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Abstract. We address the problem of controlling an assembly system in which the processing times as well as the
types of subassemblies are stochastic. The quality (or performance) of the final part depends on the characteristics
of the subassemblies to be assembled, which are not constant. Furthermore, the processing time of a subassembly
is random. We analyze the trade-off between the increase in the potential value of parts gained by delaying
the assembly operation and the inventory costs caused by this delay. We also consider the effects of processing
time uncertainty. Our problem is motivated by the assembly of passive and active plates in flat panel display
manufacturing. We formulate the optimal control problem as a Markov decision process. However, the optimal
policy is very complex, and we therefore develop simple heuristic policies. We report the results of a simulation
study that tests the performance of our heuristics. The computational results indicate that the heuristics are effective
for a wide variety of cases.
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1. Introduction

Assembly systems, consisting of several subassembly lines feeding an assembly station,
are prevalent in many manufacturing environments. Two typical examples in electronics
manufacturing include multiplane printed circuit boards (PCBs), which are manufactured
by fabricating the layers separately then laminating them together, and flat panel displays,
where “active” and “passive” layers of an electronic display are produced separately and
then mated.

Previous work on assembly systems has focused on the effects of the uncertainty of
the processing times at the subassembly and assembly stages (e.g., Ammar, 1980; Bhat,
1986; Bonomi, 1987; Lee and Pollock, 1989; Hopp and Simon, 1989; Duenyas and Hopp,
1992, 1993; Duenyas, 1994; Duenyas and Keblis, 1995; Rao and Suri, 1994; and Hazra
and Seidmann, 1994). The focus of this body of work has been the development of ap-
proximations for the performance of different release control mechanisms for assembly
systems.

Another significant source of uncertainty in some assembly systems is type uncertainty,
where the type of subassembly produced by one or more of the subassembly lines or
machines is uncertain. All the cited papers assume that only a single type of part is produced
by each subassembly line. In contrast, in this paper, we focus on environments where there
is uncertainty with respect to the type of subassembly to be produced. Furthermore, the
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performance (or quality) of the final part depends on the characteristics or types of the
subassemblies mated. In such an environment, the major trade-off is between the improved
performance obtained by delaying the mating operation until a “match” of components of
the same types is obtained and the larger inventories associated with this delay in the mating
operation.

A typical example of assembly systems with processing time as well as type uncertainty
is flat panel display manufacturing, where “active” and “passive” layers of an electronic
display are produced by separate processes. Due to yield losses, machine failures, and
the like, the time between the production of two consecutive “active” or “passive” layers is
random, so that at any point in time there may be more “active” than “passive” layers or vice
versa. After a passive and active layer are mated, the resulting electronic sandwich is cut
into smaller pieces to produce final products (i.e., displays). The final part is defective and
will have to be discarded if either the active or passive layer has a fatal defect in the location
corresponding to that particular display. For this reason, each “passive” and “active” layer
is inspected for fatal defects before the mating of layers and identified as being one of a
set of possible types, each containing defects in specific locations. For example, when the
layers will eventually be cut into 8 pieces (as is common in industrial applications), there
are 28 types, since each of the 8 possible pieces may have zero or more fatal defects. (We
note that the problem would be much simpler if the active and passive layers were first
cut into smaller pieces and then only the non-defective pieces mated. However, under the
currently available technology for flat panel display manufacturing, cutting the layers into
smaller pieces before mating them significantly increases the defect rates. Therefore, the
layers are first inspected, then mated, and then cut into smaller pieces.)

In the flat panel display environment just described, the control issues to be addressed
are as follows. Given the number and types of passive and active layers already produced
and not yet mated, (1) how does one decide when to release new passive or active layers
into the system and (2) how does one decide which active or passive layers (if any) to mate?

A similar problem arises in the manufacturing of ball bearings, where an inner and outer
race are assembled (along with a set of balls) to produce a ball bearing (Iyama, Masahiro,
Goto, and Koga, 1992). Each race has a critical dimension that is a random variable, taken
from a known distribution. After the races are produced, they are accurately measured
at an inspection machine and classified into one of three size ranges (e.g., types). High-
quality bearings are produced by mating (i.e., assembling), when possible, inner and outer
races having the same size range. The “type” uncertainty is due to the variability in the
dimensions of the races, and the processing time uncertainty is due to the possibility that
the machines producing the inner and outer races may fail. For this problem, Iyama et al.
(1992) investigate the effects of an ad-hoc mating strategy on buffers and machine blocking.
They do not focus on the derivation of “optimal” mating strategies.

To our knowledge, the only paper that addresses the issue of control of assembly systems
under type uncertainty is by Duenyas, Keblis, and Pollock (1997). However, Duenyas
et al. (1997) assume no processing time uncertainty and that the subassembly lines produce
at the same deterministic rate. Therefore, the only decision in their paper is which (if
any) subassemblies to mate. Clearly, in most realistic systems, processing times are not
deterministic. Furthermore, even in the rare situation where they are deterministic, it is
highly unlikely that all subassembly machines (or lines) produce at the exact same rate. We
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note that we cannot use the procedures developed by Duenyas et al. (1997) as heuristics for
the problem where there is processing time uncertainty, because they assume that production
of subassemblies occurs at deterministic time intervals and therefore impose no control over
the production of more subassemblies. However, when the time of production of the next
subassembly is stochastic, using the policies in Duenyas et al. (1997) will result in expected
costs equal to infinity. This is because, if the subassembly lines feeding assembly are treated
as independent, an assembly system is unstable even if the average production rates at all
subassembly lines are the same (Harrison, 1973). For this reason, in this paper, we address
the control problem when there is uncertainty in both the subassembly processing times
and types.

The rest of this paper is organized as follows. Section 2 presents the problem formulation
and introduces notation. In Section 3, we formulate the optimal control problem as a Markov
decision process. Since the dynamic programming approach used for computing the optimal
policy suffers from the “curse of dimensionality” when the number of types is greater than
three, we present simple heuristics in Section 4. Section 5 presents a comparison of our
heuristics against simulation for sample problems with 3 and 16 types. Section 6 concludes
the paper.

2. Problem formulation and notation

We restrict ourselves to the case where two components are produced and combined to form
a final product. For convenience, we refer to these asleft andright halves, respectively.
The act of combining halves is calledmating. Each half is produced on a separate machine.
(In this paper, we assume that each subassembly is produced on a single machine. Clearly,
in many cases, subassemblies may be processed on a tandem line. We intend to analyze
more complicated network structures in the future.) We assume that the processing time
distribution of the machine that produces the left (right) half has mean 1/µ1 (1/µ2) and
varianceσ 2

1 (σ 2
2 ). At any point in time, a machine is either on (running) or off (stopped).

When a left half is produced, it exhibits a “type”t ∈ {1, 2, . . . , T}, with probability l t ;
typeu right halves are produced with probabilityru, where

∑T
t=1 l t = 1, and

∑T
u=1 ru = 1.

The probability that a right (left) half is of a certain type is independent of the type of
previously produced left halves and right halves. (We have found that this is a reasonable
assumption in practice.) To measure the negative effect of holding inventory and long cycle
times, we assume that each half kept in inventory incurs a holding cost at rateh per unit of
time.

When a right half of typeu is mated with a left half of typet , the resulting product has a
valueVtu, where

Vtu > 0 (1)

Vtt > Vtu for t 6= u and Vuu > Vtu for t 6= u (2)

Inequality (1) implies that all matings have some value; (2) shows that mating left and right
halves of the same type produces a maximum value. (For convenience, we define amatch
to be the mating of two halves of the same type.)
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When there are three or more types, we will also assume theVtu satisfy the additional
inequality

Vtt + Vuz ≥ Vut + Vtz for all z 6= u, u 6= t, z 6= t (3)

This inequality ensures that immediately matching two halves of the same “type” is optimal.
To see this, suppose that two halves of the same typet were held in inventory without being
matched. This would imply that they would eventually be mated with some other halves
(e.g., with a left half of typeu and a right half of typez). However, by (3) this mating
would result in no greater value than matching the two halves of typet and mating the two
other halves of typesu andz. Since a cost is associated with holding inventory, it would be
better to match the two halves of typet as soon as possible rather than hold them.

Inequalities (1) through (3) rule out some possible value matrices. However, they are
reasonable for a wide variety of situations, including the problem that motivated this study.
In flat panel display manufacturing, the highest value is obtained when layers that have
defects at the same locations are mated. This is because once mated, a location is defective
if it has defects oneitherlayer and the display corresponding to that location will have to be
discarded. Each layer can be represented by a vector of zeros and ones that denote whether a
location, respectively, is defective or nondefective (e.g.,(1, 0) represents a layer that will be
divided into two pieces with the second piece defective and the first piece nondefective). Let
x denote the vector associated with a passive or active layer. The unique type numbert (x)
then can be represented ast (x)= ∑N

i = 1 2i xi , with N denoting the number of pieces that the
layer will be cut into. Conversely, given type numbert , the vectorx(t) is uniquely defined
to be a binary representation oft . We similarly can represent the right layer by a vectory,
with typeu(y). The value of mating or matching a left half of typet with a right half of
typeu then is given byVtu= r1[x(t) · y(u)]+ r2{N− [x(t) · y(u)]}, wherer1 is the revenue
associated with a good display,r2 is the salvage value of a defective display, and [x(t) · y(u)]
is the inner product of vectorsx(t) andy(u). It is straightforward to check that, whenr1≥ r2,
this value function satisfies all three inequalities, (1) through (3) (Duenyas et al., 1997.)

Since an optimal policy immediately matches left and right halves of the same type, if
the number of left halves of a certain type is nonzero, then the number of right halves must
be zero. Therefore, we need to keep track only of the difference between the number of
left halves and the right halves of a given type. The state of the system can be represented
as theT vector{n1, . . . ,nT }, wherent is the difference between the number of left halves
of type t and right halves of typet . The fundamental problem is to determine for any
given state vector(n1, n2, . . . ,nT ), which pair (if any) of types should be mated and which
machine(s) to run (left, right, or both) to maximize net value per unit time. (We note that,
in the particular application that motivated this problem, the actual assembly process is
much faster than the production of the subassemblies. We therefore ignore any queues at
the assembly machine and focus on the inventory of parts waiting to be mated or matched.)

3. Optimal policy

In this section we give a Markov decision process (MDP) formulation for the problem
described in Section 2, when processing times at both subassembly machines are assumed
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to be exponential. When processing times are not exponential, one needs to keep track of
the time since the last job at each machine was begun, rendering the formulation even more
complicated. We therefore focus on the case where processing times are exponential. As
we will show, the formulation quickly becomes intractable, even with exponential process-
ing times. We therefore will develop a heuristic in the next section that does not assume
exponential processing times.

We let

g = the minimum long-run cost per period
n = a vector that depicts the state of the system (nt is the difference between

the number of left halves of typet and the number of right halves of typet)
fn= the relative value of being in staten
et = the unit vector whoset th component is 1

We use uniformization as in Lippman (1975). Without loss of generality, we also assume
thatµ1+µ2= 1. When this does not hold, appropriate rescaling of the problem can result
in an equivalent problem withµ1 + µ2= 1. The formulation consists of two cases. When
all nt ≥ 0 for all t = 1, . . . , T or nt ≤ 0 for all t = 1, . . . , T , then the only option is to stop
one of the machines (since in this case there are no parts to mate from one of the machines).
In this case, the underlying recursive equation is

g+ fn =
[

h‖n‖ + µ1 min

{
T∑

t=1

l t
(

fn+et − Vtt · 1{nt<0}
); fn

}

+µ2 min

{
T∑

t=1

rt
(

fn−et − Vtt · 1{nt>0}
); fn

}]
(4)

otherwise, we have

g+ fn = min



h‖n‖+µ1 min

{
T∑

t=1

l t
(

fn+et −Vtt · 1{nt<0}
)
, fn

}

+µ2 min

{
T∑

t=1

rt
(

fn−et −Vtt · 1{nt>0}
)
, fn

}

min
(u,z)∈X



h(‖n‖−2)−Vuz+µ1 min

{
T∑

t=1

l t
(

fn−eu+ez+et

−Vtt · 1{nt+1{t=z}<0}
)
, fn−eu+ez

}

+µ2 min

{
T∑

t=1

rt
(

fn−eu+ez+et −Vtt · 1{nt−1{t=u}>0}
)
, fn−eu+ez

}
(5)

where X={(u, z) : nu> 0, nu · nz< 0, and u, z= 1, . . . , T}; 1y the indicator function
that equals 1 wheny is true and 0 otherwise, and‖n‖= |n1| + |n2| + · · · + |nT |. In (4), the
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term involvingµ1 pertains to the decision of either running or stopping the left machine. The
term involvingµ2 pertains to the decision of either running or stopping the right machine.
When a new component is produced, if it is a left half of typet , then the state becomes
n+ et and a valueVtt is earned if there is a right half of typet in inventory. If the component
produced is a right half of typet , then the state becomesn− et and a valueVtt is earned
if there is a left half of typet in inventory. In (5), the choice is between either not mating
any halves (the top line of (5)) or mating a left half of typeu with a right half of typez.
The bottom line is the minimum of all possible matings of left halves of typeu with right
halves of typez.

Equations (4) and (5) completely define the MDP formulation for theT-type problem.
Unfortunately, the optimal solution to the MDP in (4) and (5) has an extremely complicated
structure. The decision to shut off one of the machines, for example, is dependent on
the numberand types of left and right halves and not only on the difference between the
number of left and right halves. Moreover, as Duenyas et al. (1997) show, even for the case
where there is no processing time uncertainty, the optimal policy becomesverycomplex.
In fact, even if the optimal solution to (4) and (5) were available, it is questionable whether
this solution could be implemented, as a huge database of the optimal decisions for each
possible state would need to be stored and consulted after the production of each part. These
considerations lead us to the development of two simple but effective heuristics, which we
describe in the next section.

4. Heuristic solutions

The MDP formulation of the type matching problem quickly suffers from the “curse of di-
mensionality” as the number of types increases. For example, with four types, formulating
an MDP where the number of left or right sides of a certain type is at most 40 requires
over 40 million states. Therefore, for realistically sized problems (for example, with 16
types) solving the MDP is not a practical proposition. Furthermore, even if the solution
were somehow available, a database that would store the optimal decision in each possible
state would be hard to construct. This leads us to consider two heuristic solutions. The
first heuristic (H1) is similar to one that we observed in use at the flat panel display manu-
facturing plant motivating this problem. This heuristic decomposes the problem into two
separate problems. The first problem is when to stop the left (or right) machine, and the
second problem is how to decide whether or not to mate the existing parts and which ones
to mate. Heuristic 1 applies two simple thresholds to address these problems. The first
threshold,ai , is the maximum total number of leftandright halves allowed to accumulate
in inventory. If the sum of left and right halves reachesai , then a transportation problem is
solved to determine how to mate all the available halves optimally. The second threshold,
as, is the maximum number of left (or right) halves allowed to accumulate in inventory. If
the number of left (right) halves in inventory reachesas, then the left (right) machine is
stopped until the number of left (right) halves in inventory drops toas− 1. The best values
of as andai are determined through simulation for a given problem.

H1 is implemented as follows. Every time a left (right) half is produced, it is matched
with a right (left) half of the same type if any are in inventory. If no half of the same
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type is available, the newly produced half is added to inventory. If the sum of the left and
right halves has reachedai , then a transportation problem is solved to decide how to mate
the available halves. Where the number of left and right halves available is not equal, the
solution to the transportation problem will prescribe that some of the halves go unmated and
remain in inventory. The levels of left and right halves in inventory then are compared toas

(regardless of whether a transportation problem has been solved to mate parts) to determine
whether either machine should be stopped.

Despite its simplicity and ease of implementation, H1 has significant weaknesses. First
of all, both thresholds have to be computed by simulation, which is time consuming. Fur-
thermore, a new simulation study is required if any of the system parameters change. Also,
to use the algorithm, the firm must have software for solving the transportation problem to
decide which parts to mate (although in the computerized environment of flat panel display
manufacturing, this is not a significant problem). These problems with H1 led us to develop
a second heuristic, H2.

Our second heuristic (H2) also decomposes the combined problem of deciding when
to shut off machines and mate parts to separate problems. However, no simulations are
required to implement H2. To decide when to shut off the machines, we replace the original
problem ofT types with one having a single “average” type. In a problem with only one
type of product, as soon as there is a single left and right half, these can be assembled.
Therefore, the only decision here is on when to shut off the left or right machine.

We replace the originalT-type problem with a 1-type problem with the same holding
cost and machine processing times as the original problem. We assume that every time
two parts are mated, a revenue ofR= (∑T

i=1 l i r i Vii )/(
∑T

i=1 l i r i ) is earned. Note thatR
is an average revenue computed over the maximum fraction of parts that can be matched.
We therefore replace the originalT-type problem with a single-type problem with the
average revenueR per part. GivenR, h, and the machine processing time distributions,
we can compute the two thresholdsal andar , by solving the following simple dynamic
program:

g+ vi = 1

τ

(
2h|i | + µ1 min

{
vi+1− R1{i<0}; vi

}+ µ2 min
{
vi−1− R1{i>0}; vi

})
(6)

In (6), g denotes the optimal cost per unit time,vi denotes the relative cost of statei ,
andτ = µ1 + µ2. With probabilityµ1/τ , the next event is a completion of a left half,
and the first minimization represents the choice between producing another left half (and
getting a revenueR if only right halves are in inventory) or not producing another left half
by shutting off the machine. The explanation for the second minimum is similar. The
following theorem states the structure of the optimal policy for deciding when to shut off
the machines for the described 1-type problem.

Theorem 1. The optimal policy for the 1-type assembly control problem where the ma-
chine processing times have exponential distributions is a control-limit policy requiring
only the state n (a scalar, the difference between the number of left and right halves) and
two numbers al ≥ 0 and ar ≤ 0. The optimal policy is to
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1. Stop the left machine ifi >al ;
2. Stop the right machine ifi <ar ;
3. Wait for the next component produced ifar ≤ i ≤al .

Proof: To prove the result, it is sufficient to show thatvi − vi+1 is increasing ini . To see
this, note that, if it is optimal to stop the left machine for somei > 0, thenvi ≥ vi+1− R.
Sincevi+1−vi+2≥ vi − vi+1, combining these two equations, we have thatvi+1≥ vi+2− R
as well, which proves the existence of the thresholdal . The argument forar is similar. The
fact thatvi − vi+1 is increasing ini can be shown by induction. Consider a value iteration
algorithm for obtaining thevi values, where

vk+1
i = 1

τ

(
2h|i | + µ1 min

{
vk

i+1− R1{i<0}; vk
i

}+ µ2 min
{
vk

i−1− R1{i>0}; vk
i

})
(7)

wherevi
k denotes the relative value of being in statei at thekth iteration of the value

iteration algorithm. Letv0
i = 0 for all i . Then, clearly,v0

i − v0
i+1 is increasing ini . It

is straightforward to show that, ifvk
i − vk

i+1 is increasing ini , thenvk+1
i − vk+1

i+1 also is
increasing ini . Sincevk

i − vk
i+1→ vi − vi+1 and the desired property is preserved at every

iteration, the result is shown. 2

Once the threshold value for shutting off either the left or the right machine is obtained,
our decomposition heuristic also computes threshold valuesatu for mating a left half of
type t with a right half of typeu, for all t = 1, . . . , T andu= 1, . . . , T, u 6= t . To do this,
we decompose the originalT-type problem into simpler 2-type problems. We solve 2-type
problems (ignoring the existence of the other types) to obtain the thresholds for mating those
two types. For this, the production probabilities first have to be conditioned on producing
only those particular typest andu,

l ′t ≡ Pr{left typet produced| only left t or u produced} = l t
l t + lu

≡ 1− l ′u (8)

r ′t ≡ Pr{right typet produced| only right t or u produced} = rt

r t + ru
≡ 1− r ′u (9)

We also need to rescale the holding costs. In an actual 2-type mating problem, the expected
time until a new left (right) half arrives is 1/µ1(1/µ2), when the left (right) machine is not
stopped. With more than two types, the expected time until the arrival of another right half
of typet or u equals 1/µ2(rt + ru). Thus, each left half of typet or u in inventory incurs an
expected holding cost ofh/µ2(rt + ru) until the arrival of the next right half of either type.
Similarly, each right half of typet or u incurs an expected costh/µ1(l t+ lu) until the arrival
of the next left half of either type. Therefore, when we rescale the probabilities for typest
andu, we also need to rescale the holding cost values. We assign the rescaled holding cost
valueh′ ≡ [h/2(l t + lu)]+ [h/2(rt + ru)] to be the average of these two values.

Given the conditional probabilities,l ′t , r
′
t , l
′
u, r
′
u, the rescaled holding costh′, the values

µ1, µ2, Vtu, Vut, Vtt , andVuu from the original problem and the thresholds for shutting off
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the left and right machinesal andar , we can compute the optimal thresholdsatu andaut for
mating a half oft and a half ofu. To do this, note that, given the values ofatu andaut, the
system can be modeled as a simple Markov process, for which we can compute the average
cost per unit time. In this Markov process, the state of the system is(i, j ), wherei denotes
the difference between the number of left and the number of right halves of typet and j
denotes the difference between the number of left and right halves of typeu. Except at the
boundaries (defined byal , ar , atu, andaut), the possible transitions from(i, j ) are to states

1. (i + 1, j ) with rateµ1l ′t corresponding to the arrival of a left half of typet ;
2. (i, j + 1) with rateµ1l ′u corresponding to the arrival of a left half of typeu;
3. (i − 1, j ) with rateµ2r ′t corresponding to the arrival of a right half of typet ;
4. (i, j − 1) with rateµ2r ′u corresponding to the arrival of a right half of typeu.

Similarly, except at the boundaries, in state(i, j ) costs are incurred with rate

h(|i | + | j |)− µ2
(
r ′t Vtt1{i>0} + r ′uVuu1{ j>0}

)− µ1
(
l ′t Vtt1{i<0} + l ′uVuu1{ j<0}

)
The steady state probabilities as well as the average cost per unit time for this Markov
process can be computed easily and the optimal values ofatu andaut can be found by
complete enumeration.

Once the thresholdsal andar for shutting off the left and right machines and the thresholds
for mating, atu and aut for all t = 1, . . . , T and u= 1, . . . , T have been computed, the
implementation of H2 is straightforward. Every time a new left (right) half is produced, it
is mated with a right (left) half of the same type if there are any in inventory. If no half
is available, then the newly produced half is added to inventory. For anyt = 1, . . . , T and
u= 1, . . . , T , if there are at leastatu left halves of typet and right halves of typeu, then
a left side of typet is mated with a right side of typeu. After carrying out any matching
or mating, the number of left and right halves in inventory are compared toal and ar ,
respectively, to determine whether either machine should be stopped.

Figure 1 demonstrates the main difference between the heuristic H2 (described by the
bolder lines) and the structure of the optimal solution in a 2-type problem. In the area where
n1 > 0, n2 < 0, orn1 > 0, n2 < 0 (areas 2 and 4 in figure 1), the heuristic results in simple
rectangular regions that describe the mating of types 1 and 2 (whereas the optimal policy
has a more complicated elliptical shape); similarly in regions 1 and 3, the heuristic results
in simple triangular regions for shutting the machines (whereas the optimal policy again has
a more complicated elliptical shape). However, as we show next, despite the differences in
shape between the heuristic and optimal policies, H2 performs very well.

H2 is at least as simple to implement in practice as H1. The thresholds can be computed
very quickly. To obtain the thresholds for stopping the machines, one needs to solve a single
MDP with state space size 2M . (M needs to be chosen large enough that it is higher than
the values at which the MDP would decide to shut off the machines. An appropriate upper
bound forM is M = R/(h ∗ (µ1 + µ2)), since if the number of jobs waiting for mating
is higher than that, the amount of holding cost incurred until the arrival of the next part is
higher than the revenue of a part.) Similarly, to obtain the threshold values for mating parts,
one would need to solveT ∗ (T − 1)MDPs, each with state space size 4M2. For problems
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Figure 1. The structure of the optimal policy and H2 for a 2-type problem.

with as many as 16 types, (typical in the flat panel display environment), the computation
of all the thresholds (which have to be computed only once) takes less than an hour of
CPU time on a Sun Sparcstation 20. Checking to see if any threshold has been exceeded
also is simple, especially in many computerized electronics manufacturing environments.
Furthermore, unlike in H1, the heuristic requires no simulation experiments or access to
transportation problem solvers on the plant floor.

Finally, we note that, although we described both heuristics for the case where the
processing times are assumed to be exponential, they easily can be adapted to nonexponential
processing times. In particular, as the optimal thresholds for H1 are computed by simulation,
whether the processing times are exponential or not makes no difference. In the case of
H2, approximating the processing times by appropriate phase-type distributions results in
Markov chains for which the optimal thresholds once again can be computed, albeit at the
cost of larger state spaces.

From an implementation point of view, H1 and H2 offer interesting contrasts. H1 requires
significant work up front to set the threshold values compared to the work required to set
the threshold values for H2 (unless the number of types is very high, in which case H2
also requires a very significant amount of work; as can be seen, the number of MDPs one
needs to solve for H2 is quadratic to the number of parts). H2 requires more significant
monitoring than H1, as the amount of inventory of each type has to be monitored and
compared to the threshold levels at all times. Which heuristic gets implemented in practice
will depend on the relative costs of monitoring inventory at all times.

Finally, we note that, in many practical situations, some cost is incurred each time a
machine is turned on or off. This cost might reflect the cost of raw material lost during the
initial period in which the machine is adjusted or the operator time spent monitoring the
machine. The formulation for the optimal policy (4) and (5) can be easily changed to include
a costS whenever a machine is turned on. In this case, the state space is represented by a
vector(n, i ) wheren is aT-vector denoting, as before, the difference between the number
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of left halves and right halves of typet for t = 1, . . . , T andi = 0, 1, 2 denotes the state of
the machines. In this case,i = 0 would represent the case where both machines are running,
i = 1 is the case where only the left machine is running, andi = 2 is the case where only
the right machine is running. (It can never be optimal to have both machines off.)

A variation of H2 for the case where costs are incurred whenever machines are turned
on, H2S, can be constructed in the following manner. First, we replace the originalT-type
problem by a 1-type problem as before and find, for each state, which machines should be
on or off by solving the following variation of (6):

g+ vi,0=1

τ

(
2h|i | + µ1 min

{
vi+1,0− R1{i<0}; vi,2

}+ µ2 min
{
vi−1,0− R1{i>0}; vi,1

})

g+ vi,1=min


S+ 1

τ

(
2h|i | + µ1 min

{
vi+1,0− R1{i<0}; vi,2

}
+µ2 min

{
vi−1,0− R1{i>0}; vi,1

})
1
τ

(
2h|i | + µ1

{
vi+1,1− R1{i<0}

}+ µ2vi,1
)

g+ vi,2=min


S+ 1

τ

(
2h|i | + µ1 min

{
vi+1,0− R1{i<0}; vi,2

}
+µ2 min

{
vi−1,0− R1{i>0}; vi,1

})
1
τ

(
2h|i | + µ1vi,2+ µ2

{
vi−1,2− R1{i>0}

})
(10)

The solution to (10) will give the states (in terms of difference of the total number of
left halves and right halves) in which either both machines or only the right or only the
left machine should be on. The second step of H2 (i.e., decomposition for obtaining the
thresholds for mating) remains identical for H2S. In the next section, we test the performance
of H1, H2, and H2S.

5. Computational results

We conducted a simulation study to test the performance of the heuristics. Since problems
with more than three types become extremely difficult to solve optimally (as noted, an
MDP formulation of a problem with four types can easily require over 40 million states),
the heuristics were tested against the optimal policy only for problems with two and three
types. We also compared the heuristics H1 and H2 for typical 16-type problems arising in
flat panel display manufacturing by using simulation.

Tables 1 through 3 show how the two heuristics performed on 36 test problems with
three types and no setup costs. The results in Table 1 are for systems where both machines
have exponential processing time distributions with rate 0.50. In Table 2, the results are for
systems where each left machine has an exponential processing time distribution with rate
0.60 and each right machine has an exponential processing time distribution with rate 0.40.
In Table 3, the results are for systems where each left machine has an exponential processing
time distribution with rate 0.66 and each right machine has an exponential processing time
distribution with rate 0.33. For each use of H1, simulation was used to compute the profit-
maximizing threshold values. Tables 1 through 3 show the average profit per unit time
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Table 1. Results for 3-type cases,µ1 = 0.50, µ2 = 0.50.

V11,V12,V13

V21,V22,V23 l1, l2, l3 H1 H2
Case V31,V32,V33 r1, r2, r3 h (% suboptimal) (% suboptimal) = Optimal

1 10, 7, 4 0.33, 0.33, 0.33

7, 10, 7 0.33, 0.33, 0.33 0.05 4.21 (0.9) 4.23 (0.5) 4.25

4, 7, 10

2 10, 7, 4 0.33, 0.33, 0.33

7, 10, 7 0.33, 0.33, 0.33 0.02 4.52 (0.0) 4.52 (0.0) 4.52

4, 7, 10

3 10, 7, 4 0.50, 0.30, 0.20

7, 10, 7 0.50, 0.30, 0.20 0.05 4.24 (0.5) 4.25 (0.2) 4.26

4, 7, 10

4 10, 7, 4 0.50, 0.30, 0.20

7, 10, 7 0.50, 0.30, 0.20 0.02 4.52 (0.2) 4.52 (0.2) 4.53

4, 7, 10

5 10, 7, 4 0.60, 0.20, 0.20

7, 10, 7 0.20, 0.20, 0.60 0.05 3.32 (1.2) 3.36 (0.0) 3.36

4, 7, 10

6 10, 7, 4 0.60, 0.20, 0.20

7, 10, 7 0.20, 0.20, 0.60 0.02 3.49 (0.9) 3.52 (0.0) 3.52

4, 7, 10

7 10, 6, 2 0.33, 0.33, 0.33

6, 6, 2 0.33, 0.33, 0.33 0.05 2.36 (2.1) 2.38 (1.2) 2.41

2, 2, 2

8 10, 6, 2 0.33, 0.33, 0.33

6, 6, 2 0.33, 0.33, 0.33 0.02 2.61 (0.4) 2.62 (0.0) 2.62

2, 2, 2

9 10, 6, 2 0.50, 0.30, 0.20

6, 6, 2 0.50, 0.30, 0.20 0.05 2.94 (1.7) 2.98 (0.3) 2.99

2, 2, 2

10 10, 6, 2 0.50, 0.30, 0.20

6, 6, 2 0.50, 0.30, 0.20 0.02 3.18 (0.9) 3.20 (0.3) 3.21

2, 2, 2

11 10, 6, 2 0.60, 0.20, 0.20

6, 6, 2 0.20, 0.20, 0.60 0.05 1.82 (2.7) 1.86 (0.5) 1.87

2, 2, 2

12 10, 6, 2 0.60, 0.20, 0.20

6, 6, 2 0.20, 0.20, 0.60 0.02 1.96 (1.5) 1.99 (0.0) 1.99

2, 2, 2
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Table 2. Results for 3-type cases,µ1 = 0.60, µ2 = 0.40.

V11,V12,V13

V21,V22,V23 l1, l2, l3 H1 H2
Case V31,V32,V33 r1, r2, r3 h (% suboptimal) (% suboptimal) = Optimal

13 10, 7, 4 0.33, 0.33, 0.33

7, 10, 7 0.33, 0.33, 0.33 0.05 3.51 (2.8) 3.51 (2.8) 3.61

4, 7, 10

14 10, 7, 4 0.33, 0.33, 0.33

7, 10, 7 0.33, 0.33, 0.33 0.02 3.72 (1.1) 3.70 (1.6) 3.76

4, 7, 10

15 10, 7, 4 0.50, 0.30, 0.20

7, 10, 7 0.50, 0.30, 0.20 0.05 3.52 (3.0) 3.53 (2.8) 3.63

4, 7, 10

16 10, 7, 4 0.50, 0.30, 0.20

7, 10, 7 0.50, 0.30, 0.20 0.02 3.70 (1.9) 3.70 (1.9) 3.77

4, 7, 10

17 10, 7, 4 0.60, 0.20, 0.20

7, 10, 7 0.20, 0.20, 0.60 0.05 2.84 (3.7) 2.93 (0.7) 2.95

4, 7, 10

18 10, 7, 4 0.60, 0.20, 0.20

7, 10, 7 0.20, 0.20, 0.60 0.02 2.95 (1.7) 3.00 (0.0) 3.00

4, 7, 10

19 10, 6, 2 0.33, 0.33, 0.33

6, 6, 2 0.33, 0.33, 0.33 0.05 1.96 (5.8) 2.00 (3.8) 2.08

2, 2, 2

20 10, 6, 2 0.33, 0.33, 0.33

6, 6, 2 0.33, 0.33, 0.33 0.02 2.13 (3.2) 2.15 (2.3) 2.20

2, 2, 2

21 10, 6, 2 0.50, 0.30, 0.20

6, 6, 2 0.50, 0.30, 0.20 0.05 2.47 (3.9) 2.49 (3.1) 2.57

2, 2, 2

22 10, 6, 2 0.50, 0.30, 0.20

6, 6, 2 0.50, 0.30, 0.20 0.02 2.63 (2.2) 2.64 (1.9) 2.69

2, 2, 2

23 10, 6, 2 0.60, 0.20, 0.20

6, 6, 2 0.20, 0.20, 0.60 0.05 1.55 (7.2) 1.64 (1.8) 1.67

2, 2, 2

24 10, 6, 2 0.60, 0.20, 0.20

6, 6, 2 0.20, 0.20, 0.60 0.02 1.66 (3.5) 1.71 (0.6) 1.72

2, 2, 2
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Table 3. Results for 3-type cases,µ1 = 0.66, µ2 = 0.33.

V11,V12,V13

V21,V22,V23 l1, l2, l3 H1 H2
Case V31,V32,V33 r1, r2, r3 h (% suboptimal) (% suboptimal) = Optimal

25 10, 7, 4 0.33, 0.33, 0.33

7, 10, 7 0.33, 0.33, 0.33 0.05 2.87 (4.0) 2.92 (2.3) 2.99

4, 7, 10

26 10, 7, 4 0.33, 0.33, 0.33

7, 10, 7 0.33, 0.33, 0.33 0.02 3.05 (1.9) 3.07 (1.3) 3.11

4, 7, 10

27 10, 7, 4 0.50, 0.30, 0.20

7, 10, 7 0.50, 0.30, 0.20 0.05 2.89 (4.0) 2.93 (2.7) 3.01

4, 7, 10

28 10, 7, 4 0.50, 0.30, 0.20

7, 10, 7 0.50, 0.30, 0.20 0.02 3.06 (2.2) 3.07 (1.9) 3.13

4, 7, 10

29 10, 7, 4 0.60, 0.20, 0.20

7, 10, 7 0.20, 0.20, 0.60 0.05 2.38 (3.6) 2.46 (0.4) 2.47

4, 7, 10

30 10, 7, 4 0.60, 0.20, 0.20

7, 10, 7 0.20, 0.20, 0.60 0.02 2.46 (2.0) 2.50 (0.4) 2.51

4, 7, 10

31 10, 6, 2 0.33, 0.33, 0.33

6, 6, 2 0.33, 0.33, 0.33 0.05 1.62 (5.8) 1.66 (3.5) 1.72

2, 2, 2

32 10, 6, 2 0.33, 0.33, 0.33

6, 6, 2 0.33, 0.33, 0.33 0.02 1.75 (3.8) 1.78 (2.2) 1.82

2, 2, 2

33 10, 6, 2 0.50, 0.30, 0.20

6, 6, 2 0.50, 0.30, 0.20 0.05 2.03 (4.7) 2.08 (2.3) 2.13

2, 2, 2

34 10, 6, 2 0.50, 0.30, 0.20

6, 6, 2 0.50, 0.30, 0.20 0.02 2.18 (2.2) 2.19 (1.8) 2.23

2, 2, 2

35 10, 6, 2 0.60, 0.20, 0.20

6, 6, 2 0.20, 0.20, 0.60 0.05 1.30 (7.8) 1.38 (2.1) 1.41

2, 2, 2

36 10, 6, 2 0.60, 0.20, 0.20

6, 6, 2 0.20, 0.20, 0.60 0.02 1.38 (4.2) 1.43 (0.7) 1.44

2, 2, 2
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obtained by H1, H2 and the optimal policy (obtained by solving the complete MDP formu-
lation), as well as the percentage suboptimality of H1 and H2. The profits achieved by H1
and H2 were computed by simulation.

Cases 1–36 were selected to cover a wide range of operating conditions. Cases 1–6,
13–18, and 25–30 represent situations where the value of the mated part gets lower as the
“difference” between the halves increases. (For example, different types may correspond to
different tolerances, and the halves with the same tolerances may have the best fit.) Cases
7–12, 19–24, and 31–36 represent situations where different “qualities” are associated
with each type and an assembled component is worth only as much as its lowest-quality
part.

Tables 1 through 3 show that both heuristics perform well for all 36 cases. H2 performs
as well as or better than H1 in all but 1 of the 36 cases. In fact, the average suboptimality of
H2 was 1.4% over the 36 test cases. This is encouraging, since it is much easier to compute
the parameters of H2; the thresholds required to implement H2 were calculated in several
minutes for each of the examples. The simulation runs required to determine the thresholds
for H1, by comparison, took as long as several hours of CPU time on a Sun Sparcstation
20. The performance of the heuristics declines slightly as the processing rates of the left
and right machines become more unequal. We also note that H2 performed better in the
examples where one of the types had a large probability, as in example 36. In this case,
the probability of a type-1 left type is 0.6, as is the probability of a right type of type 3.
Clearly, the most important decision here is the threshold for mating left type ones with
right type threes. It is very important that the heuristic get this one threshold right, and its
performance in estimating the other thresholds is not as important as the heuristic does not
face the other decisions as often. Another interesting observation is that the heuristic tends
to do slightly better at the lower holding cost value of 0.02. We believe that the reason for this
is that, when holding costs are lower, the thresholds are higher. Under- or overestimating
a high threshold value by one has a much smaller influence on performance than under- or
overestimating a low threshold value.

Tables 4 and 5 show how the heuristics H1 and H2S performed on 12 test problems
with two types and setup costs of 0.20 and 2.00. The results in Table 4 are for systems
where both machines have exponential processing time distributions with rate 0.50. In
Table 5, the results are for systems where each left machine has an exponential processing
time distribution with rate 0.66 and each right machine has an exponential processing time
distribution with rate 0.33. For each use of H1, simulation was used to compute the profit
maximizing threshold values. Tables 4 and 5 show the average profit per unit time obtained
by H1, H2S, and the optimal policy (obtained by solving the complete MDP formulation)
as well as the percentage suboptimality of H1 and H2S. The profits achieved by H1 and
H2S were computed by simulation. In Cases 37, 39, 41, 43, 45, and 47 the setup cost is
2.00. In Cases 38, 40, 42, 44, 46, and 48 the setup cost is 0.20.

Tables 4 and 5 show that H2S performs better than H1 in all the cases. The average
suboptimality of H2S was 3.1% over the 12 test cases. The tables show that both heuris-
tics perform better when the machine processing rates are equal (which indicates that the
heuristic is having greater problems estimating when to shut off and turn back on machines
in the case with setup costs and unequal processing rates).
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Table 4. Results for 2-type cases with setup costsµ1 = µ2 = 0.50.

V11,V12 l1, l2, l3 H2S H1
Case V21,V22 r1, r2, r3 h (% suboptimal) (% suboptimal) Optimal

37 10, 7 0.5, 0.5

7, 10 0.5, 0.5 0.02 4.59 (0.0) 4.52 (1.5) 4.59

38 10, 7 0.5, 0.5

7, 10 0.5, 0.5 0.02 4.60 (0.0) 4.57 (0.7) 4.60

39 10, 6 0.5, 0.5

6, 6 0.5, 0.5 0.02 3.64 (0.0) 3.58 (1.6) 3.64

40 10, 6 0.5, 0.5

6, 6 0.5, 0.5 0.02 3.65 (0.0) 3.64 (0.3) 3.65

41 10, 7 0.67, 0.33

7, 10 0.67, 0.33 0.02 4.59 (0.0) 4.56 (0.6) 4.59

42 10, 7 0.67, 0.33

7, 10 0.67, 0.33 0.02 4.60 (0.0) 4.60 (0.0) 4.60

Table 5. Results for 2-type cases with setup costsµ1 = 0.66, µ2 = 0.33.

V11,V12 l1, l2, l3 H2S H1
Case V21,V22 r1, r2, r3 h (% suboptimal) (% suboptimal) Optimal

43 10, 7 0.5, 0.5

7, 10 0.5, 0.5 0.02 2.82 (9.6) 2.74 (12.2) 3.12

44 10, 7 0.5, 0.5

7, 10 0.5, 0.5 0.02 3.07 (2.5) 2.74 (13.0) 3.15

45 10, 6 0.5, 0.5

6, 6 0.5, 0.5 0.02 2.20 (11.3) 2.08 (16.1) 2.48

46 10, 6 0.5, 0.5

6, 6 0.5, 0.5 0.02 2.44 (3.2) 2.10 (16.7) 2.52

47 10, 7 0.67, 0.33

7, 10 0.67, 0.33 0.02 2.84 (8.9) 2.76 (11.5) 3.12

48 10, 7 0.67, 0.33

7, 10 0.67, 0.33 0.02 3.09 (2.2) 2.77 (12.3) 3.16

We also compared the performance of the two heuristics on a typical problem from
flat panel display manufacturing. We used simulation to compare the performance of the
heuristics in this case. As described in Section 1, in flat panel display manufacturing, “active”
and “passive” halves are inspected to determine the location of the defects. The plates are
then assembled and cut into smaller products. A typical example has the “passive” and
“active” halves cut into four pieces after being mated to produce four displays. In this case,
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Figure 2. Performance of H1 and H2 for 16-type problem.

since each half could have defects in four different locations, there are 16 possible types of
halves. Suppose that the probability of defect in any location is 0.3, independent of defects
at other locations, and a display is worth $10 if it has no defects on either half. Therefore,
mating “passive” and “active” halves that both have no defects is worth $40. On the other
hand, mating an active plate that has a defect in the location of the third display with a
passive plate that has defects in the location of the second and fourth displays will result
in production of only one 1 display (in the location of the first display) and the total mate
is worth only $10. We assumed that the machines producing the left and right halves had
exponential distributions with rate 0.5.

Since this problem has 16 types, it cannot be solved to optimality using dynamic pro-
gramming. Even if the maximum inventory of a given type were limited to at most 40 units,
there would be over 1028 states in the MDP. Figure 2 shows the performance of H2 and H1
as a function ofh. For all the holding cost values displayed, H2 outperforms H1, although in
this case the difference between the two heuristics is smaller than in the three-machine cases.

6. Conclusion and further research

In this paper, we formulated an assembly control problem that arises in many manufacturing
environments, including flat panel display manufacturing, and presented several heuristics.
Although the heuristics performed well on the examples without setup costs, further re-
search is needed on the problem with setup costs. Further research also should focus on
more complicated systems than the one considered here (e.g., subassembly lines instead of
machines).
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