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ABSTRACT

The problem of modelling the main processes which maintain the time-aver-
aged state of the atmosphere is divided into a first part dealing with the
maintenance of the standing eddies and a second part dealing with the mainte-
nance of the axisymmetric regime.

The maintenance cof the standing eddies is studied by means of a quasi-
geostrophic, linear, steady state model of the atmosphere in which the zonal
current is perturbed by the lower boundary topography and by a distribution of
heat sources and sinks. Initially all the perturbations are assumed to have
a single effective meridional wavelength and the frictionally induced vertical
motion at the top of the boundary layer is related to the vorticity through a
censtant;, "friction coefficient.”

After investigating some basic properties of the model atmosphere, some
computations are made to determine its response to the combined forcing by the
topography as obtained from Berkofsky and Bertoni (1955) and by the diabatic
heating obtained from Brown (196L4) for January 1962. The resulting perturba-
tions are found to be in rather good agreement with the observed standing waves.
The results also indicate that the standing waves forced by the topography are
in about the same position as those forced by the diabatic heating and that the
former have somewhat larger amplitudes than the latter.

The effect of allowing the friction coefficient to have one constant value
Fe over the continents and another value Fo over the oceans is examined and
found to be important if Fo/Fo = 6 but small (although bringing the computed and
observed eddies into closer agreement than in the case Fc/Fo = 1) if Fo/Fy = 2.

The assumption concerning the existence of a single effective meridional
wavelength is relaxed somewhat by considering an atmosphere bounded by walls
at 30°N and 60°N. The most importan® effect of the additional degrees of
freedom is to permit the forced perturbations to exhibit a tilt from the north-
east to the south-west as found mcst noticeably in the observed trough near the
east coast of North America.

The maintenance of the axisymmetric regime is also studied by means of a
steady state, quasi-gecstrophic formulation of the hydrodynamic equations. The
diabatic heating is assumed to be Newtonian and the eddy heat and momentum trans-
ports are assumed known from observations. It is then shown that the meridional
variations in the time-averaged axisymmetric temperature are forced by functions
depending on the eddy heat and momentum transports and on the convective-radia-
tive equilibrium temperature (also assumed known). It is shown, in particular,
that the combined effect of the eddy heat and momentum transports is to raise

xiv



(Lower) +he temperature of the high (low) latitudes, with the maximum effect
being found near 70 cb. One advantage of the formulation is that it gives the
effects of the eddies on the temperature field in degrees Kelvin rather than
in the form of heating rates as in previous studies.

The importance of the eddies in determining the zonal wind distribution
is also investigated. It is shown that the combined effect of the eddy heat
and momentum transports is to create easterlies in the low and high latitudes
and weak westerlies in the middle latitudes. The complete solution for the
zonal wind shows strong westerlies in the middle latitudes and weak easterlies
in the low and high latitudes. It is believed that some differences between
the computed and observed zonal winds are due mainly to the simple distribution
of the equilibrium temperature used in the model, or to the type of momentum
transport data used, or to a combination of both factors.
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CHAPTER 1

INTRODUCTION

1.1 THE PURPOSE AND SCOPE OF THE STUDY

The first attempt at a classification of the earth's climates was based
on astronomical considerations only and resulted in the concept of five
climatic zones encircling the earth in the east-west direction. This classi-
fication was, of course, an oversimplification and naturally with the advent
of a greater number of meteorological observations new and more elaborate
schemes were developed to categorize climatic regions. There is no doubt
that the classification of climates can serve useful purposes but clearly it
should be supplemented by a general theory capable of describing how the earth-
ocean-atmosphere system makes use of the solar energy to maintain the ob-
served distribution of climates.

It is the purpose of the present study to treat a few of the problems
encountered in the development of a general theory of climates. More pre-
cisely, the maintenance of the quasi-permanent zonal asymmetries in the
atmospheric variables is investigated by considering a model in which the
zonal current is perturbed by the earth's topography and by a distribution
of heat sources and sinks obtained from Brown (1964). The maintenance of the
zonally symmetric part of the atmospheric variables is also investigated.

The annual mean conditions in the axisymmetric regime are deduced by con-

sidering a steady state quasi-geostrophic model in which the horizontal eddy



heat and momentum transports are taken from observations and the diabatic

heating is taken to be Newtonian in form.

1.2 A BRIEF REVIEW OF PREVIOUS WORK

The progress in the development of a theory of climates has been made
so far along two main fronts which differ primarily in their mathematical
formulation. In the first approach the mathematical problem is formulated
as an initial value problem. The procedure consists in starting with some
initial state of the earth-ocean-atmosphere system and in predicting its
evolution over a long period of time by means of a mathematical model based
on the hydrodynamical equations. In view of the complexity of these equa-
tions the long-term time integration is accomplished by replacing the dif-
ferential equations by their finite difference analogs. Considering the time-
averaged solution as the climate of the model, it is then possible to ex-
amine how the various physical mechanisms included in the model contribute
to bring about the computed climate. A greater understanding of the mainte-
nance of the earth's climate can thus be achieved provided, of course, that
the climate of the model resembles that of the earth.

Models based on the above approach have been developed by Phillips
(1956), Smagorinsky (1963), Mintz (196k4), Leith (1965), Smagorinsky, Manabe
and Holloway (1965), Manabe, Smagorinsky and Strickler (1965), Kasahara and
Washington (1967). The results of these studies are encouraging but in view
of the complexity of the problem it is useful to supplement the above ap-

proach with a second one.



The second approach used in developing the theory of climates also makes
use of the hydrodynamic equations but in a different way. The procedure here
consists in first separating each dependent variable appearing in the model
into two parts, one being the time average of the variable over a chosen
time period and the other being the instantaneous departure from the time aver-
age, that is, the transient part of the variable. After averaging the model
equations over the time period of concern it is found that the terms remain-
ing in the integrated equations fall into two main categories, namely, those
consisting exclusively of time-averaged variables and those consisting ex-
clusively of time-integrated products of the transient parts of the variables
(see, for example, Saltzman (1961)). A considerable simplification would be
achieved if we could parameterize the time-averaged effects of the transient
eddies in terms of the properties of the time-averaged variables. Alternately
we can consider the terms depending on the transient eddies as known from
previous computations or we can neglect them if they are sufficiently small.

The integrals of the form % {t+T'%§ dt, where f is any dependent var-
iable, are in general nonzero but if 7T is sufficiently large they can be safely
neglected. When this is done the equations for the time-averaged variables
become steady state eguations so that given the appropriate boundary condi-
tions around the spacial domain of interest the time-averaged state of the
system can be obtained by solving a boundary value problem. This, then, is
the main difference from the mathematical stand point between this second ap-

proach to the problem and the first one where a mixed initial and boundary

value problem must be solved.



We recall that in the second approach described above the dependent var-
iables were divided in two part, one of which, the time-averaged part, became
the unknown. It is convenient to use this technique again, this time sub-
dividing each unknown time-averaged variable into a first part consisting of
its zonal average and a second part being the deviation from the zonal average.
In the subsequent discussion the first and second components will be called
the zonal mean component and the standing eddy component, respectively. This
decomposition is particularly useful because it is observed that the standing
eddy components are small compared to their respective zonal mean components.
This means that the nonlinear differential equations governing the maintenance
of the eddy components can be thrown into the form of linear perturbation equa-
tions using the zonal mean values as the basic undisturbed state and thus a
major mathematical simplification is achieved. In the following we shall re-
view briefly the most important investigations of the standing eddies using
perturbation equations.

In 1939 Rossby showed that the linearized form of the equation expressing
the conservation of absolute vorticity in a Cartesian coordinate system pos-
sesses solutions representing free waves with phase speeds depending on their
zonal wavelength (the meridional wavelength having been assumed infinite for
all waves) and on the speed of the basic zonal current. The waves were found
to travel westward with respect to the basic current so that for a given speed
in the undisturbed current one wavelength was found stationary with respect
to the earth. Using these results Rossby then discussed qualitatively the

displacements of the "semi-permanent" eddies in the atmosphere, as observed



on five-day mean charts, in relation to the change in the speed of the zonal
current.

Rossby's analysis of the free travelling and stationary (Rossby) waves
was later reformulated by Haurwitz (1940) within the framework of spherical
coordinates. Haurwitz also stressed the fact that in addition to the free
waves the atmosphere could also have forced modes in response to the external
forces, but his discussion of the latter was only a gqualitative one.

It appears that Blinova (1943) was the first author to study the relation
between two atmospheric variables in the standing eddies. Just as Haurwitz
(loc. cit.) had done, she assumed the flow to be purely horizontal and non-
divergent, but contrary to Haurwitz she retained the longitudinal variation
of the temperature in the solenoidal term of the perturbation vorticity equa-
tion. With the steady state version of the latter equation she was then able
to relate the stationary stream function pattern to the stationary temperature
distribution. Similarly, from the linearized steady state form of the first
equation of motion she obtained a relation between the stationary pressure
and stream function distributions.

In her formulation Blinova did not include any forcing mechanism and
therefore did not seek an explanation for the maintenance of the standing
forced waves. The purpose of the study was simply to show that if the tem-
perature distribution in the standing waves is given, some information can be
obtained about the position and phase of the stream function and pressure in

the standing eddies.



Six years later Charney and Eliassen (1949) published the first paper
dealing with one possible mechanism capable of maintaining standing eddies
in the atmosphere. Using an equivalent barotropic model, they were able to
show that the mountain barriers near L45°N could deflect the basic zonal cur-
rent in such a way as to produce stationary waves of about the same amplitude
and in about the same position as those observed on the mean monthly pressure
maps in January. It was clear that these standing waves were "forced" modes
and the possibility of pure resonance with the "free" stationary modes de-
seribed by Rossby (1939) was eliminated by the inclusion of friction.

Bolin (1950) also studied the effects of the earth's topography on the
zonal current by considering the perturbed flow in the vicinity of a single
axisymmetric mountain. He showed that a mountain of sufficiently large
horizontal dimension could cause standing perturbations in two ways; firstly,
by forcing some of the air to flow over the mountain, and secondly, by forcing
some of the air to flow around it. The most interesting feature of this study
was the demonstration that the first type of flow creates disturbances far
away as well as near the mountain whereas the second type of flow results in
perturbations which decay rapidly with the distance away from the mountain.

Another way in which the continents can participate in the maintenance
of the standing eddies is through the difference between their thermal and
radiative properties and those of the oceans. It is well known that in the
winter the surface layer of the oceans is on the average warmer than that of

the continents and that the reverse holds in summer. Thus in the winter, for



example, the continents and oceans may be expected to play the roles of heat
sinks and sources, respectively, for the atmosphere thereby providing a sec-
ond possible mechanism for the maintenance of standing waves. Since these
heat sources and sinks change both in strength and position from winter to
summer it seems that their effects on the atmosphere should be studied on a
monthly or seasonal basis rather than on a yearly basis.

Smagorinsky (1953) made a study of the heat sources and sinks as possible
contributors to the maintenance of the standing eddies, neglecting the ef-
fects of the earth's topography. Lacking adequate knowledge about the true
distribution of heat sources and sinks in the atmosphere, he assumed a simple
distribution and derived the effects that it would have on the atmospheric
flow. In a qualitative discussion based on his theoretical study he then
showed that diabatic heating was probably one of the main mechanisms respons-
ible for the standing waves, at least in the low levels of the atmosphere.
This paper did not resolve the controversy as to the relative importance of
the topography and diabatic heating in explaining the presence of the standing
eddies but served as an incentive to carry further the study of the two mech-
anisms.

A series of theoretical papers followed dealing with the response of
model atmospheres to the forcing by the bottom topography (for example, Wiin-
Nielsen (1961), Murakami (196%), Sankar-Rao (1965a,b, 1966)) or by the dia-
batic heating (for example, Gilchrist (1954), Dods (1962), Sankar-Rao (1965c))
or by both mountains and heating (Saltzman (1965)). Again these studies

could not determine whether the topography and the diabatic heating are of



about equal importance in maintaining the standing eddies or whether one ef-
fect dominates the other since only hypothetical distributions of heat sources
and sinks were used.

Although we still know relatively little about the true distribution of
heat sources and sinks, some information has been published on this subject
by Wiin-Nielsen and Brown (1960) and Brown (1964) for a layer near 50 cb. It
is one of the main purposes of the present study to investigate how a steady
state model atmosphere responds to the forcing by Brown's computed distribu-
tion of heat sources and sinks and then to make a direct comparison of the
standing waves thus obtained with those forced by the bottom topography. Just
as in the above investigations the model equations are linearized and lead to
a steady state boundary value problem.

In the linearized models dealing with the maintenance of the standing
waves it is assumed that the basic zonal state of the atmosphere is known
from observations. It is an interesting and fundamental problem, on the other
hand, to determine how the basic state itself is being maintained against the
dissipative forces.

It has been shown by Houghton (1954) and London (1957), for example,
that if the radiative processes were the only ones determining the temperature
of any vertical column in the atmosphere, the equatorial regions would be
much warmer and the polar regions much colder than they are observed to be.

To reach the observed zonal mean state, therefore, the atmosphere must trans-
port the excess energy northward, thereby acting as a heat engine between

a warm source and a cold sink.



Attempts have been made, for example by Adem (1962), at studying the
maintenance of the axisymmetric regime of the atmosphere. Adem considered
the heat budget of the vertically integrated troposphere as influenced by
the radiation processes, the turbulent heat transfer between the troposphere
and the underlying surface and the horizontal heat transfer by the large-
scale eddies. The mean toroidal motion in the atmosphere was neglected and
the meridional heat transport by the eddies was parameterized in terms of
the axisymmetric temperature using a constant Austausch coefficient. The
model presented by Williams and Davies (1965), on the other hand, took the
mean toroidal motion into account but here again the effects of the eddies
were parameterized through the use of Austausch processes. A further con-
tribution was made by Saltzman (1967), a fundamental difference between his
model and the previous ones being that the Austausch coefficient was permitted
to be a free variable, thus adding another degree of freedom to the system.
The mean toroidal motion of the atmosphere, however, was neglected.

The basic difficulty in the above studies clearly resides in adequately
parameterizing the various physical processes affecting the axisymmetric re-
gime in terms of the axisymmetric variables. It is no small task, for ex-
ample, to parameterize the meridional eddy heat transport in terms of the
axisymmetric temperature field knowing that on the average the eddies trans-
port heat from warm to cold temperatures in the troposphere whereas the re-
verse holds in the lower stratosphere (Oort (1964), White (195k4), Wiin-
Nielsen (1967)). While further progress in this respect may be forthcoming,

it would seem important to examine how the large-scale eddies in the atmos-
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phere actually affect the axisymmetric regime. This is done in the present
study by using a model in which the terms representing the heat and momentum
transports by the eddies take the form of forcing functions and are taken

to be known from previocus computations.

1.3 AN OUTLINE OF THE STUDY

The central problem of studying the maintenance of the time-averaged
state of the atmosphere is divided into two major sections, the first one
dealing with the maintenance of the standing eddies and the second one deal-
ing with the maintenance of the axisymmetric regime. The first topic is
treated in Chapters 2 and 3; a treatment of the second topic is given in
Chapter k.

In Chapter 2 the basic equations to be used in studying the maintenance
of the standing waves are presented. It is assumed that the flow is steady
and that the amplitudes of the standing waves are sufficiently small to per-
mit the use of the linearized equations. The standing perturbations appear
as modes that are forced by the topography and the heat sources and modified
by friction at the earth's surface. The frictionally induced vertical motion
at the top of the boundary layer is related to the 100 c¢b vorticity through
a friction coefficient which at first is assumed to be a constant. To gain
some insight into the basic properties of the equations, the response of the
model to a series of hypothetical distributions of mountains and heat sources
is computed.

Thg model is then used in Chapter 3 to compute the amplitude and phase

of the mid-latitude perturbations forced by the distribution of heat sources
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and sinks computed by Brown (1964) from meteorological observations for Jan-
uary 1962 and by the distribution of mountains obtained from Berkofsky and
Bertoni (1955). The calculations are restricted to two basic levels in the
vertical direction and at first to variations along a single latitude circle.
The remainder of the chapter is devoted to studying the effects of varying
the friction coefficient from ocean to continental areas. With the method
of solution that is presented, an arbitrary variation of the friction coef-
ficient can be specified but the actual solution of the model is computed only
for simple cases where the friction coefficient has one value (relatively
large) over the continents and another value (relatively small) over the
oceans.

An attempt is also made at improving the north-south resolution in the
model. In the previous sections it had been possible to focus the attention
on the east-west variations in the perturbations by assuming that a single
"effective" meridional wave number could be assigned to all perturbation
quantities and by considering the basic zonal wind speed to be independent of
the meridional coordinate. In trying to relax these restrictions, the ap-
proach is to start with the same basic set of equations as previously with-
out making use of the assumption of an effective meridional scale for the
perturbations and to solve the system of equations over a rectangular region
bounded by the latitudes 30°N and 60°N. The solution then contains several
meridional modes and, furthermore, since the equations are solved numerically
it is possible to use a basic state in which the zonal wind speed varies with

latitude.
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Chapter 4 deals with the maintenance of the axisymmetric regime in the
atmosphere. The model used is based on the quasi-geostrophic formulation of
the hydrodynamic equations in spherical coordinates. The factors influencing
the axisymmetric regime in the model are the heat and momentum transports by
the eddies (standing and transient), the radiative heating and cooling and
friction. The eddy transports of heat and momentum are taken to be known from
previous computations based on meteorological observations and the diabatic
heating is taken to be of the Newtonian type. With the above formulation it
is possible to examine the extent to which the quasi-geostrophic eddy motions
participate in maintaining the north-south variations in the axisymmetric
regime.

The results of the study are reviewed in Chapter 5 and some suggestions

for future improvements are offered.



CHAPTER 2

SOME BASIC PROPERTIES OF THE STEADY STATE TWO LEVEL MODEL

2.1 PRELIMINARY REMARKS

In the present study the atmospheric standing waves are considered to
be maintained by the effects of the bottom topography and permanent heat
scurces and sinks on a steady zonal current. It is realized that this ap-
proach cannot yield a perfectly satisfactory soluticn to the standing wave
problem since the effects of the transient disturbances are completely ig-
rnored. Future research may show that the nonlinear effects resulting from
the presence of transient waves produce important modifications in the stand-
ing eddies resulting from linear processes, but before embarking on a study
of nonlinear effects it would be advisable to improve our understanding of
the basic linear mechanisms. This is the underlying purpose of the treat-
ment given ir this study.

In the present chapter we shall present the equations defining the two
level model of the atmosphere and investigate in some detail a number of its
properties. This well-known model has proven to be extremely useful both in
the field of numerical weather prediction and in theoretical research but it
appears that no one, as yet, has used it to investigate the problem of the
standing eddies as forced by both the bottom topography and the diabatic heat-
ing. It is true that the model has only a crude vertical resolution but on
the other hand it has the distinct advantage of being consistent with the

model used by Brown (1964) to compute the diabatic heating field which is

13
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going to be a basic input to the present investigation. Furthermore, since
the structure of the standing eddies changes rather slowly with height (Saltz-
man and Rao (1963)) the limited vertical resolution should not be too serious
a handicap in the present context.

The large-scale flow in the atmosphere is observed to be guasi-nondi-
vergent, quasi-horizontal and quasi-hydrostatic. A deseription of the scale
analysis based on the above observations leading to the quasi-geostrophic
model used in this chapter was given by Young (1966) so that only a few com-
ments on this topic need be made here.

If we let V22 15 msec_l denote the characteristic horizontal speed,

W < 0.1V the characteristic vertical speed, L 106 m the characteristic
horizontal length and H :~1ou m the characteristic vertical scale, we ob-
serve that VW/Lg < V2/Lg < V2/Hg << 1, where g = 9.8 msec-2 is the accelera-
tion of gravity. The equation for the vertical component of velocity can
then be approximated by the hydrostatic relation, in which case it is con-
venient to use the pressure instead of the height as the vertical coordinate.
For the large-scale flow it is also true that the Rossby number is small com~
pared to unity whereas the reverse holds for the Richardson number. The
horizontal pressure and Coriolis forces therefore nearly balance each other
so that the horizontal accelerations are small and the vertical stratification
is sufficiently stable to prevent large vertical velocities. 1In this case
the quasi-geostrophic formulation provides a useful approximation to the

complete set of hydrodynamic equations.
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2.2 THE STEADY STATE QUASI-GEOSTROPHIC MODEL

We shall assume that the motion is on a B plane centered at L45°N so
that we can use a Cartesian coordinate system in which the x and y coordinates
increase to the east and north, respectively. The vorticity and thermodynamic

equations for the quasi-geostrophic model then take the form

V-(+f) = fo% (2.1)
and
> o0 RH
V.V (g) + ow = E;ﬁ (2.2)

respectively. In the above 6 is the nondivergent part of the horizontal velo-
city vector, with components u and v along the x and y axes, respectively;
t = dv/X - du/dy = FY/X° + FY/y® where ¥ is the stream function; f is
the Coriolis parameter, f, being its value at U5°N; w is the "vertical veloc-
ity" dp/dt, where p is the pressure and t the time; g = 9.8 msec-2 is the ac-

>
and j are unit vectors

ey

> ->
celeration of gravity; V = id/dx + jo/dy, where

gz, where z is the height

pointing to the east and north, respectively; &
above the mean sea level; o = —aSln@/ap, where @ i1s the specific volume and
. .-l -1 .

© the potential temperature; R = 287 kj t deg 1is the gas constant for

. N § -1, s .
air; cp = 1004 k3 t deg is the specific heat at constant pressure; H is
the diabatic heating per unit time and unit mass. In the quasi-geostrophic
formulation the static stability parameter o is independent of the horizontal
coordinates (see, for example, Phillips (196%)). The friction terms do not
appear explicitly in (2.1) but the effect of friction will be taken into ac-

count through the lower boundary condition on w, in the manner suggested by
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Charney and Eliassen (1949), that is, by considering that friction in the
boundary layer introduces some vertical motion at the bottom of the free
atmosphere. No internal friction mechanism will be included in order to have
a formuilation which is consistent with the model (including only boundary
layer friction) used by Brown (1964) to compute the diabatic heating values
which will constitute a basic input for the present study.

In (2.1) we have neglected the vertical advection of vorticity and the
terms expressing the turning of the vortex tubes, which is equivalent to
neglecting the vertical advection of momentum (wdu/dp, wdv/dp) in the two
equations of motion from which (2.1) is derived. 1In the first term on the
right-hand side of (2.1) we have also neglected the relative vorticity on
the grounds that it is small compared to f and, for consistency (Wiin-Nielsen
(195%)) we have adopted a constant value of f. In (2.2) we shall introduce

the further approximation

¢ = f£Y. (2.3)

The nature of this approximation has been discussed by Phillips (1958).
For convenience we divide the atmosphere into horizontal layers as shown
in Fig. 1. The boundary conditions at the top and bottom of the free atmos-

phere are

=0 at p=0 (2.4)

and

w o= wy = ot at p = P, (2.5a)
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Fig. 1. Schematic representation of the two level model.
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where

@ = Vu.ng (2.5Db)
and

W = FE . (2.5¢)
w

is the expression for that part of wu which is due to the flow of air over

LM

the uneven terrain where the standard pressure is pg(x,y). The expression

for w follows from the relation

Y

where Wu is the vertical component of speed (in a coordinate system with
height as the vertical coordinate) at level L due to the flow of air over a
terrain with height Zg(x,y) above mean sea level (z = 0). By integrating the
hydrostatic relation from z = O where p = constant to z = Zg where p = pg,

assuming a constant density, we find that the above expression for WhM can

be written as

= - =V-Vp_ .
Yim g0 | Pg

In the steady state quasi-geostrophic formulation, on the other hand, we

have

dz

1
Oy

- .
go LM

- (B
Yim T Vat/ uu

By combinding the above two equations we obtain (2.5b).



19

W, is defined as the vertical motion at the top of the boundary layer

LF

produced by friction and is approximated by

“ip T Ty

as was done, for example, by Charney and Eliassen (1949), Phillips (1956),
Saltzman (1961), Smagorinsky (1953), and Wiin-Nielsen (1961). In this chapter
F, the coefficient of friction, will be taken to be a constant (4 x 10 sec_l,
the value used by Phillips (1956)) but in the next chapter some computations
will be made using a larger value of F over the continents than over the
oceans.

In developing the usual two level model of the atmosphere, the procedure
consists in applying the vorticity equation (2.1) at 25 cb and 75 cb, express-
ing the derivatives with respect to pressure as finite differences. For con-

venience the resulting two equations are then added and subtracted to yield

the following two equivalent equations:

> > fo

o) T, = 5, (2.6)
V.-Vt + V_.9(t +F) =f£w-f£w (2.7)
Voq Vs B % "oy “u :

where the subscripts "s«" and "T" are defined by
( )y = 200, +( )] (2.88)
* 2 1

- )] . (2.8b)

—
~
Il
=
—
—
~



20

> -
The vector Vh appearing in (2.5b) is expressed in terms of the stream

function ¥, through the relation

L

. . (2.9)

>

where k is the unit vertical vector. If we assume that the vertical tempera-
ture lapse rate is a constant, it is then possible, by integrating the hydro-
static equation, to express Yh as a linear combination of v, and ¥ . 1In

-1
fact, with a temperature lapse rate of 6.5°C km = we obtain

&
Il

¥, - 1.6&/T (2.10a)

which leads to the relation

<v
1l

-> >
- 1.6 2.10b
L v, -1 Vo ( )

-> >
since Vg4 and VT are nondivergent.

By using (2.5) and (2.10) we can now rewrite (2.6) and (2.7) as

> - fo > >

V,V(E +E) + VT-v;T = E (V*-l.6VT)'Vpg - F(g*-1.6§T) (2.11)
> > . fO fO > 6—> 6
Ve VEr + Vo V(L ) = 5, w, - o (V,-1. VT)-Vpg + F(t, -1 CT)(.z -

To complete the system of equations we apply the thermodynamic equation
at 50 cb (level 2), again expressing the derivative with respect to pressure

in finite difference form. The resulting equation is then

> R
2F VoV + oppptly = % H. (2.13)
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>
Just as for Wh’ we can express Yz, and hence V2, in terms of Y* and YT. Using

the same temperature lapse rate as above we obtain
v = ¥, - O.ETT . (2.1k4)

With this expression for Tz it follows that

<V
2
<v
<

so that (2.13) can be written as

> R
2fOV*'WT + oopouy = g H. (2.15)

> >
We note that since V* and Q* are functions of Y*, and similarly VT and
YT are functions of YT, (2.11), (2.12), and (2.15) comprise a system of

three equations in three unknown, namely, ¥ _, ¥ _, and w, provided that pg and

*? T
H are known functions of x and y.

In the following we shall assume that the flow consists of small pertur-
bations superimposed on a basic zonal current. The perturbations will be
taken to be periodic in both x and y while the speed of the basic zonal cur-

rent, U, will be assumed to be a function of pressure alone. It is then pos-

sible to write Y* and YT in the form

¥, = -Uy + v (%) (2.16a)

b4

T —UTy + WT(x,y) (2.16b)

where U, and UT are the (constant) speeds of the mean and thermal zonal winds

of the basic flow while W* and wT are the mean and thermal perturbation stream
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functions. In this context the diabatic heating H and the standard pressure
at the ground must also be considered as perturbation quantities.

When (2.11), (2.12), and (2.15) are linearized using (2.16) and the
vertical velocity is eliminated among the resulting equations, the following

linear system in W* and WT is then obtained:

F 2 S 2 £ p
Vﬁv +S VY, B %gi +U v Vo - 0.8y, = z (u,-1.6U,) —=

T Xx p), T
(2.17a)
o
32 _FER2 k2 Fx, D 2 2y 21
Up Y Uy~ SV, +B Un 50 * Uk = V¥ _ + 0.8V WT (B-U_5°) =
LRf £ dp
(e} (e}
= - H-— (U,-1.6U 2.17p
ot P Ty (O = (2.170)
where
2
2 8fo
o} = —
9Py,

-12 -1 -1
and B = df/dy = constant (16 x 10 m ~ sec at L45°N).

We note that since all the derivatives with respect to y in (2.17) are
of the second order and since all the coefficients are independent of y it

1
follows that if pg and H have the form

o]
I

ﬁg(x) cos (uy) (2.18a)

A(x) cos (uy) (2.180)

jas
I

1 .
In the sequel we shall use a circumflex over a symbol, as in (2.18), to
designate that part of the variable which depends on the longitude only.
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then ¥, and ¢_ must have the form
* T

¥, = U,(x) cos (uy) (2.18c)

Vo = g(x) cos (wy) . (2.184)

In this and the following chapter we shall assume that pg, H, W*; and WT
are given by (2.18). This means that if we put the origin of the coordinate
system at 45°N the above functions have a maximum absolute value at L5°N and
a meridional wavelength given by Ly = 27/u. Charney and Eliassen (1949)
evaluated, from an inspection of the main mountain barriers, that Ly should
be approximately 50 degrees of latitude. They found, on the other hand, that
their model for the standing waves forced by the topography yielded standing
waves which closely approximated the observed ones when the meridional wave-
length was assumed to be 66 degrees of latitude. Wiin-Nielsen (1961) com-
puted the effective meridional wavelength of the observed standing waves for
various latitude circles using the formula

2
Q7 2

¥ T e

where Z is the height of a pressure surface, and obtained values for p which
are relatively close to the one used by Charney and Eliassen (1949). 1In the
present study the meridional wavelength will be taken to be 60 degrees of

) -6 -1
latitude or 6666 km so that p = 0.95 x 10 m .
Since the perturbation quantities in the model are periodic in x we

can expand them in Fourier series. For convenience we replace the coordinate

x by a\ cos ¢, where a is the radius of the earth, ¢, is 45° and A is the
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longitude in radians. We can then write

N
ﬁg(x) = L (R, cos (m) + 5, sin (m)) (2.19a)
N
f(n) = T (Q cos (n\) + T, sin (m\)) (2.19D)
n=1
N
Q*(K) = gi (A; cos (n\) + B; sin (n\)) (2.19¢)
A N T T .
WT(K) = nzi (An cos (nA\) + B sin (n\)). (2.194)

When (2.18) and (2.19) are substituted in (2.17) the following system of

. . . T T, .
linear algebraic equations for A;, B;, An’ and Bn is obtained:

T
ajfy - apBy - 1.6ajAn +  asB = -bSp (2.20a)

* * T T _
asA  + aiB - azh, - 1.6ayB, = DR, (2.20p)
a A¥ + a B - 1.6a A + a BT = =bS, - aQ, (2.20c)

1'n 471 *%1%n 5°n n- g .

* * T T

A - aB + ach, + l.6aan = -bR + qTy, (2.204)
where the coefficients are defined as follows:

a; = Fn(n® + u%n%)/(2v,)

2,.2 2

ez = nl(E- - w1 - n%)

*
_ Mg (2 + 122
3.3—‘U n lJ‘
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a, = 5= L7 - o)
*
~ B2 2.2 2
35 - n[(U* 8 )h ]
p)
nf _h 1.6U
b = —— (1 - Ty
Py, U,
YR 1o
_ (0]
d ogcpng*

and h = gcos L
If Sy, Rps Qns and T, can be obtained from observations the problem
. . . . % * T T
then consists in solving the algebraic system (2.20) for Ay, Bys Ap, and B.
When this is done for 1 < n < N and the results are substituted in (2.19c,d)

the solutions for ﬁ* and @T are obtained. It is then a simple matter to ob-

tain Ql and @5 along L5°N by means of the relations

(HCSIERRMCS IR NCY (2.21a)

1l

() = 0,00 - T (2.211)

)

which follow from the definition of the subscripts "x" and "T" given after

(2.5). Similarly @2 can be obtained from $* and $T by means of (2.1k).
We observe from either (2.17), or (2.19) together with (2.20), that the

. N .
solution w* can be written as

N

V) = U0 + T,
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where $*M is that part of $* which arises from the presence of the mountains
and $*H is that part which is due to the diabatic heating. Similar remarks

apply to $T so that we can write

() = SO0 + 300,

1]
(@)

Clearly Q*M and $TM can be obtained by solving the model equations with f
while $*H and $TH are the solutions in the case ﬁg = Q.

To get some insight into the basic properties of the two level model we
shall compute the response of the model to forcing by either the bottom
topography or by the diabatic heating. The attention will be focussed, in
the following sections, on the changes in the model properties with the zonal

wavelength of the disturbance.

2.5 THE RESPONSE OF THE MODEL TO AIR FLOW OVER IDEALIZED TOPOGRAPHY
We shall obtain some useful information about the two level model by
solving (2.20) with 8§ =@ =T =0foralln, R =1 for some n and R = 0
n n n — n —_— m

for m # n. In other words, we consider the adiabatic flow of the model atmos-

phere over a surface where the standard pressure is

ﬁg(x) = cos (n\) (2.22)

and solve (2.20) first with n = 1, then with n = 2, and so on. The solution
for the mean stream function has the form

$*(K) = Q*M(K) = A cos (n\) + B; sin (n\)

*

C

B *x B

cos (nx-aZ) (2.23a)
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where
c* = [a¥% B*E]l/2 (2.23Db)
n n n
and
* -1, %, %
o, = tan (B, /A]) - (2.23c)

The solution for the thermal stream function has also the form (2.23) except
that the asterisks are replaced by the letter "T".

The solutions for v, and wT were obtained under the above conditions for
the integral values of n in the range 1 < n £ 18. From these results the
amplitudes C; and Cg and the phase angles a; and ag were computed for the
same values of n. In all the computations the parameters were assigned the

following values:

- -1 -1 2
L'x10 " sec”, U, = 15msec ,0,= 3m sec t ,

55|
Il

-6 -1 -1
b = 0.95 x 10 m , UT = 5m sec .

The plot of C;, the amplitude of the mean stream function, appears in
Fig. 2 as a function of n, the number of waves in the interval O < A < 2m.
We note that the amplitude of the ¥, wave is largest for n = 2 and decreases
rather rapidly as n increases. This means that the model atmosphere is more
easily excited on the scale of the wave with n = 2 than on any other scale.
For example, we see that the amplitude of the wave is approximately 15 times
larger for n = 2 than for n = 10. The model is therefore relatively insensi-
tive to the presence of the high wave number components in the expansion

A
(2.19a) for pg.
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(10° m2 sec”! )

C

2 4 © 8 10 12 14 16 18
WAVE NUMBER n

Fig. 2. The amp/l\itude of the mean stream function forced by a sinusoidal
distribution of'/. p. with unit amplitude and zonal wave number n, Parameters:
b =0.95x 10° ml, Uy = 15 m sec™d, Up = 5m sec™l, F = 4x10-6 sec-1.
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In order to determine the position of the $* wave in relation to the
ﬁg wave given in (2.22), the phase angle @ , defined by (2.23c), was com-
puted for 1 < n < 18. It was found that for each value of n the ridge in the
Q* wave was positioned somewhat upstream from the trough in the ﬁg wave, If
we think of the trough in the ﬁg wave as representing a ridge in the Qg wave,
where Qg is the height of the ground above mean sea level, we can conclude
from the results that the crest in the $* wave 1s somewhat to the west of the
crest in the Qg wave.,

Figure 3 shows the phase difference, as a fraction of one wavelength,
between the trough in the ﬁg wave and the upstream ridge in the Q* wave,
We see, for example, that for zonal wave number 2 the phase lag is about
one fifth of one wavelength so that the ridge in the $* wave is about 0.2 x
14,000 km = 2800 km upstream from the trough in the ﬁg wave. For zonal wave
number 14, on the other hand, the ridge in the $* wave 1s only 0.05 of one
wavelength, or about 0.05 x 2000 km = 100 km, upstream from the trough in
the ﬁg wave. The conclusion to be drawn from the computations, therefore, is
that for small zonal wave numbers the ridge in the $* wave is relatively far
upstream from the trough in the ﬁg wave (or ridge in the Qg wave) whereas
for large zonal wave numbers the ridge in the Q* wave is only slightly to the
west of the trough in the ﬁg wave.

The amplitude and phase of the QT waves were also computed for the
distribution of ﬁg given by (2.22) and for the zonal wave numbers 1 through
18. Since the difference between the geostropﬁic stream functions at 25 cb

and 75 cb is proportional to the mean temperature between these levels, we
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WAVE NUMBER n

PHASE DIFFERENCE

Fig. 3. The phase difference between the nth zonal harmonicAin the
mean stream function and the same harmonic in theAfunction -Pg- The
mean stream function wave is to the west of the -p_ wave by the
fraction of the zonal wavelength indicated on the ordinate. Param-
eters: same as Fig. 2.
can think of QT as representing the temperature near 50 cb. The amplitude
of the $T wave is given as a function of the zonal wave number in Fig. L.
We see that a ﬁ wave of unit amplitude forces a temperature disturbance
g
with the largest amplitude when n = 1. The relative minimum in the amplitude
of the thermal wave near wave numbers 3 and 4 coincides with the region of
the spectrum where a radical change in the phase relationship between the
Ay
v

A T
. and wT waves occur. In fact, when a; and Q, are compared, we find that

the thermal and mean stream functions are exactly in phase for n = 1, 2, and
3 and out of phase by exactly half a wavelength for n > L,
N
It follows from (2.21) that if, for a given zonal wave number n, the V,

N A
and WT waves are exactly in phase then the wl and @5 wave are also exactly in
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Fig. 4. The amplitude of the thermal stream function forced by a sinusoidal

distribution of ﬁ with unit amplitude and zonal wave number n. Parameters:
same as in Fig. 2.
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phase and the amplitude of the former is larger than that of the latter. The
$ wave has therefore no tilt in the vertical and amplifies with height. We
note that this is the case for the zonal wave numbers 1, 2, and 3. On the
other hand, if the $* and $T waves are precisely half a wavelength out of
phase and the amplitude of the Q* wave is larger than that of the $T wave,
the @ wave has again no tilt in the vertical and the @l wave has a smaller
amplitude than the $5 wave so that the stream function wave is damped with
height. This wave structure applies for zonal wave numbers L <nK< 18.

We conclude from the above discussion that when the zonal wave numbers
are considered individually the bottom topography forces standing waves which
have no tilt in the vertical, a result also obtained by Saltzman (1965). We
saw also that the forced harmonics of the stream function either amplify or
damp with height depending on their zonal wave number. As a convenient meas-
ure of the amplification or damping with height we can use the ratio of the
amplitude of the $l wave to that of the @5 wave. This ratio, denoted by A,
appears in Fig. 5 as a function of the zonal wave number. Clearly, for A > 1
we have amplification and for A < 1 we have damping with height. Just as ob-
served earlier, those components with n = 1,2, and 3 amplify while the others
damp with height. For example, we see that the amplitude of the wave com-

ponent n = 1 is about 1.6 times larger at 25 cb than at 75 cb whereas that

of wave component n = 16 is about 10 times smaller at 25 cb than at 75 cb.

2.4 THE RESPONSE OF THE MODEL TO IDEALIZED HEAT SOURCES AND SINKS
The discussion presented in this section is similar to that of the pre-

vious one except that here the standing waves are produced by the diabatic
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Fig. 5. The amp/](itude ratio of the stream function forced by a sinusoidal
distribution of Pg with zonal wave number n. Parameters: same as in Fig. 2.
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heating instead of by the topography. After setting R, = S, =Ty = 0 for
all values of n, Qn = 1 for some n and Qm>= 0 for m # n, we solve (2.20)
first with n = 1, then n = 2, and so on. Since in each case the heating

function has the form
f(x) = a_ cos (m\) (2.24)

the solution for the mean stream function can be written as

Q*(x) = Q*H(%) = Az cos (n\) + B; sin (n\) (2.252a)
* *

= C, cos (nx-an) (2.25b)

where
¢ o= A%+ B*2] (2.25¢)

n n n ’
and
-1

a: = tan" (Bo/AL) (2.25d)

with similar expressions holding true for the @T solution.

The amplitude C; of the mean stream function appears as a function of the
zonal wave number in Fig. 6. We see that contrary to the case where the
perturbations result from the presence of the topography (Fig. 2) the most
easily excited mode here is zonal wave number one. The decrease in CZ as n
increases is seen to be quite rapid; in fact, C: is less than 10% of CI and

* . *
C,o is again less than 10% of C).

The amplitude Cg of the thermal stream function can be seen in Fig. 7

as a function of the zonal wave number. Just as in the case of the mean stream

function, zonal wave number 1 is found to be the most easily excited mode.
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Fig. 6. The amplitude of the mean stream function forced by a sinusoidal
distribution of ﬁ with unit amplitude and zonal wave number n. Parameters:

same as in Fig. 2.
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Fig. 7. The amplitude of the thermal stream function forced by a sinusoidal
distribution of ﬁ with unit amplitude and zonal wave number n. Parameters:

same as in Fig. 2.
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The phase lag between the individual Fourier components (1 < n < 18) of
the heating function ﬁ and the corresponding components in $* and QT can be
seen as the upper and lower curves, respectively, of Fig. 8. The phase lag
is defined here as the distance, in units of the zonal wavelength determined
by n, between a ridge in the forcing function, ﬁ, and the first ridge down-

or @ . Thus we observe that for zonal

stream in the response, that is, $* T

wave number two the ridge in the mean stream function $* is about 0.42 of one
wavelength downstream from the ridge in the heating function. For this wave
number, therefore, the ridges (troughs) in the mean stream function occur only
slightly to the west of the longitudes of maximum cooling (heating). This is
in close agreement with the results obtained by Smagorinsky (1953) using a
zonal wavelength of 160 degrees of longitude and a meridional wavelength of

53.9 degrees of latitude (ours is 60 degrees of latitude).
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ig. 8. The phase difference between the nth zonal harmonic in the function
g and the same harmonic in the mean stream function (upper curve) or thermal
stream function (lower curve). The mean and thermal stream function waves are
to the east of the ﬁ wave by the fraction of the zonal wavelength indicated

on the ordinate. Parameters: same as in Fig. 2.
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For zonal wave number 2, the thermal stream function is displaced about
0.29 of one wavelength to the east of the heating wave and is therefore about
0.13 of one wavelength to the west of the $* wave. This, together with (2.21),
means that the stream function wave slopes to the west with height, a result
also obtained by Smagorinsky (loc. cit.). We note that as the zonal wave
number increases so does the phase difference between the mean and thermal
stream functions. In fact for n = 18 the Q* and @T waves are displaced from
each other by 0.49 of a wavelength so that the crests of the thermal stream
function nearly coincides with the troughs of the mean stream function. From
(2.21) we find that in this case the stream function wave is nearly vertical
and that its amplitude decreases with height.

The amplitude ratio A, defined as the ratio of the amplitude of the $l
wave to that of the @5 wave appears in Fig. 9. We see that wave components
1 and 2 amplify with height whereas the others damp with height. It is
interesting to compare these results with those shown in Fig. 5 where the
standing waves are maintained by the topography. We note, for example that
the amplitude of the stream function for n = 1 increases by a factor of about
3.9 between 75 cb and 25 cb when the wave is created by the diabatic heating
(Fig. 9) whereas it increases by only a factor of about 1.6 when the wave is

due to topographical effects (Fig. 5).
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Fig. 9. The amplitude ratio of the stream function forced by a sinusoidal
distribution of ﬁ with zonal wave number n. Parameters: same as in Fig. 2.




CHAPTER 3
THE RESPONSE OF THE TWO LEVEL MODEL
TO THE TOPOGRAPHY AND DIABATIC HEATING NEAR L5°N

3.1 THE RESPONSE IN THE CASE OF A CONSTANT FRICTION COEFFICIENT

In an attempt to see whether or not the model presented in Chapter 2 is
capable of reproducing the main features of the observed standing waves, we
shall determine the solution that it yields when Pg is obtained (using a stand-
ard atmosphere) from the ground height values published by Berkofsky and Bertoni
(1955) and H is taken from the computations by Brown (1964) for January 1962.
Since the system (2.17) is linear we can compute the response of the model at-
mosphere to the topography and to the diabatic heating separately and then ob-
tain the complete solution by adding the separate constributions.

In solving the model equations we shall use the same values for the

parameters as in Chapter 2, namely, F = L x 10° sec-l, U, =5m sec-l,

-1 -6 -1
U,=5msec , and p =0.95x 10 m . The values of U* and UT were chosen

T
to be representative of the middle latitude conditions in January, the month
for which the values of the diabatic heating apply. We shall also present
the response to the topography and heating for the case F = 6 x 10_6 sec_l
to show how an increase in the friction coefficient affects the standing
waves. By assuming that the value of F is independent of longitude, as we
have done in Chapter 2 and are doing in the present section, we are effec-

tively assuming that we can neglect the variation of the friction coefficient

from land to ocean. This assumption will be tested in Section 3.2. Sim-

Lo
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ilarly the assumption that we can use an effective meridional wave number p
will be discussed in Section 3.3.
Since we write the expressions for the pressure at the ground and for

the diabatic heating as

i}
1l

ﬁgm cos (uy) (3.1a)

and

jus}
Il

A(r) cos (uy) (3.1p)

we require, strickly speaking, to know only ﬁg and ﬁ along one latitude circle,
say U5°N. To introduce some smoothing, on the other hand, ﬁg(x) and ﬁ(x) were
taken to be the meridional averages of pg and H, respectively, between 30°N
and 60°N. The Fourier coefficients Rn and Srl appearing in the expansions

(2.19a) for ﬁg(x) were then computed from the relations

R = % 2 §g(x) cos (nA\)dx (3.2a)
S % égﬁ ﬁg(x) sin (n\)ax. (3.2D)

The coefficients Qn and Tn in the Fourier expansion (2.19b) for ﬁ(x) were ob-
tained by means of analogous relations. The integrals in (3.2) were evaluated
numerically using intervals of 5 degrees of longitude and the integral values
of n in the range 1 < n < 18.

As a check on the computations, the functions ﬁg(x) and ﬁ(x) were recon-
structed using (2.19a,b) and N = 18. The results are reproduced in Figs.

10(a) and 10(b) to facilitate the forthcoming discussion of the forced waves.
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Fig. 10(a). The function 3 as obtained from the first 18 zonal harmonics
(except n = 0) of the mean standard pressure at the ground between 30°N and
60°N. The position of the continents is shown schematically.
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Fig. 10(b). The diabatic heating function H as reconstructed from the first

5 and 18 zonal components (except n = 0) of Brown's (1964) diabatic heating
values between 30°N and 60°N for January 1962. The position of the continents
is shown schematically.
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In Fig. 10(b) the function ﬁ(x) reconstructed from (2.19b) with N = 5 is

also presented as the dashed curve to show that the smoothed version of Brown's
(1964) heating has the tendency to be positive over the oceans and negative
over the continents, as expected for the month of January.

To determine the importance of the topography in creating standing ed-
dies in our model atmosphere, we first considered the case H = 0. The system
(2.20) was solved for 1 < n < 18 and the result substituted into (2.19c,d) to
obtain $* and $T' The stream functions at 25, 50, and 75 cb were obtained by
means of (2.14) and (2.21) and finally the perturbation height Z was obtained
from (2.3). The results appear in Fig. 11. At the three levels the forced
pattern consists of a major trough near 140°E, a ridge near 120°W and a
trough near 70°W. If we refer to Fig. 10(a) we observe that the major trough
at 140°E in Fig. 11 occurs in the lee of the Himalayas and nearly coincides
with the eastern coast of Asia. We note also that the trough deepens by about
55 m and shifts by 5 degrees to the east from 75 cb to 25 cb. Near the west
coast of North America we find a ridge which slopes from 120°W at 75 cb to
125°W at 25 cb. The second major trough in Fig. 11 appears near 65°W at the
three pressure levels, that is, near the eastern coast of North America (see
Fig. 10(a)), about 45° downstream from the peak of the Rockies.

The response of the model atmosphere to the diabatic heating alone (solid
curve, Fig. 10(b)) appears in Fig. 12. Again we find that the most prominent
feature in the response is a trough near the eastern edge of Asia. The trough
is about three times deeper at 25 cb than at 75 cb and shifts to the west by

20° from 75 to 25 cb. A second trough can be seen over the Atlantic, sloping
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Fig. 11. The perturbation heights of the 25, 50, and 75 cb surfaces produced
by the interaction of the zonal current with the distribution of standard
pressure at the ground shown in Fig. 10(a). Parameters: same as in Fig. 2.
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Fig. 12. The perturbation heights of the 25, 50, and 75 cb surfaces produced
by the distribution of diabatic heating and cooling given by the solid curve
in Fig. 10(b). Parameters: same as in Fig. 2.
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from 30°W at 75 cb to 65°W at 25 cb. By comparing with Fig. 11 we find that
this trough, Just as the previous one, is in the vicinity of a terrain-in-
duced trough and therefore will tend to reinforce it. It is worth noting
also that according to our model the standing eddies created by the diabatic
heating are somewhat weaker than those produced by the topography.

It is apparent from a comparison of the response in Fig. 12 with the
diabatic heating given by the solid curve in Fig. 10(b), that the small scale
fluctuations in the heating have very little effect on the standing eddy pat-
tern, just as was indicated in Figs. 6 and 7. It follows that if we want to
relate qualitatively the position of the standing eddies to the heating we
can, as a first approximation, relate the forced pattern in Fig. 12 to the
smoothed heating given by the dashed curve in Fig. 10(b). By doing this we find
that the troughs tend to occur near the regions of large-scale heating and
the ridges near the regions of large-scale cooling. These results agree
qualitatively with those obtained by Smagorinsky (1953) and Gilchrist (1954),
for winter conditions, using a single zonal wave number.

The response of the model atmosphere to the forcing by both the topography
and the diabatic heating appears in Fig. 13 as the dashed curve at each of
the three levels. The solid lines show how the observed heights of the pres-
sure surfaces, averaged between 30°N and 60°N, vary with longitude. We see
that the model atmosphere is reasonably successful, especially at 75 cb, in
reproducing the main features of the observed pressure surfaces. The dot-
dashed curve in the figure is analogous to the dashed one except that it has

: -6 -1, -6 -1
been computed with F = 6 x 10 sec = instead of F = 4 x 10 ~ sec ~. The
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Fig. 13. The perturbation heights of the 25, 50, and 75 cb surfaces. The
solid curves give the observed distribution for January 1962, as averaged
between 30°N and 60°N. The dashed and dot-dashed curves show the response
of the model to the combined forcing by the topography and diabatic heating
(with N = 18) using F = L4 x 10-6 sec-1l and F = 6 x 10-° sec™; respectively.
The other parameters are the same as in Fig. 2.
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larger friction coefficient reduces the amplitude of the eddies but the ef-
fect is not drastic. The change in the value of the friction coefficient also
affects the position and vertical slope of the forced waves to some extent.
For the smaller value of F we find, at 75 cb, a major trough at 1LO°E, a
ridge at 120°W and a trough at 60°W, all of which slope to the west by 5°
from 75 to 25 cb. Between 10°E and 80°E the computed height at 75 cb shows
little change with longitude but at the upper levels a ridge is found sloping
from 25°E at 50 cb to 20°E at 25 cb. For the greater value of F we find that
at 75 cb the major systems are a trough at 135°E, a ridge at 120°W and a
trough at 60°W. These systems slope to the west by 5, 10, and 15 degrees of
longitude, respectively, from 75 to 25 c¢b. The ridge over Europe is again
rather flat at 75 cb but more distinct in the upper levels, extending from
15°E at 50 cb to 10°E at 25 cb.

It is important to note that for both values of F the troughs and ridges
slope to the west with height and share this feature with the observed stand-
ing waves. The westward slope with height in the observed standing eddies
is not a peculiarity of January 1962 but rather seems to be the usual struc-
ture observed in January (see, for example, Gilchrist (1953), Wiin-Nielsen
(1961), Saltzman and Sankar Rao (1963)) and is therefore one feature which a
model of the standing waves for January should be able to reproduce. We note
that with the present model the systematic westward tilt was not present in
the topographically induced perturbations (Fig. 11) since of the three major
systems one was sloping to the west, another was vertical and the third was

sloping to the east with height. The westward tilt of the eddies in Fig. 13
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is therefore due to the superposition of the thermally generated perturbations
on those produced by the topography.

We can conclude from the results presented so far that our model atmos-
phere can reproduce the main features of the observed standing waves at 25,
50, and 75 cb. We have seen also that the computed standing waves forced by
the topography and diabatic heating tend to be similar in the sense that they
are nearly in phase, but different in the sense that the response to the
topography is somewhat larger than the response to the heating. When con-
sidered alone, neither the response to the topography nor that to the diabatic
heating can adequately explain both the amplitude and structure of the ob-
served standing waves since the vertical slope of the former is not in good
agreement with observations and the amplitudes of the thermally produced waves
are too small. By adding the waves created by the diabatic heating to those
produced by the topography, on the other hand, we obtain standing eddies which
compare rather well with the observed ones in that they are in about the right
position, have about the right amplitude and slope to the west with height.

We recall that in the above model it was assumed that the friction co-
efficient F could be taken to be a constant and that a single meridional wave
number could be assigned to all the perturbations. In the following we shall

relax these assumptions somewhat and see how the results are modified.

3.2 THE RESPONSE IN THE CASE OF A VARIABLE FRICTION COEFFICIENT
The oceans and continents have been taken into account in our model inso-

far as they (a) affect the distribution of heat sources and sinks in the
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atmosphere and (b) produce a zonally asymmetric distribution of vertical
velocity at the lower boundary of the free atmosphere through the ascending
or descending motion of the air along the mountain slopes. There is a third
way, however, in which the distribution of continents and oceans can have a
bearing on the standing wave problem, namely, by causing a zonal asymmetry
in the distribution of the friction coefficient F. Unlike the topography and
the distribution of heat sources and sinks, the zonal variation in F cannot,
at least in the present formulation, interact directly with the zonal current
to produce standing eddies, but it can modify those created by the other two
mechanisms. It is our purpose in this section to investigate the extent to
which the standing eddies produced by the topography and diabatic heating are
modified when F is allowed to vary with longitude. The variation of F with
latitude will be neglected.

The basic system of equations for w* and WT in the case where F is a given
function of longitude is still (2.17). We can again let pg, H, W*, and wT be

given by (2.18) so that after substituting (2.18) into (2.17) we obtain

2n
a3} 2N A ay d
Ve m Vs (B - 22 S Ve SOV Bl N 2 Sl
aJ ey, a2 Ctu, CM T an T oeu, ¢ T U, and U, A
2.2 A
Uph™ ay 23 £ h 1.6U, ap
) T; de " FU : IIA’T - oo - U b (5.32)
* * Dy % an
and
3A 2A A A 2A
Up &V, m V% Up 2Py Ve %’ 5o Ve o.8mm ¢V
L D3 Teu, a2 Tu TP ar ey, Tl U, e
A 5
2 a LRf h
N (Q_ _u 82)h2 Vo ) Fugh5 Ao £o (1 1.6UT) Pq o ﬁ
U, d U, T b, Us O cpoppfl,
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2 . A
where & = (8f%)/(02p£) and h = a cos ¢,. To solve these equations for V
and $T we expand Q*, @T, ﬁg, and B in Fourier series as in (2.19). The

sinusoidal functions are not the eigenfunctions of the differential operators
in (3.3) but they are convenient here since they satisfy the periodicity con-
dition in A.

When the expansions (2.19) are substituted into (3.3) no difficulty

arises until the terms containing F(A) are encountered. These terms are

2n>
treated as described in the following example. Consider the term E%EE— v,
*
in (3.3%a). Let
A N
F(MV,(N) = Zi (g, cos (n\) + h sin (n))) (3.4)
n:
where
2
g, = = | T PODT, (M) cos (m)ar (%.5a)
and
noo= P RPN sin (m)an (3.50)
0 < 1 . . .
We recall from (2.19c) that
N % %
Ve(N) = ¥ (Ak cos (k\) + B sin (k\)) (3.6)
k=1 k

in which, for convenience, we have replaced the dummy index of summation n by
the index k. Substituting (3.6) into (3.5a) and interchanging the summation

over k and the integral over A\, we obtain
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—ig * e xd>\+l¥}3*f2“1~* in (k\) (n\)dr
& = = Z A [ F cos (k\) cos (n\) ey k [ sin ( cos (n\
(3.7)
or
N . N
gn = k§l ck,n Kk kgl ek,an (3 8)
where
1 21
e, . = = é F(A) cos (k\) cos (nA\)dn (3.9a)
b
and
21 .
e, . = = é F(A) sin (kA) cos (nmA)an . (3.9v)
i
Similarly, we find that
N , N .
h = 3 3 + .10
n k=1 Jk,nAk kzi qk,an (5 )
where
. 1 21 .
S = o é F(A) cos (k\) sin (n\)ax (3.11a)
)
and
1 2n . .
9 . = = é F(A) sin (k\) sin (mA)ax . (3.11b)
)

We note that once F(A) is specified the integrals in (3.9) and (3.11)

can be evaluated, at least numerically, and hence the factors ck o’ ek o’
) 2

J

_ and %Y, appearing in (3.8) and (3.10) can be considered known. If we
s 2

now substitute (3.8) and (3.10) into (3.4) we find that the product F(x)w*(x)



53

* *
can be written in terms of the basic unknowns A;, AZ""’AN and Bl’ B;,...,B§

as follows:

A N N * N *
FOMV,(A) = néi kzi ck,nAk + kzi ek’an cos (n\)

N N
* *
+ : + B¥| sin (n\) ) . .12
[kgl T,k kgl *,n k] sin (n )} (5.22)

2
The terms of the form F(x)dEQ*/dx appearing in (3.3) can be treated in a
similar manner without added difficulty.
If we treat the terms containing F(A) in (3.3) by the method described
A

above and substitute for ﬁ*, @T, P , and fi from (2.19) in the terms with con-

stant coefficients, we obtain, after some manipulation,

* T
oA, + oy AL = -ITy (3.1%a)

Il

* T
OBy + 7By JQ, (3.1%b)

N * g * g T N T
Xy Ap + .Y, B, + -1.6a X - 1.
El T k=1 (gk’n %, k,n)Ak kél wnYk’an
= qnkR, - a,JT, (3.13c)
> t,y * 7 Ty & T
Z. A, + oW - 1.60,.7, A, - (e. -1.60.W, .)B
o1 %k, nfk e k,nPk ) 6y, k,nk T 20 VSion n"k,n’ "y
= -0 nKS, - a,Jq, (3.134)

for 1 < n < N, where

U U '
3 T 21 B 2 T, 2 2
= n’(1l +—) -nh" =— -y +—(5-u)] (3.1k)
“n Uy [U* U,



U U
_ .3 T 2[:2_ 2 2 T
y = n’(1L+—=) - nh - 3% - po(1 + =) (3.15)
n U* U* U*
h = a cos ¢o
hRfoh5
J = 2 (3.16)
CPOQPhU*
£ he 1.6U
K = —2— (1. —7%) (3.17)

(x) [ng - (% - uz)h?J [}2 . u2h2:y} (3.18a)

if k = n, or

by = O I k#n (3.180)
Yeon T Tx%k,n (3.19)
Xen = Tdi,n (3.20)
Yon T Tk%,n (5.21)
“en T xCkn (3.22)

roo= == (624 %), (3.23)
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We note that there are 4N unknowns in (3.13), namely, AX, B, Ag, and
BE for the integral values of n in the range 1 < n < N. Contrary to the
case where F is a constant, the 4N unknowns here can be obtained only by
solving the system of LN algebraic equations implied in (3.13) since both
(3.13c) and (3.13d) contain all the unknowns. Of course, in the special
case where F is a constant the system (3.13) reduces to the system (2.20),
in which case the procedure consists in solving N systems of four equations
in four unknowns rather than one system of LN equations in LN unknowns.

In spite of the rather complex nature of (3.13) it is possible to deduce
at least two properties of the eddies forced by the topography without solv-
ing the system of LN equations explicitly. The first property relates to

the phase relationship between the $*(x) and @T(K) waves., It follows from

(3.1%a) and (3.13b) with T, = Q, = O that
*
B BT
n n
= = 5 (3.2k4)
AZ Al

The nth component of $* is therefore either (a) exactly in phase or (b)
exactly half a wavelength out of phase with the nth component of $T (see
(2.23)). Furthermore, since the eddy heat transport across a latitude circle

is proportional to the integral

I =

N
21 A aw*
[ 5

o
which here is equal to zero whether the alternative (a) or (b) holds true,

we conclude that the topographically induced standing waves in our model do

not transport heat in the meridional direction. This conclusion, we empha-
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size, is valid for any distribution of the friction coefficient.

We can also show from (3.13%a) and (3.13b) that the various Fourier com-
ponents of the topographically induced stream function amplify or damp with
height in a manner which is independent of the function F(A). Since the nth

N
components of Vy and $T have the form

AN
Von A; cos (n\) + B; sin (n\)

and

Ag cos (n\) + BE sin (n)\)

N
11an

it follows from (2.21) that the amplitude ratio A, defined as in Chapter 2,

is given by

(a5 + a0 + (85 + BD)® e
Ap = (A; i Ag)g . (8% - BE)E (3.25)
Using (3.24) and the relation
¥2 | _x2 2, 18 2
A, BT = () (A v By

which also follows from (3.13a) and (3.13b), it is easy to rewrite (3.25) as

an-yn
a, = =2, (3.26)

+
C(l’l 71’1

Since both o, and 7y are independent of F(A) we conclude that in the case of
topographically induced perturbations in our model each Fourier component of
the stream function has an amplitude ratio which does not depend on the distri-
bution of the friction coefficient. Figure 5 is therefore valid whether or

not F is constant.



57

In the following we shall prescribe a distribution of the friction co-
efficient and seek the solution to (3.13) using the same surface topography
and diabatic heating as in the previous section.

Since the friction coefficient F(A) enters the computations only through
the integrals in (3.9) and (3.11) we can solve the standing wave problem with
a simple or complicated function F(A) without added difficulty provided that
we evaluate the integrals numerically. In view of our limited knowledge
about F(A) we consider only simple cases in which F = F,, a constant, over
the oceans and F = F., another constant, over the continents. Thus we assume

that the distribution

F = F, for 0 <A< 145°E
F = F_ for 145°E < A < 120°W
F = F, for 120°W < A < 60°W
F = F_ for 60°W <A <O

is sufficiently realistic for our purposes.

We consider the response of the model atmosphere to the combined effect
of the diabatic heating and the topography using three separate pairs FO and
F.. First we solve (3.13) with F, = F, = LI x 10 sec-l, as in the previous
section, to provide a basis of comparison for the other cases where Fg # Fo.
We then obtain the solution to (3.13) with Fc/Fo = 2, choosing F, and F, in
such a way as to keep the zonal average of F equal to 4 x 10 sec_l. Finally

we use the ratio Fc/Fo = 6, again selecting Fo and Fy so that the zonal aver-

- -1
age of F is 4k x 10 sec . In all cases the computations are made with



58

N = 10, although tests have shown that N could have been set equal to five
without appreciable effects on the results. Except for F and N, the parameters
were assigned the same values as in the previous section, that is, U = 15 m
sec_l, UT =5m sec-l, p = 0.95 x 10_6 m_l, Op = 3 mA sec2 t-g.

Figure 14 shows the heights of the 25, 50, and 75 cb surfaces as func-
tions of longitude for the cases Fc/Fo = 2 (thin solid lines), F = constant
(dashed lines) together with the observed heights averaged between 30°N and
60°N. Changing the distribution of the friction coefficient from F = constant
to FC/FO = 2 has similar effects at all levels, namely, raising the height
values from about 100°E eastward to 80°W and decreasing them over the rest of
the domain. Thus the trough near 1L4O°E becomes somewhat less deep while the
ridge near 120°W and the trough near 60°W become more pronounced. The change
in F by a factor of two from oceans to continents does not produce radical
changes in the solution for the standing waves but on the other hand it should
be noticed that the small changes are such as to bring the computed and ob-
served standing waves into somewhat better agreement than in the case of a
constant friction coefficient.

Figure 15 differs from Figure 14 only in that its thin solid curves show
the standing eddies computed with F,/F, = 6 instead of Fo/F, = 2. The effects
of the variations in F on the standing eddies are of the same general nature
as those discussed above, but appreciably stronger. Again the effects of
the variable F are felt predominantly on the scale of wave number one since

the height values are raised from about 100°E eastward to 80°W (i.e., 180 de-

grees of longitude) and lowered from about 80°W eastward to 100°E.
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Fig. 14. The perturbation heights of the 25, 50, and 75 cb surfaces as they
are (a) observed (thick solid curve), (b) computed as a response to the
forcing by the topography and diabatic heating with Fc/Fo = 1 (dashed curve)
and (c) computed as in (b) but with Fo/Fo = 2. The other parameters are

as in Fig. 2.
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Fig. 15. Same as in Fig. 14 except that for the thin solid curve FC/FO = 6.
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We conclude from the results of this section that if the ratio Fc/Fo =2
is more nearly valid than the ratio Fc/Fo = 6 the modifications effected by
the variable F can be neglected in the standing wave problem; if the latter
ratio is more appropriate than the former, however, the variations in F must
be included.

It is helpful at this point to consider the formulation of the friction
coefficient F as given by Charney and Eliassen (l9h9) and to investigate what
a given ratio FC/FO implies about the flow in the boundary layer over the
oceans as compared to that over the continents. Charney and Eliassen (loc.

cit.) have shown that F is given by

) 1/2
p oo stelao) (e (3.27)

where & 1s the angle between the isobars and the surface wind, K is the coef-
ficient of eddy viscosity and H is the height of the homogeneous atmosphere.
On the average during the winter the air in the boundary layer over the oceans
has a somewhat lower static stability than that over the continents since the
oceans tend to warm the lower layers of the atmosphere while the continents
cool them. This effect tends to make K larger over the oceans than over the
continents but on the other hand the greater roughness of the continents tends
to have the opposite effect. As a first approximation it appears reasonable,
then, to neglect the variations of K with longitude. With this assumption we
find that the typical angles & = Q, over the continents and o = @, over the

oceans are related as follows:
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ES _ sin(2a5) (3.28)
F, ~ sin(2a,) '

According to Sutton (1953), a, has an average value o about 20°. If we were
to assume that Fc/Fo = 6 we would find that 0g = 3°, which is far lower than
the observed average value of about 13° (Sutton (1953), pp. 2L5-246). On the
other hand, with a ratio of Fc/Fo = 2 we obtain a value of oy = 9° which is
more nearly in agreement with observations. According to the above argument
it appears that for January the ratio Fc/Fo = 2 is more appropriate than the
ratio FC/FO = 6 so that as a first approximation the variations of F with

longitude can be neglected in the standing wave problem.

3.3 SOME EFFECTS OF TRUNCATION IN THE MERIDIONAL PLANE

We have so far assumed that the speed of the basic zonal current is in-
dependent of the y coordinate and that all the perturbation gquantities have
a single meridional wavelength. In this section we shall generalize the model
somewhat to allow the basic zonal wind to vary with latitude. In this case the
differential equations governing the forced perturbations have coefficients
which depend on y so that we cannot assume a simple periodicity in y for both
the forcing functions and the dependent variables. For simplicity we shall
again make use of the PB-plane approximation and replace the periodic
boundary conditions in y by the requirement that the perturbation stream func-
tion be identically zero along two given latitude circles; this is equivalent

to the assumption that the B plane is bounded in the north and south by
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solid vertical walls. We shall assume that the walls are located at 30°N and
60°N so that the width of the channel is equal to the half wavelength of the
single effective meridional mode previously used.

The perturbation equations for the case where U _ and UT are functions of

y can be obtained by simply subtracting the expressions

<d2U* o, U, %)
+
aye  x aye X

and

2
a 2
dy° X dye X

from the left-hand sides of (2.17a) and (2.17b), respectively. When the ex-
pansions (2.19) are generalized so that the left-hand sides are pg(k,y),
HON, ), v (Ay), WT(x,y) and the coefficients on the right-hand sides are
functions of y, we find that the differential equations for the coefficients

* * T T
An(y)s Bo(y), An(y), and B (y) take the form

2 5 5 5
21_ * d * q T 3 T
(ql w2 "% T E})An + (k3 - &) g;g)Bn + (q5 w2 " ay)A, + 1.6(¢), o2 - §5)Bn

bR, (¥) (3.29)

1]

2 2 2 2
d a d T d
(2572 = 85)n * (a1 g = G * 8508+ 1685 - 8y 52y + (a5 g - )R

= 18,(y) (3.29b)



where

6L

* d2 * d2 T 6 d2 )BT
- Q5)An + (EME;E - 55)Bn + (ql ?i—};é - g * EB)AH - 1. (E’L}EF - 55 N

~bRy(¥) + EoT,(¥) (3.29¢)

2 T 2

- (a3 2 + qS)BZ - 1.6(5,45—3;2 - §,5)An - (q 2% + 53)Bn

a5

a3

= 1S (¥) + £R,(¥) (3.294d)
2
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The Fourier coefficients Ry(y), S, (y), Q,(y), and Tn(y) appearing in
(3.29) were evaluated at intervals of five degrees of latitude between 30°N
and 60°N for 1 <n < 5. The system (3.29) was then solved numerically using

*

intervals of five degrees of latitude and the boundary conditions A; = Bn =

AT = BT = 0 at 30°N and 60°N. The mean and thermal stream functions were

n n
then obtained from the generalized form of (2.19) and the 50 cb perturbation
height field was computed from (2.3), (2.14), and (2.21).

The computations were first performed using U, = 15m sec_l and UT =5m
sec ~ between 30°N and 60°N and then repeated using the observed geostrophic
winds U, and UT shown in Table 1. The results for these cases appear in Figs.
16 and 17, respectively; the observed distribution of the perturbation height
is shown in Fig. 18. The results of Fig. 16 are an extension of those in Fig.
13 in the sense that they show the response to several meridional modes in the
heating and topography instead of only one. The response in Fig. 16 has most

of its relative maxima and minima at U45°N, indicating that the meridional

mode with a half wavelength of 30 degrees of latitude is the dominant one.

TABLE 1

THE OBSERVED VALUES OF U, AND UT FOR JANUARY 1962

Latitude 30 35 40 45 50 55 60

U*(m.sec'l) 21.3 19.6 17.5 16.3 14.8 13.0 11.0
U (m sec'l) 14.8 12.1 9.6 7.4 6.0 5.4 4.6
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The effect of the higher meridional harmonics is felt most strongly near 60°W
where the relative minimum is located at 55°N at all levels. Judging from
Fig. 18, this is a desirable effect since the observed trough near 70°W also
reaches its deepest value at 55°N at the middle and upper levels and at 50°N
at 75 cb. We note also that the trough line near 60°W at both 75 and 50 cb
slopes from the north-east to the south-west, just as the observed one at the
same levels; this feature could not have been obtainedlwithout the superposi-
tion of at least two meridional modes. We note also that the computed pertur-
bations slope slightly to the west with height, Jjust as the observed ones.

By comparing Figs. 16 and 17 we see that changing the zonal wind from
U, =15m sec"l and UT =5m sec_l to the values shown in Table 1 results in
a general reduction of the perturbation amplitudes and in a slight eastward
shift of the perturbations. It appears then that within the framework of the

B-plane approximation the observed variation of the zonal wind with lat-

itude does not produce drastic changes in the forced perturbations.

3.4 CRITICAL REMARKS

The model used in Section 3.3 is somewhat more general than the one used
in Section 3.1 in the sense that the perturbations are not forced to have a
single meridional wave number. On the other hand the model still contains
the undesirable feature that the width of the channel is arbitrary. The
choice of 30° for the width was made here so that one meridional mode would
have the same wavelength as the single meridional mode used previously, thus

providing some continuity in the models. Unfortunately some test computa-
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tions have shown that the response of the model atmosphere to either the
topography or the diabatic heating changes noticeably when the width of the
channel is increased to 50 degrees of latitude. It is clear that in the
future we should attempt to remove the arbitrariness in the choice of the
width of the channel by abandoning the B-plane approximation in favor of

a more general formulation in spherical coordinates.

In view of the above remarks the results of this chapter should be con-
sidered with some caution. It might be argued, for example, that the re-
sults shown in Fig. 13 are reasonably good because the chosen value of u
permits the most easily excited modes (n = 2 in Fig. 2 and n = 1 in Fig. 6)
to be those for which large amplitudes are found in the observed standing
waves., This may be the case but it remains a fact that the model places the
standing waves in very nearly the same position as the observed ones, a
feature which could not have been obtained simply through a fortunate choice

of u.



CHAPTER 4

THE MAINTENANCE OF THE AXISYMMETRIC REGIME

L.1 PRELIMINARY REMARKS

One of the important problems that meteorologists face in developing a
theory of climates consists in explaining how the axisymmetric part of the
general circulation is maintained against the dissipative forces. It has
become clear during the last two decades that while the radiative processes
provide the fundamental mechanism through which the atmosphere receives the
solar energy, the large—scale eddies play a vital role in redistributing the
energy in the north-south direction, thus affecting the axisymmetric com-
ponent of the flow. Several observational studies (see, for example, Wiin-
Nielsen, Brown, and Drake (1963), (196k4)) have shown, in particular, that the
eddies transport internal energy from the low latitudes, where the radiative
processes tend to increase the internal energy of the air, to the high
latitudes where the radiative processes tend to decrease the internal energy.
It is also observed that the same eddies tend to transport zonal momentum
from the low and high latitudes to the middle latitudes, thus helping to
maintain the kinetic energy of the jet stream against the dissipative forces
and also playing a role in determining the speed of the zonal current in the
low and high latitudes.

In the following we shall show that the quasi-geostrophic equations can
be written in such a way as to permit a simple analysis of the contribution

by the eddies to the maintenance of the.time-averaged axisymmetric component
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of the flow. The approach differs from that of Adem (1962), Williams and
Davies (1965), and Saltzman (1967) mainly in that our treatment of the dia-
batic heating is simplified compared to theirs and in that we consider the
eddy heat and momentum transports to be known from observations rather than
try to parameterize them in terms of the axisymmetric variables. It is hoped
that the present study can shed additional light on the role of the eddies in

the atmosphere and help in future attempts at parameterizing their effects.

L.2 THE MODEL EQUATIONS

Since the large-scale flow in the free atmosphere is observed to be
nearly geostrophic, we shall make use of the quasi-geostrophic formulation
of the hydrodynamic equations. Also, since we are interested in the meridional,
as well as vertical, variations in the axisymmetric regime, we shall write
the appropriate equations in terms of a spherical coordinate system where
A,®, and p are the longitude, latitude, and pressure, respectively.

As mentioned in Chapter 1, we shall use the steady state boundary value
problem approach. The time dependence will be removed from the equations by
averaging them with respect to time over a period of one year and assuming
that all yearly averaged quantities are time independent. If we use a bar

over a symbol to designate its annual mean value, that is

) = = 5" yat (k1)
T %,

where tg is some fixed time and T = 1 year, we can write the time-averaged

first equation of motion as
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, = — e > fv+F (L2)

where F is the friction force per unit mass and the other symbols
previously.

The vertical advection of momentum, wdu/dp, does not

appear in
(4.2) since we are using the quasi-geostrophic formulation.

Since the wind speed varies much more quickly in the vertical than in the

horizontal, we shall neglect those contributions to F which arise from the

horizontal variations of the wind speed and write

2 2
2 d 2 du d K du
F = — (Ko~ =) = gg . Eg— = 4.3
gap( Bp) RBp(T 3p) (.2)
where K is the coefficient of eddy viscosity, p is the density and T is the
temperature.

If we assume that K is a constant and note that T varies only

slowly with pressure, we can approximate (4.3) by

d du
F = A > (p2 E—O (4. kha)
where
8K _
A = o - constant (L. )

and T is some constant representative value of the temperature.

The above
formulation of the friction term is the same as that used by Robert (1966) in

the time integration of his primitive equations model.

The procedure now consists in substituting (4.4a) into (4.2) and then

taking the zonal average of the resulting equation.

By making use of the
fact that within the quasi-geostrophic theory only the nondivergent part of

the wind is retained in the terms on the left-hand side of (4.2), it is then

are defined
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possible to write the zonally averaged equation in the form

2 du
1 oM cos 9) - 9 ,. 272
8 cos<o Jo = fovy, A 3 (p 3 ) (k4.5)
where
M(p,¢) = (uEVE)Z (4.6)

is assumed known from observations. The subscript z denotes the zonal average

of the quantity, that is,

(), = = [T(Ha (5.7)

e}

and the subscript E denotes the deviation from the zonal average, that is,

the eddy component,

Thus M represents the horizontal eddy transport of momentum, averaged with
respect to time and longitude.
Within the framework of the quasi-geostrophic theory we can use the

thermal wind equation

auz R aTZ
op - af p Of (4.8)
to write (L4.5) in the form
1 oM cosg¢) - AR 9O o

Z
2y 3 = fovg + afy o (p ‘g;)- (4.9)

a cos
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The thermodynamic equation, averaged with respect to time, can be written

as
u 3T v T - H

—+-—- 80 = — b1

acos ¢ N a &M ® cp ( 0)

where

T aT

s = s(p) = = =2 =2 (L.11)
cp P dp

is a measure of the static stability. TS is the temperature in some standard
reference atmosphere and is a function of the pressure only (see Phillips
(1963)). For any pressure level p the value of T, could be obtained, for
example, by averaging the observed temperature over the closed surface
O<A<2n - n/2 < ¢ < n/2 and over a long period of time, say one year.

This means that we can define T (p) as

T (p) = % I;;g Tz(p) cos ¢ do
or
T,(p) = fﬂ/g @Z(p) cos ¢ do (4.12)

if, as will be done in the following, TZ is assumed to be symmetric about the
equator. In a quasi-geostrophic formulation Tg must be specified and there-
fore with our present model we cannot expect to obtain the area average of T,
that is, the average of iz (weighted by cos ¢) between the pole and equator.

We shall show, on the other hand, that we can determine how TZ changes with

latitude at a number of pressure levels.
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If we take the zonal average of (4.10) and note that in the quasi-geo-
strophic formulation the temperature field is advected horizontally by the
nondivergent part of the wind only, we find that the resulting equation can

be written as

H
1 (N cos ¢) -z
a cos ¢ o - Say = cp (%.13)
where
N(p,®) = (vgTg), (4.1L)

is proportional to the meridional eddy transport of sensible heat, averaged
with respect to longitude and time. In the following, N will be assumed to
be known from observations.

We consider the diabatic heating to be Newtonian in form so that

jasg]

;'E = Q(TR"E'Z) <u15)
1Y

where TR(p,¢) is the equilibrium temperature toward which the diabatic proc-
esses are driving the atmosphere and q is the heating or cooling coefficient.
TR can be considered to be the temperature that (hypothetically) would be
established in the atmosphere in the absence of the large-scale motion but
in the presence of radiation and small-scale convection. Charney (1959) has
discussed a heating mechanism of the form (4.15) for an atmosphere which was

assumed to be isothermal in the vertical, transparent to solar radiation and

"gray" to terrestrial radiation. From his discussion we obtain a value of
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-6
0.34 x 10~ sec = for q whereas Wiin-Nielsen, Vernekay and Yang (1967) found
-6 -1 .
a value of 0.4 x 10 sec using the calculated value of the generation of
eddy available potential energy from observations. Both of the above deter-
minations of q are based on a two-level representation of the atmosphere with
only one temperature value in a vertical column and do not indicate how g
varies in the vertical. For lack of more adequate information a constant
- -1, . . . .

value of @ = 0.4 x 10 sec is used in the present study. The distribution
of TR(p,¢), assumed known, will be discussed at a later stage.

For convenience we substitute (4.15) into (L4.13) to obtain the thermo-

dynamic equation in the form

1 AN cos ¢) - -
a cos 0 % - Sep = A(Tp-T,) - (4.16)

The equations (4.9) and (L4.16) have the unknowns Ez’ ;z and &2; to close
the system we introduce the continuity equation which, after being integrated

with respect to time and longitude, can be written as

Xv_ cos ¢) X
1 Z z
a cos ¢ 0 * dQp = 0. (4.17)

At this point we eliminate ;z and &z from (4.9), (4.16), and (4.17) to

obtain an equation in the single unknown Tz. This is done by first multiplying

1 9 ,
cos ¢ o to the

(4.9) throughout by cos ¢, applying the differential operator
resulting equation and then using (4.17) to eliminate the term containing QZ.

This yields the following equation relating at and T,:
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1 0 1 )M cosz¢)>

) agfocos o X \cos ¢

X
-2z _
dp
+ —%B— - cos ¢ 9 (p Eﬁé
a fg cos ¢ p boLd )

We now integrate this equation from p = O to an arbitrary p using the boundary

conditions
=0 at p=0
and
aTZ
P E@_ =0 at p=0

the latter of which is equivalent to saying that the frictional stress vanishes
at p = 0 (see (4. 4a) and (4.8)). We can then eliminate JE between the re-

sulting equation and (4.16) to obtain the following differential equation

for T :
Z
ST ) 2.2
1 d qa~fg _ a~f
cos ¢ (cos ¢ a¢z> - ARSpO T, = ARs; G(p,°) (4.18)
where
B 1 XN cos ¢) S d /1 I cos?)
G(p,0) = _qTR T & cos o o * aef‘ocos o 6¢<cos o )
(4.180)
and
I(p,®) = ép M(p,¢)dp . (L4.18c)

Since we have assumed TR, N, M, and S to be known, it follows that the

right-hand side of (4.18a) is known and therefore the problem now consists
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in solving (4.18a) for TZ subject to the appropriate boundary conditions.
For lack of information about the Southern Hemisphere we shall require sym-

metry in iz about the equator thus providing the boundary condition

oT

2
L)

= 0 at 0] = O; ( 14'- l9a)
the other boundary condition is provided by requiring

&Z bounded at ¢ = /2 . (L.19b)

The solution iz to (4.18a) can be obtained by expanding G(p,¢) as well

as %Z itself in terms of the even Legendre polynomials Pn’ that is,

T (p,®) = %, Tn(p)Pn(sin ¢), n even, (k.20a)
z n=0

G(p,o) = 2 Gp(p)Py(sin ¢), n even. (L4.20p)
n=0

The choice of the even Legendre polynomials is appropriate here because they
are the eigenfunctions of the differential operator on the left-hand side of
(k.18a) and they satisfy the boundary conditions (L4.19).

Substituting (4.20) into (L4.18a) we obtain the following equation for

the coefficients in the expansion of iz:

1 m

Tn(p) = - :3.- : m+n(r1+l) : G’n(p) (4’2]-3)
where
202
f
m = m(p) = £ o . (4.21b)
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Formally the procedure to obtain Tz(p,¢) consists in first computing

the coefficients Gn in the expansion (4.20b) by means of the relation
2
Cn(p) = (2011) [ " G(p,0)P,(sin ¢) cos ¢ d¢ (4.22)

where G(p,®) is known from observation and P,(sin ¢) can be obtained from the

recursion formila

nP_(sin ¢) + (n—l)Pn_

0 (sin ¢) - (2n-1)sin ¢ Pn_l(sin ¢) = 0

2

knowing that

Knowing the values of G,(p) we can find T (p) by means of (L.2la) and
finally Ez(p,¢) by means of (4.20a). 1In the actual computations it was
found sufficient to let the maximum value of n be 10 as the terms in the ex-
pansion (4.20a) decrease fairly rapidly in importance as n increases. To
some extent this is due to the fact that the frictional mechanisn has in-
troduced the factor n(n+l) as part of the denominator on the right-hand side
of (L4.2la). Thus the internal friction tends to damp preferentially those
components of iz in (4.20a) which have large values of n. It is also desir-
able to keep the maximum value of.n relatively small since the function TR

in (4.18b) is available at intervals of 10 degrees of latitude only.
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4.3 THE DATA

It is clear that to solve (4.18a) we need to know how the radiative
equilibrium temperature TR’ the eddy heat transport N and the eddy momentum
integral I vary with latitude at each pressure level p where we want to
obtain iz' Of the three required functions, the eddy heat and momentum
transports are by far the better known. The mean monthly values of the hori-
zontal eddy momentum transport, averaged with respect to longitude, for the
12 months of 1963, were made available by Professor A. Wiin-Nielsen for the
latitudes 20°N to 85°N at intervals of 2.5 degrees of latitude and for the
pressure levels p = 10, 15, 20, 30, 50, 70, 85, and 100 cb except for January
1963 when the data at the levels p = 10, 15, and 100 cb were not available.
At these three levels the momentum transport for January 1963 was computed
using the assumption that the ratio of the missing momentum transport to the
one at the closest level (also for January) where data are available is the
same as the ratio of the momentum transports at the same two levels in Feb-
ruary. The momentum transport values were then averaged over the year to ob-
tain the distribution of M as given in Table A-1 of the Appendix.

It has been pointed out by Holopainen (1967) that the momentum transport
values computed by Wiin-Nielsen, Brown, and Drake (1963, 1964) on the basis of
data analyzed objectively at the National Meteorological Center have a tendency
to be smeller in the low latitudes and larger in the middle and high latitudes
than the ones obtained by himself and other investigators using data analyzed

differently. The discrepancy can be expected to be present in the data of
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Table A-1 since they were computed in the same manner and from the same type of
data as those published by Wiin-Nielsen, Brown, and Drake (loc. cit.). It will

become apparent from the results of the present study, on the other hand, that
the effect of the eddy momentum transport on the temperature iz is appreci-
ably smaller (at least in the middle and high latitudes) than that of the
eddy heat transport. The eddy heat transport values used in this study do

not appear to have appreciable discrepancies when compared to those obtained
by White (1954) so that at least the combined effect of the eddy heat and
momentum transports on the solution iz is probably not in error by a great
deal.

To use the method of solution described in the previous section we re-
quire a knowledge of M from the equator to the pole. Since M was available
only from 20°N to 85°N at intervals of 2.5°, it was necessary to generate the
values between the equator and 20°N and the value at 87.5°N by means of some
reasonable extrapolation procedure. The extrapolation to the equator was

carried out on the hypotheses that M is symmetric about the equator and van-

ishes there. A simple polynomial of the form
2 b
M(p,®) = a,(p)o” + ay(p)? (4.23)

was used, where aq and a, were determined by imposing the conditions that M
and M/ be continuous at 20°N. As for 87.5°N and 90°N it was assumed that

M varies linearly from a value of zero at the pole to the given value at 85°N.
In this way the value of M could be considered known from the equator to the
pole at intervals of 2.5 degrees of latitude and at the pressure levels p = 10,

15, 20, 30, 50, 70, 85, and 100 cb.
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The eddy heat transport was also made available by Professor Wiin-Nielsen
in the form of mean monthly values for the twelve months of 1963 from 17.5°N
to 87.5°N at intervals of 2.5 degrees of latitude. The values applied for
the layers between the levels where the momentum transport had been computed.
For the month of January the data were not available for the layers 10 to 15
cb, 15 to 20 cb, and 85 to 100 cb. The missing data were substituted with
values obtained by extrapolating vertically in the same way as for the momentum
transport. The 12 mean monthly distributions of the eddy heat transport were
then averaged to yield the annual mean distribution, N cos ¢, as shown in Table
A-2 of the Appendix. The values of N cos ¢ at the pressure levels p = 10, 15,
20, 30, 50, 70, 85, and 100 cb were obtained by means of a linear interpola-

tion or extrapolation using the assumption that N vanishes at p = O.

At all pressure levels the heat transport N and the horizontal divergence
of the heat transport ON/d¢ were taken to be zero at the equator and the values

of N cos ¢ from 2.5°N to 15°N were computed by means of the polynomial

N(p) cos ¢ = bl(p)cb5 + be(p)¢5 (L4.2k)
in which by and b2 were evaluated by imposing the conditions that N cos ¢ and
(N cos ¢)/X be continuous at 17.5°N. An odd polynomial in ¢ was chosen to
extrapolate N cos ¢ in an effort to make each term on the right-hand side of
(L.18b) symmetric about the equator. It was hoped that this procedure would
minimize the number of terms required to obtain a good representation of
G(p,®) by means of (L4.20Db).

Of the three terms on the right-hand side of (4.18b), the one containing
the equilibrium temperature is the only one which cannot be obtained in a

straightforward manner from the standard meteorological observations. In
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fact, it appears that no cross section of TR extending from the low to the
high latitudes and from the earth's surface to the lower stratosphere has
been published, although some information is available for the stratosphere
(see Manabe and Strickler (1964), p. 379). For lack of better information
the values of TR near the ground published by Milankovitch (1930) were used
at p = 100 cb.

To obtain the wvalue of TR at the other pressure levels where N and M
were available, it was assumed that in the absence of the large-scale motion
the troposphere and lower part of the stratosphere would tend to be in a state
of convective equilibrium rather than in a state of pure radiative equilibrium
since the latter would be statically unstable (see Manabe and Strickler (loc.
cit.)). It can be expected that the vertical temperature lapse rate of an
atmosphere in convective equilibrium would be between the dry and moist
adiabatic lapse rates and therefore not radically different from the average
lapse rate in the real atmosphere. This suggests that setting the two equal
to each other would constitute a reasonable approximation.

Wiin-Nielsen (1959b) has shown that the differential equation

a T
_.S = '—T—R_'— = -
b

o ) (4.25)

a
)
where a is a constant determined from observations, yields a solution for T
which closely approximates the average temperature in the lower atmosphere.
It is found that the value a = 30°K gives a function S(p) which is in close

agreement with the observed distribution of S published by Gates (1961),

when the average of his January and July distributions is considered. Given
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that T =T at p 100 cb the solution of (4.25) is

Il
o)
Il

ro-or, (Ve 22 [1 - <§—)R/°ﬂ : (1.26)

The empirical formula (4.26), with a = 30°K, was used to extrapolate

the values of T, obtained from Milankovitch (1930) from 100 to 20 cb. The

R
values of TR at 10 and 15 cb were assumed to be the same as those at 20 cb
to simulate the lower stratosphere in the thermal equilibrium atmosphere.
This distribution of TR’ which appears in Table A-3 of the Appendix, is un-
doubtedly oversimplified but it does not appear possible at the moment to
improve upon it in a meaningful manner.

The constant A appearing in (4.18a) was evaluated (see (L.Lb)) using

2 -1 -
f = 250°K and K = 90 m  sec . With a representative density of 0.5 x 10 >

- -2 -1
tm 5, this value of K corresponds to a value of pu = p K= 4.5%x 10 " t m

-1 -2 -1
sec which falls between Palméh's (1955) estimate of 2.25 x 10 t m

sec™T and Riehl's (1951) estimate of 5.00 x 107 t m~+ sec™Y.

The static stability parameter S in (4.18) was evaluated as a function
of pressure from Gates' (1961) observational study of the static stability by
averaging his values of S for January and July. Some computations have
shown that the formula (4.25), which was used to extrapolate TR in the

vertical, could have been used to evaluate S with very little change in the

solution of (4.18).

L.4 THE COMPUTED TEMPERATURE DISTRIBUTION

The differential equation (L4.18a) was solved for iz by the method de-
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scribed in Section 4.2, The equation is linear so that the contributions to
the solution Ez by the three terms defining G(p,¢) are additive. In fact,
the sum of their contributions gives the complete solution iz since the homo-
geneous part of (L4.18a) has no solution satisfying the boundary conditions.
To determine the role that the eddies play in maintaining the axisym-
metric temperature field we shall compute %z firstly under the conditions

Ih =M= 0, N# 0, thus obtaining the effect of the eddy heat transport on

TZ, then under the conditions TR =N=0, M # 0, thereby obtaining the effect
of the eddy momentum transport on 52, and thirdly under the condition TR = 0,
N # 0, M# 0, to obtain the total contribution by the eddies to EZ. After

this study of the importance of the eddies we shall present the solution for

|

the case TR #0, M= N = 0 as well as the complete solution of (4.18) with
T # 0, M# 0, and N # 0.

The contribution to %z by the horizontal eddy heat transport N appears
in the form of a meridional-vertical cross section in Fig. 19. A positive
(negative) values of temperature at a given point indicates that the eddy
heat transport acts to raise (lower) the temperature at that point. The main
features of the results, namely, the cooling and warming of the low and high
latitudes, respectively, follow directly from the observed fact that on the
average the eddies transport heat northward with a maximum in the middle
latitudes. We note, in particular, that the computed effect of the eddy heat

transport on the temperature field is strongest near 70 cb and at high lat-

itudes.
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We recall that in our formulation the diabatic heating is given by

In the above computations, however, we have set TR = 0 so that

where q' 1s a positive constant. We can therefore obtain the diabatic heating
rate ﬁz for the present case by multiplying the value of iz in Fig. 18 by
-q' = -0.4 x lO_5 kj t_l deg-l sec_l. It is clear that in this case the low
and high latitudes are regions of diabatic heating and cooling, respectively.
The contribution to Ez from the eddy momentum transport alone appears
as a function of latitude and pressure in Fig. 20. The regions of positive
(negative) temperature are regions where the eddy momentum transport acts to
raise (lower) EZ. To see how the eddy momentum transport can affect tﬁe
axisymmetric temperature distribution, we first observe that the first equa-
tion of motion (L4.9) contains both the eddy momentum transport M and the
temperature so that a dependence of the latter on the former is not surprising.

We can show, on the other hand, even for an inviscid atmosphere, for which

(4.9) reduces to

2
1 AM cos ¢) -
a cos2o ) - fovz ? (h.27)

that the eddy momentum transport can have an effect on the axisymmetric temper-
ature field. From (4.27) we see that by their transport of momentum the

eddies force a mean meridional circulation with northward component v . The
z
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implied "vertical" component'wé is easily obtained from the continuity equa-

tion (L4.17) and finally from (4.16) with N = = 0, that is,

TR
Sw = gT = =-H (L4.28)

we can compute ﬁz. In physical terms, (4.28) states that for a steady state
to exist in the absence of the eddy heat transport there must be a balance
between the adiabatic heating or cooling due to the vertical motion (S&E) and
the diabatic cooling or heating (qiz).

From (4.28) and Fig. 20 we deduce that there is some diabatic cooling
and downward motion (ag > 0) in the region between 20°N and about 46°N and
near 80°N in the lower part of the atmosphere; in contrast, the polar front
region, from about U46°N to about 75°N, is one of diabatic heating and upward
motion.

Judging from Figs. 19 and 20 we can conclude that the eddy momentum
transport has its maximum effect on the temperature field at a higher level
than does the eddy heat transport. We note also that the effect of the eddy
momentum transport on Ez is rather small near the pole in contrast to that
of the eddy heat transport which is quite large. Perhaps the most important
feature to be noticed from Figs. 19 and 20 is the tendency that the heat and
momentum transports have, between 20°N and about 75°N, to oppose each other
in the way in which they affect iz' Thus south of about U45°N the temperature
values in Fig. 19 are pbsitive whereas the reverse holds between 45°N and
75°N. The effect of the eddy momentum transport on %z’ however, is smaller

than that of the eddy heat transport over most of the domain.
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The effects of the heat and momentum transports on the temperature
field, although opposite over most of the domain of interest, do not cancel
each other completely but rather produce the combined effect found in Fig.

2l. We see that the eddies cool the low latitudes and warm the high lat-
itudes with the maximum effects being found near 70 cb.

The contribution to the solution Ez by the function TR appears as the
dotted curves in Fig. 22(a) for the pressure levels p = 10, 15, 20, and 30 cb
and in Fig. 22(b) for p = 50, 70, 85, and 100 cb. The equilibrium temperature
TR appears in the figures as the dashed curve. The difference between the
dashed and dotted curves is due to the presence of friction. We note from

(L4.16) that in the absence of the eddies the vertical motion is given by

so that when Ez is greater than TR we have downward motion and when iz is less
than Ih we have upward motion. It follows from Figs. 16 and 17 that in the
case TR # O, M= N = O we have a one cell circulation with upward motion
in the low latitudes (where there is diabatic heating since iz < iR and down-
ward motion in the high latitudes (where there is diabatic cooling since
iz > C—DR).

The solution to (4.18a), determined by the observed values of M and N
for 1965 and the assumed distribution of TR, appears as the solid lines in

Figs. 22(a) and (b). Whereas the difference between the dashed and dotted

curves is due to the presence of the one-cell mean meriodional circulation
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Fig. 22(a). The dotted curves show the solution T as forced by the assumed
distribution of TR (dashed curve) for the pressurezlevels p = 10, 15, 20

and 30 cb. The solid curves show the solution iz as forced by the combined
action of TR together with the eddy heat and momentum transports. The tempera-
tures are in degrees Kelvin and are deviations from their respective area
average.
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Same as Fig. 22(a) but for the pressure levels p = 50,
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present in the absence of the eddies, the difference between the solid and
dotted curves results from the presence of the eddies, whose effect on the
temperature field was discussed earlier. It is clear from a comparison of the
solid and dashed curves that at all levels shown the large scale eddies and
friction mechanism force the temperature difference between 20°N and 80°N to
be appreciably smaller than in the thermal equilibrium condition. For ex-
ample, at 100 cb the computed temperature difference between 20°N and 80°N
(solid curve) is 13°K, as compared to 62° in the equilibrium temperature
(dashed curve).

The average observed temperature for the 12 month period starting in Feb-
ruary 1963 appears in Fig. 23. This figure is presented in a different for-
mat from that of Figs. 22(a) and (b) because the lack of data south of 25°N
made it impossible to compute and subtract from the data the average tempera-
ture over the northern hemisphere. If we focus our attention on the 100 cb
level, we find that the observed temperature difference between 25°N and 80°N
is larger than the computed one shown in Fig. 22(b). At first sight one might
suppose that the computed temperature difference could be increased by lower-
ing the value of the coefficient of eddy viscosity since in our formulation
friction acts to smooth out the variations of the zonal wind with pressure
or, equivalently, to reduce the meridional temperature gradient. Tests have
shown, however, that reducing the value of the coefficient of eddy viscosity
by a factor two increases the temperature difference between 25°N and 80°N
by only about 2°K. Since the heat and momentum transports are taken from ob-
servations, it seems that an improvement in our results hinges upon a better

specification of the equilibrium temperature.



96

"¢96T Axenageq ut Butuuideq potaad
J8a£ SUO 9Y] JSAO PoBBISAB PTOTJI oJanyBIsdwe] OTJIFOUMIAS TXB POAISSAO YL ¢z “3ITd
3aNLiLv

08 S, 0L 69 09 13} 0s Sty Oy G¢ o G2
[ T _ | _ _ | | _ I 00l

0L o

Py
m
1924
wn
/ c

Py

m




97

Although the solutions for iz at the various pressure levels shown in
Figs. 22(a) and (b) leave something to be desired, they do indicate how im-
portant the eddies and the friction mechanism used here can be in altering

the axisymmetric temperature field.

4.5 THE COMPUTED MEAN MERIDIONAL CIRCULATION

Once 52 is obtained from (L4.18a) for a given pressure level it is a
simple matter to solve (L4.16) for @, the "vertical velocity" in the axisym-
metric regime, since N, TR, and S are taken to be known. The vertical-
meridional cross section for u} appears in Fig. 24 for the case where the
heat and momentum transports are included and TR is as shown in Figs. 22(a)
and (b). The direction of the arrows indicates whether the air is moving
toward a higher or lower pressure. It may be mentioned for convenience here
“that at 70 c¢b a value of &% =10 x 10—6 cb sec_l corresponds to a vertical
velocity of about 1 mm sec_l. We find some upward motion from 20°N to
about 24°N, downward motion from 24°N to about U46°N changing into upward
motion to about 65°N and finally some downward motion from 65°N to 80°N.
This distribution is in good agreement with the results obtained by Vernekar
(1967) in his extensive study of the mean meridional circulation.

In view of the continuity equation (L4.17), &E and ;z can be written

in terms of a stream function V(p,¢) as

5 = -— X (4.29a)

_ o,
v = > (L4.29b)



98

‘umauswow pue 389Y Jo sjIodsusay Appe TBIUOZTJIOY oUY] PuB
BuTyBOY OT3BYBIP SY3 WOJIJ JUTFTNSSI nﬂxoom qo w:oa Jo sjtun ut ‘4n Jo PTOTJ SUL H2 ‘814

3dN 1LV

08 64 0L G9 09 GG 0S G O G¢ 0 G2 0¢
T T T T T T T T T T 00l

(99) 3YNSS34d




99

To find what boundary conditions V¥(p,®) must obey, we first note from the
first equation of motion (4.9) that the conditions a&z/am = M/ =0 at

¢ = 0, which have already been used, imply that ;Z(p,O) = 0 so that

y(p,0) = constant. (4.30a)
The usual boundary condition &E(O,¢) = 0 then implies that

¥(0,0) = constant (L4.30b)

and finally the condition that Qz(p,n/E) be finite implies, through (4.29b),

that

>
kel - L.
®|(p,n/2) (4 500)

From (L4.30a,b,c) it follows that
¥(p,0) = ¥(0,%) = ¥(p,n/2) = constant. (k.31)

For convenience we shall take the constant in (4.31) to be zero.
The stream function ¥(p,¢) can be obtained by integrating (4.29a) so

that

¢

W(p,®) = - [ ® cos ¢ ds . (4.32)
o 2 '

The‘boundary condition at ¢ = O is automatically satisfied while the one at
¢ = 1/2 can be shown to be satisfied by using the equation of continuity (L4.17)
and the condition vz(p,O) = 0.

The stream function y(p,¢) corresponding to the &% field of Fig. 2L was

computed from (4.32). The integral was evaluated numerically using finite
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intervals of A® = 2.5 degrees of latitude. The results are given in Fig. 25,
where the arrows indicate schematically the direction of flow. The Hadley
cell, centered at about 24°N, is clearly visible with its southerly flow

at the high elevations and northerly flow near the ground. The middle lat-
itude cell, centered at about 50°N and also well defined, shows the presence

of a southerly current in the low levels with a return circulation aloft.

4.6 THE COMPUTED MEAN ZONAL WIND
To obtain the speed of the zonal current in the axisymmetric regime we
integrate the thermal wind equation (4.8) so that ﬁz takes the form
T

- _ = R O i =z
uZ(p,¢) = uz(pg,¢) + oty 0 £ 5 dp (4.33)

g

where pg is the pressure at the ground. While the second term on the right-
hand side of (4.33) can easily be evaluated using the distribution of ﬁz already
computed, a method must now be found to evaluate ﬁz(pg,¢). To do this we note

that the friction term F in (L4.3) can be written as

or

F o= 8% (4.3k)
where T is the zonal component of eddy stress, so that (4.5) becomes
) or
1 oM cos“9) - z
= f +g=< . L.
a cosco o) o'z & o (4.35)

If we neglect the presence of the continental elevations so that &% =0 at

the earth's surface, we find from the continuity equation (L4.17) that
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°3a = o
p Z
g

so that by integrating (L4.35) from p = 0, where T, = 0, top = pg we obtain

1 B(Igcos2¢)
T 0) = L. 36
Tz,g( ) ga cosco oL (4.362)
where ;z g is the value of TZ at the ground and
J
b
I = [ &Mp,)dp . (L.36b)

g o

If we now assume that the stress and wind speed at the ground obey the rela-

tion

e = 7 Capglu,(pgs?) (4.37)

where Cy4 is the drag coefficient, pg the density at the ground and V a char-
acteristic wind speed, we obtain the following equation for the wind speed at
the ground:

2
¢
N N B(Igcos )

- gaCqogV cos2o o

uz(pg,¢) = . (L.38)

5

In the computations of ﬁz(pg,¢) we use the following values: Cgq = 5 x 10 R
P -5 -1 . s
pg =10 "t m 7, V=10msec , following Phillips (1956).
Since the eddy momentum transport is known from observations, the inte-
gral in (4.36) can be evaluated and the zonal wind at the surface can be

determined from (L4.38). The results can then be substituted in (4.33) to ob-

tain the two-dimensional distribution of uz(p,¢).
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The contributions to the complete solution ﬁz(p,¢) by the eddy heat
transport, the eddy momentum transport and the equilibrium temperature distri-
bution are additive so that it is a simple matter to investigate the importance
of the eddies in determining the speed of the zonal flow. For this purpose we

have computed the distribution of ﬁz(p,¢) under the following special condi-

tions:
(a) N# 0, M= Tp = O
(b) M#O0, N= Tg =0
(¢) N#£0, M# 0, T, =0
(d) N=M=0, T #0

(e) N#£0, M% O, Ty # 0.

Those are the same cases for which iz(p,¢) has been computed previously.

The solution for case (a), giving the contribution by the eddy heat trans-
port to the complete solution for ﬁz(p,¢), appears in Fig. 26. This zonal
wind distribution is that which is in geostrophic equilibrium with the temper-
ature field of Fig. 19, with zero wind speed at the earth's surface since in

0 (see (4.38)). The

the absence of the eddy momentum transport ﬁz(pg,¢)
results indicate that south of about 30°N the eddy heat transport tends to
produce weak westerlies while north of 30°N the tendency is to produce easter-
lies which increase in speed with decreasing pressﬁre.

If it were not for the eddy heat transport, then, the observed middle
latitude westerlies would have still greater speeds. Although this fact has
been known for some time, it appears that this is the first time that a

quantitative presentation based on observations is given.
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The contribution by the eddy momentum transport to the distribution of
the zonal mean wind can be found in Fig. 27. This distribution of ﬁz(p,¢)
is the one obtained for case (b) and is in geostrophic equilibrium with the
temperature field of Fig. 20. Figure 27 shows that the eddies transport
momentum in such a way as to produce westerlies from about 34°N to about 60°N
and easterlies south of 34°N and north of 60°N. In each of the three regions
the maximum influence of the eddy momentum transport is found at 10 cb, the
highest level for which computations were made. This result deserves some
comments in view of the fact that the eddy momentum transport for 1963 is
found to have its relative maxima between 20 and 30 cb, not at 10 cb. Further-
more, Wiin-Nielsen (1967) has found that for the 12 month period starting in
February 1963 the rate of kinetic energy conversion between the eddies and
the zonal flow is a maximum near 20 cb. The question before us is the fol-
lowing: 1f the eddies transport more momentum and interact most strongly with
the zonal current in the 20 to 30 cb region, why do we find, with the present
formulation, that the speed of the zonal current is affected most by the eddy
momentum transport'at 10 cb? To answer this we must first remember that
while the eddies are more effective at transporting and transferring their
momentum to the zonal flow between 20 and 30 cb, they are also quite effec-
tive at creating a mean meridional circulation. The computations of the
axisymmetric stream function show that the eddy momentum transport results
in a three-cell mean meridional circulation with, in particular, the maximum
northerly flow in the middle latitudes occurring between 20 and 30 cb.

Through the action of the Coriolis force this circulation tends to create
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easterlies near the middle latitude tropopause in opposition to the other ef-
fect whereby the eddies tend to create a source of eastward momentum for the
zonal current. A discussion of these two effects can be found in the article
by Wiin-Nielsen and Vernekar (1967) but since their mean meridional circula-
tion was produced by both the eddy momentum and the eddy heat transports in

an inviscid, adiabatic atmosphere, their results are not directly comparable
to ours. We should also note, in answering the above question, that the inter-
nal friction in the present study acts in such a way as to smooth the vertical
distribution of ﬁz(p,¢). Some test computations have shown, on the other hand,
that even when the eddy coefficient of viscosity is reduced by a factor two
the single maximum and the two minima in ﬁz(p,¢) still occur at 10 cb.

If we add the values of ﬁz(p,¢) in Figs. 26 and 27 we obtain the solution
for case (c) mentioned above. The results, which indicate the combined ef-
fects of the heat and momentum transports on the zonal current, can be found
in Fig. 28. Briefly, we note that the eddies tend to produce easterlies in
the low and high latitudes and weak westerlies in the middle latitudes.

The solution for ﬁz(p,¢) determined by the function TR and the influence
of internal friction appears in Fig. 29. This distribution of ﬁz is in geo-
strophic equilibrium with the temperature values given by the dotted curves
in Figs. 22(a), and (b) and is identically zero at p = 100 cb since the ef-
fect of the eddies is not included. We note that in the absence of the eddies
the zonal flow would consist of a broad westerly current with a maximum speed
near S5L4L°N. We note in particular that the wind speed increases with decreasing

pressure at all latitudes as a consequence of the fact that the temperature
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given by the dotted curves in Figs. 22(a) and (b) decreases from south to
north at all levels. This temperature distribution was obtained using TR as
a forcing function which, in turn, was extrapolated vertically from surface
data. Due to the vertical extrapolation of TR’ the values of TZ giveh by
the dotted lines in Figs. 22(a) and (b) are probably less reliable at the
upper levels than at the lower levels and hence the vertical wind shear at
the upper levels in Fig. 29 should be considered with some caution. Never-
theless it is instructive to investigate how far we can go in trying to re-
produce the observed mean zonal wind by adding the contributions shown in
Figs. 28 and 29.

The result of adding the contributions to ﬁz by the eddies (Fig. 28) and
by the function TR (Fig. 29) appears in Fig. 30 and represents the complete
solution for ﬁz. We notice that the westerly current is concentrated in a
band centered at about 46°N and flanked by weak easterlies in the low and
high latitudes. Figure 30 should be compared with Fig. 31 which shows the
observed geostrophic zonal wind averaged over the period February 1963 through
January 1964. At the low levels the observed maximum speed is found near
L5°N as in the computed distribution; at the high levels, on the other hand,
the observed maximum speed is found further south than in the computed distri-
bution. In the low and high latitudes we find weak easterlies in the computed
zonal wind whereas weak westerlies are observed. Considering that Figs. 28
and 29 are used to obtain Fig. 30, we see that the westerlies forced by the
function TR (Fig. 29) are not sufficiently strong in the low and high latitudes

to overcome the easterlies forced by the eddies (Fig. 28). Part of the dif-
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ference between Figs. 30 and 31 is probably due to the type of data used to
compute the momentum transport (see Section 4.3) but some of it is undoubtedly
due to the simplified distribution of TR that has been used. It appears,

for example, that if the function TR decreased more quickly with latitude in
the low troposphere of the low and high latitudes and increased slightly

with latitude in the lower stratosphere, the solution for ﬁz(p,¢) would be

considerably improved. It seems, however, that little would be learned from

using a different distribution of TR and therefore the matter will not be

pursued.



CHAPTER 5

CONCLUSION

5.1 SUMMARY OF THE RESULTS

By separating the time-averaged state of the atmosphere into the eddy
and axisymmetric components, it has been possible to investigate the mainte-
nance of each component against the dissipative forces. It was assumed that
the more important mechanisms responsible for the maintenance of the standing
waves could be reproduced by means of a linearized, steady state, two level
model of the atmosphere in which the zonal current is perturbed by the earth's
topography and by a steady distribution of heat sources and sinks. In the
first treatment of the model it was further assumed that (a) a single effec-
tive meridional wavelength Ly can be assigned to all perturbation gquantities,
(b) the speed of the basic zonal current is independent of latitudes, and
(c) the frictionally induced vertical motion at the top df the boundary layer
is related to the vertical component of vorticity through a "friction coef-
ficient" which is independent of longitude and latitude.

An investigation of the model was made with a basic state chosen to
simulate winter condition and with Ly = 60 degrees of latitude. The results
indicate that the model atmosphere tends to be most easily excited by those
Fourier components of the topography and diabatic heating which have a large
zonal wavelength. Furthermore, the components of the stream function with
large zonal wavelengths are found to amplify with height whereas those with
small zonal wavelengths are damped with height.

11k
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When the zonal variations in the standard pressure at the ground and in
the diabatic heating for January 1962 are evaluated from the data published
by Berkofsky and Bertoni (1955) and Brown (1964), respectively, the model
atmosphere yields standing waves which exhibit a fair degree of similarity
to the observed ones. When the forcing effects of the topography and of the
diabatic heating are considered separately we find that the standing waves
produced by the topography are in about the same position as those produced
by the heat sources and sinks and that the former have somewhat larger am-
plitudes thanthe latter. The topographically induced standing waves appear
to show no preferred slope with height in the sense that at some longitudes
the waves slope slightly to the west with height while at others they are
either vertical or slope slightly to the east with height. All the major
troughs and ridges which are produced by the diabatic heating obtained from
Brown (1964), on the other hand, slope to the west with height. Similarly
when the composite response of the model to both the topography and diabatic
heating is considered, we find that the major features in the response shift

to the west with height, in general agreement with observations.

In an attempt to determine how a variation of the friction coefficient
F with longitude would affect the standing eddies, the model equations were
solved for the simple case where the friction coefficient has one value F,
(relatively large) over the continents and another value F, (relatively
small) over the oceans. Computations were made using Fo/F_ = 2 and F./F, = 6,
in each case choosing F, and Fg in such a way that the zonal average of F
was the same as that used in a control calculation with a constant value of

F. TFor the case where F,/F, = 6 the computed heights of the 25 and 75 cb
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surfaces were found to be quite different from those obtained with F./F, = 2
which, in turn, were only slightly different from those obtained with Fc/Fo = 1.
Judging from the observed variations of the angle between the surface wind and
isobars with longitude it appears that the ratio Fc/Fo = 2 is more nearly valid
than the ratio Fc/Fo = 6 so that assuming F to be constant is probably a fair
approximation in the present context. It should be noted, on the other hand,
that although only small changes are produced in the standing waves by using
FC/Fo = 2 instead of Fc/Fo = 1, the changes are such as to bring the computed
standing waves and the observed ones into somewhat closer agreement.

In an effort to relax the restrictive assumption concerning the existence
of a single effective meridional wavelength for the perturbation quantities,
the model was generalized somewhat in order to allow several meridional modes
in the forcing mechanisms (i.e., the topography and diabatic heating) and in
the forced perturbations. Because the B-plane geometry was used it was
necessary to assume the atmosphere to be bounded by solid vertical walls at
the southern and northern boundaries, taken to be 30°N and 60°N, respectively.
This assumption was found to be still restrictive but nevertheless the added
degrees of freedom in the meridional plane made it possible for the computed
standing waves to exhibit a tilt from the north-east to the south-west as is
found most noticeably in the observed trough near the east coast of North
America. The additional meridional modes had a second noticeable effect in
that they caused the computed trough near the east coast of North America to
be centered at 55°N, rather tﬁan 45°N, as in the previous formulation of the

model, thereby coming into closer agreement with observations. The problem
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was solved using finite differences in the meridional coordinate, a procedure
which made it possible to remove the assumption that the speed of the zonal
current is independent of the meridional coordinate. Some computations using
the observed geostrophic zonal wind as the basic current yielded standing
waves with smaller amplitudes than those obtained using constant values of

U* = 15 msec”l and UT =5m sec_l for half the sum and half the difference,
respectively, of the speeds of the zonal current at 25 cb and 75 cb. The re-
sults served ag a further indication that significant improvements in the
model can only be achieved by using a spherical coordinate system.

The approach used in studying the maintenance of the standing eddies was
then reversed in order to examine how the axisymmetric regime in the atmos-
phere is affected by the eddies, both transient and stationary. By using the
quasi-geostrophic formulation with internal friction and assuming the axisym-
metric diabatic heating to be Newtonian it was possible to show how the axisym-
metric temperature field is affected by the eddy heat and momentum transports
as well as by the assumed distribution of the convective-radiative equilibrium
temperature. The results indicate that the eddy heat and momentum transports
tend to oppose each other in the middle latitudes in the way they affect the
temperature field. The combined effect of the two mechanisms is to heat the
high latitudes and cool the low latitudes. One advantage of the formulation
is that the effects of the eddies on the temperature field are given in degrees

Kelvin rather than as heating rates as was the case in the study by Wiin-

Nielsen and Vernekar (1967).
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From the solution obtained for the temperature field it was possible to
determine the velocity field. The mean meridional circulation thus obtained
shows reasonable agreement with those obtained in previous investigations.

A study was also made of the role played by the eddies in determining the geo-
strophic zonal wind. It was found that the eddy heat transport tends to pro-
duce easterlies north of 30°N, with the maximum effect being found at 10 cb,
and weak westerlies south of 30°N also with the maximum effect in the upper
levels. The computations indicated that the eddy momentum transport tends to
produce westerlies from about 34°N to about 60°N so that in this latitude
belt the eddy heat and momentum transports oppose each other in the way they
affect the zonal current. To the south of 34°N and to the north of 60°N the
effect of the eddy momentum transport was found to be such as to produce
easterlies with maximum speeds at the top level (10 cb). The result of add-
ing the effects of the eddy heat and momentum transports indicated that the
eddies tend to produce easterlies in both the low and high latitudes and weak
westerlies in the middle latitudes.

The final solution for the zonal wind was obtained by adding the zonal
wind distribution produced by the eddies to the one that would exist if the
atmosphere were in a state of convective-radiative equilibrium. In spite of
some discrepancies between the observed and the computed zonal winds, the re-
sults did show the importance of both the eddy heat and momentum transports
in modifying the distribution of the zonal wind. In particular, it was
found that in the state of convective-radiative equilibrium the zonal wind

distribution has a maximum speed which occurs too far to the north and shows
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the presence of westerlies which are too strong in the low and high latitudes
when compared with observations. It was shown that the eddies tend to shift
the maximum westerly speed toward the south and to produce weak easterlies in
the low and high latitudes. It is suspected that the differences between the
computed and observed zonal winds are largely due to the poorly known and
probably poorly specified convective-radiative equilibrium temperature, or

to the type of eddy momentum transport used, or to & combination of both

factors.

5.2 CONCLUDING REMARKS AND SUGGESTIONS FOR FUTURE WORK

The present investigation has been successful in showing that the two
level model is a convenient tool for studying the msintenance of the standing
eddies. It has become clear, however, that the P~plane approximation is
rather restrictive and that to progress beyond the level of accuracy achieved
in the present study proper attention must be given to the spherical geometry
of the earth. It has become clear from the study by Sankar Rao (1965), on the
other hand, that the spherical geometry introduces some new problems associated
with the variation of the Coriolis parameter with latitude. Sankar Rao has
simplified the problem by assuming, as we did in the B-plane geometry,
that the variation of f could be neglected everywhere except in the so-called
"8 term" of the vorticity equation where a constant value of 4af/ds (¢
being the latitude) could be used. It appears from his discussion of the ef-
fect of rotation that this treatment of the Coriolis parameter is unsatis-

factory when dealing with standing waves over a complete hemisphere and could
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be responsible for the lack of agreement between his topographically forced
waves and the observed standing waves. It would be of great importance,
therefore, to investigate in more detail how the variation of the Coriolis
parameter with latitude affects the response of the atmosphere to stationary
forcing mechanisms.

After developing a model which properly takes into account the spherical
geometry and the rotation of the earth, it would be instructive to determine
the type of forced waves that it yields in response to the steady forcing by
the topography, the time-averaged diabatic heating and the time-averaged ef-
fects due to the transient disturbances. Observational studies on the inter-
action between the standing and transient eddies by Murakami (1960) and
Holopainen (1966) indicate that on the average over a period of one year or
more there is a transfer of kinetic energy from the standing to the transient
eddies. The rate of kinetic energy transfer appears to be sufficiently large
to be of some importance in the energy budget of the standing waves and
therefore should be included in future models of the stationary disturbances.
The method suggested by Saltzman (1962) appears promising.

Our study of the maintenance of the axisymmetric regime could probably
be improved by the use of a more realistic heating mechenism. In addition,
the model should be generalized to permit the determination of the area aver-
age of the temperature at the various pressure levels. This would undoubtedly
require the inclusion of the small-scale convective transports of heat and
momentum in the vertical. It would also be necessary to abandon the con-
venient quasi-geostrophic formulation since in it we assume that the area aver-

age of the temperature is a known function of height.
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TABLE A-2

ANNUAL MEAN OF EDDY HEAT TRANSPORT FOR 1963
-1 -
Units: 109 kj cb sec-l

Pressure (cb)

Latitude T o™ 0505030 30-50 _ 50-70 _ 70-85 __ 85-100
87.5 0. 0.0 - 0.1 0.1 0.7 0.4 0.5
85.0 0.1 0.3 0.5 0.3 1.1 1.7 1.9
82.5 0.4 1.5 - 0.1 0.6 2.4 3.3 3.6
80.0 0.9 2.4 0.5 1.3 3.4 4.9 5.8
77.5 2.8 b1 1.k 2.6 5.4 6.7 8.2
75.0 4.5 4.9 2.7 4.1 7.5 9.0 11.2
72.5 6.9 6.2 4.3 5.5 10.2 12.0 13.0
70.0 9.0 7.7 6.0 7.4 12.0 15. 4 15.2
67.5 11.0 10.1 8.1 10.1 16.5 19.2 19.2
65.0 13.6 13.7 10.9 13.2 20.2 23.5 24,1
62.5 16.6 17.5 13.7 16.5 24,7 28.8 28.7
60.0 18.7 20.9 17.0 19.6 29. 4 34,6 32.8
57.5 20.0 24,7 21.2 22.4 33,6 Lo. 4 36.7
55.0 21.3 28.9 25.7 24.9 37.6 45,7 40.6
52.5 22.5 33.0 29.1 26.6 b1.6 49.8 43,1
50.0 23.5 37.0 30.7 27.0 L4, 6 52.2 43,3
7.5 24,0 39.4 30.1 26.7 45,2 52.8 42.9
45.0 24,1 39.0 28.5 25.6 43,8 51.9 ho,1
bo.5 24,8 38.0 27.7 24,3 40.9 49.3 40.3
40.0 25.1 37.6 28.1 22.7 36.3 Lh h 37.2
37.5 23.0 36.5 27.9 20.2 29.9 37.0 32,4
35.0 19.0 33.3 25.5 16.7 22.7 28.7 26.5
32.5 141 27.0 20.5 12.1 15.7 21.6 21.1
30.0 8.8 19.4 13.6 7.2 10.1 15. 4 16. 4
27.5 5.5 11.8 7.1 3.9 5.9 9.8 12.5
25.0 4.8 6.5 2.9 2.1 2.9 5.7 9.3
22.5 5.5 4,2 -0.9 1.2 1.0 2.5 6.3
20.0 6.4 1.0 -1.9 1.0 0.2 1.0 4.6
17.5 7.4 1.6 -1.0 1.6 0.4 0.9 4,2
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TABLE A-3

THE ASSUMED DISTRIBUTION OF TR

Unit: Degrees Centigrade

Latitude

Pressure (cb)

10, 15

and 20 30 50 70 85 100

90 -8€.6 -76.6 -62.2 -51.5 -4h.9 -39.0
80 -82.7 -72.2 -57.1 -45.9 -38.9 -3%2.8
70 -77.1 -65.9 -49.8 -37.9 -30.4 -23.9
60 -69.0 -56.8 -39.3% -26.3% -18.2 -11.1
50 -60.2 -47.0 -27.9 -13.8 - 5.0 2.8
Lo -53.2 -39.1 -18.8 - 3.7 5.6 13.9
30 -48.0 -33.3 -12.0 3.8 13.6 22.2
20 -4ha -28.9 - 7.0 9.3 19.4 28.3
10 -42.0 -26.5 - 4.2 12.3 22.6 31.7
0 4.3 -25.7 - 3.3 13.3 23,7 32.8
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