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Summary 

Four human astrocytic gliomas of high grade of malignancy were each evaluated in tissue and in vitro for 
percentages of cells expressing glial fibrillary acidic protein (GFAP), collagen type IV, laminin and fibronectin 
assessed by immunofluorescence with counterstaining of nuclear DNA. Percentages of cells with reticulin and 
cells binding fluorescein-labeled Ulex europaeus agglutinin were also assessed. In tissue, each extracellular 
matrix (ECM) component was associated with cells in the walls of abnormal proliferations of glioma vessels, 
and all four tumors had the same staining pattern. Two strikingly different patterns of conversion of gene 
product expression emerged during in vitro cultivation. (1). In the most common pattern, percentages of all six 
markers consistently shifted toward the exact phenotype of mesenchymal cells in abnormal vascular prolifer- 
ations: increased reticulin, collagen type IV, laminin and fibronectin; markedly decreased glial marker GFAP 
and absent endothelial marker Ulex europaeus agglutinin. The simplest explanation of this constellation of 
changes coordinated toward expression of vascular ECM markers is that primary glioma cell cultures are 
overgrown by mesenchymal cells from the abnormal vascular proliferations of the original glioma. These cell 
cultures were tested for in situ hybridization (ISH) signals of chromosomes 7 and 10. Cells from one glioma 
had diploid signals. Cells from the other glioma had aneuploid signals indicating they were neoplastic; how- 
ever, their signals reflected different numerical chromosomal aberrations than those common to neoplastic 
glia. (2). The second pattern was different. Cells with ISH chromosomal signals of neoplastic glia retained 
GFAP, and gained collagen type IV. Their laminin and fibronectin diminished, but persisted among a lower 
percentage of cells. Cloning and double immunofluorescence confirmed the presence of individual cells with 
glial and mesenchymal markers. A cell expressing GFAP in addition to either fibronectin, reticulin or collagen 
type IV is not a known constituent of glioblastoma tissue. This provides evidence of a second mechanism of 
conversion of gene expression in gliomas. 

Introduction 

The capacity of malignant astrocytic gliomas to 
elaborate and modify their extracellular matrix 
(ECM) is a fundamental property which may be di- 
rectly relevant to glial- stromal interactions related 
to tumor cell infiltration and tumor angiogenesis. A 

distinct aspect of glioma cells is their ability to 
change their expression of their ECM and glial gene 
products [1-3]. As gliomas progress from low to 
high grade of malignancy in situ, ECM associated 
with vascular and mesenchymal components in- 
creases in structures commonly called endothelial 
proliferations [3-9]. The glial product GFAP often 
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is reduced with increased grade [10]. One of the 
most malignant gliomas, the gliosarcoma contains 
an increased mesenchymal component which is 
clearly malignant in certain patients [11-13]. These 
progressions have been called 'mesenchymal drift'. 
Cultivation of gliomas in vitro accelerates similar 
changes in the mesenchymal ECM constituent, fi- 
bronectin, and in GFAP [14-18]. A better under- 
standing of the mechanisms that cause mesenchy- 
mal drift could provide insight into these funda- 
mental properties of malignant astrocytic gliomas. 

Two different mechanisms that would explain 
mesenchymal drift are: 1) a single cell type with 
highly variable expression of these gene products 
[19-21] and 2) two different types of cells, one of 
which outgrows the other [17, 18, 21-23]. A differ- 
ence between these two possibilities is a constraint 
imposed by the second mechanism upon the direc- 
tion of changes in antigenic phenotype. If a cell type 
overgrows another cell type, the resulting pheno- 
typic changes should maintain a lineage-consistent 
direction. That is, if the overgrowing cell type is a 
cell of specific lineage within the original glioma tis- 
sue, the changes should reflect an alteration toward 
the phenotype of this lineage. 

In contrast, the first mechanism of variable gene 
product expression would not necessarily produce 
such a consistent change in the pattern of the phe- 
notype. Bi-lineal, rather than mono-lineal, alter- 
ations might be possible. There is little quantitative 
information about alterations in expression of a 
group of gene products that cross major cell lineage 
boundaries. However, cloning of a single human 
glioma cell line has shown bi-directional alterations 
in expression of a group of neuroectodermal mark- 
ers [20]. 

The present study was designed to test the ques- 
tion whether changes occur in a group of ECM com- 
ponents and cell lineage markers between tissue 
and early primary culture in vitro of human gliomas. 
If so, would the pattern of changes provide clues re- 
garding the mechanism underlying these changes? 

Materials and methods 

Glioma tissues 

The gliomas used in this study were graded by the 
neuropathologist (PEM) using criteria of the World 
Health Organization [5, 24]. Tissue samples for cell 
culture and cryostat sectioning were taken from the 
same fresh 0.05-0.2 c m  3 fragment of glioma tissue bi- 
sected under sterile conditions. One half was minced 
for culture and the other half was mounted on a 
cryostat chuck, sectioned at 7 microns and fixed for 
10 rain in 100% methanol [4]. Starting material was 
limited by the need for adequate diagnostic material 
on these primary biopsies. Autopsy samples of hu- 
man skin and brain tissue were controls. 

Cell cultures 

Standard techniques were used for glioma cell cul- 
ture as described previously [16, 25]. Primary glio- 
ma cell cultures were used as early as possible with- 
in experimental requirements for duplicate samples 
grown in special media for six different marker 
studies. The average passage available was passage 
four. 

Three established human glioma cell lines and 
cultured fibroblasts were controls. One line (LM) 
was an established human glioma line from frozen 
stock in passage 165. The LM line has been charac- 
terized previously [26, 27]. The extensively charac- 
terized U138 MG human glioma [16, 28] was ob- 
tained from the American Type Culture Collection, 
Rockville, MD. The GFAP+ U251MG human glio- 
ma line was obtained as frozen stock in passage 305 
[29]. Human fibroblasts were cultured from skin 
taken at circumcision or at skin biopsy. 

Cells were fed and grown on sterile microscopic 
slides in 100 mm diameter culture dishes in medium 
supplemented with twice daily additions of 
0.25 mM sodium ascorbate (Sigma, St. Louis, MO) 
as described [29, 30]. After 9 days, the cells were 
rinsed and fixed for 10 rain in 100% methanol. Cells 
to be stained for fibronectin were grown in serum 
from which fibronectin was removed by passing it 
over an affinity column of immobilized gelatin [31] 
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and were then stained according to the described 
procedures. 

chyma (most intensely in subpial astrocytes) and 
the U251MG glioma cell line. 

Silver stain for collagen 

The Tibor pap silver stain for reticulin was perform- 
ed as previously described [16, 32]. It is one of two 
fundamentally different histopathologic approach- 
es to assess numbers and location of cells expressing 
extracellular matrix (ECM) in gliomas. This ap- 
proach detects the histochemical capacity of glyco- 
sylated ECM fibrils to reduce and deposit silver. 
Other assays described below depend upon specific 
binding of fluorescent markers, providing opportu- 
nity for corroboration by different ECM assays. 
Classical 'reticulin' is often attributed to type III 
collagen, although other types of collagen or pro- 
teoglycans might contribute to material identified 
as collagen by silver staining [33, 34]. 

Primary antisera 

Rabbit anti-laminin and rabbit anti-type-IV colla- 
gen sera were donated by Drs. H. Kleinman and G. 
Martin [35, 36]. Affinity-purified rabbit and anti-la- 
minin antibodies were prepared from whole anti- 
serum by column chromatography as described 
previously [16]. The purified antibody was aliquot- 
ed and stored as stock solution at approximately 
1 mg/ml. The purity of the antibody was assessed by 
SDS-gel electrophoresis and immunoelectrophore- 
sis, and the specificity of the antibody was deter- 
mined by immunodiffusion, ELISA, and immuno- 
peroxidase staining reactions. Rabbit anti-GFAP 
was obtained from Dako. 

The antibody and antiserum activities were test- 
ed in localizing components of human skin and 
brain tissue and cell line controls. Optimal dilutions 
of each primary antiserum were also determined at 
this time. Anti-laminin (1:20), anti-fibronectin 
(1:50) and anti-type IV collagen (1:20) stained ves- 
sels, basement membranes and meninges. These 
antisera also stained LM, U138MG, and fibroblast 
cell lines. Anti-GFAP (1:50) stained brain paren- 

Detection of extracellular matrix protein and GFAP 
with immunofluorescence 

Methanol-fixed specimens were permeabilized 
with 0.3% Saponin in Dulbecco's PBS with 1 mM 
EGTA for 15 min to maximize staining of cytoplas- 
mic epitopes. After 3 rinses in 0.01 M phosphate- 
buffered 0.85% saline (PBS), pH 7.2 (Difco, De- 
troit, MI), specimens were incubated with primary 
antiserum for 30 rain at room temperature. After 3 
rinses in PBS, the specimens were stained with flu- 
orescein-conjugated goat anti-IgG matched to the 
species of the primary antiserum (Cappel, Malvern, 
PA) diluted 1:100 in PBS for 30 min. Nuclei were 
counterstained with the DNA fluorochrome 4",6- 
diamidino-2-phenylindole as described below. 

Control incubations included substitution of ir- 
relevant antibody of the same species for the pri- 
mary antibody [4,16]. Fibronectin staining specifici- 
ty was tested by substitution of directly labeled ir- 
relevant primary antibody for the fluoresceinated 
anti-fibronectin and by absorption of anti-fibronec- 
tin with pure fibronectin (Collaborative Research, 
Lexington, MA) [31]. Collagenase digestion provid- 
ed a further control on specificity of staining for re- 
ticulin and collagen type IV. Slides of cellular mono- 
layers were divided with grease into two regions, 
one of which was incubated 1 day at 37 ~ C with puri- 
fied collagenase (Form III, Advance Biofactures, 
Lynbrook, NY) in 0.025 M Tris buffer with 0.01 M 
calcium chloride. The other region on each slide 
was incubated in buffer alone. Tissue controls were 
done on additional sections from the same block. 

Lectin-binding ligand fluorescence 

Specimens were triple-rinsed with 0.005 M phos- 
phate-buffered 0.15 M saline at a pH 7.2 (PBS) 
(Biofluids, Rockville, MD). Then 50 ~tg per ml PBS 
of fluorescein-conjugated Ulex europaeus aggluti- 
nin (Sigma, St. Louis, MO) was applied to these 



270 

Figs 1-3. Features of tissue and primary in vitro cultures of  glioma numbers  1-3. These  represent  the common  pat tern of gene product  

expression evident in this study. 

Fig. 1. Reticulin and nuclei were stained by silver reduction in tissue (A) and primary culture (B) (original magnification: A, x 665; B, 

• 410). 

cells, which were not allowed to dry during staining. 
Specimens were incubated for 30 rain. 

Lectin activity was tested in localizing compo- 
nents of brain tissue and cultured cells. Ulex euro- 
paeus agglutinin stained capillaries and the endo- 
thelial portions of larger vessels. LM, U138MG and 
fibroblast cells were negative. 

fore did not interfere with evaluation of ECM com- 
ponents. 

After immunofluorescent or lectin staining, the 
specimens were rinsed 3 times with PBS. They were 
counterstained with 20 gg/ml DAPI, rinsed in dis- 
tilled water, and mounted under coverslips in Gel- 
vatol. 

Simultaneous detection of  antigen with immunoflu- 
orescence and nuclear DNA with DAPI fluoro- 
chrome 

To avoid any possibility of interference from RNA 
fluorescence and avoid cross-excitation with the 
primary ECM fluorochrome marker, the DNA flu- 
orochrome 4',6-diamidino-2-phenylindole (DAPI, 
Monsanto, Indian Orchard, MA) was used to coun- 
terstain nuclei simultaneously stained for ECM. 
This facilitated quantitation of positive and nega- 
tive cells. DAPI is a nuclear fluorochrome which 
stains DNA but not RNA [17]. It does not fuoresce 
when illuminated with 440-490 nm blue light used 
to excite fluorescein-labeled markers, and there- 

Table 1. Extracellular matrix, glycoprotein and GFAP in cells lo- 

cated in situ in tissues of h u m a n  gliomas 

Substance Localization in situ 

Vessel walls Parenchyma 

Reticulin + - 
Collagen type IV + - 

Laminin  + - 

Fibronectin + - 
Ulex europaeus ligand + (endothel ium) - 
GFAP - + 



271 

Fig. 2. Collagen type IV stained by indirect immunofluorescence was evident in tissue vasculature (A) and primary culture (B). Nuclei in 
same field of tissue (C) and culture (D) are counterstained with DAPI (original magnification x 275). 

Quantitation of  positive and negative cells 

The experiments focused upon decisive markers of 
ECM components with unequivocally positive and 
negative regions in glioma tissue to facilitate stan- 
dardization and comparison with these components 
in cells cultured from the same gliomas. Microscop- 
ic fields were selected by random movement of the 
specimen on the stage [37]. Positive and negative re- 
gions of tissue provided internal standardization of 
levels of fluorescence and silver staining. The lectin 
stain and antisera to ECM were chosen for this 
study on the basis of their ability to stain these posi- 
tive regions brightly with low background fluores- 
cence of negative regions. This produced prepara- 
tions in which positive and negative cells would be 

unequivocally interpreted and counted. Cellular 
fluorescence was considered positive when it was 
distinctly brighter than background fluorescence of 
negative controls (brain parenchyma and U251 for 
fibronectin, brain parenchyma for laminin and type 
IV collagen, and brain vasculature and fibroblasts 
for GFAP). 

At least 10 microscopic fields per specimen were 
photographed with Kodak Tri-X film in a Zeiss flu- 
orescence microscope with epi-illumination and 
transmitted incandescent light optics. For immuno- 
fluorescence, images of the same microscopic field 
were photographed first under 440490 nm excita- 
tion of fluorescein-labeled anti-ECM antibody or 
lectin (510 nm reflector and LP520 plus KP560 bar- 
rier filters), and second under 365 nm excitation of 
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Fig. 3. Binding of fluorescein conjugated Ulex europaeus by vascular endothelium in tissue (A) and lack of binding by cells in primary 
culture (B). Nuclei in same field of tissue (C) and culture (D) were counterstained with DAPI. Micronuclei are evident (original magnifi- 
cation: A and C, • 665; B and D, • 275). 

DAPI-stained nuclei (395 nm reflector). For subse- 
quent enumeration, these images were superim- 
posed to determine which nuclei were from positive 
cells and which were from negative cells. 

Since cellular margins were impossible to distin- 
guish with certainty in glioma tissue, cellular nuclei 
were counted in place of cells. For brevity these de- 
terminations are hereafter termed positive and neg- 
ative 'cells'. On silver-stained preparations the nu- 
clei of positive and negative cells were counted di- 
rectly with transmitted light optics. The silver stain 
lacked sufficient cytoplasmic signal to count posi- 
tive cells. Therefore, cells surrounded or covered by 
silver fibrils were considered positive. The exact cri- 
teria for counting cells positive with fluorescent 

markers were immunoreactive cytoplasm sur- 
rounding the shadow of a negative nucleus con- 
firmed by superimposition of DAPI-stained images 
of the same field (for example, Figs 2B and 2D). 
Fluorescent markers that stained cytoplasm suffi- 
ciently to reveal this nuclear shadow of absent pro- 
tein precursor were selected to enable counting of 
positive cells. This excluded certain markers that 
failed to meet these criteria from the final data anal- 
ysis (i.e., other collagen types and Ric inus  c o m m u -  

his agglutinin) that did not produce sufficient cyto- 
plasmic signal for counting. 

More than 11,000 cells were counted for this 
study. A 2 x 2 contingency table was constructed 
with two rows for the total number of positive and 
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Table 2. Average percentages of cells that express extracellular 
matrix, endothelial and glial gene products 

Substance Average percentage of positive 
cells a _+ SD 

In situ In vitro b 

Reticulin 32 + 4 93 c + 6 [38] 
Collagen type IV 29 + 8 77 c + 25 [64 ~] 
Laminin 33 + 4 69 c + 20 [10] 
Fibronectin 26 _+ 5 98 c + 3 [5] 
Ulex europaeus ligand 19 + 6 0 d [0 d] 

GFAP 72 + 7 6 ~ + 5 [86] 

At  least 10 microscopic fields from each of three gliomas, b The 
average in vitro percentages reflect gliomas 1-3 only, since glio- 
ma 4 differed from these. Glioma 4 in vitro percentages are in 
brackets to the right, c Significant difference from in situ value (p 
< 0.05) by chi-squared analysis. ~ Indistinguishable from back- 
ground fluorescence of negative controls (brain parenchyma & 
fibroblasts for Ulex europaeus). 

negative cells and two columns for the in situ and in 
vitro cells. The tabulated data on each ECM com- 
ponent of each glioma were evaluated by Chi- 
squared tests [38]. These data were expressed as 
percentages of positive cells (positive cells/total 
cells multiplied by 100) in Table 2. 

lnterphase cytogenetics by in situ hybridization 

Cells grown on glass microscopic slides were fixed 
in 100% ethanol and air-dried. Specimens were in- 
cubated for 30 minutes in 2 • SSC pH 7.0 pre- 
warmed to 37 ~ C. After dehydration and drying 
from ethanol, specimens were denatured in 70% 

Formamide/2 x SSC, at 70 ~ C for 2 min. After de- 
hydration in graded ethanols at 4 ~ C, specimens 
were incubated with 15 ng of heat denatured digoxi- 
genin labeled alpha satellite probes (Oncor) for the 
chromosomes of interest in 30 ~tl of hybridization 
mixture for 0.5-16 h. The hybridization mixture 
contained 65% formamide, 2 x SSC, 5% dextran 
sulfate, and 0.1 ~tg/~tl salmon sperm DNA [39-41]. 

Specimens were washed with 40 ml of pre- 
warmed 0.25X SSC pH 7.0 at 72 ~ C for 5 min, and in 
i x PBD for 2 min. They were then incubated with 
either fluorescein- or peroxidase-labeled anti-di- 
goxigenin antibody at 37 ~ C for 5 min or 30 min, re- 
spectively, and washed 3 times in 1 x PBD at room 
temperature. Peroxidase-labeled specimens were 
developed with diaminobenzidine and counter- 
stained with methyl green [41, 42], dehydrated and 
mounted in Permount. Fluorescein-labeled speci- 
mens were counterstained with 0.3 ~tg/ml propidi- 
um iodide and mounted with Gelvatol or glycerol 
plus 1.4% di-azo-bicyclo-(2,2,2)-octane [43, 44]. 

Results 

All four neoplasms were astrocytic gliomas of high 
grade malignancy. Three were glioblastoma multi- 
forme, grade IV by World Health Organization 
(WHO) criteria of diagnosis and grade [24]. The 
other (gliom~i number 3) was an anaplastic astrocy- 
toma, grade III. By new WHO criteria this third 
glioma would also be considered a glioblastoma [5]. 

The following features were evident in the tissues 
of all gliomas studied. ECM components (reticulin, 

Table 3. Changes in extracellular matrix, endothelial, and glial components  of individual gliomas upon cultivation in vitro 

Glioma number & diagnosis Ratio of cultivated cells to cells in situ a 

Reticulin Type IV Laminin Fibronectin Ulex europaeus GFAP 
collagen ligand 

1 - Glioblastoma 2,7 1.6 2.3 4.5 0 0.12 
2 - Glioblastoma 3.1 3.5 2.3 4.0 0 0.16 
3 - Anaplastic 2,8 3.0 1.6 3.0 0 0 

astrocytoma 
4 - Glioblastoma 1.3 1.8 0.28 0.17 0 1.2 

a For each of the six components,  this is the percentage of positive cells in vitro divided by the percentage of positive cells in situ. 
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Figs 4-5.Features of glioma number 4 that represent a unique pattern of gene product expression in cultured cells. 
Fig. 4. Reticulin (A) and collagen type IV (B) are both expressed. Intracellular pro-eollagen (arrow) was used for quantitation rather than 
the brighter extraeellular collagen. Unlike the other gliomas, many cells express GFAP (C), their nuclei counterstained with DAPI (D) 
(original magnification: A, x 500; B, x 665; C and D, x 275). Tissue (not illustrated) was similar to tissue in Figs 1-3. 

type IV collagen, laminin, and fibronectin) local- 
ized within the walls of abnormal vascular prolifer- 
ations, but not in parenchyma of glioma tissue ex- 
cised in situ (Figs 1 and 2, Table 1). Ulex europaeus 

bound endothelial cells (Fig. 3A); cells binding this 
marker  were uniformly lost upon cultivation in vit- 

ro (Table 2 and Fig. 3B). 
Changes in percentages of each marker  that oc- 

curred during in vitro cultivation were calculated as 
the numerical ratio of percentage of positive cells in 

vitro divided by the percentage of positive cells in 

situ (Table 3). Three of these gliomas expressed 
each of the four extra-endothelial vascular ECM 
components on a greater percentage of cells in vitro 

than in situ (Figs I and 2, Table 3). The average in- 
crease in percentages of cells with reticulin, colla- 
gen, laminin, or fibronectin was between two-fold 
and four-fold. These same three gliomas retained 
few cells expressing GFAP upon cultivation (Tables 
2 and 3). Gliomas I and 2 reevaluated in their tenth 
passage had lost all GFAP and retained all four 
ECM markers. 

One glioma (number 4) produced a pattern of an- 
tigenic changes different than the other gliomas. Its 
retention of both parenchymal and specific vascular 
markers was striking. It retained GFAP and reticu- 
lin-positive cells, and it retained a smaller percent- 
age of cells with fibronectin and laminin (Fig. 4, Ta- 
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Fig. 5. Double labeling immunofluorescence for fibronectin (A) and GFAP (B) of cells cloned from glioma number 4. Cells express both 
markers in their cytoplasm surrounding shadows of the same negative nucleus (arrows). 

ble 3). Type IV collagen-positive cells increased. To 
determine whether multiple cell populations might 
explain the mixture of vascular and parenchymal 
markers expressed by this glioma, it was cloned at 
limiting dilution. Clones expressed the markers of 
the parent line, but tended to show more ECM ex- 
pression. Double labeling confirmed expression of 
vascular ECM and parenchymal markers in the 
same cell (Fig. 5). 

To determine which, if any, of these cells cultured 
from gliomas were neoplastic, in situ hybridization 
(ISH) for pericentromeric alpha satellite DNA se- 

quences of chromosomes 7 and 10 was applied to 
fixed cell cultures. Gliomas frequently have more 
than the normal pair of chromosomes 7, and malig- 
nant gliomas often lose all or a part of one chromo- 
some 10 [45]. Results indicate a profile of ISH sig- 
nals typical of a malignant glioma in cells cultured 
from glioma 4 (Table 4). Cells cultured from glioma 
2 gave predominantly diploid ISH signal profiles 
similar to non-neoplastic control ceils. Remarkably, 
cells from glioma i gave a bizarre pattern of aneu- 
ploid signals (Table 4). While clearly neoplastic, this 
pattern was not typical of a glioma. 

Table 4. Hybridization signals of chromosomal satellite DNA of cells cultured in vitro from gliomas and control fibroblasts 

Source of cells Chromosome number Percentage of fluorescent in situ hybridization signals 

1 2 3 4 5 6 >6 

Glioma 1 7 42 39 12 4 2 
10 11 12 15 16 13 

Glioma 2 7 52 46 1 0.3 
10 26 70 4 0.4 

Glioma 4 7 16 21 38 18 5 
10 73 18 6 2 0.5 

Fibroblasts 7 29 67 5 
10 11 89 

1 1 
11 22 

2 0.5 
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Fig. 6. Fluorescent in situ hybridization signals for chromosome 7 in cultured cells of glioma 1 (A), glioma 2 (B), and glioma 4 (C) (original 
magnifications x 450). 

Discussion 

All tumors, when studied immediately after biopsy, 
had essentially the same staining pattern, and the 
results of this study consisted of in vitro changes 
only. All ECM components of gliomas 1-3 in- 
creased upon culture. Some more than tripled their 
original percentages of positive cells in tissue. The 
gliomas that tended to lose GFAP upon cultivation 
generated a consistent direction of change toward 
the precise phenotype of non-endothelial cells from 
the walls of glioma vessels. This occurred in three 
gliomas among the four ECM components, GFAP 
and one lectin marker examined, a total of 18 indi- 
vidual observations. With each observation allow- 
ing change in the same or opposite direction as its 
counterpart, the possibility that this consistent pat- 
tern of phenotypic conversion resulted from ran- 
dom phenomena is less than 0.1%. The similarity of 
changes among these three cases provides evidence 
that they represent the most common form of trans- 
formation of ECM of gliomas. These results are 
most compatible with the possibility that mesen- 
chymal cells in walls of their abnormal vascular pro- 
liferations outgrew the other cells cultured from 
these three gliomas. This would explain the loss of 
epidermal growth factor receptor gene amplifica- 
tion during glioma culture observed in other stud- 
ies, since this gene is amplified in glioblastoma pa- 
renchyma rather than vascular proliferations [23, 
46-48]. Interphase cytogenetic analysis indicates 

that these cells have either normal or neoplastic 
chromosomal signals. 

While the possibility of cellular overgrowth pro- 
ducing changes in glioma phenotype has been pre- 
viously proposed on the basis of descriptive evi- 
dence [15, 22, 49, 50] there have been minimal quan- 
titative data to support this proposal. Many glioma 
cells in culture contain fibronectin, reticulin, type 
IV collagen, and laminin [16, 28, 29, 51, 52]. This 
contrasts with other studies that show relatively fo- 
cal representation of these ECM components in 
glioma tissues [4, 6-9]. Despite this suggestion of al- 
tered ECM expression from different studies, only 
fibronectin has been documented to increase on a 
cell percentage basis upon culture of individual 
gliomas [51]. The present study investigated all of 
these ECM components on a cell percentage basis 
in tissue and culture to determine whether such 
changes were occurring and their extent. 

Highly intriguing is the single glioma in this study 
that, upon cultivation, did not convert to a cellular 
phenotype encountered in its tissue. A mixture of 
cells of different lineage does not explain this phe- 
notype, since individual cells with markers of both 
glial and mesenchymal lineage were found after 
cloning and double labeling. There are more than 
one possible explanation for these changes result- 
ing in the special array of gene products expressed 
by this glioma culture: 

1. It may represent outgrowth of a rare type of glio- 



ma cell 'frozen' between expression of glial and 
expression of mesenchymal features. However, 
no cell of this phenotype was found in the tissue 
of this glioma. 

2. Glioma parenchymal cells and cells within vas- 
cular proliferations may each produce an ECM. 
Glioma cells might then deposit this ECM at the 
vessel, possibly via their astrocytic foot process- 
es that extend to meet the vascular adventitia. 
These foot processes might be analogous to the 
basal layer of an epithelial cell but located many 
microns away from their cell body. If this were 
the case, the ECM in this culture could originate 
in glioma parenchymal cells. 

3. The components could be subject to complex al- 
terations of gene expression which for unknown 
reasons favor expression of mesenchymal and/or 
vascular ECM antigens, but also allow continued 
expression of glial antigen. 

Intraceltular GFAP can be modified to a degree in 
certain gliomas by changes in hormones, cellular 
density, configuration, or growth substrate [53-59]. 
Since production of ECM proteins by glioma cul- 
tures has been recognized [60], investigations of 
modulation of production of these ECM compo- 
nents have begun. Butyrate induces fibronectin and 
collagen gene expression in one established glioma 
cell line [61]. Of particular interest is the association 
of a human immunodeficiency virus regulatory pro- 
tein with increased transcription of fibronectin and 
alpha I type I collagen promoters [62]. These stud- 
ies pertain to the present observations by demon- 
strating that some coordinated expression of ECM 
components can be stimulated by exogenous 
agents. In the future, it would be interesting to de- 
termine whether these, or other agents, could pro- 
duce the transformation encountered in this fourth 
glioma in the present study. 

These questions pertaining to mesenchymal drift 
are fundamental to a better understanding of glio- 
mas which could provide therapeutic insights. For 
example, monoclonal antibody therapies targeting 
gliomas have had limited success, perhaps because 
they have aimed at a moving target of changing 
gene expression. If these changes are a manifesta- 
tion of unlimited ability of the glioma cell to alter its 
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gene expression in response to the effects of exog- 
enous agents, then the potential of glioma cells to 
escape therapy aimed at one phenotype by repeat- 
ed phenotypic alterations is a serious concern. 
Changes that result from a limited number of differ- 
ent cell populations in gliomas, one of which out- 
grows the other, are more likely to be susceptible to 
targeted therapy like immunotherapy or growth- 
factor biomodulation, since each cell population 
can be individually managed. 
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