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Relaxed Cutting Plane Method for Solving
Linear Semi-Infinite Programming Problems1
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Communicated by P. Tseng

Abstract. One of the major computational tasks of using the traditional
cutting plane approach to solve linear semi-infinite programming prob-
lems lies in finding a global optimizer of a nonlinear and nonconvex
program. This paper generalizes the Gustafson and Kortanek scheme
to relax this requirement. In each iteration, the proposed method chooses
a point at which the infinite constraints are violated to a degree, rather
than a point at which the violations are maximized. A convergence proof
of the proposed scheme is provided. Some computational results are
included. An explicit algorithm which allows the unnecessary constraints
to be dropped in each iteration is also introduced to reduce the size of
computed programs.
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1. Introduction

Consider the following linear semi-infinite programming problem:
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where T is a compact metric space with an infinite cardinality, fj, j = 1 , . . . , « ,
and g are real-valued continuous functions defined on T. Note that T can
be extended to a compact Hausdorff space (Refs. 1 and 2) without much
difficulty.

Its dual problem can be formulated in the following form:

where M+(T) is the space of all nonnegtive bounded regular Borel measures
on T.

Under some regularity conditions, it can be shown (Refs. 1 and 2) that
there is no duality gap between (LSIP) and (DLSIP) and the latter achieves
its optimum at an extreme point of its feasible domain. The applications of
the linear semi-infinite programming can be referred to Refs. 3 and 4.

Many papers (Refs. 1, 3, 5, 6) have dealt with solution methods for
solving (LSIP). According to a recent review article (Ref. 7), the so-called
cutting plane method or implicit exchange method is one of the key solution
techniques. Basically, this approach finds a sequence of optimal solutions
of corresponding regular linear programs in a systematic way and shows
that the sequence converges to an optimal solution of (LSIP).

More precisely, in the k th iteration, let

and consider the following linear program:

Firstly, we solve (LPk) for an optimal solution

Then, define
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Secondly, we find an optimizer

If

then xk must be an optimal solution to (LSIP) because (LPk)'s feasible
domain contains (LSIP)'s feasible domain. Otherwise, we let

to construct (LPk+1) and continue the iterative process. The convergence
proof of {x1, x 2 , . . . , xk,...} to an optimal solution of (LSIP) can be found
in Ref. 3. A refined version which allows us to drop some redundant points
in Tk in order to reduce the size of (LPk) can be found in Ref. 2.

In the above approach, one constraint (corresponding to one cut) is
added at a time and the major computational work in each iteration involves
(i) solving a linear program (LPk) and (ii) finding a global minimizer tk +1

of <t>k(t)- To reduce the computational requirement for solving (LPk), an
inexact approach was proposed earlier (Refs. 8 and 9). However, when
the dimensionality of the compact metric space T becomes high, finding a
minimizer of a continuous function $*(t) over T could be extremely time-
consuming, in particular, when fi(t) and g(t) are highly nonlinear and non-
convex. In this case, the computational bottleneck of the cutting plane
approach falls in finding a global minimizer tk + 1 of 0k(t).

Ideas of relaxing the requirement of finding the global minimizer for
different settings can be found in Refs. 10-13. For these approaches, at each
iteration, instead of finding the global minimizer tk+1 of $*(t), one either
has to check that

in order to add a constraint (Ref. 10), or has to find the value

in order to find a new cut at tk+1 such that

where { e k } is a given sequence of nonnegative numbers converging to zero
as k increases to infinity (Refs. 12 and 13). Even so, the required computation
could still be a bottleneck.



762 JOTA: VOL. 99, NO. 3, DECEMBER 1998

In this paper, we further relax the Gustafson and Kortanek scheme
such that a new cut is found at any tk+1 eT with 0 k ( t k +1) < -8, where 8>0
is a sufficiently small number which can be prescribed. In this way, we can
avoid the task of finding the global minimizer tk + 1 and/or checking the
minimum value S(xk) in every iteration. After introducing the relaxed
scheme in Section 2, we show that, under appropriate conditions, the pro-
posed scheme terminates in finite iterations to generate an approximate
solution with desired accuracy. Some computational experiments and ana-
lysis are included in Section 3. Based on the relaxed scheme, an explicit
algorithm which allows the unnecessary constraints to be dropped in each
iteration is developed in Section 4, while some concluding remarks are made
in Section 5.

2. Relaxed Approach

Given that §>0 is a prescribed small number, a general scheme is
proposed as follows.

Step 1. Set k <- 1, choose any t1eT, and set T1 = { t 1 } .

Step 2. Solve (LPk) with an optimal solution xk = (xk
1,.. ., xk

n)
T.

Define (/>*(t) according to (7).

Step 3. Find any tk+1eTsuch that fa(tk+1)<-S.
If such tk +1 does not exist, stop and output xk as the solution.
Otherwise, set Tk+1 = Tk u { t k + 1 } .

Step 4. Update k<- k + 1, and go to Step 2.

Note that, if (LPk) is found to be infeasible in Step 2, then (LSIP) is
infeasible. In this case, there is no reason to continue the iterations. There-
fore, without loss of generality, we may assume that (LPk) is feasible in this
paper. Also note that tk+1 $Tk and, if the scheme terminates in Step 3, then
the output solution xk indeed solves (LSIP) with 8 being small enough (up
to machine accuracy, say 10-7). More on the effects of the size of 8 will be
discussed later. Moreover, the linear dual of (LPk) can be formulated as the
following problem:
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For the purpose of easy description of the proposed approach, we
assume that (LPk) is solvable with an optimal value denoted by V(LPk) and
that (DLPk) is also solvable with an optimal value denoted by V(DLPk).
Recall that xk = ( x k 1 , . . . , xkn )T solves (LPk). Let

be an index set such that

xkj > 0, if and only if je Bk.

Then, we have the following theorem.

Theorem 2.1. If (DLPk+1) is nondegenerate, then V(LPk + 1)>
V(LPk).

Proof. Define a k X n matrix A with aij =fj(ti) being its ( i , j ) t h element,
for i= 1,. . . ,k andy j= 1 , . . . , n . Denoting

b = (g(t1),.. . , g ( t k ) ) T ,

we can rewrite (LPk) in the following form:

Let

be an optimal solution with a basis B. Its corresponding optimal basic vari-
ables are

From the choice of tk+1 in Step 3 of the proposed scheme, we have
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If we let

then (LPk +1) becomes

Denoting

we have a linear dual program,

Moreover, we let

and let

be those in f ' corresponding to B. In this way, if

then by (12),

Moreover,
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Let

the theory of linear programming (Refs. 14 and 15) implies that y* is an
optimal solution of (DLPk). Note that

Hence, we know that

[y*]In other words, - - is a feasible solution of (DLPk +1) with a correspond-

Txfll
ing basic solution - -^- for (LPk+1).

Lx*J
Now, since

(DLPk + 1) is nondegenerate, and since

the basic property of the dual simplex method (Ref. 15, p. 97) guarantees
that

The incremental amount in Theorem 2.1 can be further analyzed. Let

be an optimal solution of (DLPk). We define a discrete measure mk on T
such that

In this way,



766 JOTA: VOL. 99, NO. 3, DECEMBER 1998

Furthermore, let

and let

be an index set such that

H k ( t i ) > 0, if and only if ieB'k.

We claim that

In other words,

yk
i>0, if and only if ieB'k.

Note that, if t k + 1 T k + 1 , then pk+1 ( t k + 1) = 0. In this case, the measure pk+1

achieves nonzero value only at those points in Tk. Hence, we have

which contradicts Theorem 2.1. Therefore, without loss of generality, we
can rearrange tk+ 1 to be the last element in T k + 1 . We define an n x mk matrix
Hk with its jth row vector being

Since /i k (ti) > 0, Vi e B'k, from the complementary slackness theorem of linear
programming (Refs. 14 and 15), we have

where

Let Mk be a pk x mk matrix with its jth row vector being

Recall that tk+1 is the last element in T'k + 1. Now, define an nX(m k +1)
matrix Hk+ with itsy'th row vector being

For
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from the constraints satisfied, we know that

We define

Then,

Moreover, the last element of sk must be zero. Otherwise, we have
Hk + 1 (tk + 1 ) = 0, which contradicts the fact that mk + 1(tk + 1)>0. Recalling the
definition of (t>k(t), on the dual side we define

Note that

and we have the following result.

Theorem 2.2. If (DLPk+1) is nondegenerate, then

Proof. By the definition of $*(t)> we have
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Therefore,

On the other hand, by the definition of $, we have

Hence, we have

Theorem 2.2 is a fundamental result; with it, we show that, under proper
conditions, for any given 8 > 0, the proposed scheme actually terminates in
a finite number of iterations.

Theorem 2.3. Given any S > 0, in each iteration, assume that:

(A1) (LPk) has a bounded feasible domain;
(A2) (DLPk) is nondegenerate.
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Moreover, there exists a S > 0 such that:

(A3) mk (ti)££ Vie«;
(A4) 05 <-5, y#*t;
(A5) Ml has a square submatrix Dk with rank pk ( = |Bk\) and

|det(Dk)|>£

Then, the proposed scheme terminates in a finite number of iterations.

Proof. Suppose that the scheme does not stop in a finite number of
iterations. When (DLPk) is nondegenerate for each k, Theorem 2.1 implies
that

Thus,

We claim that this is impossible.
By (Al), the infinite sequence {xk} is confined in a compact set C in

Rn. There exists a subsequence {xkr} of {xk} such that xkr converges to x*,
and the subsequence { t k r + 1 } converges to some point t* as r-»oo. Now, we
let

Then, </>*,('*,•<-1) converges to <j>* (t*). Since $*,('*,+1) < -S, for each r, we
haveO/0,(t*)<-5.

Now, let ee(0, 8) be an arbitrary number; we can find a large integer
N e { k r } x

r = 1 such that

By Theorem 2.2, we have

Recall that
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each term in the first summation sign of (33) is nonnegative, and each term
in the second summation sign of (33) is nonpositive. It follows that

By (A3), we have

Hence,

By (A4), we have

It follows from (33) that

By (29), (34), and (36), we have

where Oi(e)-»0 as e->o.
By (24), we have

By the definition of MN, we know that the matrix MN has row vectors

Let

Then, (37) and (38) can be expressed as

It follows from (A5) that

where e*(e)->0 as e-»0.
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Combining the facts that <t>N+1 (tN+1 ) = 0, (36), and (39), we have

But

Hence, (40) cannot be true and we have a contradiction. Therefore, our
claim is valid and the proof is complete. D

Note that (A1) is commonly assumed in linear semi-infinite program-
ming to simplify proofs. It can be relaxed by using bounded level sets.
(A2) is also a technical condition commonly used in linear programming.
Moreover, when 8 is chosen to be sufficiently small, (A3), (A4), (A5) in
general can be satisfied without much difficulty. The violation of any of
these three assumptions will lead to some rare instances of degeneracy or
inconsistency. In particular, the violation of (A3) will result in a subsequence
of (DLPK) which has a limit optimal solution being dual degenerate. A
similar situation goes for the violation of (A4). Moreover, the violation of
(A5) will provide a subsequence of (LPK) whose determinant value of opti-
mal basis matrix tends to zero.

Under these conditions, Theorem 2.3 assures that the proposed scheme
terminates in finitely many iterations, say k* iterations, with an optimal
solution

such that

In this case, xK is of course feasible for (LSIP), and it can be viewed as an
approximate solution of (LSIP). The next theorem tells us how good such
approximate solution can be.

Theorem 2.4. For any given <5>0, if there exists x = ( x i , . . ., xn)T,
with X j>-x k * j /8 , VjeBk*, and xj>0, V/£Bk*, such that

then
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Proof. By the definition of xk*, we have

By (41), we have

It follows from (42) and (43) that

By our assumption, we know that

Hence, xk* + SX is a feasible solution of (LSIP), Therefore,

Note that the required condition (41) implies that (1) has an interior
solution. Also, when <5>0 is chosen to be small enough, since {fj(t)\jeBk*}
are in general linearly independent, the existence of the required x in
Theorem 2.4 is not a problem. Theorems 2.3 and 2.4 guarantee that the
proposed scheme generates an approximate solution to (LSIP) with any
level of accuracy in a finite number of iterations.

3. Computational Experiments

In this section, the following two commonly seen L1 problems (Refs.
3 and 16) are used to illustrate the computational behavior of the proposed
scheme:
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Problem 3.1.

Problem 3.2.

It was reported in Refs. 3 and 16 that 0.6931 and —1.78688 are approximate
optimal solutions to Problems 3.1 and 3.2, respectively.

We use MATLAB Version 4.2c (Ref. 17) on a SUN UltraSparc1 work-
station for the experiment. Three different approaches (namely, the tradi-
tional cutting plane method, the proposed method, and the well-known
discretization method) have been implemented.

For all three methods, the 1p subroutine of the MATLAB optimization
toolbox was used to solve linear programs in each of them. For the discretiza-
tion method, we discretized the interval [0, 1] into 101 evenly spaced points
and solved a linear program with 101 explicit constraints. For the traditional
cutting plane method, the fmin subroutine of MATLAB was utilized for finding
the global minimizer of problem (8).

For the proposed method, we set 5 = 0.0001 and recursively discretize
T to find tk+1 in Step 3. In other words, in the beginning, the interval [0, 1]
is discretized by 11 evenly spaced points, and we test each point to see if
<f>(t) < -S. If all points failed, then we refine the discretization by 101 points
to test. If this failed, then we test 1001 points. If this failed again, the
MATLAB subroutine fmin is finally employed to find tk+1 . Our numerical
experiment has shown that only in the last iteration is the subroutine fmin

called for the proposed method.
In our experiment, the condition

<M(tk+1)> -0.0001

was used as a stopping criterion for both the traditional and proposed
methods. Also notice that the relaxed scheme was stated in Section 2 as a
theoretical algorithm, without loss of generality, under the assumption that
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Table 1 . Comparison of different methods.

Traditional cp method
Proposed cp method
Discretized method

Problem 3.1

Obj. value

0.693146
0.693148
0.693148

k

14
12

Time
(sec)

6.87
4.82
6.18

Problem 3.2

Obj. value

-2.2395e+11*
-1.786917
-1.786901

k

71
14

Time
(sec)

40.96
4.94
1.46

* The algorithm does not converge in 70 iterations.

Table 2. Numerical behaviors of using different 8.

S

0.0001
0.01
1.0

Problem 3.1

Obj. value

0.693148
0.693148
0.693148

k

12
12
11

Time (sec)

4.82
4.75
4.46

Problem 3.2

Obj. value

-1.786917
-1.787018
-1.787018

k

14
10
9

Time (sec)

4.94
2.95
2.75
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(LPk) is solvable with an optimal solution xk. In practice, even when (LSIP)
is solvable, some (LPk) at the early stages may still be unbounded below.
This problem can be handled easily by adding enough points to T1 to start
the first iteration; or we can simply choose xk in Step 2 to be a feasible
solution of (LPk), whose objective value is negatively large. In our experi-
ments, we adopted the latter approach. The numerical results are shown in
Table 1.

In the table, obj. value is the final objective value, k indicates the number
of iterations required, and time is in CPU-seconds. Note that k also rep-
resents the number of linear programs (or number of explicit constraints)
solved. For both problems, the proposed method generates a better approxi-
mate solution (comparable to the result obtained by the discretization
method with 100 constraints) in shorter time than the traditional cutting
plane method. For Problem 3.2, the traditional cutting plane method failed
to find an approximate solution in 70 iterations. In this case, all optimizers
(i.e., t'ks) generated by the traditional cutting plane method stay quite close,
so the traditional method failed to converge fast. This experiment shows the
potential of the proposed method.

To further understand the role that 8 played in the proposed method,
we ran the proposed method for both problems with different S values. The
results are shown in Table 2.

In theory for the proposed method, we think that S should be very
small, such as 10-7 for our workstation implementation. But in practice, 8
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can be chosen much larger than we expected. In our experiment, the results
are not bad even when 5 = 1.0.

4. Explicit Algorithm

The proposed scheme adds one inequality constraint in each iteration.
Hence, the size of (LPk) becomes larger and larger. In order to avoid solving
too large problems, we would like to exploit the possibility of dropping
unnecessary constraints, while a new constraint is added in each iteration.
This is referred to as an explicit exchange method in this paper.

To introduce such an explicit algorithm, let us start with some notation.
Let T' = { t 1 , . . . , tm} be a subset with m elements in T. We denote by
(LP(T')) the following linear program with m explicit constraints induced
by T':

Similar to the situation faced in Section 2, for the purpose of easy descrip-
tion, given that D>0 is a prescribed small number, we state our explicit
algorithm in the following steps, under the assumption that LP(Tk) and its
dual DLP(Tk) are both solvable.

Step 0. Let k <- 1, choose any t°1 e T, set T1 = {t°1}, and set m0 = 0.

Step 1. Solve LP(Tk). Let xk = (xk
1,..., xk

n)
T be an optimal solution.

Define Pk(x) according to Eq. (7).

Step 2. Solve DLP(Tk). Let yk = (y k
1 , . . . ,yk

mk 1+1)T be an optimal
solution. Define a discrete measure uk on T by letting

Set Ek = {t eTk |uk(t)>0} = {tk
1,...,tk

mk}.
Step 3. Find any tk

m k + 1eT such that Pk(tk
mk+1 )<D.

If such tk
mk+1 does not exist, stop and output xk as a solution.

Otherwise, set Tk + 1 = Ek u {tk
mk+1}.

Step 4. Update k<- k + 1, and go to Step 1.
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Note that tmk+1$Tk and, if the algorithm terminates in Step 3, then the
output solution xk indeed solves (LSIP), with 8 being sufficiently small. Also
note that, when it is applicable, a primal-dual algorithm can be employed
to find solutions for LP( Tk) and DLP( Tk) simultaneously for computational
efficiency.

Recall that

solves LP(Tk). Let

be an index set such that xkj > 0, if and only if je Bk. Also, let Mk be a pk x mk

matrix with its jth row vector being

On the dual side, recalling the definition of <t>k(t), we define

In this way, we know that

With this setting, and parallel to the proof given in Theorem 2.3, we
have the following result.

Theorem 4.1. Given any <J>0, in each iteration, assume that:

(Al) The set {x1, x2,. . .} is bounded;
(A2) DLP(Tk) is nondegenerate.

Moreover, there exists a <5>0 such that:

(A3) mk(tki)£*, V i = 1 , . . . , m k ;
(A4) 4>kj<-S,WBk;
(A5) Ml has a square submatrix Dk with rank p k ( = \ B k \ ) and

|det(Dk|>5.

Then, the explicit algorithm terminates in a finite number of iterations.

The above theorem asserts that, under proper assumptions, the explicit
algorithm terminates with a solution in a finite number of iterations.
Similarly, the result of Theorem 2.4 can be used to tell how good such a
solution is.
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Table 3. Comparison of relaxed scheme and explicit
algorithm, Problem 3.2.

Iteration k

1- 9
10
11
12
13
14

Time (sec)
Obj. value

Number of constraints in (LP(Tk))

Relaxed scheme

1- 9
10
11
12
13
14

4.94
-1.786917

Explicit algorithm

1-9
6
6
6
6
6

4.73
-1.786917

Note that, for the relaxed scheme in Theorem 2.3, if (LPk) has a
bounded feasible domain, so do (LP k + 1) , (LP k + 2), • • • . However, for the
explicit algorithm, Tk may not be a subset of Tk + 1. Therefore, we assume
directly that the set of optimal solutions to LP( Tk), k = 1, 2,. . . , is bounded.

We now use Problem 3.2 to illustrate the potential of the explicit algo-
rithm. The computational experiment was conducted in the same test
environment as described in Section 3, and the result is shown in Table 3.
Observe that, in the first nine iterations, since LP( Tk) is unbounded below
and hence DLP(Tk) is infeasible, we simply find one feasible solution of
LP(Tk) and define (f>k(x) in Step 1, set Ek=Tk, and jump to Step 3. In this
way, both methods add one constraint in each iteration. After the 9th itera-
tion, DLP( Tk) becomes feasible and the explicit algorithm starts dropping
unnecessary constraints. In this experiment, both cases stop at the 14th
iteration with literally the same final objective value. Although the time
reduction is not huge for this small problem, the potential of the explicit
algorithm is clearly seen.

5. Concluding Remarks

In this paper, we have presented a relaxed cutting plane scheme to solve
linear semi-infinite programming problems. In each iteration, the proposed
scheme chooses a point where the infinite constraints are violated to a degree
rather than a point where the violations are maximized to generate a new
cut for the next iteration. Under proper conditions, it has been proven that
the proposed scheme can generate an approximate solution of any level of
accuracy in a finite number of iterations. Based on this scheme, an explicit
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algorithm which allows the dropping of unnecessary constraints is
developed.

Since the requirement of finding an optimizer of a nonlinear and non-
convex program is relaxed, we see the potential advantage of the proposed
scheme, in particular, in higher-dimensional spaces. Our very limited compu-
tational results support the theory. Although the method that we implemen-
ted for finding tk+1 in Step 3 of the proposed scheme is very primitive, and
may not be good for general purposes, the potential advantage of the
proposed method is clearly illustrated.
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