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Analysis of variance (ANOVA) was employed to investigate 9,000 gene expression patterns
from brains of both normal mice and mice with a pharmacological model of Parkinson’s dis-
ease (PD). The data set was obtained using voxelation, a method that allows high-throughput
acquisition of 3D gene expression patterns through analysis of spatially registered voxels
(cubes). This method produces multiple volumetric maps of gene expression analogous to
the images reconstructed in biomedical imaging systems. The ANOVA model was compared
to the results from singular value decomposition (SVD) by using the first 42 singular vectors of
the data matrix, a number equal to the rank of the ANOVA model. The ANOVA was also com-
pared to the results from non-parametric statistics. Lastly, images were obtained for a subset of
genes that emerged from the ANOVA as significant. The results suggest that ANOVA will be
a valuable framework for insights into the large number of gene expression patterns obtained
from voxelation.
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fication of gene expression “signatures” responsible
for various brain regions as well as networks of co-
regulated genes and their relevant control regions.
Such networks can be compiled from co-ordinate spa-
tial and temporal expression patterns emerging from
variations due to anatomy, development, disease, en-
vironmental and genetic perturbations. In addition,
extensive gene expression data sets should allow iden-
tification of genes induced and repressed in disorders
affecting the brain.

To facilitate the ultimate goal of a comprehensive
database of all brain gene expression patterns, a method
called voxelation has been developed. Voxelation em-
ploys high-throughput gene expression analysis of spa-
tially registered cubes (voxels) to produce volumetric
expression maps for many genes in parallel. The voxel,
from which the method is named, refers to an image vol-
ume element, the 3D analog of the pixel. The maps of
gene expression produced by voxelation are analogous

INTRODUCTION

A genome-wide knowledge of gene expression
patterns should help in understanding the molecular
basis of the brain. Possible insights include the identi-



to the images reconstructed in biomedical imaging sys-
tems, such as CT and PET. The method has been em-
ployed together with microarrays to investigate gene
expression patterns in both human and mouse brains,
normal and disordered (1–3).

In the mouse study, 40 voxel images for 9,000
genes were acquired from brains of both control mice
and mice in which a pharmacological model of Parkin-
son’s disease (PD) had been induced by methamphet-
amine (MA). The investigation uncovered networks of
co-regulated genes common to both the normal and PD
brain, allowing putative control regions responsible
for these networks to be identified. In addition, genes
involved in cell/cell interactions were found to show
prominent regulation in the PD brain. Singular value
decomposition (SVD), a mathematical method which
provides parsimonious explanations of complex data
sets, identified orthogonal gene vectors and their cor-
responding images that differentiated between normal
and PD brain structures. Most pertinently, the third
principal component was most strongly expressed in
the striatum and cerebellum in the normal brain, sug-
gesting a hitherto unsuspected genetic connection
between these otherwise distinct brain regions. In con-
trast, the PD brain showed a shift of this principal
component away from the striatum and cerebellum,
towards the hippocampus. This dramatic change is
consistent with the fact that the striatum is one of the
brain regions most strongly affected in PD.

The above analyses used standard “discovery”
tools geared towards mining understanding from large
data sets. Recently, the use of ANOVA models has
been advocated as a systematic approach to the design
and analysis of microarray experiments (4–6). In this
study, we employed ANOVA to analyze the data sets
obtained from voxelation analysis of normal and MA
treated mouse brains. We show that there is good
agreement between the types of information obtained
from discovery approaches such as SVD and model
based approaches such as ANOVA. We also show that
ANOVA models can efficiently explain much of the
variance in data from voxelation studies.

EXPERIMENTAL PROCEDURE

Creation of PD Model.Adult C57BL/6J male mice (10 to
24 weeks, 25 to 31 g) received four i.p. injections of MA hydro-
chloride (10 mg kg21 injection21 using 1.5 mg ml21 solution) at
2-hour intervals (2,7,8). Mice were analyzed seven days after MA
treatment. Induction of the PD phenotype was confirmed by demon-
strating statistically significant decreases of dopamine and its meta-

bolites dihydroxyphenylacetic acid and homovanillic acid in the
striatum of MA treated mice (2). In addition, expression of tyrosine
hydroxylase, the rate-limiting enzyme for biosynthesis of dopamine,
was found to show statistically significant decreases in the substan-
tia nigra. The specificity of changes in dopaminergic neurotrans-
mission was shown by the lack of significant striatal changes in
levels of 5-hydroxytryptamine (5-HT or serotonin), an independent
neurotransmitter, and its metabolite 5-hdyroxyindoleacetic acid.

Voxelation of Mouse Brains.Mouse brains were voxelated as
described (2). Briefly, brains were cut into superior and inferior
halves, and divided into 10 coronal sections equally spaced by 1 mm.
Each slice was then bisected down the midline, resulting in a total
of 40 voxels, an average volumetric resolution of 7.5 ml. Registra-
tion employed the Mouse Brain Library (9,10). Voxelation was
found to be essentially invariant between brains.

Microarray Analysis.Microarray analysis was performed as de-
scribed (2). For each voxel, 100 mg of Cy3 labeled voxel RNA and
100 mg of Cy5 labeled control RNA were co-hybridized to a 9,000
gene microarray. The control RNA facilitated interarray compar-
isons, and consisted of total normal C57BL/6J mouse brain RNA. To
obtain sufficient RNA (100 mg) for the microarray analysis, equiva-
lent voxels of multiple brains were pooled. A total of 29 brains gave
sufficient material, even for the smallest voxels (slice 1, most ante-
rior). The microarrays contained 9,000 spots, some of which repre-
sented controls or replicates, and consequently there was a total of
8,137 unique genes. Normalization was performed as described (2).

ANOVA.ANOVA was performed as described (4–6). Briefly,
the study followed a reference design experiment, where the total
brain RNA (Cy5) was the reference sample, and the voxel RNA
(Cy3) was the experimental. Effects were defined as variety (6MA),
slice (S), superior-inferior (P), and hemisphere (H). The prevalence
of effects across genes was measured as the proportion of genes with
an F-statistic greater than 4; if there is no significant effect approx-
imately 5% of the genes should have such an F-value. Use of un-
corrected thresholds does not control for false positives due to
multiple comparisons. We use these thresholds not to make infer-
ence on individual genes, but rather as a screening device which will
minimize Type II errors and identify genes worthy of further study.

Nonparametric Analysis.A permutation (Monte-Carlo) method
was employed for non-parametric analysis (11). To examine each ef-
fect and ensure exactness of the test, a proper realignment was cho-
sen such that the F-statistics of interest had the largest value
(maximally affected by the permutations performed). Since for some
effects the number of possible permutations is extremely large, the
Monte-Carlo scheme was used for random and uniform sampling of
the permutations.

RESULTS

ANOVA Model.The model is based on:

(1)

where: Rg is normalized log gene expression ratio for
gene g, is normalized intensity in Cy3 channel,
and is normalized intensity in Cy5 channel.I Cy5

g

I Cy3
g

Rg 5 log2aI Cy3
g

I Cy5
g

b
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The following model was employed, as described
(4–6):

(2)

where m is grand mean, Vi is variety effect (6MA), i 5
{1,2}, Sj is slice effect, j 5 {1,2,3 ? ? ? 10}, Pk is supe-
rior vs. inferior effect, k 5 {1,2}, Hl is left vs. right
hemisphere effect; l 5 {1,2}, SPjk is slice-(sup-inf) inter-
action, SHil is slice-hemisphere interaction, SVji is slice
variety interaction, VPik is variety-(sup-inf) interaction
VHil is variety-hemisphere interaction, «ijkl is error.

Note that this model uniquely specifies each voxel
by virtue of slice, hemisphere, and superior-inferior in-
dices. Also note that by fitting each gene independ-
ently, we effectively fit an interaction of the genes with
all of the effects delineated in the model. The degrees
of freedom are shown in Table I. There is a total of
80 degrees of freedom, and 42 of these are employed in

1 SVji 1 VPik 1 VHil 1 eijkl

rijkl 5 m 1 Vi 1 Sj 1 Pk 1 Hl 1 SPjk 1 SHil

the model. Assuming that observations are missing at
random, then absent values are easily accommodated
by deleting the corresponding row of the design matrix
(12). It is only necessary to check that the effects are
estimable, that is, the design matrix is of full rank. A
total of 38 degrees of freedom (80 minus 42) remain to
estimate error. However, since there are no replica-
tions, the error is aliased (indistinguishable) from all
3-way interactions and the one 4-way interaction. The
presence of redundant degrees of freedom is an impor-
tant observation, because failure to meet quality control
standards means that a large number of genes have less
than 80 measurements (40 voxels for both the 1MA
and 2MA brains). For example, provided a gene has
less than 18 bad spots, there will still be more than
20 degrees of freedom to estimate the residual vari-
ance. The design and aliasing matrices resulting from
the model are shown in Figure 1. A total of 497 genes
out of 8,137 unique genes on the microarray had meas-
urements that exceeded quality control standards for all
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Table I. ANOVA Model

m V S P H SP SH SV VP VH Total Available

dfa 1 1 9 1 1 9 9 9 1 1 42 80
Columnsb 1 2 3–11 12 13 14–22 23–31 32–40 41 42 — —
%F . 4c — 52.3 21.6 12.2 11.1 1.6 1.01 12.0 6.6 13.4 — —
SV corr.d 0.98 0.98 0.83 0.89 0.8 0.73 0.68 0.8 0.73 0.78

a Degrees of freedom.
b c.f. Fig. 1.
c Percentage of genes with F-ratio . 4. In case of parametric analysis, this would correspond to significance level of 5%.
d Singular vector correlation coefficients. This row shows for each effect the correlation coefficients between the subspaces spanned by the cor-

responding columns of the design matrix and the first 42 singular vectors of the data matrix.

Fig. 1.Design and information (aliasing) matrices. (A) Design matrix. The rows of the matrix represent the 80 voxels analyzed in the study, with
rows 1–40 representing the control brains and rows 41–80 representing the MA treated brains. The voxel numbering proceeds from anterior
to posterior in the rows of the matrix, such that voxels A1, A2, A3... ...I2, I3, I4 of the normal brain (2) correspond to rows 1, 2, 3... ...37, 38,
39, 40, respectively. The columns of the matrix correspond to the factors of the ANOVA (Table I). Red 5 1, green 5 0, blue 5 21.
(B) Information or aliasing matrix. The proposed model corresponds to a balanced orthogonal design, allowing for unconfounded estimates of
the factors. Dark blue 5 0, light blue 5 16, red 5 80.



80 voxels. These 497 genes are employed in one of the
analyses described below.

Results of ANOVA Model.The ANOVA model was
applied to all 8,137 genes, and found to explain 80% of
the variance. The results for each of the 9 effects (ex-
cluding grand mean) of the ANOVA model (four main:
V, S, P, H; five two-way interactions: SP, SH, SV, VP,
VH) are displayed in Table I. The table shows the pro-
portion of genes out of the 8,137 analyzed where the
F-statistic is .4. Of the main effects (V, S, P, and H), the
effect showing the largest contribution is the variety ef-
fect (V, or 6MA) (4,255 genes out of 8,137, or 52.3%),
followed by slice (S) (21.6%), variety-hemisphere (VH)
interaction (13.4%), and sup-inf effects (P) (12.2%). It is
not surprising that the sup-inf effects (P) make a smaller
contribution to explaining the variance than the first two
main effects (V and S), since many major brain struc-
tures (e.g., cortex, hippocampus) are shared between the
superior and inferior halves of the brain. As expected, the
hemisphere effect (H) makes the smallest contribution
among the main effects (895 genes), since the mouse
brain shows a high degree of bilateral symmetry.

Of the two-way interactions, perhaps not surpris-
ingly, the slice-variety (SV) interaction had high ex-

planatory power, second after variety-hemisphere (VH)
interaction. Much of the relatively high value of the VH
interaction can be attributed to the confounding effect
of genes with less than 80 good measurements. When
ANOVA analysis is run on the set of 497 genes with all
80 measurements, the proportion of genes with high VH
effect (significance level of 5%) drops to 7.1%. This is
an example of the fact that ANOVA allows for reason-
able handling of missing values. During the estimation
step, rows of the design matrix corresponding to the
missing values can be removed. The modified matrix no
longer corresponds to a balanced design, but still per-
mits unbiased estimates for the effects, assuming that
observations are missing at random. Figure 2 shows
the F-ratios for all effects based on the 497 genes with
80 measurements. This plot is useful in identifying
“interesting” genes for the various effects.

Comparison of ANOVA and SVD.SVD is a dis-
covery tool for analysis of large data sets (13–15). The
method maintains the maximum possible fraction of the
variance from the original data, while reducing dimen-
sionality. SVD does not rely on pre-specified hypothe-
ses, and is entirely data driven. In contrast, ANOVA
relies on hypothetical models to explain the structure of
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Fig. 2. F-statistics for different effects. For clarity, only genes with all 80 measurements (497 genes) are shown on the plots. The red lines
correspond to the value of 4, which is roughly equivalent to p 5 0.05 for the distributions F(1,38) and F(9,38).



data. We compared the ANOVA analysis with SVD (2),
by using correlation metrics of each ANOVA effect in
the subspaces spanned by the corresponding columns of
the design matrix and the first 42 singular vectors of the
data matrix (Table I, last row). It can be seen that not
even all main effects are well captured by the first sin-
gular vectors of the data matrix. Thus, the V effect is
captured by SVD, whereas variance explained by most
of the other effects is partitioned into the SVD noise
space. This suggests that SVD should be used with care
when processing noisy data, where effects of potential
interest may not be predominant in power. Neverthe-
less, if proper care is exercised our results show that
SVD can be used as a tool to decrease noise, without the
necessity of building a specific model.

Comparison of Parametric and Nonparametric
Approaches for Estimation of P-Values.To further
compare parametric (ANOVA) and non-parametric ap-
proaches, we used a permutation (Monte-Carlo) method
for the non-parametric analysis (11). The results of the
investigation are shown in Figure 3, where by means of
Q-Q plots, parametric and non-parametric permuta-
tion distributions are compared for the main effects

using F-statistics. Of the main effects, the hemisphere
(H) and sup-inf (P) effects had the least significant
F-statistics (Table I), and hence, as expected, the p-values
obtained using ANOVA are very similar to those
obtained using the permutation method (Fig. 3). In
contrast, the variety (V) and slice (S) effects had the
most significant F-statistics (Table I) and showed a
marked divergence between the ANOVA p-values and
the non-parametric p-values (Fig. 3). The main reason
for using non-parametric statistics is the presence of
noticeable non-normality in residual errors. However,
permutation testing of ANOVA models is complicated
when both main effects and interactions are present. The
tests of main effects must be performed in a way that are
valid regardless of interaction effects. This complex
issue involves concepts related to realignment, and is a
subject for future research.

Imaging.In order to map gene expression patterns,
we focused on genes from the intersection of two sets
(Fig. 4). The first set was comprised of those genes with
a significant SV effect (p , 0.05), and the second set
consisted of those genes consistently expressed in the
two hemispheres (p . 0.1). A total of 588 genes resulted
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Fig. 3. Q-Q plots for comparison of parametric and non-parametric p-values. Identical distributions would correspond to a straight line of the
form y 5 x. Differences between parametric and non-parametric (permutation) distributions can be attributed to both non-normality of the
residuals as well as confounds with higher order effects in the permutation test.



ence between the brains is similar to that identified using
very different analytic approaches (2). A graphic repre-
sentation (2) of the spatial expression pattern for one of
the genes in cluster 5, Nfl (neurofilament light chain
gene) is shown in Figure 6A. There were two different
spots (clones) corresponding to the Nfl gene on the mi-
croarrays, providing an opportunity to assess within-
array replicability. As seen in Fig. 6A, there was
excellent within-array reproducibility for both the 2MA
and the 1MA brains. Fig. 6B provides a graphic repre-
sentation of the spatial expression pattern for a gene
from cluster 9, Man2a1(mannosyl-oligosaccharide 1,3-
1,6-alpha-mannosidase gene) (EC 3.2.1.114) in the
2MA and 1MA brains.

DISCUSSION

Voxelation results in large data sets, over 700,000
for the Parkinson’s disease model discussed here. Nev-
ertheless, an important future goal for voxelation will

1118 Ossadtchi et al.

Fig. 5.Clustered SV (slice-variety) effect profiles for the 588 selected genes (Fig. 4). The plot indicates the slices contributing to the differential
expression between 1MA and 2MA brains. The rows of the matrix represent the 10 slices analyzed in the study (slice 1, anterior; slice 10,
posterior). The value of SV effect for a gene in any slice is read by looking along the relevant row and column, finding the intersection, and
referring to the scale. Blue indicates 1MA . 2MA and red indicates 2MA . 1MA. Gene clusters are indicated along the bottom of the plot
(e.g. C4). The gene clusters showing a strong divergence between 2MA and 1MA brains in slice 9 are in agreement with previous work (2).
In addition, several new clusters are revealed.

Fig. 4. Selecting genes for spatial expression profiles. Named genes
in the selected 588 gene intersection are listed in Table II.

from this procedure, and the named genes in the inter-
section are shown in Table II. The profiles of all 588
genes for the slice-variety (SV) interaction effect are
shown in Figure 5. The profiles have been sorted into
clusters on the basis of a nearest-neighbor similarity
metric (1,2). A total of ten clusters emerged from the
sorting. It can be seen that there are several slices most
responsible for the differences between 2MA and 1MA
mice. Most prominent amongst these is slice 9, which is
contained within the cerebellum. This uncovered differ-
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be to increase the amount of information it produces,
both by decreasing voxel size to improve spatial reso-
lution, and also by analysis of larger numbers of genes.
These objectives will require advances in miniaturiza-
tion to allow spatially registered harvesting of the
smaller voxels, and automation to allow greater speed
in processing the increased numbers of voxels and
genes. Such objectives will provide substantial engi-
neering challenges, but the success of the genome
project provides a paradigm for implementation of
such a program. Consequently, it is likely that the data
sets from future voxelation projects will become ex-
tremely large. For example, a 325,000 voxel recon-
struction of the human brain for all 30,000 genes will
result in a data set of 1010 (3). Such immense data sets
will require careful statistical evaluation.

In this study, we used an ANOVA model (4–6) to
provide a framework for statistical analysis of gene
expression data from control brains and brains from a
model of PD. Of the main effects, the variety (V, or

6MA), slice (S) and sup-inf (P) effects explained the
largest part of the variance, while the hemisphere effects
explained least. Comparison of the ANOVA model and
that suggested by SVD showed reasonable agreement.
However, the SVD was less sensitive in detecting weak
effects, as would be expected for a non-parametric dis-
covery method. There was good agreement between
ANOVA (parametric) and permutation (non-parametric)
approaches for the two weakest main effects (hemi-
sphere and sup-inf). Perhaps surprisingly, however, for
the two strongest main effects (variety or 6MA and
slice), there appeared to be a striking deviation between
the parametric and non-parametric approaches. When a
subset of genes with significant variety-slice (VS) inter-
action and consistent expression between the hemi-
spheres was examined, the greatest difference in spatial
gene expression patterns between the control and MA
brains appeared to be in slice 9, part of the cerebellum.
This strongly agrees with previous findings obtained
using distinct analytical tools (2).

Fig. 6. Spatial expression patterns. (A) Expression pattern of the Nfl gene (cluster 5) as judged from two separate spots (clones) on the
microarrays. The expression patterns of the gene in the normal (top row) and MA brain (bottom row) are presented using a midlevel transverse
section corresponding to section 8 of the Mouse Brain Library (interaural 5.40 mm, bregma 24.60 mm) (2,9,10). Imaging software smoothed
the expression patterns over voxels. The level of gene expression can be deduced by reference to the pseudocolor scale. The plot demonstrates
excellent within-array reproducibility (r for 2MA brain 5 0.96, F(1,38) 5 443.65, p , 0.0001; r for 1MA brain 5 0.90, F(1,38) 5 153.80,
p , 0.0001). (B) Differential expression of the Man2a1gene (cluster 9) in the 2MA and 1MA brains.
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8 Lama4 736616
9 Atp1b1 493488

Atp2a1 318735
Bach2 640200
Bckdk 480575
Bhmt 423156
Bmp1 466306
Cast 577089
Cd6 637369
Cirbp 475679
Col5a1 425344
Cyp2c40 583799
Dok2 438282
Es2el 318785
Es31 719734
Falm-pending 351720
Galgt1 637290
Gll1 640751
Gpx3 551164
Gpx3 577594
Gstz1 672972
Gtr2 388376
Habp2 748390
Hck 638455
Hrsp12 676532
Hs6st1 736858
lfi1 651927
ll12b 720765
lrf2 639197
ltlh1 734289
ltm2b 481400
Jak2 621226
Kap 579721
Kifc1 426992
Klk8 483813
Ltf 874383
Lum 746644
Madh3 456861
Man2a1 315962
Myb 721803
Nfkbla 641058
Nr1h4 748622
Pdlr 873690
Pola2 476123
Rab25 697383
S100a11 669969
Spry1 425005
Supt4h 749558
Tead2 388244
Tmpo 597352
Twist 331264
Tyrobp 671865
U2af1-rs1 747294

10 Masp2 680232

Table II. Gene Clustersa

Cluster Gene name Clone ID Cluster Gene name Clone ID Cluster Gene name Clone ID

6 Macs 618661
Mad4 846536
Mbc2 575700
Mbd2 421592
Mbp 480753
Mea1 484122
Mem3 775464
Mkln1 676111
Msf 352302
Mt1 480068
Ndufv1 864576
Nte-pending 352795
Pdgfra 735605
Per 949546
Plaa 831959
Plunc 472623
Pmp20-pending 437209
Ppp2r1a 733882
Proc 692609
Prpk 876060
Psma1 723267
Ptpn16 575665
Pttg1 678793
Rab11b 659369
Rac2 891108
Rpl7 524442
Rpo2-4 636513
Rps12 577267
S100a1 872869
Selpl 876033
Silg81 476180
Srp54 597566
Stau1 576918
Stk11 933770
Sul1-rs1 888602
Surf4 695279
Timm17a 318134
Timp2 831964
Tle3 722501
Ttc3 775150
Ubce7 482359
Ube3a 721372
Ubp1 949534
Uchl1 763647
Zfp238 472595
Uchl1 763647
Zfp238 472595

7 Adam22 418732
Gbp2 583808
lfj203 618572
Sec61a 37384
Stc 474298
Tfg 316835
Twist 479367

8 Cdc2a 468792

1 Ldlb 457892
Psmb3 571569

2 Col6a3 480620
3 Meox1 419684

Pkd2 455813
4 Cals1 692913

D0H4S114 733420
Mdk 671218

5 Agt 733572
Akt 678740
Btf3 692936
D3Wsu133e 889470
Ndr3 677163
Nfl 660991
Nfl 425315
Pnutt2 889281
Rab7 779604
Rpl3 570533
Tstap35b 660586
Tuba4 329726

Tubb4 671340
Vbp1 693287
Vdac3 680191

6 Abca2 850420
Aco1 677092
Acox-pending 747880
Adam17 385467
Anxa6 876698
Anxa7 681168
Bhmt 680854
Car2 579391
Crya2 672201
Ctbp1 677093
Cugbp2 597832
Cugbp2 620221
D17H6S45 421962
D19Wsu55e 672881
D7Wsu87e 679464
D8Wsu49e 920414
ESTM2 355356
Fgd1 733780
Gbas 333579
Gdm1 351221
Ggh 733456
Glns 440344
Gys3 660012
Hdac1 374877
Hsc70 573857
lna 660756
ltm2b 720342
Klf9 874192
Krt2-1 476999
Lorsdh 738285
Ly6 580715

aNamed genes of the selected 588 genes (Fig. 4). Genes are alphabetically ordered within each cluster.



Additional strategies can be envisaged for inter-
rogation of voxelation data sets. Gene shaving (16)
identifies subsets of co-regulated genes with large
variations across conditions (voxels). This approach is
distinguished from hierarchical clustering and other
commonly used methods by the characteristic that
genes may belong to more than one cluster. Moreover,
the clustering can be supervised by an outcome meas-
ure. Another approach to extracting insights could em-
ploy stratification of the data (e.g., Table I) into
classes of genes on the basis of function using the
Gene Ontology Database (17).

The spatial information from voxelation can be
used with advantage by considering the slice (S) effect
as ordered, analogous to a time course. For example,
the full-arbitrary parameterization of the slice effect
could be replaced with a linear gradient or low-order
(orthogonal) polynomial parameterization. In this way,
incorporating prior information from spatial contiguity
or slice/gradient effects would allow the use of more
sophisticated ANCOVA models, which might dramat-
ically increase statistical power as well as providing
improved visualization possibilities.

The ANOVA and SVD were compared by look-
ing at the correlation of the SVD vectors with columns
of the design matrix (Table I). An alternative approach
would be to perform SVD on a sub-data matrix con-
sisting exclusively of those genes which show selected
interaction effects. It might also be useful to find the
correlations of the SVD vectors with relevant linear
contrasts, which in essence represent a rotation of the
design matrix (Fig. 1). For example, a set of contrasts
could be created for the variety effect to build up a
voxel; each one of the contrasts would correspond to a
single voxel.

The ANOVA allowed reasonable handling of
missing values, but additional strategies could be em-
ployed. Multiple imputation replaces each missing
data point with plausible values (18), and the com-
pleted data sets are analyzed using standard statistical
approaches. This allows recovery of parameter esti-
mates and standard errors which take into account the
uncertainty due to missing values.

In summary, the present study suggests that
ANOVA will provide a useful framework for analysis
of multiplex brain gene expression data sets. In addi-
tion, ANOVA showed good agreement with SVD, but
somewhat higher sensitivity. These findings indicate
that future analysis of voxelation data sets may bene-
fit from a combined attack using both ANOVA mod-
els and discovery methods such as SVD.
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