/sin 4. (15)
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Fig. 10. Mapping between 8, and 8, , which represents the switching relations for the
lower curves in Figs. 6-8. Switches are between a forward first impulse and a
rearward second impulse.

Also, we have
sin dy/sin == [sin 8, -+ sin(f; — 6,)]/[sin 8, + sin(6; — 6;)]. (16)

All these relations are independent of the orbit eccentricity. They are in
excess, but nevertheless useful because of their simplicity. When 4 tends to
zero, the equations become trivial; but, using a limiting process to remove the
singularity, we have, for the limiting case of Fig. 6,

tan?(36,) = 4(2n + 1¥(1 — #%),  n = cos 2y = cos 2¢,, (17
where # is given by
1764n8 - 1890n° - 207n* — 572n% — 30942 — 60n — 4 = 0. (18)

The angle §; = 8, is given by Eq. (7), and the eccentricity limit is obtained
from

¢ = 9(1 — n)(1127% + 119%° + 472 + 9 + 1)/(5n + DA (19)

8o09/7{3-3
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Finally, for third optimal thrust angle, we have
sin iy = F3(1 — n)(6n® 4 3n -+ 1) V[2(1 — n)]/2e(5n + 1)2 (20)

The most accurate set of values obtained to this date of this limiting case, as
given by the relations above, were given in Egs. (11). Extension of the Lawden
singular point to the three-dimensional case has also been obtained recently
(Ref. 4).

5, Conclusions

The recent presentation of closed-form solutions for the switching
relations in the problem of time-open, optimal, coplanar orbit transfer via
impulses has made feasible the display of complete results for the optimal
controls and switching surfaces. In this paper, these results are presented
graphically for all closed orbits, including the extension to orbits of eccentricity
near unity. The results available previously had already proved valuable in
providing a guide for construction of a near-optimal controller for orbit
transfer, such as is required for the Viking mission. These results, along with
the closed-form switching relations, should prove valuable in completing
this construction.

Equivalent expressions for the three-dimensional orbit transfer problem
are available (Ref. 2) and should lead to the completion of the general impulsive
orbit transfer problem. This appears to be the one major problem left in this
field.
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