Neurochemical Research, Vol. 11, No. 3, 1986, pp. 453-463

SUBCELLULAR DISTRIBUTIONS OF
CALCIUM/CALMODULIN-STIMULATED AND
GUANINE NUCLEOTIDE-REGULATED
ADENYLATE CYCLASE ACTIVITIES IN THE
CEREBRAL CORTEX

SHIrRLEY T. Bissen! and Tersurumt Ugpal-?3
Departments of Pharmacology' and Psychiatry?
and
Mental Health Research Institute’
The University of Michigan,
Ann Arbor, Michigan 48109

Accepted September 18, 1985

The subecellular distribution of Ca?"/calmodulin-stimulated adenylate cyclase ac-
tivity was studied in comparison with that of guanine nucleotide-stimulated cyclase
activity. The distributions of these activities were similar among the crude frac-
tions but differed among the purified subsynaptosomal fractions. The specific
activity of Ca’*/calmodulin-stimulated cyclase was highest in a light synaptic
membrane fraction, which has few, if any, postsynaptic densities, whereas that
of guanine nucleotide-stimulated cyclase was highest in a heavier synaptic mem-
brane fraction rich in postsynaptic densities. These results suggest that the Ca?*/
calmodulin-stimulated cyclase has, at least in part, a different cellular or subcel-
lular location than the guanine nucleotide-stimulated cyclase.

INTRODUCTION

Numerous hormones and neurotransmitters initiate some of their biolog-
ical effects by stimulating or inhibiting the activity of adenylate cyclase
(EC 4.6.1.1), and both of these effects require guanosine 5'-triphosphate.

Shirley T. Bissen’s present address: Department of Zoology, University of California, Berke-
ley, CA 94720.
Abbreviations used: CaM, calmodulin; GppNHp, guanosine 5'-(8,y-imino) triphosphate.
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The adenylate cyclase complex is considered to be composed minimally
of three components: hormone receptor (R), guanine nucleotide-binding
regulatory component (N), and catalytic subunit (C) (1, 2). Stimulatory
and inhibitory N components have been functionally distinguished (1, 3—
5), and two distinct proteins have been isolated and characterized: a stim-
ulatory N protein (Ns) (6-9) and an inhibitory N protein (N;) (10-12).

The mammalian brain is rich in another class of adenylate cyclase,
namely, Ca?*/calmodulin (CaM)-sensitive adenylate cyclase (13, 14).
This cyclase is activated directly at the C subunit by the Ca?*/CaM com-
plex (15-17), without the involvement of guanine nucleotides or the Ny
component (18, 19). The Ca?*/CaM-sensitive cyclase has been resolved
from Ca®"/CaM-insensitive cyclase (20, 21), and guanine nucleotides
stimulate both Ca?*/CaM-sensitive and -insensitive cyclases (21-23).

In view of the possibility that these different forms of brain adenylate
cyclase may be present in different types of cells or in different loci of
the same cell, and therefore involved in different cellular functions, we
have studied the subcellular distributions of the Ca® * /CaM-stimulated and
the guanine nucleotide-regulated cyclases in bovine cerebral cortex. Here
we present evidence that Ca®>* /CaM-stimulated cyclase in the cerebral
cortex is present, at least in part, in a membrane that is distinct from the
membrane rich in guanine nucleotide-stimulated cyclase.

EXPERIMENTAL PROCEDURE

Fresh bovine brains were obtained from a local slaughterhouse, transported on ice, and
processed immediately. Guanosine 5'-(B,y-imino) triphosphate (GppNHp) was from Inter-
national Chemical and Nuclear. [a-*2P] ATP (10-30 Ci/mmol) was from Amersham; and [2,8-
3H] cyclic AMP (30-50 Ci/mmol) was from New England Nuclear. Highly purified CaM was
a generous gift of Drs. M. E. Gnegy and M. J. Welsh of the University of Michigan.

Various subcellular fractions of the entire bovine cerebral cortex were prepared as de-
scribed (24), except that the crude synaptic membrane fraction (M;) was centrifuged (50,000
g) on a discontinuous sucrose density gradient composed of layers of 0.8, 0.9, 1.0, 1.2, and
1.4 M sucrose.

Adenylate cyclase activity was measured in a mixture (100 u! final volume) containing 80
mM Tris-maleate (pH 7.4), 2 mM MgSO,, 10 mM theophylline, 0.1 mM cyclic AMP, 0.5
mM [e-*?P] ATP (70-90 cpm/pmol), an aliquot of the appropriate fraction (15-35 wg protein)
and test substances as indicated. Following preincubation at 30°C for 2 min, the reaction
was initiated by the addition of ATP and allowed to proceed for 5 min at 30°C. The reaction
was terminated and [*°P] cyclic AMP was isolated and quantitated by the method of Salomon
et al. (25). All assays were performed in duplicate; the range of variation was generally less
than 10%. Recovery of cyclic AMP ranged from 60% to 80%. Under the assay conditions
used, the formation of cyclic AMP was linear with respect to protein concentration and
time.
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Protein concentrations were determined by the method of Lowry et al. (26) with bovine
serum albumin as standard. Free or effective concentrations of Ca?* were calculated using
the program described by Fabiato and Fabiato (27).

RESULTS

Ca** /CaM-stimulated and GppNHp-stimulated adenylate cyclase ac-
tivities in various subcellular fractions are shown in Table I. Among the
primary and mitochondrial subfractions, these cyclase activities were pri-
marily associated with the plasma membrane and synaptosome-containing
fractions, Py, P», and P, (1.2) (Table I, A and B}. Among the synaptosome
subfractions, these cyclase activities were highest and of comparable lev-
els in the M; synaptic membrane fraction. In contrast, in the M, crude
synaptic vesicle fraction, the Ca?*/CaM-stimulated activity was more
than 15 times greater than the GppNHp-stimulated activity (Table I, C).

Among the synaptic membrane subfractions, the majority of these cy-
clase activities were associated with the M;(1.0) and M;(1.2) fractions.
However, the specific activity of the Ca?*/CaM-stimulated cyclase was
highest in the M,(0.9) fraction, and that of the GppNHp-stimulated cyclase
was highest in the M (1.2) fraction. In the light fractions of the gradient,
M;(0.8) and M;(0.9), the Ca®*/CaM-stimulated activity was five to ten
times greater than the GppNHp-stimulated activity, but these cyclase
activities were nearly equal in the heavy fractions of the gradient (Table
I, D). In every synaptic vesicle subfraction, the Ca?*/CaM-stimulated
activity was much greater than the GppNHp-stimulated activity, and both
activities were lowest in the lightest fraction, which is most enriched with
synaptic vesicles (24, 28) (Table I, E}. Essentially the same distribution
pattern was observed in another experiment.

Since these data suggest that the lighter synaptic membrane fractions
contain cyclase primarily stimulated by Ca?*/CaM, and the heavier syn-
aptic membrane fractions contain cyclase equally stimulated by Ca®*/
CaM or GppNHp, the effects of these ligands on cyclase activity in the
M;(0.9) and M,(1.2) fractions were studied in more detail. The cyclase
activity in either fraction was maximally stimulated by the same concen-
tration of Ca’*, which was calculated to be 0.26 uM Ca?*, and was
inhibited by higher concentrations of Ca** (Figure 1). The effects of var-
ious GppNHp concentrations on cyclase activity in the absence or pres-
ence of EGTA are shown in Figure 2. In the absence of EGTA, the cyclase
activity in the M,(0.9) fraction was inhibited by every concentration of
GppNHp examined, whereas the cyclase activity in the M;(1.2) fraction
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FiG. 1. Adenylate cyclase activity as a function of Ca?* concentration. Adenylate cyclase
activity was measured in the presence of 150 uM EGTA and 0.5 pg CaM alone or in the
presence of various calculated free Ca’* concentrations. The open bars represent the orig-
inal cyclase activity, with no additions. The mean and range of duplicate determinations of
adenylate cyclase activity in the M;(0.9) (A) and the M2(1.2) (B) fractions are presented.

Data are representative of three separate experiments with two different membrane prep-

arations. pCa = —log [Ca®*].

was inhibited by low concentrations but slightly stimulated by high con-
centrations of GppNHp. In the presence of EGTA, the basal activity was
substantially reduced and the GppNHp-induced inhibition was abolished,
but the cyclase activity in both fractions was stimulated, although to dif-
ferent degrees, by high concentrations of GppNHp.

The differential effects of GppNHp on adenylate cyclase in the light
and heavy synaptic membrane fractions prompted us to examine the
GppNHp-inhibited as well as the Ca®>*/CaM-stimulated and GppNHp-
stimulated cyclase activities in each of the synaptic membrane fractions.
As shown in Figure 3, the specific activity of GppNHp-inhibited cyclase
was highest in the M;(0.9) fraction, and its distribution among these frac-
tions was similar to that of the Ca?* /CaM-stimulated activity but different
from that of the GppNHp-stimulated activity.
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Fic. 2. Effect of GppNHp concentration on adenylate cyclase activity in the absence or
presence of EGTA, Adenylate cyclase activity was measured in the absence (®@---@) or
presence (O——~Oj of 150 uM EGTA with various concentrations of GppNHp in the M (0.9}
(A) and the M;(1.2) (B) fractions. The mean and range of duplicate assays of adenylate
cyclase activity are presented. Data are representative of two to four separate experiments
with three different membrane preparations.

DISCUSSION

This study represents, to our knowledge, the first detailed studies on
the subcellular distributions of Ca®>*/CaM-stimulated and guanine nu-
cleotide-regulated adenylate cyclase activities in the brain. The results
presented here indicate that some (or all) of the Ca?*/CaM-stimulated
cyclase is associated with a different type of synaptic membrane than the
GppNHp-stimulated cyclase. These data also suggest that some of the
GppNHp-inhibited cyclase may have a different subcellular location than
the GppNHp-stimulated cyclase.

The GppNHp-stimulated cyclase is most abundant in the heavy syn-
aptic membrane fractions, and it has previously been shown that fluoride-
stimulated and dopamine-stimulated adenylate cyclase activities are high-
est in the heavy synaptic membrane fractions (29, 30). These observations
suggest that guanine nucleotide-stimulated and neurotransmitter-stimu-
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Fic. 3. Distributions of Ca?* /CaM-stimulated, GppNHp-stimulated, and GppNHp-inhibited
adenylate cyclases in synaptic membrane fractions. The Ca?*/CaM-stimulated activity
(crosshatched bars) was measured in the presence of 150 uM EGTA, 125 uM CaCl,, and
0.5 pg CaM. The GppNHp-stimulated activity (striped bars) was measured in the presence
of 150 uM EGTA and 10~° M GppNHp. The corresponding basal activity was measured
in the presence of 150 pM EGTA. The GppNHp-inhibited activity (solid bars) was measured
in the presence of 10°7 M GppNHp, and the corresponding basal activity was measured
with no additions. Presented are the mean and range of duplicate determinations of adenylate
cyclase activity, above or below the corresponding level of basal activity. Data are repre-
sentative of three separate fractionations. Basal activities, in the presence or absence of
EGTA, are: M(0.8), 60.1, 414; M;(0.9), 90.8, 741; M{1.0), 92.7, 507; M(1.2), 93.2, 542;
M;(1.4), 70.4, 397; M,(ppt), 34.0, 146 pmol cyclic AMP/min/mg.
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lated cyclase activities are associated with the same limited membrane.
The heavy fractions of the gradient are known to be rich in postsynaptic
density-attached synaptic membrane complexes (24, 31, 32). The abun-
dance of the GppNHp-stimulated adenylate cyclase in these fractions sug-
gests that this cyclase is present in post-synaptic membranes in high
concentrations.

The heavy synaptic membrane fractions are also rich in the Ca?* /CaM-
stimulated cyclase. The specific activity of this enzyme, however, is
higher in the lighter membrane fraction, M;(0.9), and is not parallel to
that of the GppNHp-stimulated cyclase among the subcellular fractions
tested. This suggests that the Ca®*/CaM-stimulated cyclase activity in
the heavy membrane fractions may not be entirely associated with the
guanine nucleotide-stimulated cyclase or with the post-synaptic mem-
brane. Evidence suggests that guanine nucleotides or the stimulatory
guanine nucleotide-binding protein are not required for the Ca?*/CaM-
induced stimulation of adenylate cyclase (15, 18, 19). Moreover, the heavy
synaptic membrane fractions are known to contain other types of mem-
branes, including presynaptic membranes, which are a part of the synaptic
junctional complexes (24, 31, 32).

The subcellular origin of the membrane fragments present in the light
membrane fractions is not well understood. However, they contain few,
if any, synaptic membranes that are associated with post-synaptic den-
sities (31, 33, 34). Based on this and other evidence, it has been suggested
that these fractions are rich in presynaptic membranes (35). These ob-
servations raise the possibility that the Ca?* /CaM-stimulated cyclase may
be located, at least in part, in the presynaptic membrane, and that it may
be involved in the Ca?*-induced increase in the intraterminal concentra-
tion of cyclic AMP. Further studies are required, however, to elucidate
the nature of all the membranes in these fractions and to evaluate this
notion.
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