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TECHNICAL NOTE 

Convergence of the Steepest Descent Method 
for Minimizing Quasiconvex Functions 1'2 

K. C. K I W I E L  3 A N D  K. M U R T Y  4 

Communicated by O. L. Mangasarian 

Abstract. To minimize a continuously differentiable quasiconvex func- 
tion f :  ~n__,~, Armijo's steepest descent method generates a sequence 
x k+ l = x k _  t k V f ( x k ) ,  where tk > 0. We establish strong convergence 
properties of  this classic method: either xk--}s s.t. Vf ( s  or 
arg m i n f =  ~ ,  Ilxkll ~ ,  andf(xk)J, i n f f  We also discuss extensions to 
other line searches. 

Key Words. Steepest descent methods, convex programming, Armijo's 
line search. 

1. Introduction 

To minimize a continuously differentiable quasiconvex function 
f:  R"~ R, Cauchy's steepest descent method (Ref. 1) with Armijo's stepsizes 
(Ref. 2) generates a sequence {x ~} via 

d'+l=x~-t~g ~, g~=Vf(x~), k=O, 1 . . . . .  (1) 
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where 

t k=argmax{ t : f ( x~ - tgX)<f (~ ) -a t lLg~ l [  2, t =2-' ,  i=0, 1 . . . .  }, (2) 

with a e (0, 1). We prove in Section 2 the following strong convergence result. 

Theorem 1.1. Global Convergence. Either xk--.2eX: = {x: Vf (x )=0} ,  
or J?:= arg min f =  ~;, II xk I[ -" o% and f ( x  k) +inff 

A closely related result appeared in Ref. 3 after an earlier version of 
this note was accepted. The present version provides a considerably simpler 
convergence proof that permits generalization to the quasiconvex case. Other 
related results for nondifferentiable optimization methods are given in Ref. 4 
and Ref. 5, Remark 3.2. These relations and extensions are discussed in 
Section 3. 

2. Global Convergence of Steepest Descent 

We make the following standing assumption that generalizes Armijo's 
condition (2). 

Assumption 2.1. Let r R + ~ +  be a function such that: 

(A1) 3 a ~ ( 0 , 1 ) , % > 0 ,  Vte(0,%]:~(t)<<_at, 

(A2) ~fl>0, vt3e(0, ~] ,  Vt~(0, vp] n R: (a(t)>flt  2, 

(A3) Vk, f(xk+ 1) < f ( x  k ) -  r llgkLI 2 and 0< tk< r e in (1), 

(A4) 3 7 > l ,  rT>0, Vk:tk>V f o r  
[3tke[tk, ytk] : f (x k -- ?kg k) >_f (x k) -- r (tk)I[gkll2]. 

Note that (2) corresponds to 

r  f l=a ,  7/=2, v ~ = v ~ = r r = l .  

As in Ref. 4, we start by considering the condition 

f ( x  k) >__f(2), for some fixed 2 and all k, (3) 

which holds i f X # ~  or 2 is a cluster point of {xk}. 

Lemma 2.1. If (3) holds, then 

t~ Ilgkl[ 2 < [ f (x  ~ - f ( 2 ) l / f l .  (4) 
k = 0  

Moreover, xk~yc for some 2. 
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Proof. By (A2)-(A3),  

flt~ Ilg k [12 < ~b (t~)Ilg k [12 < f ( x  k) - f (  xk +'); 

adding these inequalities yields (4). Next, since (gk, ~ _ x  k) <0 by (3) and 
quasiconvexity o f f  [Res 6, Theorem 9.1.4], and since x k -  x k+ 1= tkgk, we 
deduce that 

1[~7 - xk+' 112 = [1~7 - xk[I z + 2(~  - x ~, x k - x ~+ ~) + II x~+ ~ - x~[I ~ 

< I1~- x~l/2 + t~ IIg~l/2, 

so that 

[l:~-x'llz~ II:~-x~ll2+ ~ tf IlgJll2< ~, 
j=k  

if l>k. Hence, {x k} is bounded and has a cluster point 2, so we may set 
= ~ above to deduce from (4) for any e > 0 the existence of  k such that 

II~-x~llZ_< ~/2 and 

Y t~ IlgJl12___~/2; 
j=k 

thus, [l~-xZll2_<E for all l>k, i.e., x k ~ .  []  

Lemma 2.2. If  2 is a cluster point of  {xk}, then ff~X, i.e., Vf(~)= O. 

Proof. Suppose that x ~ ~ 2, but g := Vf(Yc) ~ O. Then, tk ~ 0 from [cf. 
(A2)-(A3)] 

0 < flt~ Ilgkj[ 2 < f ( x  k) - f ( x  ~'+ ') ~ O, 

with gk ~ g # 0  and f (xk) ,~f(~)  by continuity. Thus, for all large keK, 

f ( x  k - ?kg ~) - f ( x  ~) > - ~b (?k)I]gk[[ 2 ~ - a l k  [[glC[]2, (5) 

by (A4) and (A1), where the left side equals -?k (gk, Vf(xk_ "ikgk)) for some 
tke [0, ?~] by the mean-value theorem, and by (A4), 0 < ?~ < 7tk ~ 0. Hence, 
dividing (5) by ?~ and letting k r_~ oo yields -[Igl[2> - a  Ilgll 2, a contradiction 
with a < 1 [cf. (A1)]. []  

We can now prove Theorem 1.1 under Assumption 2.1 that generalizes 
(2). 
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Proof of Theorem 1.1. If  (3) holds, e.g., .~ # ~ or {x k} has a duster  
point, then the preceding results yield x k ~ y ~ X .  If Ilxkll r oo, then {x k} has 
a cluster point. If  l i m k ~ f ( x  k) >inf f ,  then (3) holds. []  

3. Discussion of Other Line Searches 

First, suppost that a ~ (�89 1) a n d f i s  convex. Then, the proof  of  Lemma 
2.2 simplifies, since 

<gk, X k _ ~> > f (x k) _ f  (~) > f (xX) _ f  (xk +,) > a tk jig k II 2, 

l[~-x~+'[I 2 -  ll~z- xk[12< -2at~llgkIlZ+t211gkll = 

= - ( 2 a  - 1)llx k+~ -xkll2_< 0. 

This observation is used in Ref. 7 to prove that x ~ r  i f , ~ # ~  and V f  
is Lipschitz continuous; thus, our result improves that of  Ref. 7. 

Second, it is easy to verify Theorem 1.1 for any line search for which 
Lemma 2.3 holds and for all k, 

f(xk+ 1) < f ( x  k) _ atk[igkll2 

and 

tk ~ (0, tmax], for some fixed/max > 0. 

Such stepsizes may be found by many procedures [Refs. 8-12]. Note that 
exact line searches are not admissible, but one may use, as in Ref. 12, Section 
10.7.2, 

tk ,,~ arg min { f ( x  k -- tgk): f ( x  k -- tg k) < f (x A) -- a t[Ig k [I 2, 0 < t <  tmax }. 

Third, under (A1)-(A2) to satisfy (A3)-(A4), one may let (cf. the proof  
of Lemma 2.3) 

tk = arg max{t : f ( x  k -- tg k) < f ( x  k) -- qb (t)Ilgkll 2, 

t= 2 - imin [ ru ,  rt~], i=0 ,  1 , . . . } .  (6) 

We note that (6) with r  2 was used in Ref. 13. Again, the Armijo- 
type search (6) may be relaxed as in the preceding paragraph. In particular, 
one may use 

tk ~ t'k := arg min{f (x  k -- tg k) + at2llgk[]2: t>  0}. 

I f f  is pseudoconvex, then X = ) (  [Ref. 6, Theorem 9.3.3]; so if ~ 2 3  and 
tk='[k for all k, then x k ~ X ;  thus, we recover the result of  Ref. 14. 
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Fourth, one may verify Assumption 2.1 for the algorithms of Ref. 3; 
in their notation, let ~b(t)=flt 2 with f l=L62/2(1-62)  for Algorithm A, 
~b = g for Algorithm B. Theorem 1.1 is stronger than Theorem 3 of Ref. 3, 
and our proof is simpler. 

We note that quasiconvexity of f is necessary for Lemma 2.2, and 
consequently Theorem 1.1. For example, let 

n=2 ,  f ( x ) = e  x' -x~ ,  x ~ (0, 0) 7". 

Each of the above methods generates 

x k= (x~, 0) r, with x~ ~ -oo  a n d f ( x  k) + 0, while i n f f =  - ~ .  
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