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Abstract. New iterative methods for solving systems of linear inequali- 
ties are presented. Each step in these methods consists of finding the 
orthogonat projection of the current point onto a hyperplane corre- 
sponding to a surrogate constraint which is constructed through a posi- 
tive combination of a group of violated constraints. Both sequential and 
parallel-implementations are discussed. 
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1. Introduction 

We consider the problem of  finding a feasible solution to 

Ax <_b, (1) 

where A = (aij)~2~ "×n and b = (b~)~ Z ~. Large-scale versions of  this problem 
appear  in image reconstruction f rom projections (Ref. 1), which is becoming 
important  in many  scientific fields. In  medical science, computerized tomo- 
graphy reconstructs  the images of  cross sections of  the human body by 
processing data obtained f rom measuring the attenuation of  X-rays p~tssing 
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through it. Other image reconstruction problems arise in remote sensing 
(Ref. 2), seismic tomography (Ref. 3), and industrial nondestructive testing. 

One approach transforms (1) into a linear program and solves it by 
methods such as Karmarkar's method (Refs. 4 and 5) or the simplex 
method. These methods require matrix operations which are often imprac- 
tical for the large-scale systems that arise in applications such as image 
reconstruction. 

The second approach involves using iterative methods, the basic compu- 
tation step in which is extremely simple and easy to program. Because of 
these advantages, the linear inequality solvers employed in image reconstruc- 
tion are most often iterative methods. One class of iterative methods is 
derived from the relaxation method for linear inequalities (Refs. 6 and 7) 
and Kaczmarz's method (Ref. 8) for linear equations. The name refers to 
the fact that they consider one constraint at a time, so in each step, all but 
one constraint are relaxed. In each iteration, a violated constraint is identified 
and an orthogonal projection is made onto it from the current point. So 
they are also called successive orthogonal projection methods. Bregman 
(Refs. 9 and 10), Eremin (Ref. I1), and Gubin et  al. (Rel: 12) extended this 
idea to finding a point in a convex set defined by a system of inequalities 
involving convex functions. An orthogonal projection onto a single linear 
constraint is computationally inexpensive, but considering only one con- 
straint at a time leads to slow convergence. Instead, it is better to process a 
group of constraints at a time. But making an orthogonal projection onto 
the affine space corresponding to a group of constraints is computationally 
expensive; the amount of work for it grows as the cube of the number of 
constraints in the group. 

Another class of iterative methods is derived from Cimmino's algorithm 
(Ref. 13) for linear equations. Censor and Elfving (Ref. 14) and De Pierro 
and Iusem (Ref. 15) developed a Cimmino-type algorithm for linear inequal- 
ities. This method makes orthogoual projections simultaneously onto each 
of the violated constraints ,from the current point and takes the new point 
to be a convex combination of those projection points. Cimmino's method 
is amenable to parallel implementation, but making projections onto every 
violated constraint is again computationally expensive, and the method tends 
to have slow convergence. 

In this paper, we propose surrogate constraint methods which are able 
to process a group of violated constraints at a time but retain the same 
computational simplicity of the relaxation method, and at the same time are 
highly amenable to massively parallel implementation. In each iteration, a 
surrogate constraint is derived from a group of violated constraints. The 
current point is orthogonally projected onto this surrogate constraint treated 
as an equation, and the process is repeated until a feasible solution is found. 
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2. Notation and Assumptions 

Ai = ith row vector of  A, assumed#0,  and integer for all i; 
K =  set of feasible solutions of (1), assumed # ~ ;  
I c { 1 , . . . , m }  denotes an index set, which identifies a subset 

of the constraints; 
Ki= {x[ Aix <~ bi} is the half space corresponding to the ith constraint; 
Hi = {xlAix= b~} is the hyperplane corresponding to the boundary of 

the ith constraint; 
Kt = {N Ki}g~x, K I C k ,  since Kx=K; 
]S[ = cardinality of the set S; 
A~=II[ x n matrix with rows Ai, i~I; 
bl = (bi, ieI),  column vector; 
llx[i = + w/~  x~, Euclidean norm of the vector x; 
d(x, Hi)=  minimum Euclidean distance from x to Hi; 
d(x, Ki)=minimum Euclidean distance from x to Ki; 

d=0 ,  if xEK,., and d=d(x, Hi), otherwise; 
(x) = sup{d(x, Ki): i = 1 to m} ; 

d(x, K)=minimum Euclidean distance from x to K; 
L=leng th  of the binary encoding of all data in (1); 
I(x)= {i: Aix-b~>O}, for any x~R". 

I(x) is the index set of violated constraints at x. The point x e K i f f  I(x) = 
~ .  Finding I(x) is highly amenable to massive parallel implementation. We 
can use up to m simple processors operating in parallel, each one dedicated 
to checking a separate constraint or a small group of constraints in (1). The 
following lemma (Refs. 16 and 17) will be used in the convergence proofs. 

Lemma 2.1. If  the system (1) is feasible, then there is a feasible solution 
2, with I~jt < 2L/2n, j=  1 , . . . ,  n. 

Without any loss of generality, we assume that each row of A is normal- 
ized so that IlAilj = 1, for all i=  1 to m. This has no effect on K, or Ki, or Hi, 
but makes it easier to write the projections on Hi. Clearly, a point x+K iff 
~b (x )=  0. In practice, we are usually interested in getting an approximate 
solution for (1) within some tolerance. Given a tolerance e > 0, a point X is 
said to be feasible to (1) within tolerance e if ~b(x)< E, i.e., 

x e K , =  {x: Aix<bi+ E, for all i=  1 to m}. 

3. Basic Surrogate Constraint Method 

In this method, when 2 is the current point, if 1(2)=/ ,  a row vector 
~r = (~ri: i~I(Yc)) of positive weights is selected, and the surrogate constraint 
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( z A D x  < ( zbr )  generated. The corresponding surrogate hyperplane is 

Hs = {x: (zAI)x = (zb,)}. 

We assume that the weight vector ~r is normalized so that 

Y. (zi: over i e I ( 2 ) ) =  1. 

This assumption is made purely for the sake of simplifying some statements. 
The next point in the method is one on the line segment joining the current 
point and its reflection on the surrogate hyperplane. The actual point selected 
in this line segment depends on a parameter ~, which can be set by the user 
anywhere between 0 and 2 (X = 1 corresponds to the orthogonal projection). 
The algorithm is initiated with some point x ° e R", which could be 0 or some 
known near-feasible point. The general step k + 1, for k > 0 is given below. 

Step k + 1. Let x k be the point obtained at the end of the previous 
step. Identify the index set Ik = I ( x  ~) of violated constraints. If Ik = ~5, x k 
is feasible to (1); terminate. Otherwise, select a weight vector 
z(k) = (z~: iEIk), and compute 

x k+l = x  k - [~, (z(k)A1kx k - z(k)bzk)(z(k)Ai~)r]/LI z(k)A~kH 2, (2) 

where 0 < , t < 2 ;  go to the next step. 
See Fig. I. The most expensive piece of work in each step, that of finding 

the index set I ( x  k) of violated constraints, is easily implemented in a massive 
parallel way as discussed above; this is a major advantage of these methods. 

/ 
K 

Surrogate 
Hyperplane 

Fig. I. A step in the surrogate constraint method with A=l .  Both constraints 
are violated at x k. 

. . . . . . . .  
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A variety of  strategies can be used for selecting the weight vector 
,r(k) = (rc~:ielk). One selects all the weights to be equal, i.e., 

,r~= 1/I/hi, i e lk .  

Another strategy computes the error r i = A i x k - b t ,  the Euclidean distance 
from the current point x k to K,., for each i~lk,  and takes 

A third strategy takes the weight vector to be a convex combination of  the 
above two vectors, etc. For the sake of  simplicity, all our convergence proofs 
will be based on the assumption that the weight vector z = (zi: i s I (x~))  is 
selected so as to satisfy 

7ri> y, ieI (xk) ,  

when x k is the current point, where y is some predetermined small positive 
quantity. 

Convergence Results. 

Definition 3.1. When K S  ~ ,  a sequence {xk}ff= 1 in R" is called strictly 
Fejer-monotone with respect to the set K if, for every x e K ,  

Ilx k+l -x l l  < Ilxk-xll, for all k > 0 .  (3) 

Every Fejer-monotone sequence is bounded if KeyES, since Ilxk-xll is 
always positive and monotonically decreasing with K. 

Theorem 3.1. If  K S  ~ ,  any sequence {Xk} generated by the above 
algorithm is strictly Fejer-monotone with respect to K. 

Proof. Select any point x e K .  Define ek=x~--X,  k = 0 ,  1 . . . . .  For 
simplicity, denote 7r(k) by 7r and Ik by L Then, if I S  ~ ,  

e k + l  = e k - -  2 ( g A l x  k - rcbz)(rcAz) r/II rcAiII 2 

I[ek+ 1112 = 11 e~ll 2 + 22(rcAzx ~ _ l f b i ) 2 / I I  rrArll 2 

- 22 (~rAix ~ -  rcbz)fJrAi)fx k -  x)/II 1rAAI2 

= I[ekll 2 + 2 2 ( 1 r A I  X k  - l g b I ) 2 / ] l  rrAzll 2 

- 22 (rcAzx ~ - rcbz)(rcAzx k - rcbz- ~rAzx + Jrbi)/II rcAAI 2 

= Ilekll 2 + 22(rcAz x k -  rcb,)2/]l *rAzll 2 

- 22 (rcAzx k -  rcbt)Z/II ,rArll 2 

+ 22 (rcAzx k -  rcbz)(rcAzx - rcbz)/II rcAAI 2. 
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Since 

we have 
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zA~x k > zbi and zAxx < zbx, 

2)~ (zAzx k -  z b i ) ( z A z x -  ~bz)/ll~A,II 2 ~0. 

Therefore, it follows that 

tlek+lt[2_< Ilekll2-,~ ( 2 -  ~,)(zazx ~ -  zbz)2/llzhzll2< Ilekll 2. (4) 
[] 

Theorem 3.2. If K¢ff i ,  any infinite sequence {x k} generated by the 
above algorithm has the property 

tim ¢ (x ~) = O. 
k--~oo 

Proof. Select any point x e K, and define e k= x k -  x, for all k, as above. 
Fejer-monotonicity implies that the sequence { Ile~ll }~=1 is monotonically 
decreasing, hence it converges, which implies that 

lim Ile~÷lll = lim Ilekll. 
k ~ o o  k ~ e c  

It follows from (4) that 

Since 

lim (z(k)Arkx k -  z(k)blk) = O. 
k---~ co 

z,{k) > ),, for all ieI(xk), 

(~  z , :  over /e /k)  = 1, 

Aixk-bi>O,  for all ieIk, 

this implies that either 

lim (Aix k -  b~) = O, 
k ~ o o  

for all is Ik, 
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o r  

for some/~< 0% I(x fl) = ~ .  

Therefore, 

lim (~b (x k) = sup d(x k, Ke) = 0. 
k ~ o ~  ie{l, . . . ,m} 

[]  

Lemma 3.1. Assume that K ~  ~5 and that the sequence {xk}ff= 1 satisfies 
the following conditions: 

(i) {x~}ff=l is Fejer-monotone with respect to K; 
(ii) limk-.~ ~ (Xk) = 0. 

Then, {x k} converges to an xeK .  

Proof. This follows from Lemmas 5 and 6 of  Ref. 12. []  

Theorem 3.3. Let e > 0 be a specified error tolerance. If  K ~  ~ ,  and 
we set I (x  ~') = {i: Aex k - hi> e} in the above aigorithm, it converges to a point 
xeK~ in a finite number of  iterations. 

Proof. (i) First, we show that, for any x~K,  if xkCK~, then 

[Ix k+l -x[[ < []xk-x[[, for all k_>0. 

This follows directly from the fact that, if xkCK~, then I ( x k ) ¢ ~ ,  so the 
algorithm will not terminate in the step when x k is the current point. From 
(4), we have 

Itd'+ 111 = -< II ekll 2 - Z (2 - ~)(TcArx k - ~rbz)2/I[ zrAzll 2 < Ilekll =- 

Hence, the result follows. 
(ii) Then, we show that, in this case, any infinite sequence {xk}ff=l 

generated by this algorithm has the property 

lira q~ (x k) _< e. 
k ~ o  

This follows from the fact that the sequence { [[ekt[ }~°=l is positive and mono- 
tonically decreasing, hence it converges. So, 

lirn Hek+ll[ = lim [leklt. 

So, it follows from (4) that 

lim (rc(k)A2kx k -  rc(k)b,~) = O. (5) 
k.--~ oz~ 
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~ try: over ielk) = 1, 

for all ielk, 

where 

II zAz~ll ~ (!1 z l l ) ( l lAd)  ~(II~II)(IIAIAF) 
\1/2/ . \l/z 

= ~ z E i ) I ~  ~[aij] 2) <m, 
ielk iElk j =  1 

IIAx~ll2 = supllAl~cll/llxl[, 
xv~0 

and where 

n )1/2 
}[A1kllF = ~ ~ [a,'i[ 2 

\ i e l k j = I  

and that 

7r(k)>O, 

A~xk-b~> e, 

this implies that 

~r(k)A,S- 7r(k)b,k > E, 

as long as Ik@~,  which contradicts (5). So there must exist/~< oo, such 
that I(x ~) = ~ ,  which implies that, at iteration/~, 

~b (x z) = sup d((x z, K,) _ e. 
ie { l,...,m } 

In other words, x~eK,. 
(iii) Bounds on/~. Select a point xeK, and define ek=xk--X, for all k. 

From Lemma 2.1, we have 

Ile°II < 2  L- I/x/~. 

If at iteration k, I(x ~) ~ ~, Aix k-  b~> ~, for all i~I(xk), it follows that 

ZrAlkXk-zblk>(~ zi: over ielk)(min{Atxk-b~: over i~I~}) 

_>(~ z~: over ielk),>_,. 



JOTA:  VOL.  72, NO.  1, J A N U A R Y  1992 171 

is the Frobenius norm of  Aik. It  follows that 

Ilek+ 1 [IZ < Ile~ll 2 -  ;~ (2 - ,~)e2/m 2. 

Therefore, this algorithm converges within/~ steps, where 

/~_< m222L- Z/nZ (2 - Z) s 2. []  

4. Sequential Surrogate Constraint Method 

In many applications, the matrix A is often very large (m and n are lO s 
or more) and sparse (less than 0.1% of  entries are nonzero), and working 
on the whole matrix A may be almost impossible. So, it is preferable to work 
on a small subset of  constraints of  (1) at a time. Specifically, the matrix A 
can be partitioned into p submatrices, and the right-hand side vector b can 
be partitioned compatibly into p subvectors, as follows: 

• m m m 

A 1 b l 

: i : 

A = A t , b =  b t (6) 

t 

A p b p 
g E 

where A t is an mtx n matrix, b t has rn~ rows, t = 1 to p, and 
p 

m t - ~ m .  
t = l  

Now, we will show that the surrogate constraint method can be used to solve 
the system (1) by successively applying on the subsystems, 

Atx~_b t, t =  1 to p, 

in cyclic order• 
For  any x e R n, define 

F ( x )  = {i: ith constraint in tth subsystem is violated by x}. 

We denote by z t=  (z~ . . . . .  zt~,) the weight vector for the tth subsystem, 
t = 1 to p. When the current point is x ~, and we have to operate on the tth 
subsystem next, we will set 

z~ > O, if i e  I t (xk) ,  

z~ = O, otherwise. 
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Then, the corresponding surrogate constraint for the tth subsystem is 

zf  Wx  <_ rctb ', 

and the surrogate hyperplane of the tth subsystem is 

Ht~ = {x: rctAtx = 7rtbt}. 

The algorithm goes through major cycles. In every major cycle, each of  
the p subsystems is operated on once, in serial order t = 1 to p. Initialization 
is the same as in the previous algorithm. Consider a major cycle. In this 
major cycle, operate on subsystems in the order t = 1 to p. 

Let x k be the current point, and let the tth subsystem be the one to be 
operated next. Find It(xk). 

I f  I t (x k) = Z~, define x ~+ 1= xk, and go to the next subsystem with x ~+ ~, 
if t<p.  If  t=p,  this completes the major cycle. I f  there is no change in the 
current point throughout this major cycle, then the current point is feasible 
to (1); terminate. Otherwise, go to the next major cycle with the current 
point. 

If  P (x  k) # ~ ,  select a weight vector 7r t and define 

x k+l = x k -  ;td k, (7a) 

where 

d k= ( l f W x k -  rc'bt)Qr'A')r/II ~tA'll2 (7b) 

and 0<A,<2. With x g+l, go to the next subsystem if t<p,  or to the next 
major cycle if t =p.  

Convergence Results. 

Lemma 4.1. Let c°e Nn, and let C r be a row vector in N'. Let F be the 
half space {x: C rx < Ctc°}. If  z ¢ F is such that its orthogonal projection on 
F is c °, then 

]ly-z~,tl < ttY-Ztl, for all y ~ F  and z , ~ = z - a ( z - e  °) for 0 < a < 2 .  

See Fig. 2. 

Proof. See Refs. 6 and 11. [] 

Lemma 4.2. Suppose that the point x~+~=xk-ad~  is obtained by 
operating on the tth subsystem with x k as the current point, where d k is given 
by (7b). Let F t be the half-space corresponding to the surrogate constraint in 
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z~ 
I 

I 

I 

y 

c ° 
'~'z 

Fig. 2. Illustration of Lemma 4,1. 

this step, 

7ctAtx ~ l~tb t. 

C t Then K F and 

t l y - ( xg -adk ) I i  < Ily-xkII , for all y~Ft  and O<a <2. (8) 

Proof. Any point feasible to the subsystem alone must satisfy the 
surrogate constraint, i.e., must be in I "t. So, K c  F t. The surrogate hyperplane 
in this iteration is 

' -  {x: # A ' x =  #b'},  g s -  

and x k -  d g is the orthogonal projection of  x k onto it. So, 

rrtb' = # A t ( x  ~ -  dk). 

Relation (8) now follows by using the result in Lemma 4.1. []  

Theorem 4.1. In this algorithm, if x k+l # x  k, then 

[]x-xk+l[[ < []x- xk[[, for all x~K.  

Proof. It follows directly from Lemma 4.2. []  

Theorem 4.2. If  K #  ~Z~, any sequence {xk}~=~ generated by this algo- 
rithm has the property that 

lira ~b (x k) = 0. 
k - *  oc~ 
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Proof. For any x ~ K ,  Theorem 4.1 implies that the sequence 
{llx~-xll}~=, is monotonically decreasing, thus it converges. So, if  t (k)  
denotes the subsystem operated upon when x k is the current point, and if 
Ir t(~) is the weight vector used in that step, then 

Since 

l im ( rct(k)At(k)x k -- z~t(~)b t(k)) = O. 
k-.~ oo 

7rff ) > 0, for all ielt(k)(Xk), 

and sums to one over these i, and since 

A~(k)x k -  b~ (k) > O,  for all i t  l t(k)(xk),  

this implies that either 

lim ( A f f ) x  k - b~ (k)) = O, for all iel t(k)(xk),  
k--,, c~ 

or there exist an f <  oo such that, at major cycle ~, 

I t ( x  k) = ~ ,  for all t = 1 to p. 

Therefore, 

lim ~ (x ~) = 0. 
k ~ o o  

[] 

Proof. We proceed as in the proof of Theorem 3.3. From Theorem 
4.1, we know that, if xkCK,, then 

IIx-x~*lll < Itx-x~ll, for all x~K. 

Define e k = x k - - x .  Since {[lekI[} is monotonically decreasing and bounded 
below, it converges, and this implies that 

lim Ilek÷~ll = lim Ile~ll. 
k--* oo k ~ o o  

But this happens only if there exists an f <  ~ such that, at major cycle f, the 
current point is x ~ and I ' (x  k) = Zf, for all t = 1 to p. Otherwise for all k, there 

Theorem 4.3. Let E > 0  be a specified error tolerance. I f K # ~ ,  and if 
we operate this algorithm by setting 

I t ( x  k) = {i: A~x k -  b~ > E}, for all k, 

it converges to a point x ~ K ,  in a finite number of major cycles. 
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exists a subsystem t such that I t (x  k) 4 = ~ ,  then lr'A'x k -  tc'bt > e, hence 

l im Ileal[ ~ l im llek+lll, 
k ~ c o  k ~ o o  

a contradiction. So, operated as stated, this algorithm must converge to a 
point in K,  in a finite number of  major cycles. 

Now, we derive a bound on f. From Lemma 2.1, it follows that 
Ite°ll <2L-~/,,/n. I f  at the beginning of  a major cycle r, the current point 
xkCK, ,  there exists at least one subsystem t, and at least one constraint in 
it, say, the ith, such that A~x k -  b~ > e. So, a change of  point must occur in 
some step in this major cycle. Let t be the subsystem operated on in that 
step; let x g, x g+l be the points at the beginning and end of this step; and let 
~r t be the weight vector used. So, 

eg+ 1 = e g_  ~ (zrtAtxg _ zrtbt)(ztAtfr /]1 ~ 4tll 2, 

l id  + 1112 ~ [Idll 2 -  ~L (2 - & ) ( z r t A t x  g - lrtbt)2/II ~ 'A '  II 2, 

Now, as in the proof of Theorem 3.3, we get 

I]eg+ 1 I[= < lle~ll 2 -  ;~ (2-/I,) ff2/m 2. 

From this, it follows that this algorithm terminates within ? major cycles, 
where 

<_ m222z'- 2/n)~ (2 -- ~) e 2. [ ]  

5. Parallel Surrogate Constraint Method 

The algorithm of the previous section can be modified so as to work on 
all the subsystems Atx < b t, t = 1 to p, simultaneously in parallel. We will call 
this version the parallel surrogate constraint method. This method is also 
initiated with some point x°e Rn. The general step k + 1, for k > 0, is given 
below. 

Step k + 1. Let x ~ be the point obtained at the end of the previous 
step. For each subsystem t = 1 to p, find I t (x  k) as defined in the previous 
section. If  I t (x  k) = ~ ,  define Pt(x ~') = x k. If  F ( x  1') ~ ~ ,  select the weight 
vector Jr t as in the previous section, and define Pt(x k) = x k - d  k, where 

d~= (~r'Atx k -  zrtbt)(TrtA~)r/tlrctAtll2. 
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If  It(x k) = ~ ,  for all t = 1 to p, then x k is feasible to (1); terminate. Otherwise, 
define 

P 
P(x~) = E r~P,(x~), 

t= l  

where r,  are nonnegative numbers summing to 1 with r , > 0  for all t such 
that It(x k) ~ ~ .  Define 

x k+' = x k +  Z (p(xk)-- xk), 

where 0 < ;~ < 2, and go to the next step. 

let 

Then, 

(9) 

Convergence Results. 

Lemma 5.1. Let p be a positive integer, let Vt ~ Sn, for t = 1 to p, and 

P P 
V = ~  rtVt, ~ r t = l ,  0 ~ r , ~ l ,  fo ra l l  t = l  t o p .  

t= l  t= l  

P 
II VlI2~ E r ,  II V~ll 2 

t=l  

Proof. We proceed by induction on p. For  p = 2, 

V= rI VI +'c2V2, 

where 

So, 

~'1 + r 2 =  1, "~1 > 0 ,  r 2 ~ O .  

It VII == llrl V1 + r2V21t 2= r211 111 llz+ r211V2112+2rlv2(VOrV2. 

Therefore, 

rl][ VIlIm + rmlj V=ll = -  II vii 2 

= r ,  II Vl II 2+  r211112112- rill V, 112- r~ll Vzll2-2r,rz(V,)rV2 

= "t'l (1 -- "t'l)iI V1 II 2 + r2(1 - r2)II V2[I 2_ 2"rl r2(V1)rV2 

= "g'lr2H VI H 2"-~- r 2 r l  ] 1 V z l l Z - 2 r l r 2 ( V l ) r V 2  

= ritz11 V1 - V2112>0. 

It follows that 

II VII 2 -< r ,  tl V~ tl = + T2t] V= II =. 

Hence, the assertion is valid for p = 2. 
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Induct ion Hypothesis.  Assume that  the assertion is valid for p - 1. We 
will prove that  the assertion is also valid fo rp  under  the induction hypothesis. 
Let  

p - 1  

?= X r,v, /(1 - rA, 
t = l  

p p - I  

V= • vtV,= E r y t + r . V p = ( l - v . ) ? + r . V p .  
t = l  t = l  

F rom the above argument,  we have 

II vlf <_ r.tl Vpll2 + (1 - rp)ll ?lt 2 
p - - I  p 

< rpll Vptl 2 + (1 - rp) • ~tfl V, l12/(1 - rp) = E r, ll v, tl =, 
t = l  t = t  

by the induction hypothesis. So, the assertion is valid for all finite positive 
integers p. [ ]  

Theorem 5.1. In this algorithm, if x k+l ~ x  k, then 

] l x - x  k+l l[ < nx-xk[[,  for all x ~ K .  

Proof. We have 
P 

xk+l = x k - A  E vt( ~ ' W x ~ -  ~'bt)(~'At)r/ll~tAtll2. 
t = l  

Let e k = x k - x, 

gt= ( zrtAtx k -  rffbt)(gtAt)r /l]~tAtll2 , 

P P 
V =  ~, vt( f f tAtxk-~tbt)(rdAtlr/ l[rdAtl[2= E vtV,, 

t = l  t = l  

P 
e k + 1 = e k _ 2 ~ , t ( ~ t A t x  k - rdbt)(rdA t) r/tl rdA' Ii 2 = e k __ ~ V, 

t = l  

liek+ 1 Ii2 = lleklI: + ; . 2 g r v -  22Vre k 

P 
= Ilekll 2 + 2211VH 2 -  22 2 zt( x t A ' x k -  rdbt) 

t = l  

x [z 'A' (x  k -  x) ] /H~'a' l t2  
P 

= Ilekll 2 + ~211 VII ~ -  2~ X rt( ~,Atx~- z'b') 
t = l  

x [zr'(A'x ~ -  b')]/ll zr'A'll 2 
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P 
+ 23` Y, r,(~rtAtx k -  ~rtbt)[Trt(Atx - b~)]/ll 7rtAtlI2 

t = l  

P 
< lle~llz+ 3̀ 211 mt[ 2 -  23. E r t (  ~rtAtxk- tr'b')2/]l rr'A'I[ = 

t ~ l  

P 

= llekll2+3`=ll Nil a-23` E r,II m, II ~ 
t = l  

From Lemma 5.1, we have 

P 

3`211VIl~-<3` = E ~,tl V, It 2, 
t = l  

and so, 

P 
+1 2 <  k 2 3` tl ek II _i le  II - 3 ` ( 2 -  ) ~ r, tlVtllZ<llekll2. (10) 

t = l  
[]  

Theorem 5.2. If  K #  ~ ,  any sequence {Xk}k%l generated by this algo- 
rithm has the property 

l i m ¢  (x k) = O. 
k---> oo 

Proof. For any x~K,  Theorem 5.1 implies that the sequence 
{llxk-xlt}~=l is monotonically decreasing, hence it converges. It follows 
from (10) that 

P 
lim ~ rt(TrtAtx k -  rc~b')2/ttrctAttt2 =0.  (11) 

k---* oo t = l  

Since r, > 0 for all t such that It(x k) # ~ ,  and since the rt sum to 1, relation 
(11) implies that 

l i m  ( g t A t x k  -- rctb t) = O, for all such t. 
k~oc~ 

Since for each subsystem, rr~ are strictly positive for al l jd t (xk) ,  and sum to 
1, this implies that either 

lira (Asx k - b~) = O, for all j~  It(xk), 
k---~ ~ 

and for all subsystems, t = 1 to p, or there exists a /~< co such that 

It(x ~) = ~ ,  for all t = 1 to p. 
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Therefore, 

lira dp (x k) = O. [] 
k--* oo 

For the sake of simplicity, the following finite convergence proofs will 
be based on the assumption that vt are all equal for all t = 1 to p, that is, 

rt = 1/p, for all t. 

In practice, a different choice may yield better computational performance. 
This has to be determined in a computational experiment. 

Theorem 5.3. Let E>0  be a specified error tolerance, i f K ¢ ~ ,  and we 
define 

F(x k) = {i: .4~xk-b;> ~} 

in this algorithm. Then, it converges to a point x e K ,  in a finite number of  
steps. 

Proof. We proceed as in the proof  of  Theorem 3.3. From Theorem 
5.1, we know that, if xkCK~, then 

tlx-xk+~ll < IIx-x~ll, for all xeK.  

Define ek=xk--X. Since { Ile~ll} is monotonically decreasing and bounded 
below, it converges. This implies that 

lim tle~+llt = lim Iteklt. 
k~cx~ k--* co 

But this happens only if there exist a /~< ~ such that, at the ~ h  iteration, 

I t(x ~) = ~ ,  for all t = 1 to p. 

Otherwise for all k, there exists at least one subsystem t such that I ' (x  k) ~ ~ ,  
then rctAtx k -  trtbt > e. Since 

P 

fl e k + 1ff2-< II ek II 2 + (22 _ 22) E rt(Tc'A'x k -  7r'b')2/II rYAtl[2, 
t=l 

this implies that 

lim Ilekll ~ lim llek+'ll, 
k - * ~  k - - ~  

a contradiction. So, this version of  the algorithm must converge to a point 
in K, in a finite number/~ of steps. 
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From Lemma 2.1, it follows that 

Ile°ll <2L-a/,f~.  

If  I ' (x  k) ~ ~ for at least one subsystem, say, the tth subsystem, then from 
(10) we get 

P 
i[ek+ 1[]2 < ilekl[2 _ • (2 -- Z) E V/( ~r'Atxk- jrtbt)2/[I zfWII 2 

t=l  

< Ilegl[ 2 - ~, (2 - ~,) r,(zr'A'x k -  zfbt)Z/II zrtAtll 2. 

Since vt = 1/p< 1/m; we have 

rctAtxk- rctbt> (y ', 1ri) . e= e, 

IllrtA'll--II~rtlhllAqh-< 1[Tr'll=llAtllF<m. 

It follows that 

Ilek+ 1112 < II e~ll 2 - Z (2 - ~,)e2/rn 3. 

Therefore, this version of  the algorithm converges to a point in K,  within/~ 
steps, where 

/~_< m322L- 2/(nX (2 - A.) ~2). [] 

In the parallel method discussed above, we obtained for the tth sub- 
system a surrogate constraint 

ztAt x < ~r'b' (12) 

and a point P,(x k) by projecting x k onto this surrogate hyperplane, for each 
t = 1 top  such that It(x k) ~ ~ .  The new point x k+ a is derived from a weighted 
average of these Pt(xk). So, this method can be viewed as a Cimmino-type 
method using groups of constraints, instead of individual constraints, and 
surrogation within each group. Another parallel method would just obtain 
the surrogat6 constraint (12) for each subsystem t such that I t ( x k ) ~ .  
Then, it would take a positive combination of all such surrogate constraints 
generated, leading to a surrogate constraint for the entire original system 
(1). If  the weight assigned to t is 6, > 0, this constraint will be 

(~t(p2tAtx: over t such that P(x k) 4:~) 

< ~ S,(~rtbt: over t such that It(x k) ~ ~ ) .  (13) 

The point P(x k) is then defined to be the orthogonal projection of x k onto 
(13) treated as an equation, and the next point x ~ is obtained as in (9) using 
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this P(x~). This method is essentially the algorithm of Section 3 using a 
parallel implementation for identifying all the violated constraints, with a 
different processor examining the constraints in each subsystem. 

6, Comparisons with Earlier Methods 

Let us compare the surrogate constraint methods with the relaxation 
method for solving linear inequalities as well as Cimmino's method. In the 
relaxation method, at each iteration an orthogonal projection is made from 
the current point x k onto an individual K,. for some i. However, KI only 
contains the information in one constraint. Sometimes, the projection on Ki 
offers little improvement in reducing the distance from the current point x k 
to the set K. On the other hand, the surrogate hyperptane contains informa- 
tion from more than one violated constraint, so it is expected to generate a 
better new point than the relaxation method. See Fig. 3. 

Cimmino's method for linear inequalities identifies all violated con- 
straints at each iteration. Orthogonal projections are made simultaneously 
onto all violated constraints from the current point, and the new point is a 
convex combination of those projection points. See Fig. 3. 

Computational experiments have been carried out to compare the 
sequential surrogate constraint method with the version of the relaxation 
method that processes the inequalities in cyclical order. We give below our 

Surrogate 

Fig. 3. Comparison of the surrogate constraint method (SCM) with other methods, For A = 
1, the relaxation method yields either the point yl or y2; Cimmino's method yields a 
point on the line segment joining y~ and y2; SCM yields the point y3. 
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preliminary computational results on randomly generated large sparse prob- 
lems carried out on the IBM 3090-400/VM mainframe computer at the 
University of Michigan. The problems are generated in such a way that the 
system would have an interior feasible solution. The sequential surrogate 
constraint method i s implemented using the following weights for generating 
the surrogate constraint. When operating on subsystem t with the current 
point x k, if I t(x k) ~ ~ ,  we take 

where 

z ' =  (z~: ieI'(xk)), 

t_ '/(E' (x~)) +0.8/Ir(xk)l, z i - 0 . 2 r , ,  ri: o v e r  i r I  t 

r~ = A~x k -  b~, for all ielt(xk). 

The value of A for both methods was taken to be 1.7. 
The results are listed in Table 1. Five test problems were generated in 

each dimension and solved to the accuracy 10 -9  . The speedup of the surro- 
gate constraint method over the relaxation method ranged from 30 to 60. 
The speedup increases as the problem size increases. 

In the relaxation method, in each sweep, all the constraints are examined 
once from top to bottom. The average number of sweeps before termination 
varied from 5 to 10 among the problem sizes. Since the current point changes 
after each projection, it is not possible to implement a sweep in this method 
in a parallel fashion. 

Table  1. C o m p a r i s o n  o f  the  re laxat ion m e t h o d  an d  the  sequential  surrogate  

cons t ra in t  method.  

Sequential surrogate 
Problem size Relaxation method constraint method 

Sparsity 
Rows Columns % NP NS T NSS NR T NC 

5,000 2,500 2.0 10,500 4.9 17.04 2 2500 0.511 3.4 
5,000 5,000 1.0 10,675 5.2 23.49 2 2500 0.544 3.2 

10,000 2,500 1.0 22,375 6.3 45.11 5 2000 0.806 2.7 
10,000 5,000 0.4 20,985 5.9 54.06 5 2000 1.146 3.7 
10,000 10,000 0.4 23,125 7.1 84.22 5 2000 1.371 2.8 
18,000 5,000 0.5 41,125 8.4 213.00 9 2000 3.332 3.4 
18,000 9,000 0.2 44,750 9.3 255.13 9 2000 4.002 3.8 

NP = average number of projections; NSS = number of subsystems; 
NS = number of sweeps; NR = number of rows in each subsystem; 
T = average CPU time (sec); NC = number of major cycles. 
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In the sequential surrogate constraint method, in each major cycle, the 
number of projections made is at most equal to the number of subsystems. 
In each major cycle, each constraint is examined once, but as explained 
earlier, this work can easily be parallelized. Also, the number of major cycles 
needed in the surrogate constraint method is much less than the number of 
sweeps needed in the relaxation method to achieve the same accuracy. 

These computational results are very encouraging. More extensive 
experimentation is necessary to determine the strategies to implement the 
surrogate constraint methods for obtaining the best performance, things 
such as the best choice for the weight vector in each step, etc. 

7. Extensions to Linear Equations 

It is easy to modify the surrogate constraint methods to solve a system 
of linear equations, 

Ax=b,  (14) 

by applying these methods on the following equivalent systems of linear 
inequalities 

Ax<_b, 

- A x < - b .  (15) 

Many of the classical iterative methods (such as the successive approxi- 
mation method, the Gauss-Seidel method, the SOR method, and the steepest 
descent method) may not always converge for an arbitrary coefficient matrix 
A. Some methods require A to be positive definite or diagonally dominant, 
otherwise those methods would have to be applied to the system 

ArAx=Arb.  

In the case of successive approximations, convergence requires that the 
spectral radius of an approximation matrix be less than one. 

The surrogate constraint methods only require that the system (14) be 
feasible. This is one advantage of the surrogate constraint methods over the 
classical iterative methods. 

For each i, the system (15) has both the constraints A~x < b~ and Aix > b~. 
When x k is the current point, if Atx k = bj, both these constraints are satisfied. 
Otherwise, A~xk#b~, and exactly one of the constraints in the above is vio- 
lated, while the other one is satisfied. Thus, when x k is the current point, the 
set of violated constraints in (15) includes at most one of the constraints 
from the pair A~x <b~ and A~x >bt. Using this, simplifications can be made 
in executing the surrogate constraint methods on the system (15). 
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