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1. Introduction. 1In a recent paper [1], Denman and Howard introduced
a procedure for the linearization of the non=-linear ordinary differ=-
ential equation governing the free oscillation of the simple pendulum,
by approximating the non-linear torque with an ultraspherical poly-
nomial, This linearization yields an approximation for the period of
the pendulum as a function of the amplitude of the motion. The pres=-
ent paper applies this procedure to the following non=-linear functions:
ax + bx5, sinh x and tanh x. Certain asymptotic results are ob-
tained. Further, it extends the procedure to the cubic ultraspherical
polynomial approximation and applied it to the non-linear functions
sin x and sinh x. All results are either compared with the exact
expressions for the period, if they are available, or to numerical re-
sults, if they are not. This extension ylelds a marked improvement

over the linear approximation, witn little increase in complexity.

2. The general free oscillation problem. A general free oscillation

problem is characterized by the differential equation

d°x/dt2 + £(x) = 0. (1)



In this paper, f(x) is assumed to be an odd (non-linear) function represent-
ing a force or torque. The general initial conditions are: x(0) = Xy and

(dx/dt)o = Vge In the oscillatory case, these conditions may be replaced
by xo = A, vg = 0, where A is the amplitude of motion. The first integral

of (1) is
(dx/dt)2/2 +V(x) = E,

where V(x) is a potential function (dV/dx = £(x)), and E is proportional to
the (constant) energy of the system. The turning points of the motion are
(-4, A).

The second integral of (l) can be written
A
-1/2
/b = [ [2(E - V)] /dx,
0

where T is the period of oscillation, and is in general a function of A.

Since E = V(A), one may write

7/23/2 = fA [v(a) - v<x>]_l/2dxo (2)
0
3. The ultraspherical polynomials. The ultraspherical polynomials on the
interval [-1, 1] are the sets of polynomials orthogonal on this interval
x2)N - 1/2

with respect to the weight factors (1 - , each set corresponding

to a value of A > - 1/2. They may be obtained from Rodrigues' formula [2]

Pn(x)(x) ) An(x)(l ) X2>-x+1/2(d/dx)n (l_xe)n+x-1/2,

()

n

where A is a normalization factor.
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Some subsets of the ultraspherical polynominals are: X =0,
Tchebycheff polynomials of the first kind; A = 1/2, Legendre polynomials;
A = 1, Tchebycheff polynomisls of the second kind, and N -, the powers
of x .

The ultraspherical polynomials on the interval [-A, A] are
defined as the sets of polynomials orthogonal on this interval with respect
to the weight factors [1 - (x/A)alk'l/g, A > - 1/2, For a function f(x)

expandable in these polynomials one obtains
y (2)
2(x) = L afM BV Gm), (3)

where the coefficients aél) may be written

T e B () (@) - Y

a{M - =L - (%)

T e R @ - " V2 a
-1

Since aék) ng) (x/A) is unchanged if Pék) (x/A) 1is multiplied by & con-
stant, one may choose any convenient normalization factor Aél),
For all odd f(x), the approximate period 1% resulting from the

linear ultraspherical polynomial approximation in [-A, A], i.e.,

*(x) = a§k) P£x) (x/A), can be expressed as

% = 2x [;r[l/2 I"(}\ + 1/2) A/)-I-F()\ + 2) S]l/gy (5)

fxﬂm>u-x%l‘vzu, (6)
0

07]
1

where



for A> - 1/2, (This expression for T* actually converges for values of
A>- 2 for many f(x), but the accuracy of the approximate results for
-2< A< - 1/2 has been found to be rather poor; therefore this range

is not considered in this paper).

L., Application of the linear ultraspherical approximation to some typical
problems. The restoring forces or torques encountered in non-linear
oscillation problems may be roughly classified as: hardening, softening,
flattening, and bottoming. Examples from the first three classes will

be examined here, and include: (I) (odd) cubic, f(x) = ax + bx3;
(II) sine, f(x) = sin x, and hyperbolic sine, f(x) = sinh x; and (III)
-hyberbolic tangent, f(x) = tanh x.

I. Cubic Non-linearity.

The equation of free oscillation is taken as
d2x/dt2 + ax + bx3 = 0, (7)

Equation (7) can be classified according to whether a and b are

positive or negative. The four combinations are shown in Table I.

Teble I
Classification Name Sign a Sign b Motion

Case 1 Hardening + + Oscillatory

Case 2 Softening + - Conditionally
Oscillatory

Case 3 Softening- - + Oscillatory

Hardening
Case 4 Softening- - - Non-

Softening oscillatory
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Only the first three cases can yield bounded oscillatory motion; Case L is
without any "restoring" force or torque regardless of the amplitude of motion.
Case 3 is included both for completeness and because it will be used later
(Section 6).

A. Exact Solutions.

Case 1. Hardening Cubic. The expression for the period of (7) in terms

of the complete elliptic integral of the first kind is well known [3]. The

exact period is
T = bK(ky)/(a + 0a2)Y/2, (8)

or, in dimensionless form,

e = 2k(ey)/x(1 + v, (9)

where T'! = 2n/al/2 is the period of the system if b = 0, K(k;) is the com-
plete elliptic integral of the first kind, v = bA2/a is a dimensionless
quantity, and kf = v/2(1+v) is the modulus of the elliptic integral. The
quantity v is a measure of the non-linearity of the problem, since the
maximum ratio of the non-linear to linear term in (7) is bA2/a = V.

Case 2. Softening Cubic. If b 1is negative, i.e., the non-linear

spring is soft, a solution similar to (9) is obtained by making the trans-
formation

2
ky = -v/(2+v), -1<v<O.

After some simplification, the period ratio becomes

/

/Tt = 2(1 + kg)l 2K(k2)/n. (10)



Note, however, that the above solution is no longer bounded, since v - -1
implies kg -1, and K » . This v (or amplitude) is called the critical v
(or am.plitude)° Plots of T/T' against v for Cases 1 and 2 are shown in

FPigures 1 and 2.

Case 3. Softening-Hardening Cubic. This case possesses rather in-
teresting properties: for x small} the linear term dominates the cubic,
and vice-versa for large x ; thus the force is away from the center for
small x, but restoring for large x. The potential curve is shown in Fig. 3.
For initial conditions represented by the energy El’ the motion is periodic,
but not symmetric about the origin. The conditions represented by Eo; how-
ever, do give symmetric oscillations about the origin. The demarcation line

is Eo“ Only the case represented by Eo is considered here. Then one obtains

r(-a) 2 < ey 1) Y2k (xy), (11)
where v = bA%/a < 0, and k% = v/2(1 + v).

2
For & > Ej, v <.~ 2, so that 12 S_kg <1l. For 7' = En/lalx/ s

r/1t = 2K(kg)/x(-v )2,

Equation (12) is plotted as curve E in Figure ..

B. Linear Ultraspherical Polynomial Approximation.

3

In (7)7 if one expands f(x) = ax + bx” in ultraspherical polynomials

in [-A, A], one obtains the linear approximation
(ax + bx3)"’; = [a + 3bA2_,/2(x +2)] x,

where * indicates a linear approximation. This linear approximation, when

substituted into‘(Y), resulss in the approximate linear differential equation



-T=-

®x/at? + [a + 3bA%/2(x + 2) ]x = O (13)
Therefore, for Cases 1 and 2,

/7' = [1 + 3v/2( 2 + 2)]'1/2, v> -1, (1ka)
and for Case 3,

t*/1t = [-1 - 3v/2(: + 2)]'1/2, v < -2, (14b)
where 7' = 2n/ |a|l/2, and Vv = bA2/a°

On Figs. 1, 2, and 4 are shown curves given by the above approxima-
tions for certain values of A, for these cubic springs. (For a = 0, Tg = @
and v » ®, but by using (8) and (13) one obtains the usual results.)

II. Sine and Hyperbolic Sine.

é. Exact Solutions.

The governing differential equations are written

a®x/dte + wg sinx = 0, (15)
a®x/at? + of simn x = 0. (16)

Solutions of (15), both exact and for the linear ultraspherical polynomial
approximation, are found in [1]. Equation (16) can also be solved in terms
of the complete elliptic integral of the first kind. While the solution
for (15) is oscillatory only if A < =, the solution to (16) has no such

limitation; the exact period is given by

T/To = (2/n)sech(A/2) K[tanh (A/2)]. (17)



B. Linear Ultraspherical Polynomial Approximation.

If one expands sinh x in ultraspherical polynomials in [-A, A]

and truncates after the linear term, one obtains

(sinh x); = [r(x + 2) I (A)/ (A/2)k+l] X , (18)

where I,(x) = (-1)%J (ix) is a modified Bessel function. The approximate

period ratio T*/T  is then
/o = 1(a/2)MF r () 1,0 ()12, (19)

The comparison between (19) and the exact solution (17) for various )\ values
is shown in Fig. 5.

IITI. Hyperbolic Tangent Nonlinearity.

The governing differential equation of motion is

a®x/at? + of tanh x = 0. (20)

No exact solution of (20) in simple functions is known to exist. To pro-
vide comparison for the approximate results, numerical quadrature is used
to provide the "exact" results.

From (2), the exact period in this case can be written

4 [1n(cosh A/cosh x)]'l/edx. (21)

o= (M3 g
0

For numerical quadrature, to remove the singularity at the upper limit,

consider the expansion (x2 < ﬂa/h)

1n(cosh x) = x2/2 - xu/lQ + .. (—l)n'l 22n_l(22n-l)B2n_lX2n/n(2n)!,



where B, , are the odd Bernoulli numbers [4]. Equation (21) becomes

-1/2

A
/e = (@Y%) [ (aBaB) -2 4 T e (22)
0
Setting x = A cos O, one obtains (for A < n/2)
2 -
/1 = (2/x) fn/ [l-A2(l+cos29)/6 + oo l/ede, (23)
0

Equation (23) is now free of singularities and is susceptible to numerical
integration. For small values of A, one can truncate after the second term

and express T/To in terms of an elliptic integral

/14 = (2/x) [6/(6-A2)]l/2K(k4>, (24)

2
where k) = Ag/(6-A2)° For intermediate and large A, expand 1n(cosh x) in

a Taylor series about A. Then

1n cosh x = 1n cosh A + tanh A (x-A) + (1/2) secth(x-A)g

- sech®A tanh A (x-A)3/3 + oo

Setting y2 = A-x, one obtains

Ja
T/To = (2/x) (6 coshsA/sinh A)l/2 [ 3 costh-(3/2)y2 ctnh A

° b ...]-l/gd

-y Yo

If one truncates the series after the third term, the above integration can

be carried out be means of an elliptic integral of the first kind [5]

/7o 2 (4/m)g cosh A F(o, k5), (25)

where kg = (l/2)(l-g2), g = [1+(16/3) sinhaA]_l/h

2 2
and sin2® = 2/[ 1+(2g sinh 2A)/A-g 1.
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Retaining only two terms of the integrand yields the approximation
t/ry 2 (b/x)(cosh A)sin™> (a/sinn 22)Y/2, (26)

For asymptotically large A, (26) approaches

/2 1/2

/Ty = (2/n)(2A)l = 0.9003 A " . (27)

Equations (24), (25), (26) and (27) span the entire range of A and overlap
one another as far as graphical accuracy is concerned. The "exact" curve
E in Fig. 6 was constructed using them.

B. Linear Ultraspherical Polynomial Approximation.

For f(x) = wi tanh x, S in (6) becomes

o 1 2 a-1/2
8§ = J x tanh Ax(1-x ) dx. (28a)
0

This integral does not seem to exist in closed form in terms of simple

functions. For A < n/2, tanh Ax can be expanded in a Maclaurin series,

and
; 1l/2 p n-1 2n-1 , 2n 1/2
/T = {x / A/[ur(x+2)n§£ (-1) (24) (2 -1) Bpp_ il (n + 1/2)/(2n) 17} /
(28p)
Alternately, an integration of (28a) by parts yields
-1 1 2 21/2
S=(x+1) wA [ (1-x) / secht Ax ax, (28¢)
o ;

which removes the singularity in the integrand of (28a) for x = 1, A < 1/2.

Thus T*/T. can be expressed as
/To D

8r (2+2) 1 (1-x2)M1/2 dx\r-l/ea

Jr r(a+3/2) O e2AX(14e-2AX)2

T*/TO =
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For arbitrary )\, numerical quadrature was used to evaluate (29).
However, certain values of )\ yleld somewhat simpler results. For
example, if A = 1/2,
2 1
S = wg of X tanh Ax dx. (30)
Since, for x >0, A>0,
2Ax -bAx -6Ax

x tanh Ax = x(1-2e” + 2e - 2e + ea), (31)

the period ratio for A = 1/2 can be expressed as

. 5 2 (1)"lemn) 2 ] M2
(r /To)l/Z ) {EZ Grh (nA)2e2nA 7 1242 )} - (58)

This expression is particularly convenient for large values of A, and for
1/2
very large A, (T*/To)l/2 approaches 0.8165 A / . For » »-1/2, (5) and (28c)

yield

T*/To)_l/2 - [A/tanh A]l/en (33)

Figure 6 compares the "exact" solution with the approximations corresponding

to A values -1/2, 0, and 1/2.

5. Asymptotic behavior of the linear ultraspherical polynomial approximation.
Two special regions of interest are those for which A approaches O and for
A large.
I. Lower Limit .
For small oscillations in the neighborhood of the origin, one can

expand V(x) in (2) in a Maclaurin series
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L
V(x) = VO + a2x2 +ax t o,
or

v(a) - V(x) = a (Ag-x2) [l+ah(A2+x2)/a2 Foieaol]s

2

where a, must be positive for small oscillations about the origin to exist.

Setting x/A = cos O, one finds
32 _1/p /2 2 2 -1/2
/277 = a21/2 Of [1+8),A" (1+cos“6)/as + ....] 1/ ae .

For sufficiently small values of A, one can expand the integrand by the

Binomial Theorem, so that
Y L
T/25/ = a, / / [l—ahA2(1+cong)/2a2 ceeo.]dO .
0 \

The solution for small oscillation is, therefore,

-1/2

T = 2n(2a [l-3a4A2/l+a2 + eoeo] o (34)

o)

In (6), setting x = cos 9, one obtains

n/2
S = OI/ £(A cos 0) sin®® 6 cos 6 de. (35)

Expanding f(A cos ©) in its Maclaurin series,
S m m
f(A cos 0) = L cpyh cos © .

m=0

Then (5) becomes
1/2 2 n/2 2 1/2
™ = 21 [n / r(a1/2)a/br(a+2) Z cmAmoj cos™e sin“tg de] /.(56)
m=0

For f£(x) odd, (36) yields

T* = en[cl+3c5A?/2(2+x) + .,,.]'1/2, (37)
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Since the ci's and aj's are the Maclaurin series coefficients for f(x) and

V(x) respectively, their relationships are

a, = cl/a, 8), = c5/4, ceees

Equation (37) becomes

* = 2n(2a )1/2[1-3a A /2a (A+2) ....] (377)

When one compares (37') with the expression for the exact period (34), one
notes that the first two terms agree if and only if X = O. Hence, for small
free oscillations, A = 0, corresponding to Tchebycheff polynomials of the
first kind, provides the most accurate period approximation of all the linear
ultraspherical polynomials, for all odd analytic f(x). (This result can not
be applied to the softening-hardening cubic; only the case E > Eo is con-
sidered here, for which arbitrarily small oscillations about O do not exist.)

II. Large Asymptotic Limit.

For large non-linearities, each case was examined individually.

A. Cubic Non-linearity.

For the hardening and softening-hardening cases (Cases 1 and 3),
the exact solutions are given by (9) and (12). For |v| >>1, (9) and (12)
yield
[t 1/2
lim  (t/7') = 2(1.8541)/|v|™ "n,
i
while from (14%a) and (14b), one finds
1/2

lim  (v%/7') = [2(2+))/3]|v]]

|V|—ico
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Hence, the optimum value of A, for large non-linearity, is found from
1/2
[2(0+2)/3]7" = 2(1.8541)/x, (38)

which yields )\ = 0.0899.

For the softening case (Case 2), the exact solution (10) and

the approximation (1l4a) behave as follows:
T/'r‘ - as v - -1, (39a)
T*/T’ -5 ® as 3v/2(2+k) -1, (39p)

Hence, the value of A which yields the correct critical Vo is A = -1/2.
For the softening-hardening spring, the exact solution (12)
becomes « for v = -2; the approximation (14b) gives the same result for A=l.

B. Sine and Hyperbolic Sine Non-linearities.

The exact solution for the free oscillation of a simple pendulum
is

/7, = (2/1)k(k),

where k = sin (A/2). Thus, /7, approaches infinity as A- x. The linear

ultraspherical polynomial approximation yields [1]

/T, = [(A/2)k+l/r(l+2)Ji+l(A)]1/2.

From a table of the first zero of Jb(x) as a function of p, such as in [6],
one notes that Ji/g(A) has its first zero at A=n. Hence, the same critical

amplitude occurs for the linear approximation when the index X\ 1is -1/2°
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The exact solution by elliptic integrals for the sinh spring is

given by (17). For A >>1, K2 -1, and
T/T, = C1A exp (-A/2), (ko)

where Cq is a constant. The linear ultraspherical polynomial approximation

result is given by (19). For very large A [7],

I,(a) » eA/(2nA)l/2,
and

T*/TO - CpA exp (-A/2) (41)

only if A = 1/2.

C. The Hyberbolic Tangent Non-linearity.

The asymptotic T/To is given by (27). For very large A,

tanh Ax -1, x > 0, and (28a) and (5) yield

T*/Ty o {A nl/er(x+3/2)/2r(x+2)} 1/2, (42a)
Equating the coefficients of AY/2 in (27) and (42a), one obtains

1/2 )

' r(a3/2)/2r(a+2) = 8/,
from which

A = -0.075. (b2p)

These asymptotic results are summarized in Table IT, and are verified by

the computations leading to Figs. 1, 2, 4, 5, and 6.
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Table II

Optimum Value of A for Large
Type of Spring Non-linearity or Correct
Critical Value

cubic
(1) nard .089
(2) soft -.5

(3) softening-
hardening , .089 (large v)
1.0 (correct v,)

sine -.5
sinh )
tanh -.075

6. Cubic ultraspherical polynomial approximation. If, instead of trun-
cating the ultraspherical polynomial expansion of f(x) in [-A, A] after
the linear term, one does so after the cubic, much more accurate results

are to be expected. Then
¥%(x) = aJ(_}‘)P](.)‘)(x/A) + agk)Pé)‘) (x/4).

When this result is substituted in (1), the resulting approximate cubic
differential equation can be either solved exactly by elliptic functions
or, preferably, utilize the previously plotted "exact" results for the
cubic springs to extract the approximate solution. The sin and sinh cases
will be considered below (the hyperbolic tangent has no accurate cubic

approximation for large amplitude, as is true for any flattening spring).
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()
The evaluation of the ultraspherical polynomial coefficient a3

will be shown for f(x) = sin x, that for sinh x being very similar. From (4),

b1 }\)
| sin (A cos ©) sineM P§ (cos @) do

[ [Pék)(cos 0) 12 sin®to a0

The denominator is a standard integral, while the numerator is an integral

found in [8]. Thus it can be shown

(sin x)i*’= %ﬁi;%%z [41(8) + (w3) 3, 5(8)] x
_TO#) 5,5(8) 5 (43a)
6(a/2) M5 ’

1

W) - A h )k - Ea ()3, ()
ML T Ewe) AB T 6 s 5

where Ay (A) = I'(M+1) JK(A)/(A/E)k, The function A, is plotted in [6], while
(43a) agrees with the result given in [9] for A = O.

The cubic ultraspherical polynomial approximation for sinh x is

) I (2+2) F(1+4)Ix+5 3 (1)

(sinh x I - (3) 1 X +
k+i] 6(a/2) M3

N (A/g)k+l A+

Consider the case X\ = 0 and f(x) = mg sin x. The differential
equation (1) is replaced by

a®x/at® + (265 (3, +305) /A]x - (8u5T5/a%)x> = 0. (45)

Since J1+3J3 and Js are positive in [0, x], (45) corresponds to the soften-

ing cubic of section 4, with
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a = 2m§(Ji+3J3)/A, b = -8w§J3/A5.

Following solution (10), one finds

X

. 2 1/2
%2_“’_0 (Jl+3J3)} = 2/x (1+k§)l/2 K(kg) s (46)

2n A
where T¥¥ is the approximation to the period resulting from the cubic

ultraspherical approximation to f(x) for A = 0,

2 2
k= -v/2+v = 233/31+35 , 0 <kg <1,
and
v o= b/ (3)4305), -1<v <O. (47)
The critical amplitude Ac for this cubic approximation is found
from

2
ke = 2J3/(Ji+J3) =1, or Ji(Ac) = Js(Ac)°
The smallest solution of this equation is
#¥
(8.1 = 3:05%, (48)

compared with Ac = 1t for the exact solution.

Corresponding to a given value of Af<Ac, one can compute v from
(47). With this value of v known, one finds the corresponding numerical
value of T/T' on the exact solution curve (E) in Fig. 1. This numerical
value is set équal to the left-hand side of (46), whereupon one can obtain
the new period ratio approximation T**/TO. A numerical example will show

the manipulations.
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Example: Letting the amplitude A = 2, one finds v = -0.535, which
corresponds to T/T' = 1.30 in Fig. 1 (curve E). Hence,
using (46) T**/To = 1.32,
Instead of using Fig. 1 to furnish the above result, one can, of
course, evaluate (46) directly, or equivalently, use

-1/2

T**/To = (2/xn) A2

(A) Klxg). (49)

For comparison, using the value A = 2 of the above sample, one obtains
T**/TO = 1.3296. The numerical difference between these results is due
to graph-reading inaccuracy.

For A = 1/2, the cubic Legendre polynomial approximation for sin x

yields
1l
/2 2(14:) /

(row/2m) (362 3+ 35)/A1" )/ (50)

where

2
v = '5533/(631+213 ) kg = 3555/ (12414745)

3

[»]
and j, and 35 are spherical Bessel functions, i.e., jn(x) = (n/2x)1/“Jn+%(x),

2
To establish the critical amplitude, set k., = 1, which results in the

7
equation
331(8.) = Tis(a,). (51)
The smallest solution of (51) is
&™), = 2.%8. (52)

c ’1/2
Thus the critical amplitude Ac based on the cubic Legendre polynomial

approximation is smaller than that from the Tchebycheff polynomials of
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the first kind. This means that the Legendre approximation becomes poorer
at a smaller amplitude A. This is substantiated by the curves of Fig. 7,

where these results and the exact solution are plotted. Included also in

Fig. 7 is the linear approximation curve from [1] in order to demonstrate

the improvement brought about by the cubic approximation.

For sinh x and A = 0, one obtains from (L&)

(stnn x)* = (2/A) [T -315(A) Jx + [85/8°15.

The cubic approximate differential equation of motion is
aPx/at? + [262(1,-3T5)/A]x + [8215/4%1:5 = 0. (53)
When compared to (7) one notes
a = 202 (1, -31 /A, b = 82T /A
o1 T3 o 3"’

It is interesting to observe that while b will always be positive, a becomes
negative for certain values of the amplitude A, i.e., I, < 515 for A > 3.91.
When a becomes negative, one must treat (53) as a "softening-hardening"

(Case 3) cubic spring. In the present case,
2
v = bA/a = b1, /(1) -3L,). (54)

For a given A, one can compute v. If v is positive, use Fig. 1 or 2; if
1/2

v is negative, use Fig. 4. Equate the period ratio found to T*¥(a) / /2n,

and solve for the cubic-approximation period ratio 'r**/'ro° An example is

given to illustrate the procedure:
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Example: Given A =2, Then v = 0.8934, and Fig. 1 gives T/To = 0.776.
Hence, T**/To = 0.795, while a solution of (53) directly in
terms of elliptic integrals yields 0.7954.
Using the procedure shown for A = 1/2 also, one obtains the results
in Fig. 8. It is worthwhile to note that the approximations for A = 0 and
M = 1/2 are so close to the exact solution that the errors are hardly dis-
cernible. The results of the cubic Maclaurin series approximation has also

been plotted for comparison.

7. Connection with method of Krylov and Bogoliuboff. The first approxima-

tion of Krylov and Bogoliuboff [10] yields the period approximation for (1)

-1/2

2n
f(A cos 8) cos 6 d6] . (55)

\ 1
(5. = 2z |
. 0
On the other hand, the linear ultraspherical polynomial approximation gives,
from (5) and (6),

-1/2

8

N J‘[/2
=2 [ L(+2) f (A cos e)sin2k6 cos 8 d8]

A2r(a+1/2)a © (56)

%)
(™)4.p.

We note that (55) and (56) are equivalent for odd f(x) when A = O in (56).
Hence, a linear Tchebycheff polynomial approximation of f(x) in (1) gives
results identical to those of the first approximation of Krylov and
Bogoliuboff.

Higher order approximations in the Krylov and Bogoliuboff method
depend on an iteration procedure, whereas the cubic ultraspherical poly-
nomial approximation yields a solution in elliptic integrals of the first

kind. No general comparison was made.
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8. Discussion. The characteristic feature of any ultraspherical polynomial

approximation (A < w) for arbitrary f£(x) in (1) is that it ylelds an
approximate period which will in general depend on the amplitude of the
motion. The exact solution of a non-linear oscillation problem also has
this property, while the linear Maclaurin series approximation does not.
It is this feature which stimulated these investigations, while the use
of particular ultraspherical polynomials permitted comparison of results
for various values of \.

As was shown in section 5 and indicated in all the graphical
results, for small oscillations and f(x) odd, the use of Tchebycheff
polynomials (A = 0) not only gives the best results of all the ultra-
spherical polynomials, but also T¥ agrees with the exact result to terms
of order A20 For large amplitudes or non-linearities, no such general
results could be obtained. For the hardening cubics (Cases 1l and 5) and
the hard sinh force, the A value corresponding to the correct asymptotic
form for 7 as A or v become infinite was small and positive, while A =0
yields smaller errors out to quite large amplitudes. For the only flatten-
ing spring considered here (tanh), for large amplitudes the choice
A = -0.075 gives the correct asymptotic results.

For the softening cubic (Case 2) and the soft sine force, oscilla-
tions at unlimited amplitudes cannot occur. Instead a critical amplitude
exists at which the exact period becomes infinite. It can be shown that
the linear ultraspherical polynomial approximation which produces the same
critical amplitude corresponds to A = -1/2° Although the integrals for the
coefficients do not exist for this value, the polynomials and the results

for Tf‘fl/2 can be obtained by a limiting process. The numerical results
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were quite poor for the problems considered here, despite its ylelding
the correct v, °or Ac°

The extension to cubic ultraspherical approximations yields the
expected increase in the accuracy of the results T¥¥., In comparing this
extension with other higher order procedures, one notes that the cubic
ultraspherical approximation method can be applied without a substantial
increase in work, in contrast to higher order approximations in other
methods, as the perturbation treatment. This is due to two factors. First,
if the coefficient of the linear term aik) can be found, then aék) can
usually be found in a similar manner. If a§l) must be evaluated numerically,
then aéx) will probably have to be also, but with no greater difficulty.
Secondly, the procedure uses the fact that not only are the exact results
for any cubic known in terms of elliptic integrals, but also T‘/Tg depends
only on one parameter v, so that one can obtain T/T' graphically or in
tabular form once and use these reults for the cubic ultraspherical approxi-
mations.

Finally, at no point in these approximation procedures was it
necessary to restrict the non-linearity v or the amplitude A to a small
value. In fact, all of ultraspherical polynomials (k < ®) gave reasonably
good results as v (or A) became infinite.

Given a (non-linear) f(x) other than those studied here, (and
for which the amplitude does not become extremely large), then, if a

single ultraspherical polynomial approximation is desired, the choice,

A = 0 is indicated by our results.
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Figure 7. Period ratio ('r/-r )-amplitude curve for sine spring for
. o .
cubic approximation -- free oscillation.,
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Figure 8. Period ratio (T/T )-amplitude curve for sinh spring for
cubie approximation -~ free oscillation.
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