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ABSTRACT

Cylinder with a wedge and a coaxial shell with an axial slot make up the
antenna. A stationary expression for the admittance is obtained when the antenna
is enclosed by a plasma sheath, The basis of the admittance calculation is the
electric field of the wedge aperture derived from a solution of two coupled inte-
gral equations, The calculations are carried out for the parameter ranges. The
radii of the cylinder and shell are, in wavelength, from 0.05/7 to 2/r and from
0.055/7 to 2.2/m, respectively. The plasma sheath thickness is from 0 to
2.5/m. The plasma frequency to signal frequency ratio, wp Jw, is from 0 to 5.
Collision frequency to signal frequency ratio, v/w, is 0;0,01;0.1, and 0.5. The
angular width of the wedge slot and the shell slot are the same and equal to 0,06
radians. The results indicate: For wp/w > 1, conductance and susceptance depend
weakly on the plasma sheath thickness. For wp/w‘ > 1 and v/w=0, conductance
decreases exponentially when either the sheath thickness or wp/w increases, Sus-
ceptance depends primarily on wp/w and inappreciably on the sheath thickness.
An increase of v/w increases the conductance but modifies the susceptance only
slightly., The coaxial slotted shell behaves as an ideal voltage transformer in

the equivalent antenna circuit.
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CHAPTER I

INTRODUCTION

1. Survey of Previous Work:

In the course of re-entry, a space vehicle travels through the upper
atmosphere with hypersonic speed, thus a highly ionized non-uniform plasma
layer is generated. This plasma layer encloses the body of the vehicle,
therefore it tends to block the radio contact between the vehicle and the out-
side stations. In the last few years, this problem has attracted the
attention of a number of investigators.

Hodara (1963) calculated the radiation pattern of a slot on an infinitely
conducting plane covered with a homogeneous, but anisotropic plasma layer.
In his approach, he first assumed a reasonable aperture field and then
obtained the far field. He did not consider the slot admittance. To obtain
the slot admittance, one has to know the field in the slot much more accurate-
ly than is required for the far field calculations. Galejs (1963) considered
a slot on an infinitely conducting plane, backed by a rectangular cavity and
excited by a current generator. He formulated a stationary expression for
the slot admittance. In his more recent papers (1964, 1965a, 1965b), he
applied the same technique to evaluate the slot admittance when the conduct-
ing plane is covered with a homogeneous plasma layer. A.T. Villeneuve
(1965) considered a problem which involves a rectangular waveguide term-
inated on an infinitely conducting plane coated with a plasma layer. He
employed the reaction concept to derive a stationary form for the terminal
admittance of the waveguide. Both Galejs and Villeneuve limited their
calculation to the case of signal frequency w greater than plasma frequency

W .
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Unless the aperture size and free space wavelength are much smaller
than the size of the vehicle, we could not use the plane geometry to approx-
imate the surface of the vehicle; otherwise a geometry closer to reality
should be considered. Some authors choose to consider the circular
¢ylindrical geometry. A typical geometrical configuration is shown in
Fig. 1-1

Plasma Layer

FIG. 1-1: CROSS-SECTION OF A TYPICAL SLOTTED CYLINDER
WITH A PLASMA SHEATH.

where the slot A may be either axial slot or circumferencial slot. The existing
work for the above configuration almost entirely is concerned with evaluating the
radiation pattern of the slot when the plasma layer is assumed to be of the
following:

(a) homogeneous and isotropic (Knop 1961, Sengupta 1964)

(b) homogeneous and anisotropic (Chen and Cheng, 1965)

(c) isotropic but'inhomogeneous (Rusch 1964, Swift 1964, Taylor 1961)



The last case is of particular interest to us. Rusch and Swift assumed that
the density of plasma varies continuously according to a specified function
of the radial variable r. Taylor (Rotman and Meltz, 1961) considered the
plasma sheath to be stepwise inhomogeneous. The inner step is very thin
and highly overdense in comparison with the wavelength. Therefore he
regarded this sublayer as metal-like sheet. This metal-like sheet is then
followed by a comparatively thick dielectric-like sublayer. To prevent a
short circuit on the antenna, a dielectric Iéyer is placed between the metal
surface of the vehicle and the metal-like sublayer. He also pointed out that
the radio communication blackout is due to the metal-like sublayer.

Olte (1965) in a recent paper considered a conducting cylinder enclosed
by a slotted coaxial metal shell with an axial slot which represents the metal-
like plasma sheath. The electromagnetic field is excited by an axial magnetic
line source on the cylinder (Fig. 1-2). He calculated the power radiated
through the shell for different combinations of the cylinder size, shell size,

and the separation angle 6 between the line source A and the shell slot.

Perfectly Con- '\

ducting Shell 0

Perfectly Conducting
Cylinder

FIG. 1-2: RELATIVE POSITION OF SHELL SLOT AND MAGNETIC
LINE SOURCE.



2. Problem to be Investigated

Although the radiation problem of a slot on a cylinder with a plasma
sheath has been treated by many authors, few of them have been concerned
with the admittance. The prime purpose of this report is to partly fill this

gap. The geometrical configuration we consider is shown below:

Space

Plasma
Layer

Perfectly conducting
shell with a slot

Perfectly conducting
cylinder with a wedge

Coaxial Region

FIG, 1-3: CROSS-SECTION OF A WEDGED CYLINDER, SLOTTED
SHELL, AND PLASMA SHEATH,

where A is a circular cylinder with a wedge of width 290 , B is a dielectric
with = 1, er =1, Cis a uniform dielectric-like plasma layer, D is the
free space region, E is a circular conducting shell with an axial slot, a, b,
and c are the radii of the cylinder, circular shell and the outer boundary of

the plasma layer respectively, 0 represents the center to center angle between
the shell slot and the wedge slot. If we assume a magnetic line source at the

apex of the wedge, then the electromagnetic energy radiated from the line



source is guided by the wedge to the coaxial region and then through the shell
slot and the plasma sheath to the free space. Therefore we may regard the
wedge as the antenna feeding line and we proceed to calculate the terminal

admittance of the wedge waveguide.

3. Outline of the Report

In the next chapter, we first assume the source strength to be Vo
volts and then write down the fields in the form of infinite series for the
wedge guide, the coaxial region, the plasma, and the free space. From the
continuity of the tangential electromagnetic fields in the two apertures, we
formulate two coupled integral equations with ¢—directed electric field in the
wedge aperture and shell slot as the unknown functions. From these
expressions we formulate the terminal admittance of the wedge waveguide
which is proved to be stationary with respect to the variations of the wedge
aperture field. In chapter III and chapter IV, we present the methods and
the solutions of the coupled integral equations. Upon employing these sol-
utions, we obtain in chapter V the explicit expressions for the voltages of
the two slots and the terminal admittance of the wedge waveguide when both
slots are narrow. Parallel to the stationary formulation of the terminal
admittance of the wedge waveguide, in chapter VI, we formulate this
admittance in an alternate form. This new formulation is not stationary,
but provides a basis for the discussion of the contribution of different regions
to the terminal admittance. From this formulation, we construct an equiva-
lent circuit. In chapter VII, we present the numerical values of the terminal
conductance and terminal susceptances computed from the expression of the
admittance obtained in chapter V. Finally, we draw some brief conclusions
for this report.

In order to maintain the main sequence of thought, we leave some of

the detailed derivations to the apendices A-1 through A-10.



CHAPTER II

INTEGRAL EQUATIONS AND THE TERMINAL
ADMITTANCE OF THE WEDGE WAVEGUIDE

1. Introduction:

The geometrical configuration which we choose to consider suggests
us to employ the cylindrical coordinates, of which the z-axis is aligned with
the axis of the cylinder and P is measured in a counter-clockwise direction
from the center of the slot of the shell. Because the antenna is excited by

an axial magnetic line source, only the following field components exist:
Hz axial magnetic field,
E¢ circumferencial electric field,
Er radial electric field.
By superscripts I, II, III and IV, we will denote the wedge waveguide,
the coaxial region, the plasma sheath, and the free space, respectively.
Since tangential electromagnetic field must be continuous across the wedge-

guide aperture, the shell slot, and the tangential electric field must vanish

on the perfectly conducting cylindrical walls one obtains at r = a :

I - ’A ° - r'd -] -
E¢—E¢-E(¢),6 90\¢<9+90 (2-1-1)
EII= 0; 6+6.<p<(27+6-86) (2-1-2)

f ! (I 0

I _ IO, _ 1o
HZ—HZ,690<¢§9+90, (2-1-3)



atr=b:
EI; = EH; T E(); - po <p< ¢0 (2-1-4)
=0; [l> 8, (2-1-5)
Hg = szn ;o cPyp< P <y, (2-1-6)

atr=c:
EﬂngI; ; ~rKPgT (2-1-7)
HH;=HIZ ; <P (2-1-8)

In the last part of this chapter we use the forgoing relations to formulate two
coupled integral equations with the wedge guide aperture field ﬁ(ﬂ) and the
shell slot field E (@) as the unknown functions.

One may consider the wedge guide as a transmission line with TEM
wave as the transmission mode. We consider a section of wedged-waveguide
of length L, in which the transmission line voltage and current are governed

by the following equations (Montgomery, 1948)

AN - k) Zo (0 1) (2-1-9)

%iﬂ - - 1Ky Yy () V(0 (2-1-10)

where <
1 L 0
Y. (r) = = - (2-1-11)
0 Zo(r) 290 r Ho




The positive directions for the current and voltage are shown in

Fig. 2-1

FIG. 2-1: POSITIVE VOLTAGE AND CURRENT OF WEDGE
GUIDE

The solution of differential equations (2-1-9) and (2-1-10) are easily
obtained as

I(r) = - [A'H(g) (k,7) + B H(é) (k, r)J (2-1-12)
_ 1 () (1)
V(r) = 3 Yo(r) [:A H 0 (kor) + B'H 0 (kor):| (2-1-13)

where the primes indicate the derivatives of the Hankel function. If one

defines the normalized admittance at a cross-section r as

U Ie) 1 -1-
y(r) = 6] Yo(r) (2-1-14)




9

then from previous two equations one obtains

A'H(z)(kor) + BH(I)(k 1)
(2)' (1)

y(r) = j (2-1-15)

(kor)+ B'H (k T)

The normalized terminal admittance of the wedge waveguide is y(a). Thus our

problem is to find the constants A'and B'.

2. Field Expressions:

The field expressions (Stratton, 1941) in the wedge waveguide are

I 'y (1) !
Hz—ko{ ofo (k.r )+B0H O(kor) +i1AnJ—(k T) cos 0(¢ e+e)}
20
0
(2-2-1)

EI- WM \ ()'(k r)+B H(l)'(k r) + 00A J' (k r)C —(¢-6+6)
p=Ivkin)A 070 0 }:1 o8 20,
n= 260
(2-2-2)

[0}
Z—eﬂ (k r) sm— (p- 9+9) . (2-2-3)
s 29 *%
0
If we let V(r) be the voltage between the walls of the wedge, then

%

V(r) = - rE;dﬂ . (2-2-4)

9-60

Upon substituting (2-2-2) in (2-2-4), we obtain

V(r) = - juu k r26, [A H )(k 1) +B0H((1)) (k r):\ . (2-2-5)
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1 1
One may specify the value of AO’ or BO’ or their linear combination. We
choose to specify the voltage at the apex of wedge, i.e. to fix the strength

of the magnetic line source. Let

r-0 0

lim {-jwuok r260|: A, ((2)) (k 1) + B, H(l)'(kor):]}wo. (2-2-6)

After taking the limit, the result is

' TV
A -B = - ——— (2-2-7)

In the coaxial region:

2n=(x) _;
Hg=ko > [:Aan(kor)+BnNn(k0r):|e jnf (2-2-9
n= -o
n=a0a
o_, ! ! -jnp
Eg = Jukg kg Do [A, 3 (k) +B N (k1) ]e , (2-2-9)
n=-o
W
--——9 Z n[A 3 () +B N (k r)] (2-2-10)
it -®

In the plasma sheath:
n=0
o _ 2 -inf ;
H 2 k1 Z [Dn Jn (k1 r) + En Nn (k1 r)] e (2-2-11)

n=-ow
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quo ) Z E) J (k r)+E N (k r)] jnf (2-2-12)
n=-om

Z |:D J (k r)+E N (k r)] jnf (2-2-13)
n= - m

where
(2-2-14)
If we let
k= k. -ik (2-2-15)
then
W W W
1 (702)2 1 (z,p_)z , (_p_)z , 1/2 q1/2
=4 = - — vV
k=121 u2)+2[(1‘ ) T 7w
1+(2) 1+() 1+ (%)
(2-2-16)
W W W
PR TR -L A UL i UL
_d1 \ v 1 W
k = 2[(1' WLRAUEITIV w)] A 2)}
1+(£) 1+ (%) 1+ ()
(2-2-17)
In the free space:
n=0
HI‘Z:kg E 5? 2 ey e jnf (2-2-18)

n=-q0o
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n=q0
EI;=jwy0k0 E c, H(Z) (k1) © -jnp (2-2-19)
n=-w
op. A
En:_:-—;g ()(k T) e -jn p . (2-2-20)
n=-o

3. Formulation of the integral equations

Upon substituting the required Eﬁ expansions in the boundary conditions
atr=a, r=band r=c, i.e. in(2-1-1), (2-1-4) and (2-1-7) respectively,

one obtains

jwuoko{A(;H(o)'(koaHB ' (k,a) +ZA J' (k a) cos 0(¢ -0+6 ) }=ﬁ(¢).

n=1 20
0 (2-3-1)
n=a
Jumk, Z (A J (k2)+B N (ka)) L 0] (2-3-2)
n=-o
n=0
Jwugky Z (A J (k) +B N (kob) e'“"s = E(f) (2-3-3)
n=- 0
n=0
Jwpgk, Z (D, J (k b) + E N (k b)) e'jnp =E(f) , (2-3-4)

n=-qao
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and
n=a0o
' Z (k. ) +E N (k. o)e 0P
quokl (Dan(klc 0 n(klc e
n=-0o
2)! -
= jwm ko E Canl)(kOc)e jnf (2-3-5)

n=-oo

Applying the orthogonality of the circular functions to eqns. (2-3-1)
through (2-3-5), there results:

+0
0
(2)! (1) 1 N ad N
AOHO (k) a)+B H' ) (ko) = oo k. B (p ap (2-3-6)
-90
6+6
[ - 1 0 t !
An_jeo‘*’“oko e oa) E(¢)cos 0(¢ -6+6 )d¢
6-6
290 0
nx1, (2-3-7)
+0
A J(ka)+B N (ka)=—— Oﬁ(pf) RLE PP (2-3-8)
n n( Oa n n 0a - j21rw#0k0 ?
9-60
1 1 1 0 jn¢'
An Jn(kOH) + BnNn(kOb) =m E(¢') e dp' , (2-3-9)
-¢0
' (K, b) = ——— 0E(¢') RLY P (2-3-10)
Dan(klb)+EnNn 17 j2mou ko ’
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and

1 1 _ (2)!
E(Dn Jn(klc) + EnNn(klc) ) = cn Hn (koc) (2-3-11)

Combining Egs. (2-2-7) with (2-3-6), (2-3-8) with (2-3-9),and (2~3-10)
with (2-3-11), one has three sets of two variable simultaneous algebraic

equations. Their solutions are

, LA H( 1)‘(koa) 1 i +60 A
A" " Bowm. 436 ik, E(p) dp' ,
070 JO (koa) 0 0 Jo(koa) 0—00
(2-3-12)
AL H(g)'(koa) 1 1 +90ﬁ
B, = +— (0 dp' ,  (2-3-13)
0 86.wu ! 4j0 wu !
0% 3 (k2 0% g, () g
l 1 1
A = (N (ka)p -N(.bq), (2-3-14)
n ' ' ' ' 20 Pn a0~ %
Jn (kob) Nn(koa) - Jn(koa) Nn(kob)
l 1 1
B = (-3 (k.a)p +J (k. b)q),
n ! ! ! ! nn 0 “n n 0 qn
3 (YN (k@) -3 (k@) N (i b) (2-3-15)
1 [ (2)! ' ' ]
D = C H™ (k.c¢)N (k.b)-p N (k. c)
n - ! ! ! nn 0 nl nnl
K3 e, N_ (k1) -3 (c b) Nn(kocﬂ

(2-3-16)
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1 BT '
E_ = . - n " -C H "(k.c)J (k. b)+p J (k c)]
n nn 0 n'l nnl
E[Jn (k ON (kb) -3 (kDN (klc):l
(2-3-17)
~ where
1 0 jng
P, = m E(f") e d g N (2-3-18)
..¢0
1 0, jnp
T 2 rjue k E(fye " ap . (2-3-19)
00
6-60

We substitute the required Hz expansions in (2-1-3), (2-1-6), and (2-1-8), the magnetic
boundary conditions at r =a, r = i and r = ¢ respectively, and obtain

(2)(k a) + B H(l) (koa) +ZA J (k a) cos S (¢ -0+60 )

0 0
n=1 290
n=o
_ -jnp
B Z (An Jn (kOa) * BnNn(kOa) )e ?
n=-o
6-00 < ¢ < 9+90 , (2-3-20)
n=om n=o0
-jnp =2 -jnf
E (Aan(kobHBnNn(kOb) )e =k E (Dan(klb) + EnNn(klb))e ’
= - n=-o

-Po<Pshy . (2-3-21)
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and
2Z(D J (k c)+E N (k c))e jnﬂ ZC H(z(k c) e ’
n=-00
-r<p<r . (2-3-22)

Upon using (2-3-22) we eliminate Cn in the expressions for Dn and En , and

obtain

k[N (k) H(zlk o) -k H(Z) (k;o) N (k c)]

D

RE (1 @ 3.0k, N (i, B) -7 (k PIN (k c)] - lk c)[J (k N (klb)-J;(klb)N;(klb]

(2-3-23)

E’ (k0 H(Z)(k o -EH? () 3 (k c)]p

E
& (koc)EI (k c)N  (k b)-J (k PN (k c)] H(z)(k °)|;’ (k AN (k - (k PN (k c)]

(2-3-29)
If we substitute (2-3-14), (2-3-15), (2-3-23) and (2-3-24) in (2-3-21), we have

n=q

J (ko) ,N (k,8) -N_(k b)J (k) ,Jnf

Z :
1 ' P
n
— J_(k bIN "B - J (kBN (k.b) ®
_ n a5 = IutkoP Niikg %e‘jnﬁs: Z ﬂpe-jn¢

1 1] 1 1 - n n

n= n(k b)Nn(kOa) - n(koa) Nn(kob) n=-=m

(2-3-25)

where
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H(z)'(kOC)
[J(klb)N (k c) -J (klc)N (k b)] -k H(z)(ko)[J (kob)N (klc)-J (kic)N (klb)J
= k .,
. H( (koc)
El(kIC)N (klb) -J (klb)N (k.c) C] H(z), [J (klc:)N (klb)-J (klb)N (k1°)
(ko)
(2-3-26)
Substituting (2-3-18) , (2-3-19), and the identity
I (k BN (k b) -4J (k BIN (K b) = —f—; (2-3-27)
0

in (2-3-25), we obtain

n=oo H(2) !
(k c) J (k )N (k. a) - N (k b)J (k a) (0 .
Z( n (2)' 1 Ob n' 0 1 0 ) E(pt) e-jn(¢-¢ )dp'
(k c) J (kob)Nn(koa) J (k a)N (k b)

-¢0

+9
TS bZ Sﬁ Bpye P Plap:

e (k b)N (k a)-J (k a)N (k b)
0

-¢o<¢<¢o‘

(2-3-28)
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Upon interchanging the summation with integration on the left-hand
«ide, one obtains

Hk@) 3 (epIN [k g)- T (k 2N (k D) .
E(¢')Z< k) d kObN(koa I (k)N kob)>e"“‘¢'¢’dp'

(2)*
(koc) Jn(kob)Nn(k @ - Jn(kda)Nn(kob
+90
= ”k b f:‘:(ﬂ')e"jn('j -+ Y4
» 9 (de)N' (koa) -J (kda)N (kob) -0
0
-f<p<h . (2-3-29)

We then substitute (2-3-7) and (2-3-12) through (2-3-15) in (2-3-20),
rearrange terms, and using the Wronskian of the Hankel functions

(1) (2) (1) (2); _ 4
Hn (kOa) Hn (kOa) -Hn (kOa) Hn (kOa) B H(J(Fl !

arrive at
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1 Y
2j0,wngky  adp (koa)
J (k. a)
© _2?:" 0 6+6,
1 0 ] t 1
“oko z:ém)cos % (- 6+9)§ E(¢)cos (¢ -6+ )dﬁ
290 99,

' ' 0+9

n= N (k b)J (k.a) -J (k bIN (k a) 0 .

_2‘”.“1“ o 0 o 0 n 0 d 0 & E(§) Sin(p-p )dﬂ'
Wil o 3 (k bIN_(k 2) - _(k @IN (K b)

nn0 n0 9-60
2 1 ‘f 1 o -jn (f-p")
+ - E(f" e dg' ,
ko 2TIVk Ry 1T 3 (k b)N (k a) -J (k a)N_(k b) S 1

6-0,<P<0+6 , (2-3-30)

where € =1forn=0and2forn# 0. We note that in (2-3-29) and on the
right handside of (2-3-30) the series are summed on n from - to o . If

we employ the relations

z @ = 1" Z_ ()

z! @) = (-1° 2! ()

where Zn(r) and Z;l(r) denote the cylindrical function and its derivative,
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one may simplify (2-3-29) and (2-3-30) respectively to

)cosn (p-p") g

) 2" 1-1(2)(k o) J (kob)N (k&) -3 (kda)N (kob)
E( Y) € (1r
4 oo "He J0pNp - LN G

0
(0 ) € +60
=_.__2_.: ' n E(¢')cosn(¢-¢')d¢' ’
TP Ll N (k) - (k@) N (k)
=%
_¢0 <Pg ¢0 s (2-3-31)
and
&(koa) vo
09) 200 o 0
nzo S 290(¢-9+90) E(p) cos - (¢' -8+6)) df"
o-6
290 0
1 ] 6
9 J (k AN (k b) -J (k BN (k a) (¥ 0
D I r E(p)cos n(p-$") op
3 (k N (k8 -3 (k aIN (k b)) 0
\'A 6. - €
=-—aq . +12a7? Z - E(ﬂ‘)cosn(ﬂ-ﬁ')qﬂ' ’
Lk ™o T Ik PNk - J(koa)N(de)
0-6,< P < 0+6, . (2-3-32)

- 0 N SAY U'ruo . (é=5-52)
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Equations (2-3-31) and (2-3-32) are dual integral equations. Thus
the boundary value problem is reduced to the dual integral equations. In
chapter III, we regard B (#") as a known quantity and solve integral equation
(2-3-31). Then we insert this result in (2-3-32) to eliminate E(§'). An
approximate solution for ﬁ(ﬁ‘) is obtained for narrow wedge and narrow shell
slot. The kernels of the last two integral equations will be studied respec-
tively in chapter III and chapter IV; it is shown that these kernels have a
logarithmic singularity when '— § .

4. Terminal Admittance of the Wedge Waveguide
Using (2-3-6), the first two terms on the left hand side of (2-3-20) can

be written as

L ety ¢
0. wu 1 (2) 1 (2)" E(¢') d¢| s
0ok AOH(O (koa)+B0H0 (koa) oo

0

' (2) ' (1) _
At (koa)+B0 H(O (kda) %

but

A(;H(z)(koa)+B(;H(é)(koa)
jA'H(Z)t(k )+B'H(1)'(k ) = y(a)
0" 0 TP o Y

and therefore

+9
1 ' 0
A H(z)(k a)+BOH((1)) (koa) = -"“_1"""' y(a) ﬁm') d¢' . (2-4-1)

000 260(0#01%
0-90
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Upon substituting (2-4-1) in (2-3-20), we have

070

.le
T 20 wu ko y(a)sﬁ E(p')d¢+ZA I (kda)cos (¢-0+9)
(7]

-90 n=1 26 0
n=qQo
= Z (a_ Jn(koa)+BnNn(kob»e“J“¢ . (2-4-2)
n=-00

If one inserts (2-3-7), (2-3-14) and (2-3-15) into the last expression, one
obtains

or er(koa) w0
0
y(a)S E(¢')d¢'-2Z (k ) ¢-e+e )Y E(¢')cos—(p-e-e)dp'
a,
6-6 n= 1 _nmw 6-6
0 260 0

-

9 (00

+9
N (k b)J (k.a) -J (k.b)N (k_a) 0
+ 2 2020 _nl ol f B (gcosn (-1 dp
Jn(kob)Nn(kOa) -J (koa)Nn(kOb) 90

B

-

n=0

B

o™ ¢0
--Q 2 Z E(¢') cos n(f-p"dp* .
T 18 59 (k(}))N (koa) -J (koa)N (kob)

(2-4-3)
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Multiplying (2-4-3) by £(f) d and integrating from 6 -9, to 6+6, , we have

+9,
2
y(a) E(ﬁ)d’b) —232[ (k a)/JL (koa:”: ﬁ(ﬁ)cos (¢-0+9 )dﬁ{l
b, n=1"26, 26, b,
Oae T (k@ (k) -3 (kN (k) [**0 %
+J§ 3 ¢ Pl dWRO\  E(P)cos n(p-g)ap!
n=o J(kob)N (koa) J(ko“‘)N (kob) 00, b+9
0
(04} +9
- —"QZ o "8\ E@rcosnipap
- J(kob)N (koa) J(kda)N (kOb) ot 4
o

(2-4-4)

One may note from (2-1-14) and (2-1-15) that y(a) is a dimensionless quantity.
If the value of the terminal admittance Y(a) of the wedge waveguide is of
interest, then by virtue of (2-1-11) and (2-1-14), we have

€
L " 0

In A-1, assuming the solution of integral equation (2-3-31) is obtainable,

the stationary property of (2-4-4) with respect to a small variation of £ () is
established. Thus in order to use (2-4-5) to calculate the terminal admittance

Y(a) , one needs to solve first the integral equation (2-3-31).



CHAPTER III
SOLUTION OF INTEGRAL EQUATIONS (2-3-31)

1. Introduction
The P-directed electric field in the shell slot E(f) may be considered

as the sum of Ee(¢) and EO(¢) , respectively, symmetric and antisymmetric
part with regardto § =0  (Olte, 1965).

Since
h
Ee(¢) sinnfdf = 0
-¢O
and
b

E0(¢) cosnfidp = 0
One may split (2-3-31) into two integral equations:
) S | Bk T kPN le) - (kAN (k)

E (pl) E € - .
e nin )l 1 1 1
4 n=0 aci (ke) I (kPN (k@) -3 (kAN {kb)

cos nficos np' dp’

o) 9+90
2.y, oeld (9 cos
(c IN (k@) -7 (k2N (k B) Jo

ﬂbb
0

n
[}

n
n=0 Jn

(3-1-1)

24
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(0 0)

% #0003 (RNl ) - (kN (ke o
EO(¢‘)Z x
-¢o n=0

sinnf sin n' dp*

1

n
2)! = | 1
H o) 3 (eI (e ) -3 (e @IN (k)

® 0+00
. A |
e LI g Sprsinng ap
0 n=1 Jn(kOb)Nn(kOa) -Jn(kOa) Nn(kOb) 6 -60
(3-1-2)
For large value of n, one finds
b
1__(___)2n )
1+ gz k
H(i)(koc) kp 1) n .
20 o @ K (3-1-3)
n_(2)' n b.2n
H” (k¢) 1-(=)
n 0 E2+ c
b,2n
1+(D)
and
7 (kDN (k.a) -J (k)N (kb) kb 14+(2)%0
n 0 " no0 n 0 no0o 0 b (3-1-4)
! ! ! ' ~'n a.2n i
Jn(kob)Nn(koa) 'Jn(koa)Nn(kob) 1-(b)
Asn -0
1Pk o 7 0 BN (k a) -3 (k )N (i b) K b
7rnO n 0" n0 nn 0 n0 ’--9—(1+E2)-
n_(2) ) 1 1 1 4 n
H2 ) 3 (e bIN (e ga) - 3 (e @ (cgb)
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Thus if we define
(2) ] ]
(k c) Jo(kob)NO(koa) - Jo(koa)No(kob)
o = T H(z)

1 1 ] 1 (3"1"5)
(k c) Jo(kob)NO(kOa) - Jo(koa)No(kOb)

1

(2) !
_ (k c) Jn(kob)Nn(koa) - Jn(koa)Nn(kob) 2) k b
T = "n 2)1 - 1 ' 1 + (1 +k
n n‘ (ke) 3 (e pIN (k@) - 3 (k N (k b

{ BN J(kIC) l(lﬁblﬂ(m(koc) R KONk N _(cpMN(kc]
RH 2 plT (<IN (kb -7 (klb)N ()] H e e (e N (k) -Jn(l&b)Nn(lﬁc)]

+1 0
Jn(kob)Nn(kOa) - Jn(koa)N (ke b)

(e N (k) - 3 (c N (kD))
n 0 n+tl' 0 } (3-1-6)

then the series which represents the kernels of integral equations (3-1-1) and
(3-1-2)respectively become

& 1Pk g (kob)Nl:(koa) -3 (kN _(k ) |
€ (2), . cos nf) cos nf

MOCHE (k bIN_(k a) - J[;(koa)NI:(kob

0

(0 0) [0 0]
1
= Zen 7 €08 nf cosnf' -2(1 +EZ) kob ZM'S‘)‘B’QL (3-1-7)

n=0 , n=1
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n 0

"n 1-[(2)' T ' 1
n (koc) J n(kob)Nn(kOa) - Jn(koﬂ)Nn(kob)

o (2) ' 1
H (k) J (k bIN (k.a)-J (k.a)N (k b)
< n_0 n9 B0 807, nf sin ng*

n=1

® ®
= 2Z'rn sinnf sinnf’ - 2(1 +F) kosz_in_n%x_gﬂ

n=1 n=1
From (3-1-3) and (3-1-4), it is easily found that as n — o

H(i)(koc) kb . (2)2“
+ k n — 2k kob—n——-

T (2
H 0 (koc)

and

3 (k BN (k 8) - J (k.a)N_(kb) ()28
n 0 n0 no0 no . b
[} 1 1 1 2 kob

J n(kob)Nn(kOa) - Jn(koa)Nn(kob)

Therefore the series
®
2 nl
n=1

converges, and thus

(00)

1
Z € T, cos nf cos nf

n=0

(00

Z 7  sinnf sin nf'

=1

(3-1-8)
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1
converge uniformly in the region -, < p,9 < ¢0

Hence if one replaces the infinite series with the finite sums

N

Z € T,C08 nfcos np'
n=0

N

Z 7 sin nf sin n’

n=1

then the error over the square region - ¢0 <P, P < ¢0 is less than a constant,
independent of (f , §") . _

Upon substituting (3-1-7) and (3-1-8) in (3-1-1) and (3-1-2) respectively
and replacing the uniformly convergent series by their finite sum, we obtain

¢0 ' O N
Ee(m{z cos nff ﬁos nf' 1 Z ¢ 7_cosnfcos np} ap’
P o 20+Bkp
-2 o +9
(k b) 0
- €0 1 ] = ln¢ 1 ﬁ(p')cos nf'df’ ,
(1+F) n=0  IplkPI N (kj2) -J (k@) N (kb) }) o
0
(3-1-9)
b © N
E(#Y { Z sin n¢:in o' _ - Z'rn sinnf sin n¢'} dg
4 - (1+E2) kob n=1
0 b .
o +60
Z Eln nﬂ : ,]E\I(jb') sinnf' dp*
1(1+E2) (kg S 3 e N (e @) - 3 (k @IN (e ) J -

(3-1-10)
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These are the two integral equations to be solved in this chapter.

2. Noble's Scheme

In this section, we reproduce a scheme due to Noble (Langer, 1962) to

solve an integral equation of the form

N
E(¢')[K(¢, p) +an(¢) <I>(¢')] ag' = G(f) . (3-2-1)

n=0

s ®

If one knew the solutions of the auxiliary integral equations

F(P) K(p, §7) dp* = G{@) (3-2-2)

and

gafn(ﬂ') K(p, ) dap* = u//n(¢) ,n=0,1,2,.. N, (3-2-3)
A

then upon substituting (3-2-3) in (3-2-1), we have

N
S‘BE(M K(g, §1 d¢'+§B E(¢')[Z§n(¢')§8 LK, §) dpn} af' = aip)
A

A n=0 A
(3-2-4)
Let

o =gBE(¢') o (prdp . (3-2-5)
A

Then (3-2-4) reduced to

S‘B[E(ﬂ')+ o f (¢')] K(P.§") d§' = G(p) (3-2-6)
n=0
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Upon comparing this equation with (3-2-2) we have

N
E(p) = F (§") -Zan L9 . | | (3-2-7)

n=0

Multiplying both side of (3-2-7) by fm(ﬂ') and integrating over the
interval A  §' < B, we arrive at :

N
Y@mm Ep) o'+ o, 1,89 () epr =rr(p') o _nap
A A

n=0 YA

m=012...N .

We let
Ao -an(m ¢ _(pnapr (3-2-8)
N |
B, =SEF(p') o, (0 ap' (3-2-9)
X _
then
N
am+ZAmncn=Bm , m=0,1,2,...N ., (3-2-10)
n=0 '

From (3-2-10), we are able to determine o -



3. Solution of (3-1-9)
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Comparing (3-1-9) with (3-2-1), we observe that

E(p) = Ee(ﬁ')
K(p, §1) = fir cos nfl cos nf!
n=1 a

(I’n(ﬂ') =€ T CO8 nf*
v (p) = - CO8 né
n

21+K)) kp
) ® € cos(nﬁ) (e)
G = ' -
r(1+ B & W= Jn(kob)Nn(koa) -Jn(koa)Nn(kob)
where
+G
(e) 0
Pn=sﬁ E(f") cosn #'d " )
9-90

and the auxiliary integral equations are

n..

0

‘vﬂn E‘ M,) ﬁcosngcosnﬂ ap -
-+

-Po<P< P,

and

0o

-hEp<

(0]

€ cos(nﬂ)r'(e)

(3-3-1)

1r(1+E2)(kob) ngJ (kpIN (koa) 3 (koa)N (kob)

(3-3-2)

¢'):wd¢' . T cosnf,n=0,1,2... N,
¢ 2(1+kz)kb

(3-3-3)

’
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These two integral equations can be solved by employing Schwinger's
transformation (Lewin, 1951) which is defined in (A-2-4). For detailed
derivations of the solutions, the reader may refer to A-2; here we only state

the results;

(e) ée)
#p-—12 :
x 1+E2)(lbb) %osﬁ-cos mcsc T

[ 1 o 0 ]
—=coslmcos (csc Ecosﬁ -cot NI

-f,<8<t, . (3-3-0

cos-p- mX
{é(ﬂ) 2 { Ton Z ancerncos- 1(cnsc"zﬁ-sqcoaﬂ-cot2 z-(;] .

2( 1+k2)k0b ﬁosﬁ’-cospo = 2

4w !ncsc

- po <p< ¢0 R (3-3-5)
where
(e)
ée) - ‘ “n r’p Xop ’ (3-3-6)

p=0 Jp(kob) N p(koa) - Jp(koa) Np(kob)

e)
(e) - f P‘P' “mp : (3-3-7)
p=m J (k b)N (k a)-J (k a)N (k b)
and
T
. ) g
Xm = cos(mécos[p cos 1(cos2 -%)-‘lvsin2 —gcosé] ds . (3-3-8)

-
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Therefore the solution of equation (3-1-9) is;

vz cosg s‘g) mée) ¢
E e(¢)= — ' 7 2.5 cosEncos 1(csc 2—cos¢-cog —]
m(1+k )(kob) %osﬁ)*—cosﬂo Zm cged M=l 7
2
1rk b X P g
go( )[ 2 7 t—xmncos Encos 1(csc2 ?ocos})-cotz =) ,
41r Incsc 0 m=1a
- <P< - (3-3-9)

(e)

In the last equation, the coefficients ¢ n can be determined by solving the

simultaneous equations

N
o(e)+§o(e)A(e) -8 m-0,1,2,...N, (3-3-10)
m &0 mn Tm
where
() _ ? L) )
A€ T _¢0 n(¢) cosmpdp (3-3-11)
B(e)= € 7T ’ F(e)cos mf df (3-3-12)
m m m 0 '

(e) and B( )explicitly, wesubstitute (3-3-9 in (3-3-11) and
(3-3-4) in (3-3-12) and obtain

To express A

(e) ‘m "m Xon Xom - q
Amn = - 2) ) + 5 anxqm , (3-3-13)
2(1+k kb €42 prcgel 9717
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(e) “mn "m S(S)Xom qs(ge)
Bm = 3 5 ¢ + qu . (3-3-14)
+ =
7(1+k )(k(lb) 472 IncscEQ q=1 =
4, Solution of (3-1-10)
To start this section, we introduce a transformation
%
w(@) = ( Eo(¢')d¢' (3-4-1)

-po

for the odd part of the unknown slot field, E0(¢) . Since for §' < ¢0 » E(§") behaves

as

then lﬂ"——) ¢0 .
%

+
but is otherwise continuous, therefore the integralS— EO(¢') d¢ exists and the
0

function W(@) is defined at every point inside the closed interval - fi, <$ <f,

while its first derivative exists in the corresponding open interval., Thus one has

sy =S8 g <<ty

Also because Eo(ﬁ) is an odd function of § , W(f) is symmetric with respect to .

One may set

w(f) =0

and it then follows that

W(ﬂo) =0

Thus integrating by parts



%o
s' E () stnng ' = sinng! ()
+,

- nS W(p") cosnf* dp’
*

b
= - ns. W(p") cos nf' df* . (3-4-2)
%
Let
6+9
o °
o =S 2(p" sinnp' ap’ . (3-4-3)
9-90

Applying (3-4-2) and (3-4-3) to the integral equation (3-1-10), we obtain

”0 00 N
S w(g") Z sin nf cos nf* - Z nr sin nf cosnf' }dp’
_po n=1 (1+k2)k b n=1
® r'(o)sin nf
DM (3-4-4)
1r(1+k2)(k b2 271 3 (k BIN (i @) -3 (k @I (k b
Last equation has the same form as (3-2-1), i.e.,
E(p) = w(p"
K(p, 9§ = f sinnf cosng’
n=1
(Dn(¢') = nr cos nf’
Wn(m - _ __Si_fﬂL
(145 (e h)
(0)
I "sinnf
0 . - 2 n

(1459 (kob)z n=1 Jt:(kob)Nl:(koa) - Jt:(koa)N;(kob)
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The auxiliary integral equations for (3-4-4) are:

¢() (o1 [0 I (o)sinn¢
S F(g)(¢') sinn¢ cos n¢' d¢' =- 2 :J'(k ml (kn )_Jv( )N'(k a) F}
- n=1 n=1l n 0 nOa nkoauO

0

7( 1-%--1\22)(k0b)2
_¢0 < ¢ < ¢0 ’ (3-4-5)

sinng ,

0 04,
g £ ¢ E sinnf cos o' df' = - ——
B (1+k "Nk, b)
-4, o

B <9<9, - (3-4-6)

We may again apply the Schwinger's transformation to the last two inte-
gral equations and obtain the solutions for Fg))(¢) and f(g)(¢). Similar to

last section, we leave the detailed derivations to A-3 and state the results as:

2 . et
F(g )(¢) = vz 5 €08 % VCos @-cos a(gl)UmM) , -¢0 <g<g 0°

(1+E2)(1rkob) m=1

(3-4-7)

- o)
f(O)(¢) = _;rz_‘ cosg cos @ - cos ¢0 1; b(t(l)x)nUm(m ) -¢0 <@< ¢0
1

8 (14 Yk b) =
(3-4-8)

where

Q0 [us)
(0) 1
a = o= €L X - ZZLX ), (3-4-9)

- +

m 27 p=§-1 pp m-1p pam1 P m+1,p

= n-1
bgl:%r( “Em-1p ;;:"axmﬂ ) , m=odd, (3-4-10a)

p=0,2,4, P " Pp= T P
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L0 _ L £ (X -X ) n = even , (3-4-10b)
nm T e m-1,p “mtl,p ’
Tdg Iy Y

m-1 _ ¢ ¢
U (¢)=g e (1) "P(m-p)cos [pcos 1(cscz—gcos¢ - cot2 2 ] .
m X p 2 2
$,<9<9, . (3-4-11)
and
® ,—-(0)

m
L = : - - . (3-4-12)
P m=p+zl,p+3,.. 3 G PINT (ko) 31 Tk @)NT {k b)

Thus the solution of integral equation (3-4-4) is

N2 cos 12 ®
w(g) = — 2 5 Yecos @ - cos ¢0 a(?;Um(W
(1+k )(ﬂkob) m =
N n
(0) (0)
+ak b n; o n; b U_(§) } . (3-4-13)

(0)

In the above expression, the coefficients o n can be found by solving the

simultaneous equations

N
o«’hz AD 0 50 mays, LN, (3-4-14)
m 4= “mn 0 m
where
¢0
Aﬁz 2 ‘( m‘rmcos(m¢')f(g)(¢')d¢' (3-4-15)
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¢0
B(O) = S m'rmcos(m¢')F(8) (@)agr . (3-4-16)
_¢0

We perform the integrations in Appendix 5, and obtain

¢
A(o) _ sint—zg)m'rm

1{0) ) N

mo +l-<-2) (rk b) E up (coslpm)X, xpm) , (3-4-17)
sin )m'r

(2 2( (g)(cos(p L WIED SRR (3-4-18)

(1+k )(1rk b) p=1

The antisymmetric part of the @-directed electric field in the shell slot
can be obtained by differentiating W (@), i.e.,

W( )
E,(@) - . By <e<dy
We carry out the differentiation in Appendix 6, and state that

]
E(O)= VT sin 9

O 2)(1rk0b)2 Yeos @ - cos ¢0'

o)
{cos?(——)[ a(?; U @ +7k b: © ; é?;Um((J)]
+(1+ cos @) [ an(lo)mV (@) + 7k b ; (0) Zb(o) Vm(¢)] } ’

m:

9o <8<4) . (3-4-19)
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where
Rl ¢ ¢
_ -1 270 270
Vm(¢) =1+ 2 le cos [pcos (csc -2—cos¢-cot 5 )] . modd
(3-4-20)
m-1 _ g ¢
=2 p;1 cos [p cos 1(csc2 ?Qcosfé - cot? TO)] R meven

5. Discussion

In the first sectlon of this chapter, we obtained a pair of integral equations
(3-1-9) and (3-1-10) from (3-1-1) and (3-1-2) respectively by truncating the
uniformly convergent series, Therefore (3-3-9) and (3-4-19) are the approximate
solutions of (3-1-1) and (3-1-2), respectively, The accuracy of these approximate
solutions depend largely on the value of N, But N+ 1 and N, respectively, are
the degrees of freedom of the simultaneous systems (3-3-10) and (3-4-14), We
may encounter the usual difficulties of solving a large simultaneous system of
algebraic equations, We attempt to reduce this difficulty here,

Expression (3-3-9) suggests a transformation
N
28 > e (3-5-1)

m
n=m

Upon substituting this transformation in (3-3-9), one has

[] (e)

cos S

Ee(¢) ) Yz? 2 ? ? )
m(1+k )(kob) Vcos¢-cos¢o 472 tncse L

2

(e)
0 mS ¢ ¢
+ Z s co{m cos (csc2 —Ocos¢ - cot2 —20- )]

- T 2
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7k _b ¢
+ g [ 1 (e) ; m e )co(m cos (csc -—cos¢-cot —O))J ,

47r21ncsc 5
B,<9<9, . (3-5-2)

If we multiply (3-3-10) by xpm, and sum on m, with the knowledge of (3-5-1),

we have

emeXOmX m
(e) m=o0 p (e)

(e)
z - PANE S q( )z
P b O w(1+k)kb§ qumpmq

8 7rz( 1+T(2)(kob)£ n cscz— m=p

S(e)

M=

) 1 [ . 9 €m'rmXOmXpm
m (1% )(k b) 4 lncscﬁq m=p

+ 2 % s 3 X X (3-5-3)
2 - qq _Z'rmqmpm ¢ o

Upon multiplying (3-5-3) with the factor R defined as

47r (1+k )k b

; EmeXOm

one obtains a new system of equations

(3-5-4)

S N
(e) Op (e) (e)
Rz - z, -4 S z
P g, 0 ; T’
2incsc — q
2
sg’) mSI(:)
= ¢ S, +8 =17’_kob_ Smp ’
wkoblncsc?

p=0,1,2 ... N (3-5-5)
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where

N
Ze'rx X
mm qm pm

S = . (3'5"6)
ZO €m'TmXOm

If we express the simultaneous system in a form of a matrix equation, we

have

[aqp] . z:f)]= bp] , & P=0,1,...N ., (3-5-7)

where aqp] denotes a square matrix of order N+ 1, while z(:)] and bp]
denote the column matrix of the same order, Comparing (3-5-7) with (3-5-5),
we obtain

S
a = Rb -—oLr
op  Op )
2incsc —
2
a =Ré -4qS , $40 3-5-8
- - qqp q ( )
where
6qp =1, fq=p ,
=0, if qfp ,
and
e) (e)
SR R O .
P fo P TR e
wkoblncscT

qu plays an important role in further reducing the matrix equation
(3-5-7). In the following paragraph, we state some of the properties of qu
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In Appendix 4, we show that forany ¢0 , qu =0 whenq > m,
Upon employing this property of qu, we may conclude that qu is
symmetric with respect to its subscript index q andp, i.e.,

S =8 . (3-5-10)
QP pq

We recall that T is defined by (3-1-6)., It depends on k.a, k b, k_c

0" 0’0

- 1 b.2m  ,a.2m
and k., For m> m, (m0 2k0b< N), 'rmbehaves as — [(-E) + (B-) ]

W W
1 1 a.2m

for B 1r_1 .2 ] P <

or " # 0 and as - [m(m-1)+(b) for - . For m kob,

the Tm values are large and may be oscillating in sign. From the (A-4-5)

property of X . which is also explicitly acrounted for as far as the p

subscript is cg:cerned in the definition of qu in (3-5-6), we see that as p
increases, the sum making up qu consists of terms involving Tm for which
m > p. But the Tm terms decrease rapidly once m > m, and thus since
lxjkl < 27 we see that qu will decrease rapidly once p>m, ., Because

0
of (3-5-10), the same behavior is exhibited also on the q subscript of qu.
The properties of qu are further modified if we consider the angular width
of the slot 2¢O . From the discussion in Appendix 4, , it is clear that for

¢0 sufficiently small, there is a number j such that

The net effect of this is that the magnitude of qu is further reduced as either
q-subscript or p-subscript increases.
In view of this discussion as can be seen from Eq. (3-5-8), the matrix
aqp can be reduced in size. We indicate the size of this reduced matrix
by N'. Infact, for a very narrow slot, we only need to consider in the matrix

the first element a i.e, N'=0,

00’
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If the slot is very wide, (¢0 =7 - A, Als very small) then ejxjkd 27r6jk
and qu = ('rq/-ro)ﬁqp, q, p=0,1,2,... N, Therefore the matrix aqp
becomes a diagonal one, i.e., the problem becomes a separable one,

The fact that qu in (3-5-8) is multiplied by q does not change the
order of magnitude of our arguments.

For the odd part of the @-directed electric field E 0(¢) in the slot,given

by (3-4-20), we introduce a transformation

N

20 2 S0, (3-5-11)
P &< m mp
Then
V_‘ (o) 29
E_ (@)= cos U (¢}+m(1+cos¢)V (¢)]
0 (1+k )(wk b)‘Vcos¢ cos¢o{m
+ 7k b ZN: z(o) dos? ¢ U (@) + m(1+cos@) vV_(@) (3-5-12)
0 = m m m

where Um(¢) and Vm(¢) are given by (3-4-11) and (3-4-20), respectively,
Upon using the transformation (3-5-11), (3-4-14) can be reduced to a new
simultaneous system of algebraic equations. We express this new system in
a matrix form

[a&p] . z;o) -bl')] , 4 p=1,2...N (3-5-13)

where PC'IP is a square matrix of degree N, z(::)] and b;)] are the column
matrix of the same degree. The elements of [a'q}] and bl;] are, respectively,

¢

_0
a' =R'+sin T. cosqm-T
aq 2. [Oq d qq]

¢

2( 0
' ] — - -
a sin 3 (Topcos qr-T ) . aFp (3-5-14)
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and

¢ ®
b' = stn? -2 S 20 [T, cosmm - T ] - (3-5-15)
p 2 o m op mp

In the above equations, we define

(1+%2) (nkob)z
R = = (3-5-16)

and

T = . (3-5-17)

We ohserve that in (3-5-13) T;lp plays the same role as qu in (3-5-7),
X =0 if q> m, therefore qu becomes

qm
mequbg
. m=q -5
qu N R (3-5-18)
m7T X b(o)
o m 1lm ml

We note that from (3-4-10),
is at most multiplied by m ., But since 'rm decreases rapidly for increasing

m when m > m, the Tm behavior will prevail over mz. Therefore the magnitude

of qu will decrease rapidly as either p or q exceeds m,. The effect of the

slot width enters into qu in a similar manner as for qu .

b(o) ‘ < m, thus in the numerator of (3-5-17) 7
mp m
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Based on the above discussion, we conclude that a&p can be reduced in size
for a narrow slot. We denote this reduced size by N'". For a very narrow slot,

we may choose N" =1, i.e., we only need to consider the first element 2.

For a very wide slot, because of the property of Xj K qu = 6qp. Matrix

[a:lp] is thus reduced to a diagonal form.

6. Solution for Narrow Slot

In this section, we shall extract the solutions for the narrow slot from the
general solutions (3-5-2) and (3-5-12), This is a case of some practical im-
portance. In the later chapters, we use these results to attain an approximate
solution for the (-directed electric field in the wedge slot and to have an
explicit form of the terminal admittance of the wedge waveguide.

If the slot width 2¢0 is so narrow that we may apply the approximate

relations

~ 2
xop 1 O(N¢0)

. 2
xlp = 0(N¢0)

to (3-5-2) and (3-5-12), then we may neglect all terms of order O(N ¢(2) ). The

results are:
I3
@) = VT : cos -3 ( ) 7k bz(e)
e V—-—ﬂ o 2 0 ’
4 7r3( 1 +E2)‘(kob)21n cse -22- cos § - cos ¢0
B,<9 <9, . (3-6-1)
and

N¥2' (a () + 1rk0b Zl )) sin %

(1+k )(rkob) ‘Vcos¢ - cos ¢0
. {coszé(-))ul(¢)+(l+ cos @) V1(¢)} . -¢0 < @< ¢0 . (3-6-2)

Eo(¢)
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Since U1(¢) = -1, V1(¢) =1, (Eqgs. (3-4-11) and (3-4-20)) (3-6-2) can be further

reduced to

Y2'a (10)+ ko bz (10)) sin % cos

(1+%2) (ﬂkob) ‘Vcos¢ - cos 60

EO(¢) = L -¢0 <¢ < ¢0 . (3-6"3)

The unknown factors zée) and z(lo) in the last two equations can be obtained
by choosing N =0 in (3-5-7)and N =1 in (3-5-13), i.e.,
(e)
S S

00 (e) _ 0

(R ) 2y = ¢0 S00 (3-6-4)
24n csc 5 7rk0b Incsc 5
and
sinz -¢—0

R"2(10) = 31(0) Tox (3-6-5)

(1+k )(7rk0b)

{0)

From (3-6-5), it is seen that z

is of 0(¢02 ), therefore we may neglect
( )

1

(0) in (3-6-3), Upon substituting (3-6-4) in

in comparison with a

(3-6 1) and reorganiz ing terms, we have

(e) [)
Ee(¢)=72r:—; SO ¢ cos 2 ‘
0 87 (1+k )(k b)x!ncsc—g-z0 mm 0m2 |cos¢-cos¢0

-9 0<9,- (3-6-6)
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Employing the approximate formulas
2
cosye]l- % ’
sihy=y, y<<1,

the even part and odd part of the slot electric field can be further simplified

to
4s'®
0 1
Ee(¢) = N . 2
2. =2 2 2 2 2
mk b [81r (1+k )kobln %- Z_ emeXOm] ¢0 -¢
m=0
-¢0 <@< ¢0 ] (3-6-7)
and
o0

- 1 ¢ <g<yg (3-6-8)

E0(¢) » '¢0 0 .

N N
T gh) ¢0z_¢2



CHAPTER IV

APPROXIMATE SOLUTION OF
INTEGRAL EQUATION (2-3-32)

1. Introduction:
If we interchange summation with integration and reorganize the terms

on the left hand side of (2-3-32), we have

6+6,

0, 60 Q.
150) a;z ;[cos 58 —(@-6+8 )cos 90 (¢'-0+9 )+ cosn(@ -¢' ]
6+90 n=1 0
T ur (ky2)
. J 0(koa) . _OQ (koa)N (kob)-J '(kob)No(k a) @ ( 200 ) koa)
Jh (koa) T (kob)NbGtoa)-J (e, (ko b) ; J' (ka) or ° ¢

@, I(k N'0ch)- (1! (k pIN (i a)
é‘b b -yt e “o“)mu(¢ o\ ap

+ '
(¢ 65+4 )cos ¢+e W— 2 BNl a)-J'ﬁha)N' B
V0 1 2 60 f € ¢0
= 1 + ' H¢')c°sn(¢'¢')d¢' :
a Jo(koa) 1rkoa T L Jx;(kob)N (k a)-J '(k a)N'(kob) f
-¢0
6-6, < g < 6+6, . (4-1-1)
From the recurrence relation of cylindrical functions
z 1) = pZ;)(z) - zZp(Z) ’ (4-1-2)
one may easily show that
J nr (koa) J(M 1)(koa)
2 0 k a 2k ano 20
sy i & a) (4-1-3)
nr 0 "Tur %o
26 0 26
0 0

48
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and
J (e @IN (ke b) -3 (k |bIN (k 1a) ) ke _ koa I _Kkoa)Ni(kob) -3 (k bIN ,(k,a)
J :l(kob)N;l(koa) -3k a)N'(kb) n n I (kobINi(k a)-J ;(koa)Nl'l(kob)

(4-1-4)
For 55 >>ka in (4-1-3) and n>>kga, kb in (4-1-4) the last two equations
0
behave, respectively, as -% and ——13 + ;11- (%)Zn . Therefore the second and the
n n

third series of the kernel of integral Eq. (4-1-1) are uniformly convergent on a

a, k

square interval

9'90.<.¢:¢'59+60 ’

while the first series has a logarithmic singularity when ¢'—> @, Thus the
chance of solving (4-1-1) depends largely on whether or not one can solve the
integral equation

0
0
F(n') 1 cos = ncos L n' + cosnncos nn' |dn'= G(n) . (4-1-5)
i 6 6
n=1 0 0
-90

Unfortunately Schwinger's transformation is not applicable to this integral
equation, Therefore, to solve (4-1-1), a new transformation of some form is
required. If both the wedge slot width 260 and shell slot width 2¢0 are much
smaller than unity, we may substitute (3-6-7) and (3-6-8) in (2-3-32) and then
employ Galekin's method (Kantorovich, 1958) to obtain an approximate solution

for the {integral equation (2-3-32),

2. Reduction of Integral Eq, (2-3-32):

In Eq. (2-3-32), the variables ¢ and §' are referred to the center of
the shell slot, while the unknown function is the §-directed electric field in the
wedge aperture. It is more convenient to express (2-3-32) as function of a new

set of variables n and n' defined as
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n = ¢|_ 0 . (4-2-1)

It is seen that from (4-2-1), n and n' are referred to the center of the wedge

aperture.
Upon substituting (4-2-1) in (2-3-32), we obtain

n7r (kOa)
i 290 ﬁ
(n+0 ) (n')cos--(n'+9 )an'
o “n J—. (k o \5 20 § 26,
260 ‘ 0

0 J (k. .a)N'(k b)-J'(k_ b)N (k.a)
0 n 0 no noO no A
+— € — 7 — , E(n')cosn(n-n')dn'
T tg nJd 0 (kob)Nn(koa) J u(koa)Nu(kob) S

-90
| 4-o
"‘YQJ'&« i X Tk DN (& e)nJ'(k A7) " Eteonnormin
a Jolkga)  mkoa 7 L 3 (R DIN) (koa)-) (kya)N) 46
0

(4-2-2)

In (4-2-2) we may regard ﬁ(n) as the sum of a symmetric part ﬁe(n) and
antisymmetric part ﬁo(n): thus

Etm) = £ m+Egm . (4-2-3)

Since cos — (n+6 ) is an even function of n when n is even, and an odd

200

function of n when n is odd, we have
6
0ﬁ() =2 (n+8.)dn = 0 =1, 3, 5 (4-2-4)
encosze n o n ’ n=1, 9, 9 «os &=

0
90
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0]
0
£ (mMcos = (n+8)dn = 0 , n=0,24,... (4-2-5)
0 260 0
-.60
We also know that
90 .
S Ee(n)stnnndn =0 , (4-2-6)
100
60 .
S Eo(n)cosnndn =0 (4-2-17)

- 00

If we substitute (4-2-3) into (4-2-2), and use the relations (4-2-4) through (4-2-7)
we may obtain two equations:

o 68 (koa) o 0 o
Z € ———— cos =—(n+6,.) £ (ncos 2= (n'+6 )dn'
- n T 9 0 e 0 0
=0 (k. a) 0 -9 0
8y 0 0
0 3 (k 2N (k b) -3 (i BIN' i 2) %
+_7r9 J? b)N'ﬁc R J'(k a)N'(k ) cosnn 5 (n')ecosnn'dn
n= u n o0 n0 noO e
-6
0
v 6 € (e) osn
_ _0_ 1 ) O Z ‘Y cosnn 5 8)
2 Tkd) TR T Tl goIN: T a) TN (4-2-
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and

J on - 1irkca) .
(o)) 26 0
0 2n-1 A 2n-1
: ,co8 m(n+6) E (n')cos r(n'+6,)dn'
d J on - 1 (koa) 260 0 y o 290 0
26, 4 0

3_( N (b} -3 (e bIN, (k) 6

0
0 ' '
Z J'(k b)N' (k a)- J'(k a)N: (k b sinan g ﬁo(n )sinnn'dn

_90

(0)
2 60 'Yn sinnn

= i~ : : -7 y . (4°2' 9)
rka 7 = J u(kob)Nn(koa) J n(koa)Nn(kob)

% (e) 'S‘ E(n)cosnndn , (4-2-10)

y 0 _ 5 E(n)sinnndn . (4-2-11)
-¢0_9

In the preceeding chapter we expressed the shell slot field as function of @,
therefore to perform the last two integrals, it is more convenient to go back
to the @ variable. If we employ (4-2-1), then (4-2-10) and (4-2-11)

respectively, become

¢0
,Yn(e) = cos nGS' Ee(¢')cos ng'dg
-¢0
¢0
+sinn@ g Eo(¢')sinn¢' ag' , (4-2-12)

-¢0
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and
¢0
(0) = 1 ! 1
Y, = cosnf E0(¢ )sinn@'dg
-¢0
¢0
-sinnOS Ee(¢')cosn¢d¢' . (4-2-13)
-¢0

If we limit ourselves to the case that the angular width of the shell
slot 2¢0 is much smaller than unity, then substituting (3-6-7) and (3-6-8)
in (4-2-12) and (4-2-13), respectively, and neglecting the term of O(¢02),

we obtain
@) 48 (e)JO(n ¢0)cos no
QP e , (4-2-14)
a 2, —2 2 <= 2
kob[81r (1+K Y bt n 5= - g €T X ]
0 n=
and
(e) .
4S8 'y (n@ )sinn6
‘Y(O) ~ 0 ‘070 (4-2-15)

2. —2 2 N 2 .
kb[87r(1+k %k bln = - €1 X ]
0 0 B; n;-ﬂ nn Om

As was stated in the introduction of the present chapter, we confine
ourselves to the case that the angular width of the wedge slot is much smaller
than unity. Therefore L

6
(4-2-8) and (4-2-9), re(s)pectively, can be approximated by

>> 1, and the first series on the left hand side of
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an(koa)
— 0
= 60 nr 0 g nT
22:1 ——— co8 — (n+86,.) (n")cos —(n'+6.)dn
&= J'M(koa) 6 0 e 8 0
0. 6%
0
6 o 2k.a 60
~ 0, 0 oz 2 (n [T ' 3
- Z T o8 & (n+90)g Ee(n)cos 5 (n +90)dn +O(49o )
n=1 0 0
-6
0
(4-2-16)
and
Ton-1 o2
o 20" % )
0 2n-1 A n-1
22 ] cos ———m(n+6 )g E (n')cos —=—7(n'+8 )dn'
4 J2n-ljﬁ0a) 26, 0 Y 0 26, 0
260 0
O kg2 gy % A 2n-1 3
o Y 1 - ' '
- Z Ba-1) °°° 39 w(n+90)g E(n')cos —z—=m(n'+6,)dn'+0(6,")
n=1 0 i 0
0
(4-2-17)

If one inserts (4-2-14) and (4-2-15) into (4-2-8) and (4-2-9), respectively,

and introduces the notations

(1) 1
v = = - — : , (4-2-18)
n Jn(kob)Nnﬁ(oa) Jn(koa)Nn(kob)

0 J :)(kOb)N b (k Oa) -J b(k Oa)Nb(kOb)

(4-2-19)
@ koa Jn_l(koa)N;l(kOb)—J;l(kOb)Nn_l(koa)

‘a0 TTa Tk DNk ) -3 AN k) ¢ " 0
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one arrives at

Jo(koa) o 2k o? 0 A o
———— o (n)dn'+—— —cos—(n+6 ) £ (n")cos = (n'+6,)dn'
JO (koa) e 60 (]

-6

0 0

0 6

A

0, 90 = (2) 0
cosnn Ee(n' )eosnn dn+ - €nvn cosnn Ee(n)cosnn dn
-9 8= -6
0 0

6 o 2k.a
+-0 0
T

n:

) ag © ®

2 °0 0 (1)
] néjenvn J 0(n¢0)cosnecosnn

2 -2 2
kob [81r (1+k )kob In % - en TnXOn

M=

(4-2-20)

9

f %8 2m-1
' '
2n-1) °°° 36 1r(n+90)g £ (n)cos 29 Latn +9)dn
n= 0 0
_90

@, 2%,8 %, E 2) %,
+ — sinnn S Eo(n' )sinnn' dn'+ sinn ng Eo(n' )sinnn'dn'
n =

-00 -00

as (©
b =2 0 é S) (n¢ )sinn@sinnn = 0
I*

N
0 [ 2 -2 2 2
kob 87 (1+k )koblna-a- n2= Gn’Tnxon

(4-2-21)
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(e)

0 is given by (3-3-6) and can be rewritten as

where S

Q0 90

(e) - (1) Al 1 ! An?
S0 = n; €V cos(nG)XOng Ee(n )cosnn' dn
-0

0

(03] 60

(1) $ 4l ' ' ' ‘
2; v sm(nOKOn E o(n )sinnn'dn' . (4-2-22)
ne -9
0
In the next section, from the last three equations, we will find the solutions

Pal A
for Ee(n) and Eo(n) .

A A
3.  Approximate Solutions for Ee(n) and Eo(n):

We will apply Galerkin's method (Kantorovich, 1958) to find the approximate
solutions for ﬁe(n) and ﬁo(n) . This method requires us to choose the forms
of ﬁe(n) and ﬁo(n) in advance and then to determine the arbitrary constant
for each field by substituting back in the integral equations. Since the electro-
mellgnetic fields in the vicinity of a perfectly conducting right angle edge behave as

r 3 (R, E. Collin, 1960) where r is the distance from the field point to the
edge. Thus ﬁe(n) and ﬁo(n) may take the forms

. A(g)

E) = g (4-3-1)
0 2_ 2
0 n

and

En) = gm0—oxp . (4-3-2)
P 2_ 2
0 n

The remaining problem is to determine the constants Aée) and Aéo) .
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We first substitute (4-3-1) and (4-3-2) in (4-2-20) and (4-2-21) .

Then multplying (4~2-20) with 1/(6 -n )1/3 and (4-2-21) with 11/(902 2) 13
and integrating with respect to n from -60 to 90, we have
J (k a) o 2. .a 2k a
(e)\2 0, (e)2 ()2 (2), (e)2 (e)
{J'(ka)(Q )+ ”[Z " (Pn)""i o (n) Zenvn(Qn}]}Ao
n=1 n=1 n=
®
0 4 ; ¢snv§11 )Jo(n¢0) cos(neb(:)
.20 i s, Yo_1 e
rka 7 N 0 a J(k.a) 0"’
0 2,, =2 2 2 00
kob [87r (1+k )kobln% z_;fn"nxo:x ]
(4-3-3)
02 > (0) @, ol (0
{,. 2n o7 ) : (Q )+n§vn(Qn)5} A
[0}
4: V(I)J 0(n ¢O) sin(n G)Q(O)
L2 a=1 ° n @)
s =0 , (4~3-4)
ko2 2 —2 2 - 21 0
kg [87r (1+k )kob!n%—ngenﬂrnxon ]
and

) _ (e)e= _ (1) (e) <o>i (1) . (0)
S0 = A0 nzﬂ})env“ cos(ne)XOnQn -2A0 n=1vn 51r(n0b{0nQn (4-3-5)

where
60 cos _31 ndn
ple). g —_— (4-3-6)
n 3 7 2
-6 6. -n
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6. nsin 20~ n
(0) 0 26’o '
P - e dr’ (4‘3'7)
n 3
6 22
0 o "
60
Q(e) _ cosnndn (4-3-8)
n 3
-0 0 2_ 2
0 o "
OO
Q(0) =g nsinnndn (4-3-9)
n 3 2 2
-GO 00 -n

Integrals (4-3-6) through (4-3-9) are discussed in A-7. It is shown in A-7 that

1 B
6
P - o’ yrri2)® g tan
1 1 (4-3-10)
(e) _ , 3 2., 2
Q =8 VT ('3')(35') 91608
while P(g)/P(:) nd Q(o)/ Q(e) are at least of 0(60) and 0(602), respectively.
From (4-3-3) through (4-3-5), one can easily obtain that
(e)
V. Q
(e) o 0, 'n ol
Ay & - — = (4-3-11)
and
2 < (e) 2 8 (1) (0)
(e) [——-—g J (u¢ )Q cos ne][ % ( nf sinnf
0.V Qn 7rkOan "kOanZI )Qh
Yo TR AT S 0\ —2 2 < 2
(kob)[n}::{(Pn /(2n-1)] [2(1+k g L0 _¢5-xf; €750 @8, )]

(4-3-12)
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where

6 o]
- (e)2 0 (e),2 (e)2
A= 3k @ Q- 25 (k@) zkoanf= 1:(Pn ) /n+2koan2= E(an’s /n

Q0 n

(2) , (e)2 4
+ €V Q") - — 2
ng n n 7rk02ab Z(Hk2)1(()bln(2/¢0)-ﬁ= en'rnJO(n¢O)

®
(§€ 2 (I)J 0(n¢0)Q(:)cos ne)2

(4-3-13)

In Eq. (4-3-11) and (4-3-12) we use the approximately equal sign because

in (4-3-13) we have neglected the terms of 0(608/ 3) and replaced xOn with

2nJ 0(n ¢O) on account of (A-4-16) and for the convenience of computation,

One also notices from (4-3-10) that the series 2 : (Qfle))z/n in (4-3-13)
n -
converges very slowly when 6 < < 1, Fortunately, under this condition, it

0
is found in A-8 that

(00]
)2, _ , (e)2 23
nZ=1 @)%/ = (@)™ £ (2/6)) +0.05053 6 . (4-3-14)
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SLOT VOLTAGES AND TERMINAL ADMITTANCE OF THE
WEDGE WAVEGUIDE FOR NARROW SLOTS

1, Introduction

In this chapter we will obtain explicitly the three important physical
quantities: the wedge slot voltage, the shell slot voltage and the terminal
admittance of the wedge waveguide when the angular width of the shell slot
and the wedge aperture are very small in comparison with unity. The voltages

of the wedge aperture and of the shell slot are defined, respectively, as

90

Vw = -S af(n)dn , (5-1-1)
-90

and
¢0

bE(@) g . (5-1-2)
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consequently, we arrive at

%

v, = g aﬁe(n)dn (5-1-3)
_00
¢0

v, = -g bEe(¢)d¢ . (5-1-4)
_¢0

In deriving the explicit form of the terminal admittance, we neglect all
terms whose magnitude are of O(¢02), or 0(602), or less in comparisonwith

the magnitude of S:)e)

2, Voltages of the Wedge Aperture and the Shell Slot
From (5-1-3), (5-1-4), (3-6-7) and (4-3-1), it is obvious that

_ (e)] 2
Ve, = Vo [Qo ] 174 S (5-2-1)
and
®
(1) (e)

v ;EDVH cos(ne)lo(n¢o)Qn

S o~ 2 n- (5-2-2)
\Y (e) —2 2 N 2

w  1kpaQy 2(1+k )kobzna; - IEoenano(nsbo)

where /\ is given by (4-3-13). It is seen from (4-3-13) that Vw is only
weakly dependent on the slot separation angle 6, plasma sheath and the
coaxial spacing, except when J 0(koa) is close to a zero. For this exception

one can show for 90 <<1 that

v, ad VO/JO(kOa) . (5-2-3)
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Thus for the radiation problem, one may even regard the narrow wedge
aperture as a constant voltage source. On the other hand the voltage of the
shell slot depends not only on Vw’ but also on 6, (kob —koa), and plasma sheath.

3.  Terminal Admittance of the Wedge Waveguide When 052! ¢O <<1
The terminal admittance shown in (2-4-4) consists of three series. We
will consider these series in the next few paragraphs.
The first series is
T r o

+
(o 1] 260 6+6
I = 2j

0
! B.”_ '; '
LT B2 mg Bi@)cos 35 (8- 6+ 6p)ap
n=1"nor "0 -9 0

290 0

which can be separated into two series, i.e.,

or (ky2) .
- 260 0 A nr 2
= i —————————— 1 —_— ! 1
I, =2 Z: T ) E (n')cos Z=(n'+6,)dn
=1 or 70 -9 0
290 0
P ] (koa) .
® 26 0 2
0 A 2n-1
+ ' E (n')sin——(n'+6_ )dn'
:1;1" m-1_ %o g o % 0
200 0

since @' and n' are related by (4-2-1). Since 90 < <1, similar to (4-2-16)

and (4-2-17), we employ the approximate formulas

JH(koa)

P L hke
1

JElr(koa) T n
0

0
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I -1 o2
260 » -01) ZkOa
I _ 1(k a) r 2n-1 '’
200

then using (4-3-1) and (4-3-2), we have

e 00
I, = 2jkgp- -;‘rl {(A(:))Z n;(p(:))z/m(A(g))zgzw(:))z/ (2n-1)}

As we indicate in A-7, the magnitude of Pfle)/ P(:) is at least of 0(90),

therefore one may neglect the second term and arrive at

0 00 2k a
a1 _0,,(€)2 (e),2 _
=32 20— (5-3-1)
n=1
The second series of (2-4-4) by change of variable (4-2-1) and using (4-2-3)
can be written in the form

6, I (ky@)N!(k b)-J' (k bIN (k) % ,
=i Z Jv(k b)N' (k a)- J'(k a)N'(k B) [ g Ee(n)cosnn dn)
-0
0
0
0
+ (g 'ﬁ:(n)smnndn)z] :
-,

If one substitutes (4-3-1) and (4-3-2) in 1ast equation, and neglects the terms of
0(602), one has

L~

OO(A(e)) Tk 2)N] (i b) - F) (kbIN, (k) (Q(e))Z
J'(k b)N'(k a)- J'(k a)N' (I b)

Using (4-1-4), we can reduce I, in a more convenient form, i.e.,

2
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—
¥

- (e) 2 (e) 2 (e)
9 ——(A {ie )"+ 2k ai(Q )/} (5-3-2)

n=0

The last series of (2-4-4) is

6+ ¢
0 00 0 0
I, = 7:—) ”kzoanz.-.b €V fll)[ S ﬁ(¢)cos nf d¢ S Ee(¢')cos ng' d¢'
-8 %
6+ 90 . 0
+ S E (@) sinng dg g E0(¢) sin n@' d¢'] (5-3-3)
6- 90 -¢0

where v(l) is given by (4-2-18). Again if we make use of (4-2-1) and (4-2-3)
and consider E(n) as the sum of the even function A( ) / "’62 2" and the

odd function A 0 17/(90 -1 ) 13 , it is obvious that

6+6
0
£ (@) cosn@dp = (e) (e) cos nb f) ) Q( )sin nb (5-3-4)
6- 60
and
6+ 90
g £ (@) sinn@dg = Ag)) Qflo) cos nf+ Age) Qie)sin nd . (5-3-5)
0- 90

From (3-6-17) and (3-6-8), respectively,

Ee(¢) cosndg =

= (5-3-6)
2, - 2
-4, kb [87! (1+K )kob!n(2/¢o)— genTnXOn ]
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and
% ,(0
E @sinndf = - ———"— 3 () - (5-3-7)
g 7 (1K %) (ko)
70

Upon substituting (5-3-4) through (5-3-7) in (5-3-3) and neglecting the terms of
2 2
0(f,), 0(6,) and O(6,4,) .

[00)
v ale)® >~ v Doostuoy (ug )
0 0 0 n=0

13 x -j (5-3-8)

T 7rkoa 2 9 9 N 2

7 kob 214K Gegh)n - Z €735 (f,)
0 n=0

where S(e) is given by (4-3-5). Therefore, inserting (4-3-5) in the last

0
equation, one obtains

2
0 2r (A(e))ﬁi By (n¢ )Q ?::osn9>
a

0
o _j
I3 ]7r7rk

« (5-3-9)

N
2 - 2
g kob [2(1+k )kObln% - n‘Z=oen'rnJ0(n¢0)]

Now we add (5-3-1), (5-3-2) and (5-3-9) together and obtain
(a) & § Bo 2k, f 1 (e) 3 (e))
yla T (e) 2 a E ;
(Q 0 =1 n=

2
4 i (1) (e)
<n > €V Jo(n¢0) co(nenn >

7r2k 2ab

Q0
+§_—~6 ()(Q( )) ) 0
n=o on

} (5-3-10)
—2 2 - 2
2(1+k )koblna(-)- €T JO (n¢0)

nn
n=0
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Thus substituting (5-3-10) in (2-4-5), we obtain an explicit formula for the
terminal admittance Y(a) of the wedge waveguide. For the convenience in
presenting data, in Eq. (2-4-5), we choose L =a and attain the resulting form
of

Q0 Q0
Y(a) =12—“/ 248 Z(Pff’/fo’)z/M Z{‘ <Q§f)/Qf,e))2/n]
n=1 n=

oo 2
® [_122__ (l)T (n¢ )(Q(e)/Q(e))cos ne}

+ S ey ( (e)) _a L
n= n b 2 a 2
2A1+k )kobln%-néoe 'rnJo(n¢O)

(5-3-11)

The last term inside the brace can be written as

v
-2 18
3
w

N
-2 % 2 * 2
{41*’(‘{ ) ]kob!n a-(; - nE= €n'Tn JO (n¢0)}

where the voltage ratio VS /VW is given by (5-2-2). In view of (3-1-6), we

further introduce the notations

V(B) _ Jo(kob)Nb(koa)'Jb(koa)No(kob)
0 I ok bING (ke 2) - 37 (ke )N/ (k  b)

(3) kb Jn+1(k0b)N;l(k0a)-J;1(k0a)N (k_.b)

+1°0
- ; n>1, (5-3-12)
n n J ;l(kob)N;l(kOa) -J ;x(koa)Nn(kOb)
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and
! =7r0 ,
I (PN (k-T1(k AN (kB |7, (KBIN (k)N _ (B (ko)
2P “‘o’
T'=k —-
n n ( )(k 0)
' [} ___9_. [} [} - (]
k J(klc)N (klb) -J (klb)N (klc) (k . Jn(klc)Nn(klb) J['l(klb)Nn(klc)
n 0
(5-3-13)
Then 7. and T become
0 n
(2)
T, = O(OC) -v(S)
0 0 (Z)Ek e) 0
(2)
. H (koc) (3)
T =7 —TE)T——- - Vn » n_> 1 . (5-3-14)
n n (k c)

Thus if G and B respectively, denote the terminal conductance and suscep-

tance, then from (5-3-11) through (5-3-14) one arrives at

2 (1)
114[0 a |vs| « By ko0 5 2%
Gg-_‘\ﬁ_ JIm € (1) —myr—1 (n¢)-2(i<')kbzn<2/¢) .
21 Wug b lvwlz = H(l)(k ¢) 0 0 0

(5-3-15)
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1 2
zwv: {Zk a[Z ¢ n +f Q0 /]

n=0

2
N
e 30 v Do) gle?. %‘Ejlg[ge vi5%0g )+ 2k b 1n (29 )J

2 (1)
\Y N . H "k c)
+ P._ L_S_LRe [§ € (7"') -_n__o_
b 2 -1 0 n
PQJ ne

=2,
‘1%k )J o () -2() kobln(2/¢0)]}

(5-3-16)
where Im and Re are the abreviations of ''real part" and "imaginary part"
respectively. Since (5-3-15) and (5-3-16) are so complicated that in general
one can hardly obtain any information before actually performing the
numerical computations. However, in a certain special cases, some properties
of the conductance G and susceptance B can be read from the expressions.
Case a: In this case, we assume no plasma sheath, i.e. we let ¢ = b and

k — 1. From (2-3-26), it can be shown that m —>1 . Since

ey

(k .b)
n 2
Im ( (1)

0 ) =
(k b) 7rk0b

then (5-3-15) is easily reduced to a form
2 2
Ivsl a l N EnJO(n¢O)

lelz b wzbw Ko n=0 H:ll)('lbb)‘z

G~

(5-3-17)
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If we divide (5-3-17) by (A-9-4), then we obtaina formula of similar form as
Eq. (38) in one of Olte's recent papers (1965). This coincidence is a physical
consequence because from the circuit point of view, if V is the terminal
voltage, G is input conductance then it is well known that the power P =GV2 .
It is interesting to note that as ¢0—> 0, G decreases as —1/12n¢0 and B

tends to an expression independent of ¢0 and 6,

B ]HZ (0)/qE a4 i;l @/aHn

1

+ —_—
2k0an=0

™Me

€V, (2) (e)/Q(e) 2] (5-3-18)

The susceptance given by last equation is the terminal susceptance of the wedge
waveguide for the case of no shell slot, i.e. a continuous shell shrouds the
cylindrical antenna,

Case b: In the present case, we assume that ‘ il < 1.0, kOb —k0a<<k0a, kob

and koa =m, a positive integer.. In this report, we limit ourselves to kOa <5,

(00

0
Since the series Z (2)(Q(e)/Q(e) and Z €.V 5113;1(n¢0)(Q51e)/Qée))cos néo
n=0

n=0

(the numerator of Vs /Vw, (5-2-2)) converge absolutely, we may truncate them

N
3).2
at Mth term and then these truncated series as weil as the E € v( )J (n@ )
e o 00

will be proved to be dominated by their respective mth terms.

_ << .
If kob koa kOa, kob, it is found that

3k @N(k b) - 3" (ke DIN_ (k)

n 2

koa 7rkoa

+ky(b-2a) [Jn _ (k@) NIk pa) - T (kja) N 1(koa)] +
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1 -1
Jn+ 1(kob)Nn (koa) Jn(koa) Nn+ 1(kob)

= n 2 " "
gk —ko(b-a)Eln+l(kob)Nn(kOb)-Jn(kOb)Nn+1(k0b)] oL,
J;l(kob) Nh (koa) -J;l (koa) N;l (kob)
2k (b-a) koz(b-a)z
" [(koa) -1]+ i Suad [Jn (koa)N;l(kOa)—J;l(koa)N;I”(kOa)]
+...

where n > 1, Thus if one made use of the above results, it is clear that

(e)

M Q

(2), (e), (e)2 4 2 1 m 2

€v (QT/QN) =~ - ( )"+0Olk b-k.a s
nZ=|ﬁ nn °n 0 ktz)(b-a)z wkoa{Fm Q(e) [ 0 0 }}

0
(5-3-19)
M (1) ©)_(e) 4 J0(m¢0)Qere)cos mé
Z)Envn Jo(n¢0)(Qn /Q0 )cos ng= 2 )2 { Q(e)F +O[k0b-k0a]},
n= o2 0 "m
(5-3-20)

and

2
N J(mf )
(3). 2 4 2 070
nz oenvn I0 (n¢0)“ - 2(b_a)2 ﬂkob{ F + O(kob—koa)} , (5-3-21)
0

where

- TN ! -7 1 -2
Fm Jm (koa)Nm(koa) Jm(koa) Nm (koa) (5-3-22)
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If one substitutes (5-3-19) through (5-3-22) in (5-3-16) and (5-2-2),
one obtains

(e) 2 2 (e)
Bat-l—i) 4 { 2 (Q ) ky (b -a)" @ 2k0a(Qn )2
o k02(b—a) TF koa Q(e) O B Qée)

|Vs] 9 k0 (b-a)
T 2[@“ 2 7o i)+ = 21‘0““(2/%)]
[t 7

YR ANTE CRT L LMo
|V 3 Re[ €™ 2 D o T (@)
w n OC
2 K bin (2/9,)
-2(k ) kqb 4n ( /¢0 ,
kja = m (5-3-23)
and
E L 2 EIO(m¢ )Q (e)cos mO,(Qe)F ;}
Vw  TRed 2J(2)(m¢0) koz(b-a) [ H )(koc) 9
+ 2(1+k )k bln(2/¢ ) ﬁe T —J (n¢ ]
kobF 4 (2)(k o)
kja=m ) (5-3-24)

Since |1‘<| <1 and the angular width of the wedge aperture and shell slot in

practical case are small but finite, Eqs. (5-3-23) and (5-3-24) can be further
reduced to
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_V_S._ - an(‘le) cos mb + C{k (b-a)] ka=m (5-3-25)
v, aQO(e) Jo(m¢0) 0 : 0

(e) 2
4 Q

B = m

b 2
1-—cos mé+O0O[k. (b-a)l|} ,
kanm Qée)ko(b‘a) { a [ 0 ]}

koa = m (5-3-26)
If we substitute (5-3-25) in (5-3-15), we obtain
(e)
€ Q
G - % “—0- -b- (_(_e_)__rg___)z COSsz
J 0 (m¢ )
N ( )(koc)
ST {ge (n)’ W—— 3¢ (o) - 267 kb1n<2/¢0}
n= (k c)
+ O[ko(b—a)] , kpa=m . (5-3-217)

It is interesting to note that in the present case, both G and B depends

strongly on koa, kO(b -a) and 6 but only G depends on the plasma sheath
and shell slot width 2¢0 .

Case C: If we keep the radii kja and kb constant, ¢O and 6, small
but finite, 6=0, v/w = 0 and wp/w >>1, then
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and
' (2)(k c) _ wp 2 k b
™ ""_““(z)'(k o ) =
W W . W
W H(z)(k c)cosl{—pk (c-b)J-—P-H(z) (k c)sinh[——pk (c-bﬂ
_ P w 0
w
wp 512) (k c)cosh[ Py (c b)]+H( )(k c)smt{wpko(c -bi
Therefore
N N Hfll)(k c) 9
Im € (7!") —(I)—Q—"Jo(n¢ )
n= " u (k.c)
n O
2w 9
) g - Tpko(c—b) N 3, (ng,)
T Tk.c €
™0 n—O (k c)
00 ( )(ko )
Re =0€n(7f:1) 73,—— JO (n¢ )

(5-3-29)

(5-3-29)

(5-3-30)
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On the right hand-side of (5-3-30), one notes that from (A-8-12), the first
term is approximately equal to -2( ) k b!Zn(2/¢ ) . Hence, upon employing

2
(5-3-29) and (5-3-30), lVS/le , G and B respectively become

vV |2
2 ’"(%)2 (Cg/Ct)2 , (5-3-31)
w P
2~ M), <e) (e)
C, = —— > v, /Qy ") Iy(nf)cosne (5-3-32)
0 n=0
3 2
c, = 2 €, (5-3-33)
n=0
2 W
koa € 1 N (n¢ ) CS 9 w2 —2Fpk0(c—b)
G QT u —_2— (1): ( ) (—) e
Ho wkobc n=0 l (k )‘
(5-3-34
k a fJe roo 00 (0 0]
~_ 0140 ¢ (e), ()2 (e), ()2 1 (2) (e) (e),2
i ):4;1(1:“ /Q, )/n+nZ=1(Qn /Qy ") /mﬁaan;gnv /al
N
Z}G“ (3) 2( By)+ 2k b Ln(2/g,)
-(Csz/2k0b)[61- =4 2 5 (wi)z] . (5-3-35)

t

Equation (5-3-34) and (5-3-35) show that for an overdense plasma sheath,

if we ignore the collision effects, the terminal conductance G decreases with a

2 - -
. 2k0(c b)wp/w

factor (w/wp) and the terminal susceptance B approaches

to the case of no shell slot as shown in (5-3-18 ).
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EQUIVALENT CIRCUIT FOR A COAXIAL ANTENNA
WITH A PLASMA SHEATH

1, Introduction:

In chapter II, we derived the general stationary form for the terminal
admittance of the wedge waveguide. Upon using the results from chapter III

and chapter IV for 6. << 1 we finally arrived at an explicit formula for this

0
admittance in chapter V. It is clear that this admittance is a function of the
foll factors: ’ , , 0, .
ollowing factors koa kob koc ] wp/w, v/w, 80, and ¢O If one can

find some explicit expressions to indicate the individual role of each of the
above factors in Y(a), then one knows all details of the coaxial antenna.
Unfortunately, this is practically impossible. However, it is also valuable

to know the individual influence of the wedge region, the coaxial region,
plasma sheath and free space on Y (a), respectively. If we refer to the
normalized stationary form of the terminal admittance y(a), (2-4-4), it is
found that one can hardly identify the individual influence of each of the above
four regions on y(a). Thus we turn to seek some other way to formulate the
normalized terminal admittance of the wedge waveguide so that the effects of
the above four regions can be discussed. In section 2 of this chapter, we
furnish a new formulation of y(a) which allows one to propose an equivalent
circuit for the antenna, In section 3, we also discuss the physical significance
of each circuit component of the equ{valent circuit. However, the new
formulation of y(a) is not stationary with respect to the functional variation
of the wedge aperture field and therefore, as long as the exact solution for the
wedge aperture field is not found, the stationary formulation of y(a), (2-4-4),

is still important in producing the numerical results.

75
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2. An Equivalent Circuit of the Coaxial Antenna:
1% a
Upon multiplying (2-4-3) with 5= o\ E (¢)d¢ and integrating from
o Yo

- +
6 90 to 6 60, we have

€ 6+60 2
2:90 z y(a) g £ (9) ag
6—60
2
E%% m 2) < (i 7,}' (kg av ﬁ (@) cos 75 <¢ 6+6,)dg

@, 3k @N'{k D)~k BIN (K 2) *% "%
(o

0 ’ ‘
Z nJ'<k b)N'<k 2) =31 {k 2IN' (K b) E(#) cos n(g-¢ dp
b-0 b-0

0 0
8, 0 g,
K3 7rk0a nZ;) g d¢ﬁ (¢)g E (¢')cosn (@ - @) dag' . (6-2-1)

% ~¢o

Following the same procedures as in A-1, one may find that the above equation
is not stationary, From the definition (2-4-5) of Y(a), taking L =a and
by virtue of integral Eq. (2-3-31), we write (6-2-1) in the form

2 2
Y(a) =)B_ + 3(13cl -1 Bcz) -4 Ypf (6-2-2)
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where
9+ 60 2
f (¢)cos (¢ 6+ 0 )d¢

f:( <ka>/p (ka> E ,

(6-2-3)
9+90 9+60
S d¢ﬁ*(¢)g ﬁ(¢')cos n(@-@"dg"
00 J(k a)N‘(k b)-J'(k b)N(k a) 9-60 6-—90
Bcl 27r Ky Z nJ'(k b)N'(k a)- J‘(k a)N (kob) IT ‘ 2
w
(6-2-4)
¢0 ¢0
% d¢E"(¢)S E (§") cos n(@-¢"d¢"'
B =uf:o i e PN )T NG ) %
c2 a 2r Mo o= nJékob)Nl;(kOa)—Jn'(kOa)Nr'l(kob) ITSI 2

(6-2-5)

g d¢E*(¢)S E(¢")cosn (¢ - ¢ a¢'

1{5 ! (k c) -¢0 -¢0
= —J— 1 r
a 27 fu Zb Hll)(k 0) lTsl 2

(6-2-6)
9+90

T, S £@ag |, (6-2-7)
6-6
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¢0
T, =S E(f)dg , (6-2-8)
'¢0
and
Tl
L = . (6-2-9)
.|
w

Equation (6-2-2) suggests an equivalent terminal circuit of the wedge

transmission line as shown in Fig, 6-1,

= a
Yo(r) = Yo(a) .-

By [] 9% ] ol ] e

I
I
-
I
[
I
I
I
I
I

I
I T
' ! Ideal fo

| Wedge Transmissiop eal Transtormer
[ Line I

FIG, 6-1: EQUIVALENT CIRCUIT FOR THE COAXIAL ANTENNA

It is seen from (6-2-3) through (6-2-9) that B , B ., B _ are
w' el Te2

real quantities while Yp ¢ is a complex quantity, therefore the first three

circuit components are susceptances and last one is an admittance, One may

also note that the only 6 dependent circuit component is the transformer turn
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ratio £. In the next section, we will discuss the physical significance of

these circuit components in detail.

3. Physical Significance of the Circuit Components:
In (6-2-3), we note that BW depends only on k

o 6, and £(¢), the
wedge aperture field, Furthermore, if we let Er’ E ¢h and Hz represent
the electric field and magnetic field in the wedge region minus the TEM

mode field, then the integral

a a 9+00
W h h‘{‘ h h* h h:::
” 2S dzg drSl [eO(Er E, + E¢ E¢ )-ufl H ]rd¢
I wl o Y0 “Ye-g

in view of Eqs. (2-2-1) through (2-2-3), can be reduced to a form exactly
the same as shown on the right hand-side of (6-2-3) which defines the sus-
ceptance BW . Therefore, we may regard BW as the susceptance due to
the higher order mode fields in the wedge region. For narrow angular width

of the wedge or small k a, BW can be reduced to

0

B, = w[Cw + O(koaeo)z] (6-3-1)

where

0
Cy = & 2,

€a o
n=1

o+ 90 2
1 nr 2
H S ﬁ(¢)008 ‘2-6(;'(¢-9+ 90)d¢ |TW| . (6-3-2)

9-90

It is seen from (6-3-1) that the dominant part in square bracket is the capacitor
Cw which from (6-3-2), depends upon the radius of the cylinder and the
angular width of the wedge aperture.
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In Eq., (6-2-4), if we make use of (4-2-19), we may separate the right

hand-side into two series and obtain

9+90 9+90
g d¢ﬁ*(¢) g E(@) cos n (g - §') dg*
(0] 6-6 6-8
B =uC_ +o 2 > lev{? 2 2 ,
cl cl 2r Ho =3 nn - 2
[+
(6-3-3)
where
6+6, N e+eOA
d¢E(¢)S E (@) cosn(@-¢')dg"
€ a 6-6 0-6
__0 1 0 0
Co1™ Z_:l‘ Y 12 ' (6-3-4)
w ™+

When the angular width of the wedge is very small, we may employ the wedge

aperture field (4-3-1) and then because of (A-8-12), we have

608.
e D -3-5
C,, — In(2/6) . (6-3-5)

The second term of (6-3-3), because of v (2), (4-2-19), converges

1

rapidly, C , may be considered as the capacitance due to the fringe fields

of the wedgglaperture. The same fringe capacitance can be found when the
circular shell and plasma sheath are not present, Schelkunoff (1952) in deriving
the terminal admittance of the biconical antenna also found a capacitance which
has a logarithmic singularity as the cone angle 6 —> z .

The next circuit component to be discussed is Bc 9 Since
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J n(kob )N;l(koa) -J ;x(koa)Nn(kOb) _ kob . v(s)
J ;l(kob)N;l(k Oa) -J ;1(1( 0:a.)N;l(k 0b) n n

, 121

(3)

where v, is given by (5-3-12), we may write (6-2-5) in a form
¢0 y ¢0
S dgE (¢)S E (@') cos n(@ - ¢') dg*
€. @ -¢ -0
Beg 70C 2+2721— \}'O_ envf) : =
c €2 a2m \u, & lT l
8
(6-3-6)
where
2 . %
g dgE (¢)g E (¢') cos n(@ - §') d¢'
b &1 %
C,=>—>_ = (6-3-1)
c2 a T n 2
n=1 lT |
8
Similar to Ccl’ we regard Cc2 as the capacitance due to the fringing
field of the shell slot in. the coaxial region. For narrow shell slot, upon

substituting (3-6-7) in (6-3-7) and making use of (A-8-12), we obtain

€ b
— tn (2/g)

m

CcZ -

b
a
Hence, as the angular width of the shell slot approaches zero, the capa-
citance Ccz also has a logarithmic singularity. The series in (6-3-6) converges
rapidly and for narrow shell slot 2¢0, it is weakly dependent on ¢0 .

Since in the plasma sheath, there is also a fringe field neighboring to the
shell slot, we expect that this fringe field will contribute to a capacitance,

To investigate the nature of this capacitance, we turn our attention to Ypf’
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K2k.b

1
(6-2-6). Comparing (5-3-14) with (3-1-6), we observe that LA 1I';1 -—

for n # 0 where ﬂ;l is given by (5-3-13). Therefore Y . can be reduced to

pf
(2)
WE, a €' ® H (k.c)
0 ,-2,% b 1 0 * n 0
Y =} k™) A -j—-——V—-—:ge(w')——;—-—-
pf n fr a 27\u, &4 n'un _(2)
0n= Hn (koc)
4 4
S dﬂE*(ﬂ)g E(@)cosn(g-9¢')dg’
-9 -¢
N - . (6-3-8)
8
%]
and
2 4,
% d¢E*(¢)g E () cos n (§ - §") dg"
b2 Y %
Ay = () 2_ - . (6-3-9)
n=1 n ITBI
We see from (6-3- 9 ) that for 2¢0 <<1, we find
b.,2 2
Afr & (';) fn (aa) . (6-3-10)

In (6-3-8), we may regard the first term on the right side as the admittance
associated with shell slot fringe field in the plasma sheath. From the
defining equation of the dielectric constant k of the plasma, (2-2-14), we can
show that the above fringe admittance is composed of three parallel branches
and can be written as
WE a

2 (i) Ay =1u(C_ g - — 1

w Lc3

3

)+ Gc (6-3-11)

3
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where
eoa
CCB = ‘—7r—— Afl‘ ’ (6-3-12)
2
MOa T 2 1+(v/w)
LcB B (koa) © /w)zA : (6-3-13)
p fr
V@ (w /w)zAfr
G . = P (6-3-14)
c3 T

1+ () 2

C03 is a capacitance due to fringing fields, LC3 is an inductance

due to the plasma, and GC 3 is a conductance which accounts for the power

dissipatedby the shell slot fringe field in the plasma sheath, As ¢0——> 0, it

is seen from (6-3-12) through (6-3-14) that Cc and Gc have logarithmic

3 3

singularity while Lc approaches zero. Since Afr is only weakly dependent

3

on the plasma sheath, thus CC is also weakly dependent on the plasma constants,

3
L , is inversely proportional to (wp/w)2 and Gc3 increases as (wp/w)z. Thus

inccieasing the plasma density tends to short out the shell slot. The real part of
the second term on the right hand-side of (6-3- 8) may be associated with the
power radiated into the free space and the power loss in the plasma sheath by other
than the fringe field of the slot. The imaginary part of this term may be related
to the stored energy in the plasma sheath and the free space with the slot fringe
field excluded. To investigate the connections between Ypf and the stored
energies, the power loss in the plasma sheath,and the power radiated into the free
space, it is more convenient to start with (6-2-6), From (A-10-9 ), it can be
easily shown that

Im . Il IO vV IV, .2 2
2P+ jdo (W - W) + 2Pr+j4w(WIH - Wy )=b \TSI Yo oo (6-3-15)
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where

Pr = time averaged power radiated into the free space

PIII = time averaged power loss in the plasma sheath

1]

WH time averaged energy stored in the magnetic field

w

E time averaged energy stored in the electric field

and the superscripts III and IV denote the plasma sheath and the free space,
respectively. If we define the radiation conductance Gr and plasma con-

ductance Gp, respectively, as

2P
- r -t -
b [Ty
S
m
G = —22—1-’——2— , (6-3-17)
LY
8
then
+ = -3-
Gr Gp Re Ypf X (6-3-18)

The imaginary part of Yp , from (6-3-15) is a susceptance which accounts for

the difference of the time averaged stored energies in the magnetic field and

electric field exterior to the conducting shell, It can be visualized that

W [Cc3 -1/ (w2 LcB)] and Gc3 are a part of the susceptance and conductance represented by
Im Ypf and Gp respectively. In (A-10-10) we derived the expression for Pr'

From this equation and (6-3-16), when wp > > w, one can show that Gr
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-x k (c-Db)
decreases as the factor e if xpk 0(c -b)>>1 where

W 1/2] 1/2
_pn . 1 V.2
"p“z{ra[“‘”;’] }

The coaxial region not only behaves as a reactive element, but also couples
the two slots. In the equivalent circuit, we indicate this coupling effect by a
transformer of turn ratio £ as defined in (6-2-9). Since these two slots are
separated by an angle 6, f willbe a circuit constantin Fig, 6-1 that
depends upon the separation angle 6. Apparently, { also depends on the
radii koa and kob. However, since the shell slot opens into the plasma
sheath, £ is also modified by the plasma constants. To have an idea as to
how £ depends upon these factors, the reader may refer to (5-2-2) in

which the angular width of wedge aperture and shell slot are assumed very

narrow.



VII
NUMERICAL RESULTS AND CONCLUSIONS

1. Introduction:

In this chapter, we present the numerical results based on computations

from (5-3-11). From this equation we note that Y(a) is a function of k_.a,

0
kOb’ koc, 6, wp/w and p/w; thus in presenting data, we successively

choose 6, ko(b—a), kO(c—b), koa and wp/w as the abscissas. The com-

putations were performed on a digital computer 7090 for 6. and ¢0 equal

0
to 0.03 radians. Since the method of solution of the integral Eqs. (2-3-31)
and (2-3-32) given in chapter I and chapter 1V , respectively, is primarily

a low frequency approximation , we limit k a in the computations to the

0

interval 0.1 < koa < 4,3, In(5-3-11), we sum the series

(e) ()2 S (e)(e),2
(Pn /Q0 )"/n to 250 terms and the series Z(Qn /Q0 )"/n by the
n=1 n=1

method shown in A-8, The factor VS) enters into the series defining the

numerator of the last term inside the brace of (5-3-11); this series we sum to

M terms. The number M is determined by two conditions: a) in the last
(1)

terms preceeding the Mth term, lvn l decreases monotonically, b)

H«l)’/ ey

-6
<10  where vi)l)l is the largest among v:ll)| . Since

MY (1)

n * n decrease faster than v, amn becomes large , we sum the

o (e) (e) 2
series 2?6 €V /Q to Mth term and for the finite sum
n =

2
EnTnJO (n¢0) we set N = M.

M-

86
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In the following sections, we first present and discuss the numerical
results, then we summarize what we have done in this report. Finally, we
make some brief conclusions based on the theoretical discussions and numerical

results.,

2. Numerical Results:

In Fig. 7-1(a) and (b), we plot the normalized conductance G/G'
and the normalized susceptance B/B' as a function of 6 for the no plasma

sheath case. In this figure, the radii koa and kob are the parameters;

G' and B', respectively, are the terminal conductance and susceptance
of the wedge waveguide without the conducting shell and plasma sheath,
Their formulas are (A-9-4) and (A-9-5), respectively, G' and B'

depend only upon the radius koa and the wedge width 260 . In

Fig. 7-1(a) and (b), four different values of the radius koa are used. We

tabulate the corresponding values of G' and B' in Table VII-1 for reference.

koa G! mhos B', mhos

0.2 1.33x1o‘4 8.72x 10
1.0 1.04x1o'3 3,59 x 10
-3
-3

1.8 2.08x 10 5.69x 10

-4
-3
-3
4,3 5.35x 10 10.5 x10°°

TABLE VII-1; TERMINAL CONDUCTANCE AND SUSCEPTANCE
WITHOUT CONDUCTING SHELL. WEDGE WIDTH
0.06 RADIANS,

In Figf7—2(a) and (b), we plot the terminal conductance and the ter-
minal susceptance versus separation angle 6, with wp/w as the parameter
b, and k ¢ are

0 0
kept at 1.0, 1.1, and 1.2, respectively, In Fig, 7-3(a) and (b), we repeat

for the collision-free plasma sheath, The radii k.a, k

Fig. 7-2, except v/w is used as the parameter and wp/w = 1.5, It is seen
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(k0a=4.3; k0b=4.55)
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FIG. T-1: (a) NORMALIZED CONDUCTANCE AND (b) SUSCEPTANCE VERSUS
6 WITH NO PLASMA SHEATH AND (koa; kob) AS THE PARAMETER
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from the last three figures that a) conductance versus 6 curve and sus-
ceptance versus 6 curve for the case koa = 1,0 and kob = 1.1 are neatly
checked with Eqs. (5-3-26) and (5-3-27) except wp/w = 5; b)when v/w
increases, the conductance also increases while the susceptance is practically
not affected.

In Fig. 7-4(a) and (b) we plot the terminal conductance and the terminal
susceptance against the width of coaxial region, ko(b -a), for the no plasma
sheath case, the separation angle 6 as the parameter, and koa = 1.0, One
may observe that for small ko(b -a), when 6 =0o and 180° the conductance

and the susceptance are approximately equal to G' and B' for k.a = 1.0;

when 6= 900, G becomes very small while B becomes a largeoinductive
susceptance. If we refer back to (5-3-26) and (5-3-27), a similar result
can be observed, For a large value of ko(b -a), the conductance is small
while the susceptance approaches a positive constant, i.e., a capacitive
susceptance. Furthermore, one may note that the conductance versus
ko(b -a) curves shown in Fig, 7-4(a) are maximum when k0 (b-a) 0.4,

In Fig. 7-5(a) and (b), we plot G and B versus the plasma sheath
thickness k, (b-c) with wp/w as the parameter and kja = 1.0, kob = 1.1,
0 = 0°, vfw = 0. In Fig. 7-6(a) and (b), we repeat the last figure except
for v/w = 0.1, From the last two figures one may observe that: a) When
wp/w = 0.5, the conductance and the susceptance are weakly dependent on
the sheath thickness for the cases v/w=0 and V/w = 0.1, Galejs (1964) in
a paper on the admittance of a slot in a perfectly conducting plate covered with
a plasma sheath showed that the slot conductance and susceptance are practically
independent of the thickness of the plasma sheath when wp/w <1, His numerical
results are not accurate for a thin sheath. b) When w p/w = 1.5 and the sheath
thickness ko(c -b) exceeds 1,5, further increasing the sheath thickness will
decrease the conductance exponentially for v/w=0, but makes it approach a
constant for v/w=0,1, For ko(c -b) > 1.5 the susceptance is essentially
independent of ko(c -b) and the collision frequency. c¢) When ko(c -b)
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approaches zero, the conductance and the susceptance for all cases approach
respectively to 1,18 x 10-3 mhos and 6. 26 x 10_3 mhos, the magnitude of the
terminal conductance and the terminal susceptance for the case without plasma
sheath, We did not plot the case wp/w =1,0, V/w=0 because when the plasma
frequency is equal to the radio frequency, the effect of the collision can not be
neglected.

In Fig. 7-7(a) and (b), we keep kOb/kOa = 1.1 and have no plasma
sheath., G and B are plotted against kOa with 6 as the parameter., The
primary purpose of this figure is to show the effect of the radio frequency on

G and B for a constant cylinder radius a. We note that as k_.a increases,

0

the conductance peaks at k.a = 0.43, 1.3, 2.2, 3.13, etc. The susceptance

0
peaks almost at the same values of k. .a as G.

In Fig, 7-8(a) and (b), we plot G ar(l)d B as function of wp/w with
v/w as the parameter . The values of koa, kob and koc are chosen as
1, 1.1, and 1.3, respectively. One notes that for large values of wp/w,
G decreases exponentially with further increasing of wp/w when v/w=0
and approaches to a constant value when v /w # 0. The susceptance, ou the
other hand, for large wp/w, is approximately a straight line with a negative
slope. The effect of v/w is to shift the straight line upward. The suscep-
tance in this region of wp/w is inductive. In Fig. 7-8(a) we plotted G versus
wp/w for the cases v /w=0, 0.1, and 0.5 and in Fig. 7-8(b), B versus
wp/w for the same parameters, Notice that v /w=0, and 0,1 curves for B

are not distinguishable on the graph.

3. Conclusion:

The antenna problem encountered in this report is basically a boundary
value problem. To attack such a problem, we first express the electro-
magnetic fields in the wedge region, the coaxial region, the plasma sheath
and the free space in a series whose coefficients are in terms of the @-

directed electric field, f (@) and E (@), in the wedge aperture and the
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shell slot, respectively. Then upon applying the boundary conditions, we
formulate two coupled integral equations in which £ (@) and E(§) are the
unknown functions, Both integral equations are of the first kind of the
Fredholm type if one of the slots fields is assumed known. Only in one,
however, the magnetic current source is present. This we will call the
inhomogeneous equation; the other one — the homogeneous equation, for the
purpose of present discussion. Thus the boundary value problem is reduced to
the problem of solving these two coupled integral equations. However, for
practical purposes, we may regard the wedge region as a transmission line
loaded at the cylinder surface by a terminal admittance. The knowledge of

the terminal admittance is fundamentally importancin studying the behavior of
an antenna, For this purpose, from the inhomogeneous integral equation,

we formulated two different expressions for the terminal admittance. On

the assumption that the solution of the homogeneous integral equation
mentioned above is obtainable, one of the above two expressions for the
terminal admittance is proved to be stationary with respect to the

functional variation of £(@). An analytical solution of the homogeneous
integral equation in a series form has been found for the low frequency

0?+ Ko
and the angular width of the shell slot 2¢0 . For narrow shell slot, the

region. This solution depends on the radii k b, kyc; wp/w, viw,
series which represents the solution converges rapidly. The other form
of the terminal admittance of the wedge waveguide is not found stationary
with respect to the functioml variation of £ (@). However, this new form of
the terminal admittance gives us some physical insight about the antenna via
an equivalent circuit.

When the angular width of the wedge aperture and shell slot are very
narrow, from the stationary form of the terminal admittance, we obtained
an explicit expression for the terminal admittance. Based on this explicit
form, in some special cases, we were able to discuss the behavior of the

terminal admittance theoretically., From the above discussions and the
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numerical results presented in the preceeding section of this chapter we
may briefly conclude:

a) The slotted circular shell functions as a tuning element and a
matching transformer. Therefore a suitable choice of the width of the
coaxial region and the slot separation angle 6 will result in more power
radiated into the free space than by the wedge cylinder alone.

b) The frequency response of the conductance and susceptance of
the coaxial antenna peak repeatedly at different frequencies, with narrow
bandwidth in comparison with the wedge cylinder.

¢) When wp/w <1, the plasma sheath thickness k(c-b) has little
effect on the conductance and susceptance. When wp /w> 1, and plasma
collisions are neglected, for large sheath thickness, the conductance
decreases exponentially while the susceptance approaches to a constant
which depends on the ratio wp/w . If the collisions are not negligible, we
observe that the behavior of the susceptance is not changed but the con-
ductance approaches to a constant depending upon v/w.

d) For a fixed operating frequency and plasma sheath thickness,
when wp/w< 1, the collision term vy/w has little effect on the susceptance,
but increases the magnitude of the conductance. For large wp [w, further
increasing the plasma density will have the same effect on the conductance
as the increasing of plasma sheath thickness, but will make the terminal
susceptance decreases continuously to the case of unslotted conducting
shell,



APPENDIX
A-1

PROOF OF THE STATIONARY PROPERTY OF y(a)

To start the proof we take the first variation of Eq. (2-4-4); the

result is
6+90A 2 9+90 ) 9+60A
6y(a) [& E (¢)d¢] + 2y(a) g 6 E(@)ag g E (@) ag'
6-60 9-60 0-60
J_ (k a)
00 g_g_ ° 9+90 o+ 60
=j4 = O(k < S 6ﬁ(¢)cos§%l(¢-6+ 90)d¢% ﬁ(¢')cos;%-(¢'-9-90)d¢'
n=1"nm 0 ) 0 ) 0
26, 0 0
0
6+8 6+6
26, ® J (k.a)N'(k b)-J'(k_b)N(k_ a) 0 0
0 no0 no n0'no0 . N 3
= . €0 TR BIN' (k8] - T (k. DIN' (K b)g dgs ﬁ(¢)S £(g"cosn(g-¢") ag
n= n0 no n0 " no0 -6
0 6‘90
6+8 ¢
26 (1)) 0 0
B -7?9 1rk2 a z envgl) [g d¢ﬁ¢g 5 E(¢') cos n(f - ¢') d¢'
0 n=0 b - g B
b %
0+ 90 ¢0
+ S d¢6ﬁ(¢)g E(¢')cosn(¢-¢')d¢'] . (A-1-1)
0-60 —¢0

From integral Eq. (2-3-31) one can show that

100
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6+ g
6, © 0 0
1rk2a?ro_ 4 envfll)g d¢ﬁ(¢)g 6 E (§") cosn (@ - §') dg"
0 n=0 o-0 4
0 0
6, 0+60 ¢0
) 7rk209. __;rQ_ Zenvil)g d¢5%(¢)g E(p')cosn(p-@')d@' . (A-1-2)
n=0
6-90 -¢0

Upon applying (A-1-2) to (A-1-1) and moving the second term on the left hand
side of (A-1-1) to the right hand side it is seen from (2-4-3) that thei right

hand side is zero, i.e.
édy(a) = 0

One thus concludes that a first variation in the aperture field of the wedge
gives a second variation of the terminal admittance of the wedge waveguide.



APPENDIX
A-2

SOLUTION OF INTEGRAL EQS. (3-3-2) and (3-3-3)

In this appendix, we will employ the Schwinger transformation (Lewin,

1951) and use the trigonometric series (Schmeidler, 1955) to solve integral

Eqs. (3-3-2) and (3-3-3).

Since

(00]
cosnfoosnd . _1 1, 3)cos g - cos

n=1 a

(3-3-2) and (3-3-3) become, respectively,

%
A" s e
_¢0

@ € I"(e)cosn¢
n n

i ]
(14K ) (kob)2 nZ:G T (kPN (kya) -3 (kja)N (kob)

and
¢0
- .12. S fff)(mln 2|cos¢'~c08¢|d¢'
_¢0
= ———_~2l—-—cosn¢
(1+k ) (k b)
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(A-2-1)

(A-2-2)

(A-2-3)
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We then introduce a transformation due to Schwinger, i.e.,

p ¢
cos@ = cosz-é-o- + sinz—z-g coss . (A-2-4)
It is obvious that one may map the region -¢0 <@g< ¢0 into the region
-1 < 8 < 7 with the transformation (A-2-4) but not in one to one

correspondence. Thus we further introduce the restrictions
-r < 8 < 0 corresponding to --¢0 <P<o0

0 <s <m correspondingto 0 <@ < %

to the transformation (A-2-4), In this report, whenever the Schwinger
transformation is mentioned, these two restrictions as well as (A-2-4) are
implied.

Upon applying the Schwinger transformation to (A-2-2) and (A-2-3),

one obtains

g 0" 4 0
ToN wle) dQ' =(e) dQ' cos ms cos mt
Incsc 5 S F0 (t) it dt +S F0 (t) it E=1 — dt

- -7

() @
1 0] en Ffle)cos[n cos 1(coaz2 _é(_) + sin2 —2-Qcoss )
= — (A-2-5)
- ! [ -I []
1r(1+k2) (kob)2 n; Jn(kob)Nn(kOa) Jn(kOa)N n(kOb)
and
g T T, o
0 e), . dg' z(e),,, dg' cos ms cos mt
Incsc — g o) =t +S NOT Z 2 dt
-7 - m=1
_ g g
S S cos[ncos 1(008270 + sinz-z—ocos s )] (A-2-6)

2(1+E2)k0b
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where
e = ¥ o)) (a-2-7)
ffle)(s) = fff’) [96)] (A-2-8)

for -¢0<¢<¢0 and -7 < g <7
The free terms of Eqs. (A-2-5) and (A-2-6), respectively, can be

expanded into Fourier series; thus,

(e) [ 1 2 ¢0 2 ¢0 ;J

o € [ 'coslmcos (cos” — + sin“—coss @
o n 2 2 =3 aeosps
] ] -1 1
=0 TPk I kgaIN' ko) p=o P
(A-2-9)
. ) @ os]
cos[ncosl(cos2 —g— + sin2—2—0 coss)] = Z bé:) cosp s (A-2-10)
p=0
with
(e) 1 5‘-:-; emrn(f)XOm
o= L mom om (A-2-11)
0 2r &= 3! (kDIN' (kja)-J' (kpa)N! (kob)
(e
(e) = 2 - r m- pm
a = 2 , — , (A-2-12)
P T nZ:p J ;n(kob)Nm(kOa) J m(kOa)Nm(kOb)
1
bfb) = 'é?r'xon (A-2-13)
p® - Ly (A-2-14)

np T~ pn
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where

m
X =\ co -k 2¢—°+ 12&? s)|d A-2-15
om sps cos| mcos (cos 7 + sin —cos 8 (A-2-15)

-T

The properties of Xpm will be investigated in A-4, however for the present

discussion, we note that

xpm= 0 for p>m . (A-2-16)
If we let

=(e)  df' _ (e) . == (e)

F0 (t) & =% * 1;1 ap cospt , (A-2-17)

=€), df' _ , (e) i (e)

fn (t)_cf = tnO + 2 tnp cospt , (A-2-18)

for -r<t<7 ;

upon substituting (A-2-9), (A-2-10), (A-2-17) and (A-2-18) in (A-2-5) and
(A-2-6), respectively, and employing the expressions (A-2-11) through (A-2-14),
we obtain

(e)
a(e) = 1 1 . €m Fm XOm )
0 ra+ih (kob)z 2 b0 =b7 rnlkgbIN: (ka)-J7 (k aN' (k b)

471 Incsc 5

[Ms

(A-2-19)
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(e) 3 M X

e m “pm

a = 1 1 R 1 »  (A-2-20)
P r(1+k )(k b)z T Zp Jm(kob)Nm(kOa) Jm(koa)Nm(kOb)

X

(e) _ 1 On
LU 2(1+K )k b) b N
0 4 Incsc—é-
(e) 1 p
B = — . (A-2-22)
S T o 7 2 %pn

]

If one differentiates the Schwinger transformation with respect to @

one has

dt Wms%
L Yeos d - cos ¢0 ,

o <P<9, . (A-2-23)

Thus from (A-2-7) and (A-2-17), we obtain
’v ZCOSL 00 ) @
(e) 2 (e) (e) -1, 270 270
F. (@) = —————-————-—{a + @ cos[pcos (csc”—cos @ - cot --)J} )
0 VCos¢-cos ¢0 0 le P 2 2
B,< 9 < ¢0 . (A-2-24)

and from (A-2-8) and (A-2-18),

NZcos & 2 %
(e) (¢) 8 2 I (e) ZB (e)COS[p COS (CSC ¢_ COS¢ cot —-)]} ’
’\éos ¢ -cos ¢0

-¢0 < ¢ < ¢0 2 n=0’ 1: 2: « o 0 N ’ (A‘2"25)
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If one defines

S(e) 3 Z ‘m r'r(sz)XOm (A-2-26)
0 = J;n(kob)N;n(kOa)-J;n(koa)N;n(kob)
(e)
(e) > l-'m Xpm
S =2 . . : , (A-2-27)
p mZp J m(kob)Nm(koa)'Jm(koa)Nm(kob)

then Fée)(¢) and ffle)(¢) becomes

(e) (e)
F(e)(¢) _ ¥z cos-g— S0 \ i pSp
0 =2 2 2
7(1+k ")k b) ’Vcos¢-cos¢0 4”2“080_2_9 p=1 =
_ ¢ ¢
. cos[p cos 1(csc2 —chos¢ - cot? ?O)] ,
¥y <9 <4, (A-2-28)

V-z-n cos ﬁ X n pX

(e) 2 On pn
£ U@ = - - +
" 2(1+ k2)(k0b) Ycos § - cos ¢0 47°tncsc 92_0 Ié 2

¢

. cos[p cos-l(cscz —29 cos f - cot? ?0)] i

I, <9<9, . (A-2-29)



APPENDIX
A-3

SOLUTION OF INTEGRAL EQ. (3-4-5) and (3-4-6)

Same as in A-2 we employ the Schwinger transformation and the
trigonometrical series method to solve integral Eqs. (3-4-5) and (3-4-6).

If we differentiate the well known formula (A-2-1) with respect to @
for all ¢, ¢' < ¢0 except § = @', we have

sin @

o)
1
1 = -3~
_5_ sinmf cos m@ 5 osf —cosf (A-3-1)

m=1

Upon substituting (A-3-1) into (3-4-5) and (3-4-6), one obtains, respectively,

¢ (0 41y ag (0)
0 1 Fo (9" ey - 1 < M sin my
P 2 cos @-cosf (1l +l:2)(k0b)2 mZ;i J;n(kob)N;n(koa)-J;n(koa)N;n(kob) sinf
0
(A-3-2)
and
B 04 aq
0, & (9 dg 1 sinnf
Z = - , n=1,2,,,. N ., (A-3-3)
2 cos @-cosf (1+7 %)k b) sin§
4, 0
Since
i S
E_llﬂ(} = 2 i cos m@ for n even
s m=1,3,5...
n-1
= Z € cosm@ for n odd , (A-3-4)
m=0,2,4,...

108
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the free term of (A-3-2) can be written as

(0)
(e r
m sin nf
i T —= ; = )» € L_cospf (A-3-5)
mZ=; m(kob)Nm(kOa) Jm(koa)Nm(kob) sin Sppp
where
o
- (1) (1)
L - mZzl"p+2m—1 Motom-1 (A-3-6)
(1) 1
V=T ; T ; (A-3-7)
n Jn(kob)Nn(koa) Jn(koa)Nn(kOb)
Upon substituting (A-3-5) in (A-3-2) and (A-3-4) in (A-3-3), we have
P ¥ Ogr)agr o
S) _;___O.a'____a. = - _12 5 Ze L cospf ; (A-3-8)
P cos cos r(1+K )(kob) p=0 PP
0
% 1 Dgyap , a-1
= — = - — cospf, n=even ,
P 2 cos @' -cos (1+k2)(k0b)p=,;3,5...
0
1 n-1
= —— Z epcosp¢ , n=odd . (A-3-9)

(1+1'£2)(k0b) p=0,2.4...

We apply Schwinger's transformation (A-2-4) to (A-3-8) and (A-3-9) andlet

Fg’)(t) = Fg” 6 (t] (A-3-10)
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:0),.. — .(0)
£ =1 [d(t)] (A-3-11)

for -¢O < @< ¢0 and -7 < t < 7, and obtain respectively

- 1
¢0 F(O)(t)-c-l-g-dt @ d @
1 0 "t ) 1 -1, 2%, . 2%
= =- € L codpcos (cos —+sin —=cos s)
2 r(1+5 2k b)25=0 P P 2 2
-¢O sin’—~(cos t-cos 8) 0
(A-3-12)
ho i
01 fn(t) ~ dt ) 5 n-1 1 2¢0 _z¢o )
3 7 =- “Q)k Zﬂ cogpcos (cos - tsin—-coss)| ,
+ =
-¢0 sinz—zg(cost—coss) (1 X Ob)p 13,5,
n=even ,
1 L= a, 2% 2%
= - — ; € cospcos (cos —é-+sin —z—coss) )
(1+% Xk b) p=0, ~4,. P
n =odd . (A-3-13)

In order to generate convenient expansions we multiply both sides of the
last three integral equations by sins. The free terms of these new integral

equations can be expanded by Fourier series, i.e.,

n-1 ¢ d 0s)
Ze L cospcos 1(0082__Q+ osinz—-9 cossﬂ sins = E a (O)Sinms (A-3-14)
eed DD 2 2 —l M
p=0 m=1

n-1 d ¢ [s9)

Zcos[pcos 1(cosz—o«ksmz—(lcoss)]sims = Z b(o)sinms ,
2 2 - nM

p=10 3:0- . m=

n = even , (A-3-15)
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and
n-1 1] 1] [o0)
€ cos|pcos 1(cosz—(-)+six12—(-)cos 8)|sing = Zb(o) sinms ,
- p 2 2 - nm
P=U,q,... m=1
n=odd . (A-3-16)
Since
T
-1 2¢0 2¢0
sinmssinscosl:pcos (cos —2—+sin ?coss)ds
-
21
-Z(Xm-l,p m+1,p)
we obtain
[00)
20 =-§—( eLX ., -2 Z LX 115 ° (A-3-17)
m T oime1 PP B e , P
-1 n-1
0 _ 1 ;
b == ( D eX -2 ; X ) , n=odd, (A-3-18)
- +
nm 2T p=0,2,4,...p m-1,p p=f ,”.m 1,p
n—
b(o) -1 i (X -X ) , n=even . (A-3-19)
nm T m-1,p m+l,p
p'1033-~-
(0)

We note that brlm =0 when m>n. Because

gin 8
2{cpst-coss)

sinmscosmt |,

e

(A-3-12) and (A-3-13) become
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d [00) sinzﬂ) (00)
_ t
F(O)(t)gl Z sinmscosmt dt = - 2 Za(o)sinms, (A-3-20)
0 dt =2 2 m
m= 7(1+k“)(k.b)  m=1
4 (0] sin2—¢2
- 1
an(o)(t)%z— Z sinms cosmtdt = -—3—2—— btﬁz sinms ,
m=1 (1+k )(k.b) m=1
0
n=1,2,... N (A-3-21)
Now we let
=(0) g_@ _
F0 (t) i Co+ Clcost+ Czcos 2t+ ... . (A-3-22)
0) . dg' _
fu (t) + dno + dnl cost + d[12 cosat+ ... . (A-3-23)

Upon substituting (A-3-22) and (A-3-23) in (A-3-20) and (A-3-21), the Fourier

coefficients C  and d are found as
m nm

m

d -
nm

2 ¢o (0)
sin — a
2 m
r(1+K2) (kob)z 4
sln2 %
2 b(o) , m>1
nm -

(1479 (kb)

(A-3-24)

(A-3-25)
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Hence
sinzﬁ) a(o)
1
Fgo)(t) @ . C0 - =3 2 5 2 cosmt ,
r(l+k )(kob) m=1
-r<t< 7 (A-3-26)
sin 2 ¢0
- ]
ff:”('c)%tE =d - Z b2 cosmt |
r(l+k )(k b)
-Tt<t<7w , (A-3-27)
We recall that
. - 2 ¢0 2 ¢0

cos@' = cos — tsin” —cos t

and therefore
@
sin2 _29 sint
5 ¥ 2

11 - (cos — + sin —-zgcost)

It is obvious
]

9 —> 0 as t—> 1
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Therefore,

—(0),. dg' )
Fo ©

’ —> 0 as t-—>i1r

<(0),,, do
%0 4

/

and hence from (A-3-26) and (A-3-27), respectively, we have

szf_(_’ (1)
C0 - ) 2 2 aI(I(l)) cos mr , (A-3-28)
7 (1+k )(kob) m=1

¢
slinz——zQ n (0)
d . = — b "cosmm . (A-3-29)
B0 214+k? kb mZ=1 fam
Thus Ff)o)(t) and féo)(t) are
~0) 5“‘2?29 at i (0)
F t) = — - a_ ' (cos mr - cos mt) ,
0 1r2(1+k2)(k0b)2 A
-Tr<t<m ) (A-3-30)
£0) sngg dt (0)
fn (t) = b " (cosmr - cos mt) ,
nm

-— 1
7r(1+k2) kob Ea“m=1

-T1<t<=wr ., (A-3-31)
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For the convenience of further investigation we introduce a new function

m-1

= _ cos mm - cos mt _ _ym-p,_ e
Um(t) . T+ cost p; ep( 1) (m-p)cospt . (A-3-32)

If we let Um(¢) denote the function Um(t) in @ interval, then

m-1 ¢ ¢
U (@)= E e (-1)™ —p(m—p)cos[pcos-l(cscz —Qcos ¢ - cot2 —9)] (A-3-33)
m = p 2 2

Thus Eqs. (A-3-30) and (A-3-31) become

(0) szgzg at X (0
F '(t) = - (1+cost) a_ U _(t) ,
0 n2(1+E2)(k0b)2 @' 2:"1 m m
-r<t<mT , (A-3-34)
and
sm2 %
f0¢) - ———————2 . (1+cost) Zb(o) T,
(1+k )7rk b
-r<t< T . (A-3-35)

From the Schwinger's transformation, we obtain

¢
sin 2

dt _ ¢ 1
7 (1+cost) = 2 cos 2‘Vcos¢ cos ¢O (A-3-36)
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Therefore,

®
Ff)O)(w = V2 5 cos(% Wecos @ - cos ¢O ;l ar(r(x)) Um(¢) s

(1+E2)(7rk0b)
P, <8<9, (A-3-37)
f:lo)(¢) = _g? co{%)\ﬁos{é - cos ¢0 b(o) U_(@
(1+k ) (rk  b) m=1 @ m

B <9 <9 (A-3-38)



APPENDIX
A-4

PROPERTIES OF qu

In Eq. (3-3-8). we put

J ¢
coss=x , cos2 -29 =b and sin2 —g =g (A-4-1)
then X  becomes
qp
! 1) oo [poos!
X =9 g cos(qcos " x) cos|pcos (b+axﬂ dx (A-4-2)
® 2
-1 1-x
Tchebychev polynomial is defined as
Tq(x) = cos[qcos_lx] ,
T, x) =1,
therefore one may rewrite (A-4-2) in the form
1
T (x)T (b+ax)
X = - dx . (A-4-3)
P 2
-1 1-x
It is obvious that for any ¢0
X =27 (A-4-4)

00

Tp(b+ax) is a p-th order polynomial of (b+ax), while Tm(x) is

a m-th order polynomial of x, therefore
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Tp(b+ax) = Irg)arme(x)

If we multiply both sides of that equation with 2Tq (x) / vl -x2 , and
integrate from x=-1 to x=1, we find

1
T_(x)T_(x)
x 2751)8 -
@ g m

-1 1-x

TE]
B
]
e
-
o
.

and therefore we conclude that for any ¢0

X =0if q> ) (A-4-5)
- qQ>p

DuHamel (1953), Salzer (1956), Brown (1957) and others in their works
on radiation pattern of antenna arrays also studied integral (A-4-3). By different

approaches, they carried out the integration and arrived at a tedious formula

n/2.
_ nq __1.xl g+n-r, qtn-r-1
equ’q+n—21r(2b) a rZ= {( —2) [2( r ) -« r )]

4b

[n/2-r 2
q-2j, qtn-2r, , a
. jZ=; [( i ) ( 0+ 2] ) (;—;5)1]} (A-4-6)



119

where (g) denotes the binomial coefficient and [y] denotes

the largest integer not exceeding y. For the convemence of further discussion,
we list X for n=0 to n=4:
q qtn
€ X = 27l
q q,4
e X = 2n(g+1al(2p)
“a"q, q+1
i L 21+ o)
€ Xy, qr2” 27lat2e [( 2 2n)* -1+ a]
¢ X = 21r(q+3)aq(2b)[(q+1)(q (2b)? - 1)+(q+2)a2] ,
q q,q+3
N q [(q+1)(q+2)(q+3) (q+1)(q+2)]
€%q, qra " 2miard)e { Py 2 O
[q+22)$ +3) - (q +2)]a (2b) + q2+‘3 4} . (A-4-7)

For n —> o, one may evaluate the integral (A-4-2) by the method of
stationary phase:

Jon
. cos(n¢o+ q¢0 - -Z)
X 0 2wcosqm . (A-4-8)

R +
q,q ¢0
27ntan -é-

Combining the informations given by (A-4-7) and (A-4-8), we may state the
following behavior of Xq

. For any q # 0, as n increases from 0,
' q

Xq, q+n increases gradually from 7a

repeatedly swings from negative maximum to positive maximum with a

to its first maximum and then

decreasing amplitude. For q=0, as n increases from 0, xOn decreases
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gradually from 27 to a negative maximum, then swings up and down with a
gradually reducing amplitude. In the case q# 0, suppose the first maximum

of X ¢+ occurs at n=M, then it is seen that the increasing of q reduces
2

the value of Xq q as well as increases the value of M,

?

Now we consider the special case of narrow slot. The necessary p

values for the narrow slot satisfy the condition p¢02 <<1, Ifin

[9/2] _on_4[ P-T p-r-1 )
cos[pcos 2] oul (-1)f P 2T 1[z( ) - ( )]zp 2r (A-4-9)
b= r r
2 ¢0 2¢0
we replace z by cos 7+ sin 5 cost and make use of
2
g ¢ ) ¢ |
(cos2-§0+ sin2 —zqcos t)p Z 1--2— (p-2r) (1 -cost) (A-4-10)
we have
B} ¢ ¢
co{p cos 1(cosz-é—o— + sin2 chost)}
~ 2](1)r2p—2r~12p-r) (p-r-l)]
- “~ - [( r’ ' r
2
¢02 ¢0
el g(p)+ Tg(p)cost (A-4-11)
where
[b/2] p-r p-r-1
g(p) = é (-1)r2p°2r'1[2( r ) - ( r )]- (p-2r) . (A-4-12)
r:
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We note that g(p) <p. Upon substituting (A-4-11) in (A-4-2) and employing
the identity

/2 | oy
-2r- p-ry _p-r-1,1 _
r=(—1)2" [z(rur)] 1,
we attain
2
¢o
xOp = 27r[1 -Tg(p)] ) (A-4-13)
2
¢o
Xp =780 . (A-4-14)
and
xqp = 0 q> 2 . (A-4-15)

There is an alternate approach to find XOp for ¢0 < <1, From Schwinger's

transformation, for q=0 we may rewrite (A-4-2) as

¢0 2cos-g-cosp¢
Op =g d¢

i Ycos §-cos ¢0
0

%
o 9 S —°93Ld¢ = 273 (pf,) (A-4-16)

2
'¢o o %
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If the angular width of the shell slot is very wide, we may let ¢0 =r-A,

where A is much smaller than unity, then we obtain

cosz?-0+sin2ﬁ)ot=sin2—A—+ 02_A_ ost
5 2cs 5 cos 2c
Now we let

Salzer (1956) showed that

[(p-q)/2] r
_ p-2r[,n-r n-r-1
T (ax+b) =Y { 3, -0

q=0
.[(p‘Q)/z_-l‘r (q+23) <p-2r) . (E)q+2jbp-q—2r-2j
i q-2j 2
TR . (A-4-17)
q

If pA2 << 1, (A-4-17) can be reduced to

2

o~ pA
Tp(ax+b) = Tp (X) + —2—' Tp -1 (X) . (A'4"18)

Therefore

pr-’y-n, pFo0
?

o e
p,ptl 2

and

R

0

X , for n> 2
p,ptn -



APPENDIX
A-5
(0)

INTEGRATION OF A (0)
mn

AND B
m

Using the Schwinger transformation we obtain from (3-4-15) and (3-4-16),
respectively,

T
g ¢
A(O) = S mT cos[mcos- (cos2 -9+ slnz-—Q cost)] (t) d¢ dt (A-5-1)
mn m 2 2
-7
and
T ¢ ¢
BI(:) = S m‘rmcos[mcos.l(cosz—z-(-)+ sinz-z—ocos t)] . FE)O)(t) %g-'dt . (A-5-2)

-m

Upon substituting (A-3-34) and (A-3-35) in (A-5-1) and (A-5-2), we have,
respectively

mT sin2 -¢-Q n
At(r?z = ———?—5———2—- bfl(;) (cosp1rX0m - Xpm) (A-5-3)
(I4k )7k b p=
0
mT slnsz-(‘2 0
0
Br(n) = ___mii;__Z_ al()())(cosr,p'rrxOm - Xpm) . (A-5-4)
(1+ k" )7k b p=1
0
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APPENDIX
A-6

DIFFERENTIATION OF W (§)

Since
1
(2cos@+1-cos@ )sin=@
V?-(%E:os%‘Vcosgl-cos%]h—l— 0 2

V2 Yeos § - cos ¢0

we find from (3-4-13)

dw (@) 1

(1+k )(7rk b) '—¢'—
V_‘

(2cos@+1-cos ¢0)sin%¢

Yeos @ - cos ¢0

00 N n
: { S0 e : 0510) Z béﬁi Um(¢)}
m=1 © ™ i=1 © m=1

A7 g1,—————|¢ Z ¢ (¢)+ Tk bZN (0)21:b
2 cos £ Ycos @ - cos 0 o
n=1"  m=1

But
dUm(¢) _ dUm(t) it

ag a daf °
and
dUm(t) _ _sint [msinmt cos mw - CO8 mt] .

dt 1+cost sint l+cos t

124

(A-6-1)

(A-6-3)

(A-6-4)
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If we define
o sinmt
= R -Tr<t<
Vm(t) It r<t<wm ,
m-1

= 1+2: cospt , m =odd ,
p:

m-1
= 2 Z cospt , m = even (A-6-5)
p=1
and
m-1 _ 1] ¢
Vm(¢) =14 2 2:1 cosp[cos 1(0302 —égcos¢ - cotz —29)] , m=odd ,
p -
gl a, 2% 2 % _
=2 cos p|cos ~(csc -é-cos¢-cot —2—) , m =even ,
p=1
(A-6-6)
then we have
dU_(t)
m sint - -
dt ~ 1+cost [me(t)j Um(t)] : (A-6-T7)
From the Schwinger's transformation, one can show that
dt _ 1 s%n¢ . (A-6-8)
ag @ sint
270
sin 5

Thus it is seen from (A-6-3), (A-6-7) and (A-6-8) that

dU_ (@)
m' sing )
df cosf -cos [ [me(¢) B Um(¢)] . (A-6-9)
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Hence (A-6-2) can be written as

2dW()_ V2'sin 2

(0 (0)s~, (0)
T W{OS OL}?‘ )U(¢)+1rk b: Zb U (¢]

(1+122)(7rk b)

& (0 5 0 (0)
+ (1+cos ¢){Zmam Vm(¢)+ kachn Z anm(¢)]}
m=1 n=1 m=1

4 <9<, . (A-6-10)



APPENDIX
A-T

PROPERTIES OF THE INTEGRALS (4-3-6) TO (4-3-9)

fwelet x= n/GO then from (4-3-6) to (4-3-9) we obtain, respectively,

1

1
I:,(e) - 0 3 cosnrx dx , (A-7-1)
0 3 2
-1 1-x

1 1
) _ ] §S cosneox dx
0

Qn - 3 ’ (A_7"2)
-1 1- x2
4 1 -
- sin nw dx
pflo) - 903 S > 2 , (A-T7-3)
-1 1- x2
0) % 1 sinn 90 X
Qn = 90 g ——3——— dx . (A-7-4)
-1 1- x2
It is well known that
1 1 1
2.V 3 Ylrwes) 50
(1-x%) coszx dx = — (=) J (z) (A-T7-5)
zZ v
0

where [ (v+ %) is the gamma function with v+ 1 as its argument, Therefore

2
P(e) (e)
n

for n > 1, and Qn , respectively, can be written as
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1 1
) _ , 3 2,, 2.6
P = OOWF(S)(M) J_l.(nrr) ) (A-7-6)
6
1 1
() _ _ 3 2.,2. 6
Q" =96, '\I?r‘(g)(;l—;r) J_l.(M) . (A-7-T)
6
(o eeer (0) (0) .
It is difficult to express Pn and Q in terms of any classical
functions, However, it is rather obvious that Pflo)/ Pf)e) is at least of
0(60) and Qflo)/Qf)e) is at least of the order 602 when 60 <<1,
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A-8

SUMMATION OF THE SERIES

m .
Z; (e), (e)\2 i 2
)2 (Qne /Qoe) /n AND n=1J0 (n¢o)/n

Letting n = 60 cos a we transform (4-3-8) into

Tl

_ 3
Qn = 90 S sin aco*n 90 cos a)da
0

w|

and hence

T 1

2
[09] — —
Z (Qf]e))z/n = Q03 Z %g sin3 aco{n@o cosa)da

n=1 n=1 0

T 1

. S sin§B cos(n 60 cos B)dB
0

Upon interchanging the summation and integration, we arrive at

o LI
Z(Q:le))z/n = 903§ dasin3 ag sinBB .
n=1 0 0

®_ cos(n 90 cos a)cos (n 60

n

cosf)

dB

n=1
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(A-8-1)

(A-8-2)

(A-8-3)
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But

[0)
Z c0s (n6cos a) cos (n fcos f) = - —;— In2 cos(OOcos a) - cos(OOcosB)
n=1

n
(A-8-4)
For 60 << 1, we have
602
cos Oocosa’—‘f 1- = (1+cos2a)
(A-8-5)
902
cos GocosB o 1-——4— (1+cos 28)
and (A-8-4) becomes
o cos(nB_ cosa)cos(nb, cospB)
0 0 ~ 1
2 fn — - = In2|cos 2f8 - cos 2¢|
n 6 2
n= 0
2 = cos 2acos 23
=f{n — sttt o -8-
o+ 2 28X . (A-8-6)
0 n=1
Upon substituting (A-8-6) in (A-8-3) one has
o 2 vl
e)2 2 2
Zl(Q(e)) = g 3L (-2 ( sin® o da)
n n 0 6
n=1 0
0
o o L
1 3 2
+ nZ=:1; ( g sin acos2ne da) (A-8-17)

0
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One can see from (A-8-1) that

Lo o1
Q(()e) = OOBS sin® o da (A-8-8)

0

and because the series on the right-hand side of (A-8-7) converges very

fast to 0,05053 60 2/3, the series

[
Z(Q(e)/Q(e))z/n = fn(>) + 0.0195 . (A-8-9)
=4 n 0 6
n=1 0
Since
T
Jo(n¢0) = %—S cos(n¢ocos 6)de |, (A-8-10)
0
we have
T T
S 2 S )
ZJO (n¢0)/n = Z_ES cos(n¢ocosa)dag cws(n¢ocosB)dB
n=1 n=1nr
0 0
(A-8-11)

Following the same steps from (A-8-3) to (A-8-9), we obtain

Q0
2 2
n};;JO (n¢0)/n & In (a—(;) (A-8-12)
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A-9

TERMINAL ADMITTANCE OF A WEDGE WAVEGUIDE
IN A PERFECTLY CONDUCTING CYLINDER

The geometry is as shown in Fig. A-9-1,

FIG. A-9-1: PERFECTLY CONDUCTING CYLINDER SLOTTED BY A
WEDGE.

The perfectly conducting circular cylinder bodyis of radius a. The width
of the wedge is 2 90 . If we put a magnetic line source at the apex of the
wedge, then the source excites EM fields in the free space (region II)
as well as inside the wedge (regionI), In Fig.1-3 if we let 6 =0,
¢0 > 60 and ¢c—> b —>a, then we obtain the same geometry as shown
Fig. A-9-1, If y'(a) is the normalized wedge terminal admittance defined
by (2-1-15) where r=a, itcan be shown by a similar procedure as in
chapter II that

6

0
JM(koa) g £(¢')cos -g—-;;i' dg

® 6 -6

0 0 2

y'(a)=)2 ; , ( )

“ Jﬂr(koa) 90

% E (@) ap

-6,
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S) £ (@) cosng d¢"
(2)
6. ® (k a) -6
0 0 2
- = ( ) (A-9-1)
4 Z;O (2)(koa) 90 .
g E(p') dg
_90

where E (@') is the tangential electric field in the wedge aperture. This is
a stationary expression with respect to £ (@). Hence, when 90 <<1, one
may let

and since

JM(kOa)

6 6 k.a

0 ~ 0 0
T ka7 o for 90 <<1, n>0
T 0

Eq. (A-9-1) becomes

2k a ® ( )(k a)

(e)\2 (e)2
y'(a) =J (P ) /n - Z - Q) . (A-9-2)
Q (e) Z (2)(k 2) n

If Y'(a) is the terminal admittance of a section of the wedge waveguide

of length a meters, then
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€
1
5 = Ve . (A-5-3)

o Yo

Y' (a) =

It is strajght forward to write down the conductance G' and susceptance B!
from (A-9-3) as

(e)
€' e Q
G = 21 —0 5 (e) B )2 | ihos (A-9-4)
T kOa o n=0 1+x N'(k a)
n n
(e)
L 60 00 1 P
0 n=1
Q
@ lx Q(’ 3 N (k2)
-Z%Gn ( (e)) } , mhos (A-9-5)
n= 1+ xn 0 N;l(koa)
where

x =3 (koa)/ N;l(koa)

Y, © Jn(koa)/Nn(kOa)
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A-10

POYNTING'S ENERGY THEOREM IN THE PLASMA
SHEATH AND THE FREE SPACE

We consider a volume V enclosed by a surface S in which the electro-
magnetic fields are of periodic time:variation.. The Poynting's

theorem for this volume then is

> >
—S (ExH*)' nds = 4jw(WH-WE)+ 2P (A-10-1)
S

where —ti) is the outward normal of S and

WH = time-averaged stored magnetic energy in V

1 >k ->
= Z“ H «Hdv , (A-10-2)
A%

W _, = time-averaged stored electric energy in V

]
N

b 243 ->
Eg E * Edv , (A-10-3)
A%

P = time-averaged dissipated power in V

i
o) -

> >
cg E - E dv . (A-10-4)
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As in the main text, we choose to consider a section of the coaxial
antenna of length a meters in z-direction and apply (A-10-1) to the plasma
sheath and free space of this section respectively; we have

7l'

I III Im, _ IO _ I IIT_IIO *
2P +j4w(WH -WE) = ag E¢ H bdg aSE¢ H, cdg ,
-T r=b -T r=c
(A-10-5)
T s
Iv . v IV Iv_1Ivx* IV _1V*
+ - = -
2P 14(..)(\7\71l WE) ag E¢ H cd¢\ ag E¢ Hz rd¢
- r=c -7 r—>o
(A-10-6)

It is obvious that there is no dissipated power in the free space, thus PIV =0,
Furthermore, if Pr denotes the power radiated by this section of the antenna,
then

_a IV IV _
P-2SE¢HZ rdg (A-10-7)

-

T —>®

Since at r = ¢, Egl = E;v and HIZII = HIZV, one may combine (A-10-5) through
(A-10-7) together and obtain
T

I I __III IV v _ I __ I
2P T +j4 w(WH -WE )+j4w(WH —WE )+»2Pr-z.t§ E¢ H d¢ . (A-10-8)

r=b

-

Upon substituting (2-2-11) and (2-2-12) in the right hand-side of (A-10-8)

and carrying out the integration, we have

I v I Iv _ IV
+ - -
2P +2Pr j4w(WH W )+j4w(WH W )
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::H (k c)
--j27r m gnn (1)(kc)

¢0
g d¢E*(¢)§ E(@)cos n(@-¢")dg' . (A-10-9)
¢o '¢o

Similarly, if we substitute (2-2-18) and (2-2-19) in (A-10-7), we attain a

formula as shown,

ac eo 9 3 0] en ¢0 N ¢0
T R (e g g dgE (¢)g E (§')cos n(@ - #) d ¢’
0 0 n=0A A
n n -¢0 —¢0
(A-10-10)
where
() } 1 1
A = kH " (ko) [Jn(klc)Nn(klb)-Jn(klb)Nn(klc)]
Hflo)(koc) [31 0 IN: i b) - 31 BINI Gk o] . (A-10-11)

For no plasma sheath case, welet ¢ —>b, k =>1 and obtain straight forwardly
from (A-10-10) that

aﬁ 2 f en ¢0 ’ ¢O
P = —|[— {(——) - d@E (N E(@')cosn(@-¢')dg
T Amfugy mhkgb) u=olelZj (kob)‘z S_¢ S_¢
0 0

(A-10-12)
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