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Abstract. In this article we consider the problem of determining the minimum cost configuration (number of 
machines and pallets) for a flexible manufacturing system with the constraint of meeting a prespecified throughput, 
while simultaneously allocating the total workload among the machines (or groups of machines). Our procedure 
allows consideration of upper and lower bounds on the workload at each machine group. These bounds arise 
as a consequence of precedence constraints among the various operations and/or limitations on the number or 
combinations of operations that can be assigned to a machine because of constraints on tool slots or the space 
required to store assembly components. Earlier work on problems of this nature assumes that the workload allocation 
is given. For the single-machine-type problem we develop an efficient implicit enumeration procedure that uses 
fathoming rules to eliminate dominated configurations, and we present computational results. We discuss how 
this procedure can be used as a building block in solving the problem with multiple machine types. 
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I. Introduction 

A flexible manufac tur ing  system (FMS) is a computer-control led system of numer ica l ly  
controlled machines  and automated material-handling equipment.  Each machine  is capable 

of  performing a variety of operat ions with min imal  changeover t imes between operations. 

When  a system is being designed, one  critical decis ion is the number  of machines  of each 
type to be purchased.  Ano the r  important  decis ion is the n u m b e r  of jobs  (or pallets of jobs)  

circulating in the system, since this has a signficant  impact  on the n u m b e r  and type of 
material-handling equipment  required. These decision variables define a system configura- 

tion, and normal ly  such a configurat ion is mainta ined for several years. 

The appropriate configuration choice, however, is influenced by the allocation of workload 
among the various machines  (or machine  groups).  O f  course, the total workload of each 
machine  type may change over t ime as the product  mix  changes, and the " t rue"  optimal 
configurat ion should consider  these dynamics.  We consider  a static (steady-state) si tuation 
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here, and generalize earlier work by taking advantage of the ability to allocate workload 
among machines of the same type while simultaneously considering other practical con- 
straints on the workload allocation. 

Our procedure can be used in several different ways. First, it can be used to identify 
a set of viable, cost-effective system configurations by applying it to a variety of realistic 
workloads and related workload allocation constraints. The robustness of these configura- 
tions to product mix changes could then be evaluated. Second, if it is difficult to predict 
changes in product mix, the procedure can be applied to the new mix to determine how 
the system configuration and workload allocation should be modified. Third, even if the 
number of machines of each type and the number of jobs is fixed, our procedure can be 
used to regroup the machines of each type and reallocate the workload among them as 
the product mix changes. 

We investigate the problem of simultaneously determining the minimum cost configura- 
tion and the corresponding optimal workload allocation subject to a constraint on system 
throughput for an FMS that consists of a given number of stations. Each station may have 
one or more identical machines of a specified type. We assume that the total workload 
to be allocated among stations of the same type is given. The decisions to be made are 
the number of machines (servers) and the workload allocated to each station, and the number 
of pallets. 

If  there were no constraints on the allocation of the workload among the machines, the 
optimal solution would have a single station for each machine type, with all of the workload 
for that machine type assigned to it. Our procedure allows consideration of upper and lower 
bounds on the workload at each station. The upper bounds arise as a consequence of 
precedence constraints among the various operations and/or limitations on the number or 
combinations of operations that can be assigned to a station. The latter may be a result 
of constraints on tool slots or the space to store assembly components nearby (e.g., within 
the reach of assembly robots). Nontrivial lower bounds may arise as a consequence of upper 
bounds at other stations, as we demonstrate through an example in appendix 1. Earlier 
work on problems of this type assumes that the workload allocation is given. 

In order to solve this problem, we must evaluate several candidate configurations to ascer- 
tain whether the throughput constraint is satisfied. To accomplish this, we use the algorithm 
of Lee, Srinivasan, and Yano (LSY) (1991) to solve the subproblem of allocating the total 
workload among the stations to maximize system throughput within the constraints imposed 
by the upper and lower bounds on the workload at each station. In order to reduce the 
number of candidate configurations that must be evaluated, we develop fathoming rules 
to eliminate dominated configurations. We develop a procedure to obtain the optimal con- 
figuration and workload allocation for the case where all the machines are of the same 
type. We also discuss how this procedure can be used as a building block to solve the prob- 
lem with multiple machine types. 

Previous research on related problems has typically used closed queueing networks 
(CQNs) with the assumptions of exponential service, first-come-first-served service 
discipline, and arbitrary routings allowing multiple visits to a station to represent FMSs. 
Under these assumptions, the throughput function has the well-known product form (Gor- 
don and Newell, 1967) and is therefore relatively easy to compute. The popularity of using 
queueing networks to model FMSs stems from the ability of these networks to capture 
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the effects of congestion on throughput and queue lengths. Our model also assumes that 
the FMS is represented by a product form CQN (see Solberg (1977) and Suri and Hildebrant 
(1984) for CQN modeling of FMSs and support for its applicability). 

Vinod and Solberg (1985) and Dallery and Frein (1986) study the problem of finding 
the configuration that satisfies throughput requirements at minimum cost. Both capital equip- 
ment and operating costs are considered in their objectives. They assume that the number 
of stations and the workloads for each are given. (A station is represented by a multiple- 
server node in the queueing network.) The decisions are the number of machines to assign 
to each station, the number of pallets, and the number of automated guided vehicles (AGVs) 
where applicable. 

Yao and Shanthikumar (1986) and Shanthikumar and Yao (1987, 1988) study the problem 
of allocating servers to stations to maximize throughput. They assume that the number 
of stations and pallets and the workload at each station are known. Their results suggest 
that a greedy allocation procedure is optimal. 

Various algorithms are available to solve the workload allocation in a product form CQN 
under the assumption that the number of stations, the number of machines at each station, 
the number of pallets, and the number of AGVs are given (see, for example, Yao, 1985; 
Stecke and Solberg, 1985; Stecke, 1986; Lee, Srinivasan, and Yano, 1991). In our experi- 
ments, we will use the LSY algorithm. These authors derive several properties of the opti- 
mal solution under the assumption that the throughput is a pseudo-concave function of the 
workload allocation. Under this assumption, the first-order conditions are both necessary 
and sufficient for optimality. These properties are then used as the basis for an efficient 
reduced gradient algorithm to find the optimal workload allocation when there are lower 
and upper bounds on the workload for each station. 

Previous research has thus considered obtaining either the minimum cost configuration 
assuming a given workload allocation, or the optimal (unconstrained) allocation of the total 
workload assuming a given system configuration. Our work differs in that we consider 
obtaining the optimal system configuration and the optimal workload allocation 
simultaneously. 

We assume that each operation can be done by only one type of machine, and that the 
machine types have been predetermined. Hence, for each machine type there is an ag- 
gregate workload that is the total processing time for all the operations that can be per- 
formed by that machine type. We assume that the total cost of machines of a given type 
depends only upon the total number of machines of that type, and is independent of where 
the machines are physically located or what operations each machine actually performs. 

The remainder of the article is divided as follows. In section 2, we state a mathematical 
formulation of the minimum cost configuration problem for a system with a single machine 
type. In section 3, we present an optimal algorithm for this problem, including fathoming 
methods to eliminate dominated configurations. Related computational results appear in 
section 4. In section 5, we present a solution procedure for the problem with multiple 
machine types. Section 5 also considers the system with batch transfer, where more than 
one part is transferred between stations at a time. We conclude with a brief summary and 
discussion in section 6. 
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2. Problem formulation 

As mentioned earlier, the optimal configuration and workload allocation problem is to 
simultaneously determine the optimal workload allocation and the number of machines 
(servers) and pallets required to achieve a prespecified throughput at minimum cost. Here 
we assume that the number of stations, M, is given. However, if the number of stations 
is also a decision variable, one can simply solve this problem for several values of M. The 
total workload, TW, is the total expected_ machine processing time for one part. The workload 
allocation is specified by the vector W = (W0, W1 . . . . .  WM) where Wo is the total ex- 
pected material-handling time for one part, which is assumed to be a known constant, and 
W i denotes the workload at station i, i = 1 . . . . .  M. The number of servers at station i, 
S i, i = 1, . . . ,  M, and the number of pallets, N, define a configuration. For ease of presen- 
tation, we define S = (S1 . . . . .  SM). We initially assume each pallet carries only one part, 
which is common when parts are relatively large, but later relax this assumption. 

We first consider a simple FMS where there is only one type of machine. We assume 
that the material-handling system (MHS) is a delay node. This means that there is a delay 
in transferring a part from one machine to another, but there is no contention for the MHS 
that results in any additional (queueing) delays. Typically, these systems are designed to 
prevent them from becoming bottlenecks, so this assumption is reasonable for many systems. 
Examples include loop conveyors and dedicated (stop-and-go) AGVs. Material-handling 
systems for which considerable contention occurs may be modeled by representing them 
as other (processing) stations in the system. 

The cost function, z(N, K), is permitted to be any function that increases with N and 

M 

K= Zs; .  
i=l 

Thus, the annualized cost of the machines, material-handling equipment, pallets, and work- 
in-process inventory can be incorporated into the objective function. A mathematical form- 
ulation of the problem is to 

PI: Minimize z(N, K) 

subject to: 

M 

K =  Z S i ,  
i=1 

(1) 

TH(M, N, S, W) _> d, 

M 

w,. = T w ,  
i=1 

(2) 

(3) 

Li < Wi <- Ui, i =  1, . . . , M ,  (4) 
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where 

TH(M, N, S, "r162 = throughput of the system, given M, N, S, W, 
d = throughput requirement, 

L i = lower bound on the workload at station i, and 
Ui = upper bound on the workload at station i. 

As mentioned earlier, the upper and lower bounds may be consequences of precedence 
relations among operations and/or constraints on the number or combinations of opera- 
tions that can be assigned simultaneously to the station. In appendix 1, we give an example 
to show how the upper and lower bounds are affected by precedence relations in a flow 
system. It should be intuitively clear how tool slot limitations, or constraints on the com- 
bination of assembly operations induced by consideration of the space required to store 
components nearby, will affect the upper bounds on workloads. Deriving tight bounds is 
not always easy, partly because the bounds at one station may influence the bounds at other 
stations. In many situations, however, they may be specified on the basis of experience. 

3. An optimal solution procedure 

We now consider a solution procedure for determining the optimal configuration and 
associated workload allocation for the FMS. We first present an overview of our procedure. 
This is followed by a detailed description of each step of the procedure, including fathom- 
ing methods that eliminate dominated configurations. 

3.1. Procedure to find the optimal configuration and workload allocation 

1. Find an initial feasible configuration and workload allocation, N I, ~I, and WI, and set 
the incumbent equal to this solution. Let z represent the cost of the incumbent. 

2. Find lower bounds on the number of pallets and the total number of servers, denoted 
as N LB and K LB, respectively, below which the prespecified throughput cannot be 
satisfied. 

3. Implicitly enumerate over values of N and K satisfying N _> N LB, K _> K LB, and 
z(N,K) < z. 

The initial feasible solution in step 1 is obtained in the following manner. First, an initial 
feasible workload allocation is obtained by solving the workload allocation problem under 
the assumption that each station has an identical number of servers. Since balancing the 
workloads is optimal (for the unconstrained problem) when each station has the same number 
of servers, for reasonable upper and lower bounds on the workloads the resulting workload 
allocation is nearly balanced. 

Given this workload allocation, an initial feasible configuration is then obtained using 
the method of Dallery and Frein (1986). Since the initial feasible workload is nearly balanced, 
the initial feasible configuration generally has a similar number of servers at each station 
and, consequently, is easy to identify. This "balanced" solution serves as an initial solu- 
tion for problem P1. 
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The lower bounds, N Ls and K LB, in step 2 can be derived using the asymptotic bound 
analysis of Muntz and Wong (1974). Using this method, N LB is r d "  (TW + W0)7 where 
~x7 is the smallest integer greater than or equal to x. This simply says that the number 

of pallets in the system should be at least as large as the demand (arrival) rate multiplied 
by the minimum sojourn time in the system. L LB is 

M 

m a x ( r d .  TWT,  ~S/LB)  
i=1 

where S/LB is the lower bound on the number of servers at station i and is given as S LB 
= [d" Li] with [y] denoting the smallest integer greater than y. This essentially says that 
the total number of servers must be large enough so that the total system utilization and 
the utilization levels of the individual stations are less than one. Dallery and Frein (1986) 
also use asymptotic bound analysis to obtain lower bounds on the number of pallets and 
machines. 

The implicit enumeration of step 3 is executed by considering all undominated combina- 
tions of N and K. For each (N, K) pair, we must determine whether there is a feasible 

and 1~ r for P1. Related to this decision problem, we define another problem, which is 
formulated as follows: 

P2: 

Maximize TH(S, W) 

subject to constraints (1), (3), (4) of P1. 

Denote as S*(N, K) and (r~r*(N, K) the optimum solution to P2. Clearly, when TH(S*(N, 
K), tZC*(N, K)) < d, there is no feasible solution to the problem for the given N and K. 
Later in this section we provide a procedure to solve P2. Before doing so, we present two 
lemmas that permit us to eliminate some dominated (N, K) pairs. Proofs of the lemmas 
appear in appendix 2. 

Lemma 1. IfTH(S*(N, K), W*(N, K)) < d, then TH (S*(N, K - 1), "~r K - 1)) < d. 

Lemma 2. If TH(S*(N, K), (V*(N, K)) < d, then TH(S*(N - 1, K), W*(N - 1, K)) < d. 

We solve P2 by generating all partitions of K machines among M stations and sequenc- 
ing them from the most unbalanced to the most balanced. (This ranking turns out to be 
a lexicographic ordering.) Observe that for each partition, there are several different S 's, 
each of which corresponds to a different permutation of the station indices. For example, 
there is only one way to partition three machines into two groups: two machines in one 
group and one machine in the other. This partition gives two different S's: (1, 2) and (2, 1). 
In order to distinguish between partitions and the various S 's, a partition is denoted by 

= (G1, . . . ,  GM), where G1 --> G2 -> . . .  GM. 
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Our rationale for sequencing the partitions from the most unbalanced to the most balanced 
is based upon the empirical observation by Stecke and Solberg (1985) that more unbal- 
anced configurations achieve a higher throughput. Justification for this conjecture is based 
on the pooling effect (Kleinrock, 1976): a larger group of pooled machines can be loaded 
more heavily simply because pooled servers can achieve a higher utilization than an equal 
number of single servers given the same average customer waiting time. 

For each candidate S, we use the LSY algorithm to determine the workload allocation 
that maximizes throughput subject to constraints (3) and (4) of P1. In the article by LSY, 
the throughput for a CQN is shown to be a pseudoconcave function of the workloads in 
special cases. Based on the conjecture that the function is pseudoconcave in general, two 
algorithms are developed: a reduced-gradient procedure (Avriel, 1976), and a fixed-point 
procedure (Saigal, 1977). The reduced-gradient procedure is basically an ascent algorithm 
in which all of the variables can be changed simultaneously. The fixed-point procedure 
divides the entire feasible region into many small pieces called simplexes, and traverse 
a series of simplexes systematically until one is found which contains a point satisfying 
the Kuhn-Tucker (first-order) conditions. At this time, it starts to search inside the particular 
simplex by further dividing it into smaller simplexes and repeats the same process. The 
procedure terminates when the simplex size is small enough. 

Both procedures take advantage of the fact that satisfaction of the Kuhn-Tucker conditions 
are both necessary and sufficient for optimality in a linearly constrained problem if the 
objective function is pseudoconcave. (Weaker forms of concavity require computation of 
the Hessian to find the optimal solution.) The fixed-point procedure also uses the result 
that if the number of pallets in the system is greater than the maximum number of servers 
at any station, the optimal solution is an interior Brouwer's fixed point. This fixed point 
can be found by the Eaves-Saigal (Saigal, 1977) procedure, which converges quadratically 
for unconstrained problems. 

The workload allocation problem is complicated by the existence of upper and lower 
bounds on the workloads. Incorporating workload bounds into the fixed-point procedure 
is easy, but quadratic convergence is no longer guaranteed because of the manner in which 
constraints are handled by the procedure. In the case of the reduced-gradient procedure, 
it is necessary to find an initial feasible solution, and a simple algorithm to find such a 
solution is presented in appendix 3. We use the reduced gradient procedure in our com- 
putational experiments. A computational comparison of the reduced gradient and the Eaves- 
Saigal algorithms appears in Lee, Srinivasan, and Yano (1991). 

Each candidate S is considered in turn until a configuration that satisfies the throughput 
constraint is identified or until all configurations have been considered and none satisfies 
the constraint. Some of the S's can be eliminated from consideration using the lemmas 
below. Proofs of the lemmas appear in appendix 2. 

Lemma 3. If Ui <- Lk for any i and k, then we only need to consider S such that Si < Sk. 

Lemma 4. If Li <. Lk < Ui < Uk for any i and k, then we only need to consider S such 
that Si < Sk. 

Qualitatively, lemmas 3 and 4 state that a station with a greater workload should be assigned 
a larger number of servers. 
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Lemmas 1 and 2 eliminate many (N, K) pairs. For each of the (N, K) pairs that still 
remains for consideration, we need to consider all possible partitions of K among the M 
stations, and each such partition will give rise to several possible permutations of the server 
vector. Lemmas 3 and 4 eliminate many of these permutations from consideration. In ad- 
dition, other permutations can be eliminated from consideration using the following obser- 
vation, which is based upon the assumption of unimodality of the throughput function (Stecke 
and Solberg, 1985; Stecke, 1986; Lee et al., 1991). 

Remark. Let "~TV ~ be the optimal workload allocation for a given server vector -S'. Also 
let I denote the set of stations for which L i < W~ < Ui. Suppose we now permute the 
server vector and its corresponding workload vector for just those stations in the set I to 
get a new server vector S 2 and a workload vector ~r If, for this configuration, we have 
Li <- W 2 <- Ui for all i, then this workload allocation is also optimal, since the throughput 
of these two configurations is identical. 

The above remark enables us to eliminate the server vector ~2 from consideration in 
the search process for such cases. It should also be noted that any S with Si < S Ea for 
any i can be eliminated from consideration, where S Ea is obtained from asymptotic bound 
analysis. 

We now elaborate on the implicit enumeration over N and K, which is step 3 of the pro- 
cedure given earlier. In the implicity enumeration, we use the results in lemmas 1 and 
2 and the fact that z(N, K) is increasing in N and K to fathom solutions. We use N p and 
K p to refer to the values of N and K, respectively, in the present incumbent solution. The 
initial solution, N I and ~I provides the first incumbent solution. A description of the pro- 
cedure follows. 

3.2. The implicit enumeration procedure for step 3 

{Step 3a finds the next incumbent solution by decreasing K as much as possible from the 
initial solution K I obtained from step 1 while maintaining feasibility. } 

(3a) For N = N I, find the smallest value of K _> K LB for which TH(S*, "r162 _> d. 
This provides an incumbent solution, which we denote as (N f, KY). Set (N p, K p) 
= (N f, Kf). {Steps 3b and 3c search over N > N f. For each value of N, the 
smallest feasible value of K is found. Whenever a feasible solution with lower cost 
is found, the incumbent solution is updated. } 

(3b) Increase N by one and find the largest K such that z(N, K) < z(N p, KP). 
(3c) If K < K LB, then set K to  K f - l ,  and go to step 3d. If  K _> K LB and TH(S*, 

*) < d, then go to step 3b. In all other cases, update the incumbent solution, 
reduce K by one, and repeat this step. {Step 3d and 3e search over K _> K f. For 
each value of K, the smallest feasible value of N is found. Whenever a feasible 
solution with lower cost is found, the incumbent solution is updated. } 

(3d) Increase K by one and find the largest N such that z(N_, K)_ < z(N p, KP). 
(3e) If N <  N LB, then go to step 3f. If N_> N L B a n d T H ( S * , W * )  < d, t h en g o to  

step 3d. In all other cases, update the incumbent solution, reduce N by one, and 
repeat this step. 

(3f) The incumbent solution is optimal. Terminate. 
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Example.  We provide an example to clarify the solution procedure for problem P1. Let 
M = 3 and Wo = 8. Also let the processing capacity of a machine (i.e., total service time 
available from a machine during a period) be 960 time units. The number of units required 
during this period is 100 items, giving a throughput requirement of  100/960 items per unit 
time. The problem is to: 

Minimize z(N, K) = 600 N + 5000 K 

subject to: 

3 

K-- E si, 
i= l  

TH(M, N, S, ~TV) > 100/960, 

3 

~f~j W/ = 30, 
i=1 

5 < W~ _< 10, 10 < I4/2 - 15, 5 < I4"3 < 20. 

From Lemmas 3 and 4, we must have Si < $2 and S~ < $3. We execute the three steps 
outlined in the procedure. 

1. Initial solution: WI = (10, 10, 10), 81 = (2, 2, 2), K t = 6, N l = 5, with cost z(5, 6) 
= 33,000. 

2. Lower bounds: 8 LB = (1, 2, 1), K LB = 4, and N LB = 4. 

3. The implicit enumeration procedure: 
(3a) With N = N I = 5, we decrease K as much as possible, while maintaining feasibil- 

ity. We obtain K = 5, and z(5, 5) = 28,000. 
When K = 5, there are two possible partitions: (~t = (3, 1, l) and (~2 = (2, 

2, 1). The partition ~1 provides two server vectors: 81 = (1, 1, 3) and 82 = (1, 
3, 1). 81 is eliminated, since S 1 < S LB. For 82 the workload allocation problem 
is solved and the resulting throughput is less than the required throughput. The par- 
tition (7;2 provides only one server vector: 8 ~ = (1, 2, 2). The solution to the workload 
allocation problem gives a throughput that is less than the throughput requirement. 
Thus, there is no feasible solution at N = 5, K = 5, and so (N f, K f) = (N I, K I) 
= (5, 6). 

(3b,c) Search over N > N f. 
We first consider N = N f + 1 = 6. To find the smallest feasible K, we start with 

K = 5, giving z(6, 5) = 28,600, When K = 5, the partitions (~l = (3, 1, 1) and 
(~2 = (2, 2, 1) are examined. A better feasible solution is found when the workload 
allocation problem is solved with 8 ~ - (1, 2, 2), and so the incumbent solution 
is updated as (N ~ K p) = (6, 5). 
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(3d,e) 

(3t) 

We next decrease K by_ 1. This provides one partition 1~ = (2, 1, 1) and two 
resulting server vectors S 1 = (1, 1, 2) and S 2 = (1, 2, 1). No feasible solution is 
found for both S's: S 1 is eliminated from further consideration since S~ < S LB, and 
~2 is eliminated since TH(S 2, W*)  is less than the throughput requirement. 

We now increase N by one unit at a time and, for each value of  N, find the largest 
K such that z(N, K) < z(N p, K p) and the solution is feasible. For N = 7, in order 
to have z(N, K) < 28,600, we must have K < 4, but this gives a throughput less 
than the requirement. Similarly, for N = 8, we must have K _ 4, but this is infeas- 
ible too. A better feasible solution is found at N = 9, K = 4, with ~2 = (1, 2, 
1). The incumbent solution is updated as (N p, K p) = (9, 4). 

We now try to decrease K. This results in K < K LB. 
Search over K _> K f. For K = 6, the largest N such that z(N, 6) < z(N p, K p) = 
25,400 is less than N LB. 
The current incumbent solution, namely, (N p, K p) = (9, 4), with S* = (1, 2, 1) 
and ~3r = (7.5, 15, 7.5), is optimal. 

The search process for the example is illustrated graphically in figure 1. 

4. Experimental results 

We use five sets of parameters to illustrate the optimal algorithm for a single machine type. 
We use the following linear cost function for z(N, K): 

z(N,K) = (Ch + Cp + C a ) ' N  + C k ' K  

K 

6 

5 

-------/ 

Legend: X an initial feasible solution 1 
0 a better feasible solution 
�9 an infeasible solution 
[]  a solution fathomed by 

lemmas I and 2 

~ N , K ) = 6 0 0 N  + 5000K 
z(5,6) = 33,000 
at the initial solution 

__ z(6,5) = 28,600 
at the first improved solution 

z(9,4) = 25,400 
at the second improved solution, 
which is optimal 

NLa=4 5 6 7 8 9 N 

Figure 1. An example for the implicit enumeration procedure. The numbers near the circles indicate the sequence 
in which the solutions are evaluated. The optimum solution is indicated by "6." 
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where Cn, Cp, C a and Ck are the annualized costs of a unit of work-in-process (WlP) in- 

ventory, a pallet, a stop-and-go AGV, and a machine, respectively. When the MHS is a 
loop-conveyor instead of AGVs, Ca is assigned a value of zero. Note that only the ratios 

of these cost parameters are relevant since the cost function is linear. To investigate various 
scenarios, we use different ratios for the five sets of cost parameters. The workload bounds 

are chosen arbitrarily, but are consistent with the other problem data. The problem data 
are presented in table 1. 

The algorithm was coded in FORTRAN and run on an IBM 3090-600, using the VS- 

opt3 compiler. The following statistics were collected at termination of the algorithm for 

each problem: the optimum solution and its cost, the number of throughput computations, 
the number of workload allocation problems solved, and the CPU time. The number of 

throughput computations was recorded, since this consumed most the CPU time. The 

statistics are summarized in table 2. 

Table 1. Five data sets. 

Problem M d'960 TW W 0 C h C o C a C k 

A 3 100 30 8 100 500 0 5000 
B 4 100 60 25 100 500 600 2000 
C 5 150 80 48 1 500 0 1000 
D 6 200 80 35 1 500 500 1500 
E 8 100 80 18 100 500 500 2500 

Problem I~, (work load lower bound) I] (work load upper bound) 

A (5,10,5) (10,15,20) 
B (5,10,15,15) (10,40,30,40) 
C (5,10,15,15,5) (30,40,30,40,50) 
D (5,5,5,5,5,5) (40,40,40,40,40,40) 
E (5,10,15,15,1,10,5,1) (10,40,30,40,50,20,10,40) 

Table 2. Results of experiments with the optimal algorithm. 

Problem 

Number of 
Number of Workload 

Optimum Solution Throughput Allocation CPU Time 
(N, S, W) Optimum Cost Computations Problems (sec) 

A 

B 

C 

D 

E 

9, (1,2,1) 25,400 24 8 .05 
(7.5,15,7.5) 

t2, (1,2,2,4) 32,400 74 18 . 11 
(5,11.7,15,28.3) 

25, (2,3,3,6,3) 29,525 940 448 4.20 
(7.4,13.2,15,30.5,13.9) 

28, (10,5,2,2,2,2) 62,528 2285 343 17.28 
(40,17.84,5.54,5.54,5.54,5.54) 

17, (1,2,2,2,2,2,1,1) 51,200 25 13 . 11 
(5,12.3,15,15,12.3,12.3,5,3.1) 
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The results show that CPU time is sensitive to the throughput and the total workload. 
This follows, since a larger aggregate workload (d" TW) necessitates more servers, which 
in turn increases the number of partitions to be evaluated. The longest CPU time (17.28 
seconds) was observed for problem D, which had the largest d (200/960) and the largest 
TW (80). 

5. Extensions 

We now consider more general versions of Problem P1 in which we relax some of the 
assumptions made in section 2. We first relax the assumption that a pallet carries only 
one part. When the parts are small, a pallet can carry a batch of parts; thus, the batch 
size may be another decision variable. Under Q-part transfer (where Q is the batch size), 
the Q parts are processed consecutively at the same machine. Thus, the Q units can be 
viewed as one "part" of a new product type whose total workload is Q" TW. The workload 
and throughput parameters in P1 must be scaled accordingly. The cost associated with pallets 
in the objective function should reflect the WIP inventory cost for Q parts instead of one 
part per pallet. We assume that the expected material-handling time (Wo) remains the same 
regardless of the batch size. In other words, the speed of the handling equipment is unaf- 
fected by the weight of the pallets. Therefore, with Q-part transfer, the formulation of prob- 
lem P1 is restated as follows: 

P IQ:  

Minimize z(N, K, Q) 

subject to: 

M 

K = ~ _ ~ S i ,  
i=1 

TH(M, N, S, W) _> d/Q, (5) 

M 

~-~jW/= Q . T W ,  
i=1 

(6) 

Q ' L i  <- Wi < Q" Ui, i = I . . . . .  M. (7) 

We use the examples in table 1 to study the effect of Q on the minimum cost. For Q = 
1, 2, 3, 4, 5, 10, 15, 20, and 30, we solved problem P1Q. The results are shown in figure 
2. We assume that WIP inventory costs are linear with respect to Q. The optimum batch 
size is determined by trading off three cost terms: material-handling cost, machine cost, 
and WlP inventory cost. A large Q reduces the number of material moves but increases 
WlP inventory cost. To compensate for this, the optimal value of N, the number of pallets 
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Figure 2. Effect of transfer batch size Q on optimum cost. 

(and stop-and-go AGVs) in the system usually declines. As a result, servers may be idle 
for a long time while waiting for a pallet to arrive. This, in turn, increases the number 
of machines required to achieve the desired throughput. We observed that the total cost 
function is unimodal in Q. Based on this observation, a simple line search procedure for 
the optimal Q could be adequate to solve the problem. 

We now consider the case of C machine types, and assume Q = 1 for ease of presenta- 
tion. Let TWc be the total workload for machine type c, i.e., the mean service time 
demanded by a part from machine type c. Also let: 

K~ = number of machines of type c, 
Mc = number of stations of type c, 
Sci = number of machines at station i of type c, 

Wci = workload for station i of type c, 
Lci = lower bound on workload for station i of type c, 
Uci = upper bound on workload for station i of  type c. 

The optimum configuration and workload allocation problem becomes 

p l c :  

Minimize z(N, K1, K2, . . . ,  Kc) 

subject to: 
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Kc = ~-~j Sci, 
i=1 

c = l ,  . . . ,  c ,  (8)  

TH(M, N, S, W) > d, (9) 

~,, Wci = T W c ,  
i=1 

c = 1, . . . ,  C, (10) 

Lci <-- Wci < Uci, i = 1, . . . , M c ,  c = 1, . . . ,  C, (11) 

where z(N, Kt, K2 . . . . .  Kc) is any cost function that increases with N and K c for any 

C 

c; M = E Me; ~ = (g~) with Sc = (Scl . . . . .  ScM); and ~r = ('dec) with "~r C = (Wcl, 
C=I 

. . . ,  WcM). 
The solution procedure for problem P1 c is as follows. We consider each machine type, 

c, in isolation and use the solution procedure developed in section 3, to obtain the optimal 
values of K*, - * S c, N*, and "~*with a throughput requirement of d. We next consider the 
overall system with the C machine types, with a server vector given by the S'values, and 
a workload allocation given by the W'values  found above. This system is evaluated for 
each N until the throughput is greater than or equal to d. This gives us an initial feasible 
solution. Let C ~  denote the cost of this solution. Clearly a lower bound on the cost, CLB, 
is given by Kc LB, c = 1 . . . .  , C, and N LB, which are obtained in the same way as for the 
single-machine-type case. 

We now generate all possible combinations of (Kt . . . .  , K o  N) that have cost between 
CUB and CLB, rank these combinations in decreasing order of cost, and implicitly 
enumerate the candidates in this list using a bisection search. For each candidate exam- 
ined, we obtain the optimal configuration and the corresponding workload allocation by 
solving problem P2 c, which is a generalization of problem P2: 

p2C: 

Maximize TH(S, "~/) 

subject to constraints (8), (10), (11) of P1 c. 

Lemmas 1 through 4 and the Remark can be generalized and applied to problem P2 c. 
It can easily be shown that the maximum throughput remains monotonic with respect to 
N and Kc for c = 1 . . . .  , C (cf. lemmas 1 and 2). Also lemmas 3 and 4 and the Remark 
hold for stations of the same machine type. 

If the resulting throughput is feasible, then we can reduce the number of candidates that 
still need to be examined by half, and continue the bisection search. On the other hand, 
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if the candidate being examined does not provide a feasible solution, then we cannot reduce 
the number of remaining candidates by half. However, we can still eliminate the current 
configuration and other configurations that are infeasible because of the monotonicity of 
the throughput function with respect to N and Kr  c = 1 . . . . .  C .  We then resume the 
bisection search on the remaining candidates. Since we use a bisection search, the workload 
allocation problem may need to be solved only for a relatively small number of candidates. 

6. Conclusions 

In this article, we considered the problem of finding the minimum cost configuration for 
an FMS subject to a constraint on throughput when there is some flexibility in allocating 
the workload among stations. The cost function includes the cost of machines, as well as 
the costs of material-handling equipment and work-in-process inventory. 

We presented an implicit enumeration procedure for the problem with one machine type. 
We developed several fathoming methods to reduce the number of system configurations 
that must be evaluated. Computational experience with the algorithm suggests that prob- 
lems of moderate size can be solved optimally within 20 seconds of CPU time on the IBM 
3090-600 mainframe. 

We also outlined an optimal algorithm for the more general problem with multiple machine 
types. Further research is needed to develop efficient heuristics for this problem. 
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Appendix I 

In this appendix, we give a simple example to show how precedence constraints among 
operations influence the upper and lower bounds on workloads. Consider a flexible-flow 
system with one machine type that is capable of processing all 30 operations for a given 
product. However, because of tool magazine constraints or limits on the number of com- 
ponents that can be located nearby, only 20 operations can be performed by a given machine 
at any point in time. Suppose the precedence relations specify that operation j must be 
performed before operation k i f j  < k (i.e., serial precedence structure). It is clear that 
two stations are sufficient. For simplicity, we will assume that two stations are used. 

Assume that the processing time of operation i is i time units. The total workload per 
unit is 465 minutes. If we were to ignore the precedence constraints discussed above, the 
upper and lower bounds would be 
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LI 
10 

= L2 = ~ t i = 5 5 ,  

i=1 

U 1 = U 2 ~-. 

30 

ti = 410. 
i = l l  

On the other hand, if precedence constraints are considered, a little logic will show that 

10 

L1 = ~ ti = 5 5 ,  

i=1 

20 

U1 = ~d  ti = 210, 
i=1 

30 

L2 = ~ ti = 255, 
i=21 

30 

U2 = ~ ti = 4 1 0 ,  

i=11 

which are quite different from the bounds given above. 
It is important to note that a continuous workload allocation satisfying the latter set of 

contraints may not be achievable, given the actual operation times. However, such an alloca- 
tion is much more likely to be achievable (with respect to precedence constraints) than 
that obtained using the looser bounds. 

Appendix 2 

In this appendix, we provide proofs of lemmas 1 through 4. Lemmas 1 and 2 permit us 
to eliminate some dominated (N, K) pairs, while lemmas 3 and 4 permit us to reduce the 
number of S's that must be considered for each undominated (N, K) pair. 

L e m m a  1. I f  TH(S *(N, K), W*(N, K)) < d, then TH(S*(N, K - 1), ~7V *(N, K - 1)) < d. 

Proof. We will prove this by contradiction. Suppose Th(S *(N, K), W*(N,  K)) < d and 
TH(S*(N, K - 1), W*(N,  K - 1)) _ d. Add to S *(N, K - 1) one server in the ith station 
to give a total of K servers. Then, it follows from the results on the monotonicity of 
throughput with increasing service rates (Suri, 1984) that TH(S *(N, K - 1) + e i, W *(N, 
K - 1)) > TH(S*(N, K - 1), "~*(N, K - 1)) _> d where ei is a unit server vector with 
all elements zero except the ith element, which is set to 1. By definition of S*(N, K) and 
"(V*(N, K), TH(S*(N,  K), W*(N, K)) _> TH(S*(N, K - 1) + ei, "~TV*(N, K - 1)) _ 
d. This contradicts our original assumption. �9 
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Lemma 2. If  TH(S*(N, K), W*(N, K)) < d, then TH(S*(N - 1, K), W*(N - 1, K)) < d. 

Proof. The proof is similar to that of the previous lemma. 

Lemma 3. If  Ui <- Lk for any i and k, then we only need to consider S such that Si < Sk. 

Proof The product-form CQN under consideration consists of one delay node (the MHS 
station) and M multiple-server stations. The delay node also can be viewed equivalently 
as a multiple-server node with N servers, so there are no queueing delays. Thus, the CQN 
can be treated as a network where all stations have one or more servers. Shanthikumar 
and Yao (1988) show that the throughput function TH(S, "~7V) of the multiple-server product- 
form CQN is decreasing in transportation. That is, interchanging Si and Sk so that Si <- 
Sk whenever W/ _< W k may increase, and does not decrease, the throughput. This rear- 
rangement changes neither K nor z(N, K). Thus, if such a rearrangement is possible,_ it 
is preferable to do so. When Ui <<- Lk, Wi <- Wk for any feasible W. Therefore, any S's 
not satisfying the relationship in the lemma are dominated. �9 

Lemma 4. I f  Li <- Lk < Ui <- Uk, then we only need to consider S such that Si < Sk. 

Proof For any feasible "r162 we have two cases. 

Case 1. W i < W k. From lemma 3, we only need to consider S such that Si < Sk. 

Case 2. W i > _W k. Consider "~TV' = (W t, . . . ,  WM,), which is obtained by interchanging 
Wi and Wk of W while keeping the other workloads fixed. This "~V' is feasible, since Li 
< L~ < Wk < Wi <- Ui < Uk implies that L i <_ W k <_ U i and Lk_ <- Wi <- Uk, or 
equ iva len t ly ,  L i <_ W i' <-- U i and L k < W~ _< Uk by the definition of W '. Hence, by ap- 
plying the result of case 1 to Vr we prove this lemma. This argument is valid, since the 
throughput function is permutation invariant, i.e., TH(S, ~7V) = TH(r(S),  7r('(V)) for any 
permutation 7r. �9 

Appendix 3. 

The following algorithm can be used to find a good initial feasible solution to the con- 
strained workload allocation problem. We assume that the indices of the stations are ar- 
ranged so that S~ >_ $2 >- . . .  >- SM. We also assume that there is a feasible workload 
allocation (i.e., TW <- E i Ui) .  

1. Find a balanced workload allocation, ~TV. If  it is feasible, then terminate. Otherwise, 
go to step 2. 

2. LetA = {ilWg > U/},  B = { i l W  i < Li}  , S/I = ~, ( W  i - Ui) , S B = ~ (Li  - Wi) .  
iEA iEB 

Reset W i to Ui for all i ~ A and to  L i for all i ~ B. If SA -- SB > 0 (less than the total 
workload is allocated), go to step 3. If SA - SB < 0 (more than the total workload 
TW is allocated), go to step 4. Otherwise, terminate. 
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3. Reallocate Sa - SB by assigning as much addit ional  workload as possible to stations 
1 . . . . .  M in sequence while  main ta in ing  feasibility. Terminate  whenever  a feasible 
real locat ion has been found. 

4. Reduce the workloads at stations M . . . . .  1 in sequence while  main ta in ing  feasibility, 
unti l  a total reduction of SB - Sa has been  achieved. 

The rat ionale for steps 3 and 4 is a result  of  Shanth ikumar  and Yao (1988) that for the 
mult iple-server  product-form CQN, throughput is increased by assigning more  workload 
to a station with a larger number  of  servers. 
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