
The International Journal of Flexible Manufacturing Systems, 5 (1993): 95-128 
© 1993 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. 

Real-Time Software Methodologies: 
Are They Suitable for Developing Manufacturing 
Control Software? 

JARIR K. CHAAR 
IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, NY 10598 

DANIEL TEICHROEW 
IOE Department, The University of Michigan, Ann Arbor, All 48109-2117 

RICHARD A. VOLZ 
CS Department, Texas A&M University, College Station, TX 77843-3112 

Abstract. Computer-Integrated Manufacturing (CIM) systems may be classified as real-time systems. Hence, 
the applicability of methodologies that are developed for specifying, designing, implementing, testing, and evolv- 
ing real-time software is investigated in this article. 

The paper highlights the activities of the software development process. Among these activities, a great emphasis 
is placed on automating the software requirements specification activity, and a set of formal models and languages 
for specifying these requirements is presented. Moreover, a synopsis of the real-time software methodologies 
that have been implemented by the academic and industrial communities is presented together with a critique 
of the strengths and weaknesses of these methodologies. 

The possible use of the real-time methodologies in developing the control software of efficient and dependable 
manufacturing systems is explored. In these systems, efficiency is achieved by increasing the level of concurrency 
of the operations of a plan, and by scheduling the execution of these operations with the intent of maximizing 
the utilization of the devices of their systems. On the other hand, dependability requires monitoring the opera- 
tions of these systems. This monitoring activity facilitates the detection of faults that may occur when executing 
the scheduled operations of a plan, recovering from these faults, and, whenever feasible, resuming the original 
schedule of the system. 

The paper concludes that the set of surveyed methodologies may be used to develop the real-time control soft- 
ware of efficient and dependable manufacturing systems. However, an integrated approach to planning, schedul- 
ing, and monitoring the operations of these systems will significantly enhance their utility, and no such approach 
is supported by any of these methodologies. 

Key Words: manufacturing software, real-time software, software methodologies 

1. I n t r o d u c t i o n  

The first burst  of  act ivi ty in software design methods  occur red  during the late 1960s and 

early 1970s. It was assumed that software development  began with writing a natural langauge 

requi rements  specif icat ion documen t  and ended with p rogramming ,  testing, and installa- 

tion. Des ign  was a wel l -def ined act ivi ty that happened  between requi rements  analysis and 

programming.  Many  methods  and cri ter ia  were  p roposed  for per forming  this decompos i -  

t ion (consult  Peters and Tripp 1977 and Griff i ths  1978 for a survey of  these methods) .  The  



96 JARIR K. CHAAR, DANIEL TEICHROEW AND RICHARD A. VOLZ 

software development activities were grouped into a framework for managing software design 
projects; Royce's (1970) software life-cycle model. 

The most obvious difference between the design methods of the 1970s and the design 
methods of the 1980s is that there is no longer consensus on the scope of the software 
development activities. The traditional software life-cycle was extended to include more 
phases (see, for example, Boehm 1986; Aoyama 1987; Hekmatpour 1987; Mantei and Teorey 
1988; Wolff 1989) due to the increased complexity of the systems being automated, and 
the increased hardware and software capabilities offered by computer systems. Techniques 
for improving the outcome of the requirements specification, design, implementation, system 
testing, and system evolution phases of the traditional software life-cycle were developed. 
The software development process was improved by automating many steps in the process 
in order to reduce the cumulative effect on later phases of an error committed in any phase 
of the process. System prototyping and simulation techniques were introduced to help assess 
the performance of the resulting software system. A coherent set of these approaches was 
labeled a methodology, and a set of software tools designed and implemented with the intent 
of partially or fully automating the application of these techniques was referred to as a 
software engineering environment. A number of attempts to survey some of these method- 
ologies and environments have been reported (see, for example, Peters and Tripp 1977; 
Griffiths 1978; Teichroew 1982; Freeman and Wasserman 1983; Du Plessis 1986; Chaar 
1987; Chin 1991; Houghton and Wallace 1987; Kelly 1987; Taylor 1989; White 1987; Webster 
1988). 

This paper presents a synopsis of the methodologies used to specify, design, implement, 
test, and evolve the software of real-time embedded systems. An adequate model of such 
systems should encompass both data and control structures, and should model both the 
structure and behavior of a system. In particular, timing constraints, priorities, exception- 
handling mechanisms, fault-tolerance features, underlying hardware components, and inter- 
action with the outside environment are essential for the proper functioning of a, possibly 
distributed, real-time embedded system (Dasarathy 1985; Stankovic 1988; Kenny and Lin 
1991). 

Real-time systems typically sense and control external devices, respond to external events, 
and share processing time between multiple tasks. Processing demands are both cyclic and 
event-driven in nature. Event-driven activities may occur in bursts, thus requiring a high 
ratio of peak to average processing. Real-time systems often form distributed networks; 
local processors may be associated with sensing devices and actuators. 

The traditional considerations of hierarchy, information hiding (Parnas 1972), and modu- 
larity are important concepts in the design of real-time systems. However, these concepts 
are typically applied to the individual components of a real-time system. High-level issues 
of networking, performance, and reliability must be analyzed before the component nodes 
or processes are developed. 

A real-time network for process control may consist of several minicomputers and micro- 
computers connected to one or more large processors. Each small processor may be con- 
nected to a cluster of real-time devices. Process control systems often utilize communication 
networks having fixed, static topology and known capacity requirements. In contrast, more 
elaborate real-time systems provide dynamic configuration of the network topology and 
support unpredictable load demands. 



REAL-TIME SOFTWARE METHODOLOGIES 97 

The vast majority of computer-integrated manufacturing systems that have been built in 
the 1980s can be classified as real-time process control systems. For these systems, design- 
ing and implementing their required software has proven to be a daunting problem; the 
current practices for such software are archaic and often result in a high cost, an extended 
development period, and extremely inflexible systems (Naylor and Volz 1987; Ben Hadj 
Alouane, Chaar and Naylor 1990). Hence, the development of this software can benefit 
from the methodologies used in developing the software of the more general class of real- 
time embedded systems. 

A major goal of manufacturing in the 1990s is to increase the levels of automation in 
computer-integrated manufactuirng systems and the efficiency and dependability of such 
systems. This goal has been partially achieved through the technological advances in both 
manufacturing and computer hardware. Similar advances in software technology can be 
achieved by rigorously applying and extending current real-time software methodologies. 
Hence, the suitability of such methodologies to developing the control software of efficient 
and dependable manufacturing systems is explored in this article. 

Traditionally, control software has been assigned the tasks of monitoring manufacturing 
systems by coordinating the operations of their devices, and by handling the faults that 
may occur while these operations are being performed. Planning the sequence of opera- 
tions of these devices, and scheduling the execution of this sequence have been carried 
out independently, prior to developing the control software of these systems. In contrast 
with current practice, the goal of designing efficient and dependable manufacturing systems 
requires an integrated approach to planning the operations of these systems, scheduling 
these operations, and monitoring their execution (Chaar, Volz and Davidson 1991). 

In efficient and dependable manufacturing systems, efficiency is achieved by increasing 
the level of concurrency of the operations of a plan, and by scheduling the execution of 
these operations with the intent of maximizing the utilization of the devices of their systems. 
Furthermore, the most efficient use of such systems may be achieved by shifting the times 
of occurrence of some operations of the plans of their jobs while preserving the sequence 
of dependent operations in these plans (Chaar and Davidson 1990). Consequently, planning 
and scheduling efficient manufacturing systems is an iterative process that can benefit from 
integrating their planning and scheduling activities. 

Dependability in manufacturing systems requires monitoring their operations. This moni- 
toring activity facilitates the detection of any faults that may occur when executing the 
scheduled operations of a plan, recovering from these faults, and, whenever feasible, resum- 
ing the original schedule of the system. In order to be able to resume an original schedule 
automatically, scheduling and monitoring must be integrated. Furthermore, whenever re- 
covery to the original schedule is not feasible, an alternative plan and a new schedule for 
processing the remaining set of jobs have to be created. This latter activity can be performed 
by activating an integrated planning and scheduling procedure when recovery is needed. 
Consequently, the dependability of manufacturing systems can be achieved by integrating 
the planning, scheduling, and monitoring activities of these systems. 

In this paper, the activities of the software development process are discussed in section 2. 
Among these activities, a great emphasis is placed on automating the software requirements 
specification activity. Hence, a set of formal models and languages for specifying these 
requirements is presented in section 3. A list of some of the formal models and specification 



98 JARIR K. CHAAR, DANIEL TEICHROEW AND RICHARD A. VOLZ 

languages has been compiled by Berztiss (1987), and an attempt to classify them has been 
reported by Davis (1988). Sections 4 through 8 survey the major features of some real-time 
software methodologies and reflect on their applicability in developing the real-time control 
software of efficient and dependable manufacturing systems. This is followed, in section 9, 
by a critique of the strengths and the weaknesses of these methodologies. 

2. The Software Development Process 

The software development process encompasses all the activities required in defining, devel- 
oping, testing, delivering, operating, and evolving a software project. This traditional process 
is captured by the software life-cycle, the waterfall model (Royce 1970). This model segments 
the software life-cycle into a series of successive activities. Each activity requires well- 
defined input information, utilizes well-defined processes, and results in well-defined prod- 
ucts. Resources are required to complete the processes in each activity, and each activity 
is accomplished through the application of explicit methods, tools, and techniques. In this 
model, the activities of analysis, software design, implementation, system testing, and system 
evolution are performed iteratively. 

• Analysis consist of planning and requirements specification: 
l. Planning includes understanding the customer's problem, performing a feasibility study, 

developing a recommended solution strategy, determining the acceptance criteria, and 
planning the development process. The products of planning are a system specification 
and a project plan. The system specification is expressed in a natural language, and 
may incorporate charts, figures, graphs, tables, and equations of various kinds. The 
project plan contains the organizational structure for the project, the preliminary devel- 
opment schedule, preliminary cost and resource estimates, preliminary staffing require- 
ments, tools and techniques to be used, and standard practices. 

2. Requirements specification is concerned with identifying the basic functions of the 
software component in a hardware/software/people system. The product of requirements 
definition is a specification that describes the processing environment, the required 
software functions, input and output data, performance constraints on the software 
(size, speed, machine configuration), exception handling, subsets and implementation 
priorities, probable changes and likely modifications, and the acceptance criteria for 
the software. 

• Software design consists of architectural design and detailed design. 
1. Architectural design involves identifying the software components, decoupling and 

decomposing them into processing modules and conceptual data structures, and speci- 
fying the interconnections among components. The product of architectural design 
is a conceptual schema of the software system. This schema identifies the system com- 
ponents and their associated data structures, and defines their relationships with the 
other components in the system and their environment. 

2. Detailed design is concerned with the details of how to: how to package the processing 
modules and how to implement the processing algorithms, data structures, and inter- 
connections among modules and data structures. Detailed design involves adaptation 



REAL-TIME SOFTWARE METHODOLOGIES 99 

of existing code, modification of standard algorithms, invention of new algorithms, 
design of data representations, and packaging of the software product. Detailed design 
is strongly influenced by the programming language used to implement the system, 
but detailed design is not concerned with the syntactic aspects of the implementation 
language or the level of detail inherent in expression evaluation and assignment state- 
ments. The product of detailed design is a pseudo-code specification of the system. 

* Implementation involves translation of design specifications into source code, and the 
debugging, documentation, and unit testing of the source code. Modern programming 
languages, e.g., Ada (The United States Department of Defense 1983), provide many 
features to enhance the quality of source code. These include structured control constructs, 
built-in and user-defined data types, secure type checking, flexible scope rules, exception 
handling mechanisms, concurrency constructs, and separate compilation of modules. The 
presence of efficient compilers, syntax-directed editors, and symbolic debuggers can also 
enhance the productivity of the software implementor. For the Ada programming language, 
these tools are grouped in a Programming Support Environment (APSE) (Ada Joint Pro- 
gram Office 1982; Taylor and Sandish 1985; Marcus et al. 1986; Dawson 1987) to sup- 
port the development of Ada-based distributed real-time embedded software (Privitera 
1982; Cherry 1985, 1987). 

,, System Testing involves two kinds of activities: integration testing and acceptance testing. 
Developing a strategy for integrating the components of a software system into a func- 
tioning whole requires careful planning so that modules are available for integration when 
needed. Acceptance testing involves planning and execution of various types of tests in 
order to demonstrate that the implemented software system satisfies the requirements 
stated in the requirements documents. 

• System deployment activities include installing the implemented software on a single com- 
puter system or on multiple computer systems, training the users of this software, and 
marketing this software product if commercially available. 

• System evolution activities include enhancement of capabilities, adaptation of the soft- 
ware to new processing environments, and correction of the resulting software bugs. 

Software development seldom proceeds in a smooth progression of activities as indicated 
in the waterfall model. Nevertheless, the waterfall model of the software life-cycle may 
be an appropriate model of the development process in situations where it is possible to 
write a reasonably complete set of specifications for the software product at the beginning 
of the life-cycle. This typically occurs when the developers have previously developed similar 
systems. The software development process can be improved by establishing milestones, 
review points, standardized documents (e.g., DoD's MIL-2167A) and management sign- 
offs, and by incorporating the concept of prototyping. 

Prototyping helps in exploring, experimenting, and confirming an appropriate set of soft- 
ware requirements for a system. Prototyping techniques can be broadly classified into three 
categories (Hekmatpour 1987); namely throw-it-away prototyping, incremental prototyping, 
and evolutionary prototyping. 

In throw-it-away prototyping, a prototype is discarded once the correct set of requirements 
is identified. Because of its short life span, quality factors such as efficiency, structure, 



100 JARIR K. CHAAR, DANIEL TEICHROEW AND RICHARD A. VOLZ 

maintainability, full error handling and documentation can be ignored in designing the proto- 
type. The prototype may even be implemented in an environment other than the one in- 
tended for the final product. 

Incremental prototyping is based on an overall initial design of the system. The system 
is then implemented one section at a time, and incrementally converges to a final implemen- 
tation. Hence, only the implementation and evaluation of a software system can be iteratively 
performed in incremental prototyping. 

In contrast, evolutionary prototyping gradually builds a system by iteratively carrying 
out the design, implementation, and evaluation processes of software development. Initially, 
enough development is carried out to enable the user to carry out one or more tasks com- 
pletely. Once more is known about these tasks and how they may affect other tasks, more 
parts of the system are designed, implemented, and integrated with the rest of the system. 

A variant of the traditional software life-cycle model, the spiral software life-cycle model 
adopts a risk-driven approach to software development (Boehm 1987; Wolff 1989). The 
software project is partitioned into a set of cycles or rounds, the objectives of each cycle 
are determined, and alternatives for meeting these objectives are considered. The implemen- 
tation of each phase of the software development process is preceded by a risk analysis, 
and prototyping is then used to minimize the risk associated with each phase. An evolu- 
tionary prototype is then built in order to identify and solve the areas of uncertainty of 
a cycle and reduce the risk of propagating an error in this cycle to any subsequent cycles. 

Both traditional and spiral software life-cycle models are general frameworks for managing 
large software projects. Hence, they are suitable for developing manufacturing control soft- 
ware. If properly applied, these models help reduce both the cost and the extended develop- 
ment period of manufacturing control software. 

3. Requirements Specification Models 

The consistency and completeness of the software requirements specification document 
can be verified by the use of formal notations and automated tools. Formal notations have 
the advantage of being concise and unambiguous. They support formal reasoning about 
the functional specifications of a software system, and provide a basis for verifying the 
resulting software product. 

Both relational and state-oriented notations are used to specify the functional character- 
istics of software. Relational notations are based on the concepts of entities and attributes. 
Entities are named elements in a system. Attributes specify permitted operations on enti- 
ties, relationships among entitites, and data flow between entities. Relational notations in- 
clude algebraic axioms and regular expressions. 

State-oriented notations are based on the concept of state. The state of a system is the 
information required to summarize the status of system entities at any particular point in 
time; based on the system definition, the current state and the current stimuli determine 
the next state. State-oriented notations include decision tables, event tables, transition tables, 
and Petri nets. 



REAL-TIME SOFTWARE METHODOLOGIES 101 

3.1. Algebraic Axioms 

Algebraic axioms are used to specify data abstraction. Data abstraction emphasizes func- 
tional properties and suppresses representation details. Specification of an abstract data 
type using algebraic axioms involves defining the syntax of the operations and specifying 
axiomatic relationships among the operations. The syntactic definition specifies names, 
domains, and ranges of operations to be performed on the data objects, and the axioms 
specify interactions among operations. 

Algebraic axioms can be used in three distinct ways: as definitional tools of new opera- 
tions in terms of existing ones, as foundations for deductive proofs of desired properties, 
and as frameworks for examining the completeness and consistency of functional require- 
ments. A specification is complete if all desired properties are specified, and there are 
no undefined entities in the specification. Consistency is achieved if there is a unified inter- 
pretafion of the relationships among specifications that produces no contradictions. 

Using a state-oriented notation in conjunction with algebraic axioms allows precise speci- 
fication of the entities referred to in the axioms. This technique combines the advantages 
of the algebraic approach (precise specification of interactions among operations) and the 
finite-state approach (precise specification of the behavior of the individual operations). 

3.2. Regular Expressions 

Regular expressions can be used to specify the syntactic structure of symbol strings. Each 
set of symbol strings specified by a regular expression defines a formal language. Strings 
are formed by recursively applying the rules of alternation, concatenation and closure to 
the atoms in the alphabet of interest. Hierarchical specifications can be constructed by assign- 
ing names to regular expressions and using the names in other regular expressions. Typical 
applications of regular expressions include specification of valid data streams, the syntax 
of user command languages, and legal sequences of events in a system. 

Regular expression notation can be extended to allow modeling of concurrency. By defini- 
tion, the effect of concurrent execution of two software components is the same as interleaving 
their execution histories. The syntax of each software component will be specified by a 
regular expression and, when applied, the shuffle operator interleaves the regular expres- 
sions of the two components while preserving the original ordering of the atoms within 
each expression; the resulting expressions are called event expressions or flow expressions 
(Shaw 1980). 

Event expressions impose some restrictions on shuffling; only the subset of all possible 
shuffles that preserves the atomicity of critical sections as required by message passing 
and other synchronization operations is allowed. No instructions from another component 
may be interleaved between the instructions of a critical section of a component. The syn- 
chronization scheme in flow expressions has one explicitly defined syntax, and this is the 
major distinguishing difference between event expressions and flow expressions. A flow 
expression can be blocked for shuffling by enclosing it within a wait/signal pair, similar 
to binary semaphores. The enclosed expression is treated as indivisible when interleaving 
it with other flows. Hence, atomicity is implicit in event expressions and explicit in flow 



102 JARIR K. CHAAR, DANIEL TEICHROEW AND RICHARD A. VOLZ 

expressions, resulting in a direct mapping between the latter and concurrent programming 
language constructs. 

Path expressions are another useful notation based on regular expressions. They can be 
used to specify the sequencing of operations in concurrent systems, and handle some aspects 
of the description analysis and implementation of the constraints on operation executions 
(Lauer and Shields 1980). 

An extension of flow expressions and path expressions forms the syntax of the DREAM 
Design Notation (DDN), a design description language developed as the basis of the Design 
Realization, Evaluation, and Modeling (DREAM) system (Riddle 1979). DREAM is con- 
sidered an early attempt to provide automated support for the design of concurrent systems 
by providing closed-form descriptions of the sequences of certain events occurring in a 
set of behaviors of the system. 

While DREAM could only describe embedded systems in which the set of constituent 
processes and the communication paths connecting them remained static, the Dynamic Proc- 
ess Modeling Scheme (DPMS) was developed for decribing systems with dynamic structure 
(Avrunin and Wileden 1985). DPMS is based on constrained expressions. The constrained 
expression representation of a distributed system consists of a system expression and a col- 
lection of constraints. The system expression is a regular expression over an augmented 
alphabet derived from a description of the system. The constraints may be thought of as 
imposing requirements on a sequence of events that must be satisfied if the sequence is 
to occur in a behavior of the system (Avrunin et al. 1986). In DPMS, the structure of a 
dynamically structured distributed system can be altered either by adding or deleting proc- 
esses or by adding or deleting interprocess communication channels. 

3.3. Decision, Event, and Transition Tables 

Decision tables provide a mechanism for recording complex decision logic. Decision rules 
are used to specify the desired actions of the system. Contradictory rules permit the speci- 
fication of nondeterministic and concurrent actions. Multiply-specified actions may be 
desired or may indicate a specification error. A Karnaugh map can be used to check a 
decision table for completeness and for multiply-specified actions. 

Event tables specify actions to be taken when events occur under different sets of condi- 
tions. A two-dimensional event table relates actions to two variables; f (M,  E) = A, where 
M denotes the current set of operating conditions, E is the event of interest, and A is the 
action to be taken. Tables of higher dimensions can be used to incorporate more indepen- 
dent variables. A set of sequential or concurrent actions may be specified. 

Transition tables can be used to specify the next desired state of a system given the cur- 
rent state and the current stimuli; if, when in state Si, condition Cj results in a transition 
to state S~, we sayf(Si, Cj) = Sk. A transition table can be augmented to indicate actions 
to be performed and outputs to be generated in the transition to the next state. Transition 
diagrams are alternative representations of transition tables. They are both representations 
for finite state automata. 

Using techniques from automata theory, it can be shown that every regular expression 
has a corresponding transition table and vice versa. Transition tables and transition diagrams 



REAL-TIME SOFTWARE METHODOLOGIES 103 

thus provide mechanisms for specifying the various states that a system must occupy when 
processing symbols from strings specified by the corresponding regular expressions. Tran- 
sition tables have also been used to develop the control software of manufacturing transfer 
lines (Fisher 1989). 

Decision tables, event tables, and transition tables are notations for specifying actions 
as functions of the conditions that initiate those actions. Decision tables specify actions 
in terms of complex decision logic, event tables relate actions to system conditions, and 
transition tables incorporate the concept of system state. The notations are of equivalent 
expressive power; a specification in one of the notations can be readily expressed in the 
other two. 

3.4. Petri Nets 

A Petri net is a graphical model used to specify, analyze, simulate, and evaluate the dynamic 
behavior of concurrent systems, and to detect synchronization, mutual exclusion, and dead- 
lock situations in these systems (Peterson 1981). With the introduction of suitable exten- 
sions, Petri nets can be used to model a range of hardware and software systems (Coolahan 
and Roussopoulos 1983; Yah and Caglayan 1983; Molloy 1985; Leveson and Stolzy 1987). 
The theoretical properties of Petri nets have been studied extensively in the literature (see, 
for example, Chong Yi 1985a, 1985b; Goltz and Chong Yi 1985; Genrich 1986; Murata 
and Komoda 1987; Watson 1987). Interest in Petri nets has also generated a long list of 
software tools (Feldbrugge 1985) for describing their mathematical structure, analyzing 
their properties (see, for example, Murata et al. 1989; Stotts 1988), simulating their dynamic 
behavior (see, for example, Ghezzi et al. 1987; Nelson et al. 1983), and generating their 
layouts (see, for example, Berztiss 1987). 

The following sections present the structure and the properties of the original Petri net 
model, the place-transition net. Some of the extensions that enhance the modeling power 
of place-transition nets are also introduced. These Petri nets, as implied in a companion 
paper (Chaar, Teichroew and Volz 1993), are extensively used in developing manufacturing 
control software. 

3.4.1. Place-Transition Nets. The simplest Petri net model, the place-transition net (figure 
1), is represented as a bipartite directed graph (Peterson 1981). The two types of nodes in 
a place-transition net are called places or conditions and transitions or events. Places are 
marked by tokens. The maximum number of tokens a place can hold defines its capacity. 
Places and transitions are connected via directed edges. The number of tokens an edge 
can transfer defines its weight. Each transition in the net corresponds to a task activation 
and places are used to synchronize processing. 

A place-transition net is characterized by an initial marking of places and a firing rule. 
A transition is enabled if each of its input places has at least as many tokens as the weight 
of the edge from the place to the transition. An enabled transition can fire if none of its 
output places would exceed its capacity after the firing. When a transition fires, the number 
of tokens at each of its input places is decreased by the weight of the edge connecting the 
input place to the transition, and the number of tokens of each of its output places is 



104 JARIR K. CHAAR, DANIEL TEICHROEW AND RICHARD A. VOLZ 

( 

( 

( 

TI•/transiti°n 
i T4 

place 
hour token 

T6 ~T'/ ~ 

• place 
with token 

~T2 ~ l  

Concurrency: 
{T2, T3, T4} and {T6, T7, T8} 
can f'n-e in any order, including 
simultaneously. 

Synchronization: 
T5 is not enabled until '13 and 
T4 complete their processing. 

Mutual-exclusion: 
Both T9 and T10 are enabled, 
but only one can fh-e. Firing 
one will disable the other. 

Deadlock: 
Both T12 and T13 are waiting 
for the other to fire and neither 
can proceed. 

Figure 1. A place-transition Petri net model. 



REAL-TIME SOFTWARE METHODOLOGIES 105 

increased by the weight of the edge connecting the transition to the output place. The new 
configuration of tokens in the net defines a new marked net. 

Transitions in a place-transition net can represent events in a real system. A marked net 
then represents the coordination or synchronization of these events. The movement of tokens 
clearly shows which conditions cause a transition to fire and which conditions come into 
being on the completion of firing. The place-transition net serves to relate the models to 
the specified operating rules to form an event-based simulation (Agerwala 1979). 

For a place-transition net that is to model a real hardware device, one of the more impor- 
tant properties is safeness. A place of this net is safe when it has a capacity of 1. Thus, 
the place can be implemented by a single flip-flop; the flip-flop is active when a token 
is present in the place it implements, and is inactive in the absence of the token. A place- 
transition net is safe if all places in the net are safe. 

Safeness is a special case of the more general boundedness property. A place is k-safe 
if the number of tokens in that place cannot exceed an integer k. Thus, the place can be 
implemented by a modulo (k + 1) up-down counter. A place is bounded if it is k-safe for 
some k; a place-transition net is bounded if all its places are bounded. A bounded net can 
be realized in hardware, while a place-transition net with an unbounded place cannot in 
general be implemented in hardware. 

Place-transition nets can be used to model resource allocation systems. In these systems 
some tokens may represent the resources, and are neither created nor destroyed. For these 
types of place-transition nets, conservation is an important property. Conservation requires 
that the total number of tokens in the net remains constant. 

The resource allocation systems may be analyzed for potential deadlocks using their place- 
transition nets. A deadlock in a place-transition net is a transition (or set of transitions) 
that cannot fire. A transition is live if it is not deadlocked. Thus, it is always possible to 
manuever the place-transition net from its current marking to a marking which would allow 
the transition to fire. Liveness of the place-transition net marks the absence of deadlock 
in the real system. 

In a place-transition net, an invariant is a minimal set of places whose total number of 
tokens remains constant. The net is bounded if each place in the net is in some invariant, 
and the net has a constant total number of tokens. The net is conservative if the invariants 
are disjoint and inclusive. 

Bounded, conservative place-transition nets are equivalent to finite-state automata. In 
a finite-state automaton representation of a place-transition net, the state of the net is given 
by the marking configuration (i.e., a tally of how many tokens are at each place), and tran- 
sitions leading to next states change the markings to reflect changes in the next state. Despite 
the above equivalence, place-transition nets provide a more convenient notation for speci- 
fying and analyzing concurrent systems; unbounded and nonconservative place-transition 
nets provide more powerful mechanisms than do finite-state automata. 

Place-transition nets are used by Yau and Shatz (1982) to specify the communication 
modules of distributed software systems. The paper derives place-transition net models 
for the asynchronous communication mechanism, the synchronous communication mecha- 
nism, and the remote procedure call mechanism. The specifications of some standard com- 
munication modules are also provided in order to illustrate the use of place-transition nets 
in analyzing the liveness and boundedness properties of the design specifications of these 
communication modules. 



106 JARIR K. CHAAR, DANIEL TEICHROEW AND RICHARD A. VOLZ 

3.4.2. Modified Petri Nets. A modified form of place-transition nets has been used by Yau 
and Caglayan (1983) to represent and analyze the design of distributed software systems. 
The modified Petri net consists of a set of control state variables, a set of abstract data 
types, a set of data objects, and a set of software components which are connected to each 
other through the control state variables and through the data objects. Software components 
are externally described in terms of their input and output control states, associated data 
types and data objects, and a set of control and data transfer specifications. Interconnec- 
tion of software components is defined through shared control states and through shared 
data objects. A system component can be viewed internally as a collection of partially ordered 
subcomponents, local control states, local data types, and local data objects. 

The control state variables correspond to the places of a place-transition net. Software 
components correspond to the nonprimitive transitions of a place-transition net, where a 
nonprimitive transition has a place-transition net subgraph as its inner structure and does 
not fire instantaneously. The execution of a software component can be regarded as the 
firing of a nonprimitive transition. The nonprimitive transition firing rule of place-transition 
nets is generalized in modified Petri nets by associating with each software component 
a control transfer specification, which gives the control flow(s) through the component, and 
a data transfer specification, which represents the data flow(s) through the component. 

3.4.3. Augmented Petri Nets. Place-transition nets have been extended by Coolahan and 
Roussopoulos (1983) to incorporate the notion of time, as required to capture the timing 
requirements of embedded real-time systems. In this augmented Petri net, the instantaneous 
firing of an enabled transition marks the start of execution of a process, and places a token 
in the output place, p, of this transition that represents the process. This process executes 
for the nonnegative duration of time, T, associated with place p. An output transition is 
enabled when the required number of tokens in each of its input places has been at that 
place for at least T units of time, where the value of T is defined for each place. If only 
one output transition of p becomes enabled after T, it is fired immediately. Otherwise, a 
single enabled output transition is selected based on a predetermined firing frequency of 
this transition. The selected transition is then fired immediately disabling all the other enabled 
output transitions of place p. 

Instead of coupling the transitions of a place-transition net with firing frequencies, Molloy 
(1985) assigns conditional probabilities to these transitions. The resulting net is called a 
discrete time stochastic Petri net, and specifies the probability that a transition of the net, 
once enabled, would instantaneously fire. Generalized stochastic Petri nets are used to model, 
analyze and evaluate the performance of automated manufacturing systems by A1-Jaar and 
Desrochers (1990). In another extension to both the augmented Petri net and the discrete 
time stochastic Petri net, Holliday, and Vernon (1987) define a probability distribution over 
the possible next states of the net. This distribution is based on the firing frequencies of 
the transitions of this net. The resulting net is labeled a generalized time Petri net, and 
is used, as are augmented and discrete time stochastic nets, to evaluate the performance 
of concurrent and distributed systems. 

3.4.4. Timed Petri Nets. Timed Petri nets represent a dual strategy for modeling the timing 
requirements of real-time embedded systems, and are used by Leveson and Stolzy (1987) 



REAL-TIME SOFTWARE METHODOLOGIES 107 

to analyze the safety, recoverability, and fault-tolerance aspects of these systems. A timed 
Petri net is composed of a set of places, a set of transitions, an input function, an output 
function, and an initial marking along with an added minimum firing time and maximum 
firing time functions associated with the transitions in the net. The firing time functions 
specify the conditions under which a transition may fire. Once enabled, a transition may 
fire within the time interval specified by the above functions. If  the maximum firing time 
is reached, the transition must fire immediately. The interval limits are absolute time units 
specified relative to the software system initialization time. 

Added complexity over the untimed place-transition net arises because of the continuous 
nature of time. The time Petri net is equivalent to a standard place-transition net if the 
minimum firing time function is set to 0 for the transitions in the net and the maximum 
firing time function is set to oo for all the transitions in the same net. 

Priorities can be associated with transitions in a timed Petri net using the minimum and 
maximum firing time functions. These functions can be used to enforce sequential timing 
constraints on enabled transitions by setting the maximum firing time of the transition with 
higher priority to be less than the minimum firing time of the transition with the lower 
priority. 

The timed Petri net of a system can be analyzed to identify the states of this net that 
can lead to the occurrence of a set of unplanned events (the hazardous states of the system). 
The system designer can then ensure that these states will never be reached by assigning 
a higher priority to the transition leading to a safe state, and inhibiting the firing of the 
transition leading to a hazardous state. 

Once the design is determined to be safe, run-time faults and failures must be considered. 
A failure is defined as an event, whereas a fault is a state. A failure may result in a fault 
and is called a fault-starting event. The type of fault that results from the failure must be 
included in the model in order to analyze the consequences of failures on the system. Hence, 
a failure transition, which is denoted by a double bar, and a fault condition, which is denoted 
by a double circle, are introduced. To make analysis practical, a place that acts as a counter 
can be added to the failure transition. The number of tokens initially contained in this place 
controls the maximum number of times that the transition (failure) can fire. Timing infor- 
mation is used to set a limit on the delay needed to resume a normal course of action by 
the system. Graceful degradation can also be achieved by assigning a lower priority to an 
alternative path in the system, and by specifying a time-out condition on the execution of 
this path in case the normal path of execution is not functional. 

Fault conditions and failure transitions can be used to model exception-handling in the 
system. On the other hand, partial fault-tolerance can be achieved by duplicating the critical 
places of a timed Petri net, while full fault-tolerance can be achieved by duplicating all 
the places in the net. The degree of duplication of a place is stored in a counter associated 
with this place. 

3.4.5. Predicate-Transition Nets. In a predicate-transition net, the tokens are no longer anon- 
ymous, but can be structured objects carrying values, and transition firing can be controlled 
by imposing conditions on these token values. Predicate-transition nets are used by Giordana 
and Saitta (1985) to model production rules in rule-based systems. They are also used by 
Murata and Zhang (1986, 1988) to detect parallelism in interpreting Horn clause-based logic 



108 JARIR K. CHAAR, DANIEL TEICHROEW AND RICHARD A. VOLZ 

programs in order to improve the efficiency of the control component of these programs. 
Moreover, Peterka and Murata (1989) present a proof-procedure and answer-extraction 
scheme that corresponds to a firing sequence that fires the goal transition of the predicate- 
transition model of a logic program. 

In a predicate-transition net, places correspond to predicates with variable extensions, 
and transitions represent classes of elementary changes of extensions. The arcs of the net 
are labeled with sums of tuples of variables; the length of each tuple is the number of in- 
stances of arguments that appear in the predicate connected to the arc. The symbol ff denotes 
the zero-tuple, i.e., a no-argument predicate (a place in place-transition nets). The capac- 
ity of a place defines the number.of copies of the same token that this place can carry 
simultaneously. 

The tokens of a predicate-transition net are tuples of typed objects. The object types 
of the net are each coupled with a set of operations and relations that apply to all the tokens 
of the type. These operations and relations are used as inscriptions inside some transitions 
of the net. The presence of a token in a place denotes the fact that the predicate associated 
with this place is true for the particular instantiation of the tuple of arguments contained 
in the token. A transition of the predicate-transition net is enabled whenever: 

1. Each input place of the transition contains at least as many tokens as specified by the 
label of the arc that connects this place to the transition. 

2. The tokens occurring in the input places have values satisfying the inscribed formula, 
if any, in the transition. 

3. The capacity of each output place is not exceeded by firing the transition. 

When a transition is enabled, it can be fired by removing from each input place of the 
transition a number of tokens specified by the label on the arc connecting this input place 
to the transition, and by adding to each output place of the transition a number of tokens 
specified by the label on the arc connecting the transition to this output place. The lack 
of any formula inscribed in a transition means that the firing depends only upon the ex- 
istence of tokens in the input places and upon the capacity of the output places. 

4. SREM 

The Software Requirements Engineering Methodology (SREM), developed by Alford (1977), 
describes a sequence of steps for specifying the functional and performance requirements 
of real-time software systems. These requirements are expressed in the Requirements State 
Language (RSL), and analyzed with the tools of the Requirements Engineering Validation 
System (REVS) (Bell et al. 1977; Davis and Vick 1977). The tools are used to perform 
automated consistency and completeness analysis, produce documentation, and generate 
simulators for the specification requirements of a system (Alford 1985). 

RSL and its corresponding graphical notation, the Requirements networks (R-nets) (Bell 
et al. 1977), represent an extension to conventional finite-state machiens. Each R-net (figure 
2) specifies the transformation of a single input message plus the current state into some 
number of ouptut messages plus an updated state. Only a single R-net may be active at a time. 



REAL-TIME SOFTWARE METHODOLOGIES 109 

R-net start 

~ Input 
ntefface 

~ ~Validation 
,/ Point 

'~'"AND" 

"OR" 

'AND" 

I n ~  11 

Output 
Interface Terminate 

Figure 2. The requirements network (R-net) of SREM. 



110 JARIR K. CHAAR, DANIEL TEICHROEW AND RICHARD A. VOLZ 

The R-net includes, at most, one input interface that receives a single input message, 
some number of output interfaces, some number of ALPHAs, and some number of subnets. 
The ALPHA, denoted by a rectangle, is used to specify a task of the system. A subnet, 
represented as an oval, is defined as a processing subgraph with one entrance and one exit 
point; the subnet is used to show common processing requirements under different condi- 
tions and to shorten the length of an R-net. 

R-nets can be used to specify parallel (order-independent) operations using the AND 
node (&). Fan-in at an AND node is a synchronization point; all parallel operations must 
be completed before any subsequent operations are initiated. The OR node (+) has a con- 
dition associated with each operation and an Otherwise operation that is executed if none 
of the conditions are true. If more than one condition is true, the first operation, as indi- 
cated by either implicit or explicit ordering, is executed. Ramamoorty et al. (1985) outline 
the sequence of steps for transforming an R-net into an equivalent place-transition Petri net. 

Accuracy and response time performance requirements are expressed by means of the 
concept of a path through an R-net. A path of processing through an R-net and its associated 
subnets is specified by inserting named nodes, called validation points, in the R-net graph 
and then defining the path in terms of a sequence of these validation points. A path can 
include a set of AND nodes and a set of OR nodes, can traverse multiple R-nets by using 
the EVENT node (which enables another R-net) as a connector. 

The Requiremens Engineering and Validation System (REVS) operates on RSL statements. 
REVS consists of threee major components: 

1. A translator for the Requirement Statement Language (RSL). 
2. A centralized relational database, the Abstract System Semantic Model (ASSM). 
3. A set of automated tools for processing information in ASSM, and for generating func- 

tional and analytical simulations to evaluate the performance characteristics of the speci- 
fied systems. 

Automated tools for processing information in the ASSM include an interactive graphics 
package to aid in specifying flow paths, static checkers that check for consistency and com- 
pleteness of the R-net models of a system, and an automated simulation package that gen- 
erates and executes simulation models of this system. 

SREM describes the sequence of steps for defining requirements, expressing them in 
RSL, and using the tools to check consistency and completeness. The first step of the meth- 
odology identifies all the I/O messages, R-nets, and ALPHAs of a system. This is followed 
by generating the plots of the R-nets, defining the input and output data of the ALPHAs, 
and checking the consistency and completeness of the system requirements. The validation 
points of the R-nets are defined next, and the performance requirements of the system are 
verified by prototyping and testing the algorithms enclosed in the ALPHAs of the nets, 
and by checking the response time of all the paths of these nets. 

A recent extension of the SREM concepts sought to define the requirements of distributed 
real-time software systems (Alford 1985). The result was called the Distributed Design 
Methodology (DDM). DDM uses the System Specification Language (SSL) to specify the 
functional and performance requirements of a system in terms of time functions and their 
decompositions. A time function is specified in terms of its input data, output data, 



REAL-TIME SOFTWARE METHODOLOGIES 111 

completion criteria and performance. The R-nets of RSL are used consequently to capture 
the software requirements of each function. The ALPHAs of these R-nets are mapped onto 
modules and data structures; this mapping is expressed in the Module Design Language 
(MDL). The Distributed Design Language (DDL) is then used to assign the above modules 
to their appropriate computing nodes subject to the required performance of the time func- 
tions of the system and the computing power of these nodes. 

When all the functional and performance requirements of a system have been specified 
and verified with the tools of the REVS, these requirements are translated by the Task Speci- 
fication Language (TSL) into a design to be coded in a high-level programming language. 

While SREM is concerned with verifying the consistency and correctness of the specifica- 
tion requirements of a real-time system, DDM can be viewed as a direct extension of the 
capabilities offered by SREM; DDM is used to verify the consitency and correctness of 
the specification requirements of a distributed real-time system. Because of the use of the 
RSL, SSL, DDL, MDL, and TSL languages in the software design and implementation 
phases of DDM, applying the concepts of this methodology may not be a straightforward 
task. This limitation can be overcome by using a specification language such as Anna 
(Luckham et al. 1985, 1987) that has the same syntax as its implementation language, Ada, 
and automatically translates these requirements into an implementation. The use of Anna 
can extend SREM to cover all the phases of the traditional software life-cycle, and can 
provide a basis for supporting both the incremental prototyping and the evolutionary proto- 
typing paradigms. 

Developing the control software of manufacturing systems can benefit from the use of 
SREM. In particular, the functional and timing requirements of a system can be coded 
in SSL, and the plan of a job of this system can be expressed as an R-net. REVS can be 
used to verify the consistency and completeness of this R-net, and a simulation model of 
the manufacturing system can be automatically generated and executed in order to evaluate 
the performance of this system when processing a batch of these jobs. However, the opti- 
mality of the resulting schedule is not guaranteed. Moreover, recovery actions from probable 
faults may be added to the R-net and verified by REVS. When the performance of a manufac- 
turing system is satisfactory, TSL can be used to create a high-level language implementa- 
tion of its control software. 

5. SARA 

The System ARchitects' Apprentice (SARA) is a computer-aided design environment that 
supports a structured, multi-level methodology for the design of hardware and software sys- 
tems (Estrin et al. 1986). The functional and performance requirements of a system and 
its operating environment are specified prior to the use of SARA in designing this system. 
SARA permits the separation of structure and behavior in models, and supports top-down 
decomposition of a complex system into manageable pieces as well as bottom-up composi- 
tion of reusable building blocks (Campos and Estrin 1977). SARA emphasizes interfaces 
as places where inconsistencies are revealed and where information hiding in enforced. 

The primitives used to create fully nested, hierarchical structure models in SARA are 
modules, sockets, and interconnections. Named parent modules contain fully nested child 



112 JARIR K. CHAAR, DANIEL TEICHROEW AND RICHARD A. VOLZ 

modules. Sockets are associated with a module, and the name and services (i.e., behavior) 
associated with a socket are known both inside and outside the module. Interconnections 
provide binding between sockets. The highest level partition of the design universe results 
in two named modules: one to represent the system under design and the other to represent 
the environment of that system. The Structure Language (SL) describes the modules of 
the design and the Module Interface Description (MID) language describes the intercon- 
nections between these modules. 

The principal language for specifying the behavior of a system in SARA is the Graph 
Model of Behavior (GMB). This language allows a system designer or system analyst to 
build a functional model using three separate domains: control, data, and interpretation. 

• Control Domain: The GMB control graph (figure 3) primitives include nodes (circles) 
which represent processing activities, and control arcs, which define the sequencing or 
partial ordering of node initiation events. A node can have many input and output control 
arcs. The GMB control graph, with appropriate restrictions, is equivalent to the place- 
transition Petri net model, and supports similar reachability analysis methods (Estrin 
et al. 1986). 

Logic expressions specify which control inputs are absorbed when a control node is 
initiated, and how control outputs are distributed when the node terminates. The dynamic 
behavior of the graph is characterized by the flow of tokens in the graph. A control node 
is initiated when there are sufficient tokens on its input arcs to satisfy its input logic. 
When a node terminates, tokens are distributed on its output arcs in some combination 
that satisfies its output logic. A token can represent information about the state of active 
system processes and/or passive system resources. 

The logical operator AND (*) can be used to model fork and join operations. The 
OR (+) input operator specifies that token(s) will be absorbed from either one of the 
input arcs when the node is initiated. The OR output operator specifies that token(s) 
will be placed on either one of the output arcs when the node terminates. The priority 
input operator ( > )  is used to specify a static order in which tokens are absorbed from 
alternative inputs. The deterministic-OR output operator ( -  - - )  specifies that the choice 
among alternative ouptuts is determined directly by which of the inputs initiated the node. 
The inclusive-OR (+*) operator specifies that all tokens on the inclusive-OR arcs will 
be removed when the node is initiated. 

Arrival of new inputs to a control node before previous inputs have been processed 
implies that the control graph is not safe. The GMB explicitly supports nonsafe models. 
A serverType attribute defines the capacity of a node to respond to control inputs. 

• Data Domain: The GMB data graph primitives include processor (hexagons), datasets 
(rectangles), and data arcs. Processors are mapped one-to-one to control nodes in an 
associated control graph. Datasets represent data values, and data arcs define read/write 
access capabilities which processors have to datasets. 

Each processor may embody control flow decisions, processing delays, and/or data 
transformations as specified in the interpretation domain. The data domain only specifies 
which datasets a processor may read or write. 

Datasets can be simple, in which case they hold only one copy of data satisfying the 
data type. They can also model data structures such as queues and stacks of data. When 



REAL-TIME SOFTWARE METHODOLOGIES 113 

Figure 3. The GMB control graph of SARA. 

control and data are logically related or physically indistinguishable, dataset values will 
be conceptually paired with control tokens. 

• Interpretation Domain:  The GMB interpretation domain defines the data types of the 
various datasets and the algorithms which specify the behavior of the node-processor 
pairs in a model. Ideally, a language chosen for the interpretation domain should support 
formal verification of specified behavior, and should be translatable into programming 
languages used in the system being designed. 



114 JARIR K. CHAAR, DANIEL TEICHROEW AND RICHARD A. VOLZ 

The Control Flow Analyzer (CFA) tool performs an exhaustive state-space analysis to 
determine if potential deadlocks or other errors exist in the modeled system. The basic 
analysis method used in the CFA centers on constructing a graph of all reachable states 
of a system (i.e., a reachability graph or computational flow graph), and implements a 
strong reduction algorithm that reduces the size of the state-space which must be explored, 
yet allows most of the analysis properties to be determined. Moreover, an interactive 
simulator allows designers to perform experiments on the GMB model of the system. Con- 
sequently, both performance analysis and correctness analysis of the same model can be 
performed in SARA. 

SARA does not offer any support for implementing the software of a system following 
the verification of both functional and performance requirements of this software system. 
The Ada-based specification language Anna (Luckham et al. 1985, 1987) can replace the 
SL and MID languages of SARA in specifying the above requiremens. This language allows 
the specification and implementation of a system to be carried out concurrently, and can 
extend the capabilities of SARA to cover the implementation phase of the traditional soft- 
ware life-cycle, and to support incremental and evolutionary prototyping. 

SARA can be used to verify both the functional and performance requirements of manufac- 
turing control software. A job plans can be expressed as a GMB that can also capture the 
recovery actions from probable faults that may occur while processing a batch of these 
jobs. Processing a batch of jobs is simulated by repeatedly executing the GMB of the system. 
However, the optimality of the resulting schedule cannot be guaranteed. 

6. MASCOT 

The acronym MASCOT stands for Modular Approach to Software Construction Operation 
and Test. One of the main purposes of MASCOT is to aid the reliable design of concurrent 
systems. The design phase is provided for by the activity-channel-pool (ACP) diagram which 
allows the representation of the modular breakdown, without explicitly including the con- 
currency requirements in the diagram itself. MASCOT is a language-independent and 
machine-independent design tool, supported by a programming system (Jackson and Simpson 
1975; Simpson and Jackson 1979; Simpson 1982). It can provide support through the design, 
implementation, and testing stages of the traditional software life-cycle. 

MASCOT software is modeled as a set of subsystems that run under the control of a 
kernel. The two main components of the MASCOT machine are the activity-channel-pool 
(ACP) diagram and the programming system. The ACP diagram (figure 4) is used to express 
the structure of a subsystem, while the programming system refers to the construction tools 
and run-time support software used to realize the design encapsulated in an ACP diagram. 

A MASCOT subsystem consists of one or more activies, which are connected by inter- 
communication data areas (IDAs). Each activity is essentially a process, and represents 
a single sequential thread of code concerned with the performance of one principal task. 
The root procedure is the program that determines the function of an activity. The formal 
parameters of a root procedure specify the intercommunication data areas and their types 
that are required when the root procedure is used to support an activity. 



REAL-TIME SOFTWARE METHODOLOGIES 115 

c ann 

Pool 

Figure 4. The activity-channel-pool (ACP) diagram of MASCOT. 

IDAs fall into two broad categories, channels and pools. Channels are used exclusively 
for passing message data between activities. Pools form data buffers between activities, 
and are used for data storage. Conceptually, a channel has two unidirectional interfaces 
whereas a pool has one bidirectional interface. Pools and channels are generally accessed 
by means of access procedures. 

Root procedures, channels and pools are known collectively as system elements, and 
are built up individually at compile, link, or load time. They are combined together into 
subsystems by the use of the form facility. 

In concept, MASCOT assumes that its executive will have complete control of the system 
resources, i.e., that it is operating on a bare machine. The main resources provided by the 
run-time machine include those needed for process synchronization and for process execu- 
tion. Synchronization and mutual exclusion of processes are provided by control queues and 
their primitives. Control queues are a form of combined semaphore/signal mechanism. Four 
synchronizing primitives can operate upon the control queue, and their actions are defined as: 

1. JOIN-- i f  the control queue is not currently owned by any process then it is claimed 
by the caller, else the calling process is suspended until the owner of the control queue 
releases it. Where several processes are suspended waiting to complete the JOIN opera- 
tion, the mechanism for selecting which one acquires the control queue is not defined 
and may be determined by the system implementors. 

2. LEAVE--releases the control queue. 
3. STIM--acts as a signal to the control queue, which has the ability to remember one 

STIM. If  multiple STIMs are received in succession then they have no additional effects 
beyond those of the first one. Any process may STIM any control queue. 

4. WAIT--may only be used with a control queue that has successfully JOINed the process. 
I f  the control queue is already STIMmed then the process will simply continue its exe- 
cution, clearing the STIM. Otherwise, it will be suspended until a STIM is received. 



116 JARIR K. CHAAR, DANIEL TEICHROEW AND RICHARD A. VOLZ 

The JOIN-LEAVE operations on a control queue give an identical facility to P, V opera- 
tions on a binary semaphore. Likewise the WAIT-STIM combination is similar to WAIT, 
SIGNAL operations on a condition variable. The coordination of JOIN-LEAVE-WAIT-STIM 
into a unified set of operations allows MASCOT to support the asynchronous interaction 
between cooperating parallel processes. 

The MASCOT executive is also expected to provide certain other defined run-time sup- 
port primitives including a DELAY facility, where a clock is available, and certain primitives 
concerned with initializing or suspending processes. 

MASCOT provides an option for dealing explicitly with interrupts by defining a new 
type of parameterless procedure: the response procedure. The response procedure is asso- 
ciated with a control queue, and is called immediately without the intervention of the sys- 
tem scheduler whenever that queue is STIMmed. 

In MASCOT, the requirements specification and software design phases of the traditional 
software life-cycle are combined, and evolutionary prototyping is supported by the form 
facility. Furthermore, the ACP diagram of a system can be translated into a high-level 
modular language implementation of this system such as Ada (Dibble 1982) or Modula-2 
(Budgen 1985). 

MASCOT is well suited for real-time systems since it deals specifically with structuring 
a system into tasks and defining the interfaces between them. However, MASCOT starts 
with a network diagram of tasks, and addresses neither the issue of how to structure a system 
into tasks nor the structure of the individual tasks themselves. 

MASCOT can be used to develop the control software of efficient and dependable manufac- 
turing systems. The devices of these systems can be encapsulated into MASCOT subsystems 
and their operations can be modeled as MASCOT tasks. The ACP diagrams of a system 
are then translated into high-level language modules. These modules implement the control 
software of the system and may be used to simulate the operations of this system. Planning, 
scheduling, and fault detection and recovery subsystems must be implemented in MASCOT 
as part of the control software of a manufacturing system. 

7. ESML 

The Extended Systems Modeling Language (ESML) is a requirements specification lan- 
guage, based on the Hatley (1984) and Ward-Mellor (1986) extensions to data flow diagrams, 
that captures control and timing information of real-time systems (Bruyn 1988; Ward 1988). 
The flow diagram extension used in ESML is called the transformation schema (figure 5.) 

In this schema, terminators are depicted as rectangles, and represent an entity in the exter- 
nal environment of the system whose details are of no interest within the schema. Transfor- 
mations are depicted as rectangles with rounded corners, and include flow transformations 
and control transformations. A solid rectangle with rounded corners is a flow transformation 
that describes a function performed on the data of a system. A dashed rectangle with rounded 
corners is a control transformation that determines the activation time of other transforma- 
tions of the schema, and the time interval during which these transformations are enabled. 
Each transformation within a schema carries a label describing the function or control per- 
formed. The line across the upper part of the transformation isolates an identification field. 



REAL-TIME SOFTWARE METHODOLOGIES 117 

Resume 
F ] 
I I Susveua I I 

s ig~ 1 Control I ~ l  mow l 
-  a:o ' Ura"sf° aL") 

II 
Non-Depletable Store Depletable Store 

Figure 5. The transformation schema of ESML. 

Value Bearing Flows are represented by directed solid line segments, and represent the 
input and output data of enabled flow transformations. A flow with a single arrowhead 
is called a continuously available flow that can be used by the flow transformations of a 
schema at every point in time. In contrast, an intermittently available flow has a double 
arrowhead, and can be used by the flow transformation of the schema at some discrete 
points in time. 

Nonvalue Bearing Flows are represented by directed dashed line segments. A flow with 
a double arrowhead is called a signal, and represents the recognition or reporting of the 
occurrence of an event in a transformation or a terminator of the schema. Prompts are 
represented by directed dashed line segments with small circles at their ends. Prompts repre- 
sent control imposed by one control transformation on another transformation. 

There are seven distinct prompts distinguished by a letter placed in the small circle at 
the end of the line segment. A trigger causes a flow transformation to perform a time- 
discrete action such as producing an intermittently available flow or storing the instantane- 
ous value of a continuously available flow. The enable and disable prompts initiate and 
terminate the activity of a transformation. The suspend and resume prompts are similar 
to enable and disable except that a suspended transformation resumes action from the point 
it was stopped. In addition to the single action prompts, activate is a combination of enable 
and disable, and pause is a combination of suspend and resume. In contrast with prompts, 
the continuously available flows, intermittently available flows, and signals of a scheme 
carry unique labels. 

Stores are represented by a pair of parallel lines closed on the left side. A nondepletable 
store is drawn with a vertical solid line to isolate an identification field. It represents infor- 
mation that persists within the schema and is accessible to transformations at discrete points 
in time. A depletable store is drawn with an "X" inside the store to isolate an identifica- 
tion field. It represents a repository for flows that are consumed as they are used. 

A complete ESML must contain a specification of each value-bearing flow and store. 
This specification defines the structure and attributes (e.g., update rate and default value) 



118 JARIR K. CHAAR, DANIEL TEICHROEW AND RICHARD A. VOLZ 

of a flow, and the structure of the content of a store and its capacity. A depletable store 
must be specified as either a stack or a queue. 

The specification of a flow transformation must describe either a lower-level transfor- 
mation schema or the function performed by a primitive flow transformation. Given the 
transformation inputs, the specification of a primitive flow transformation should unambigu- 
ously determine the corresponding outputs of this transformation. On the other hand, the 
specification of a control transformation must define the control logic of this transforma- 
tion in the form of a Mealy-type or a Moore-type finite state automaton. 

A transformation schema is built from the above elements using a set of transformation 
rules. Hierarchies are used in the transformation schema to avoid any explosion in the number 
of transformations in the diagram. Execution of the schema is visualized in terms of the 
placement of tokens, and permits the verification of both functional and performance require- 
ments of a software system. Generally speaking, the presence of a token indicates actual 
or potential activity, and a set of execution rules governs their displacement in the schema. 

Tokens may be placed on transformations, flows and depletable stores; nondepletable 
stores do not enter directly into the execution rules, and tokens are not placed on them. 
An interactive graphical environment for generating the transformation schema of a system, 
and simulating the interaction of the transformations of this schema has been implemented 
by Blumofe and Hecht (1988). 

The transformation schema of ESML provides for an adequate decoupling of the data 
flow and control flow aspects of a system. The behavior of the system is more adequately 
described than its structure. The guidelines provided by the Design Approach for Real- 
Time Systems (DARTS) (Gomaa 1984, 1986, 1988) can be used in structuring a system 
specified in ESML into a set of subsystems and in structuring each subsystem into a set 
of concurrent tasks. Coupling ESML and DARTS can help cover all the phases of the tradi- 
tional software life-cycle of a system. 

In DARTS, the structuring of an application into subsystems is based on functional decom- 
position; a set of flow transformations that perform closely related functions may be grouped 
into a subsystem. Flow transformations that access a common depletable or nondepletable 
store may also be grouped into a subsystem. The following criteria can then be used to 
decompose these subsystems into concurrent tasks: 

• Dependency  on I /0 .  A transform constrained to run at a speed dictated by the I/O device 
with which it is interacting needs to be a separate task. 

• Time-crit ical funct ions .  A time-critical function needs to run as a separate high-priority 
task. 

• Computat ional  requirements. A computationally intensive function (or set of functions) 
can run as a lower priority task consuming spare CPU cycles. 

• Periodic execution. A transform that needs to be executed periodically can be structured 
as a separate task that is activated at regular intervals. 

ESML and DART can be used in developing the control software of manufacturing systems. 
The operations and recovery actions of the components of such systems are modeled as 
flow transformations. On the other hand, the job plans and schedules of these systems are 
modeled as control transformations. The operation of a system is simulated by executing 



REAL-TIME SOFTWARE METHODOLOGIES 119 

its transformation schema. However, the optimality of both the plans and the schedules 
of this system is not guaranteed by the use of ESML and DART. 

8. S T A T E M A T E  

The STATEMATE system is a graphical environment intended for the specification, analysis, 
design, and documentation of large and complex reactive systems such as real-time embedded 
systems, control and communication systems, and interactive software (Harel et al. 1988). 
Three closely related views of a system can be specified and analyzed in STATEMATE; 
the structural view, the functional view, and the behavioral view. 

A hierarchical decomposition of the system into its components (called modules) is pro- 
vided in the structural view of this system. The data and control flows between these com- 
ponents are also specified. The language of module-charts is used to specify the structural 
view of a system. In a module-chart (figure 6), modules are depicted as rectilinear shapes, 
with storage modules having dashed sides and with encapsulation capturing the submodule 
relationship. Environment modules appear as dashed-line rectangles external to that of the 
system itself. Information flow is represented by labeled arrows or hyperarrows (arrows 
with more than two endpoints). Various kinds of connectors can appear in these charts, 
both to abbreviate length arrows and to denote compound data items. 

A hierarchy of the activities performed by the system, complete with the details of the 
data items and control signals that flow between them is provided by the functional view 
of this system. This view provides only the decomposition into activities and the possible 
flow of information in a system, but says little about how these activities and their associated 

Module 

ubmodule 

r 1 
y"-i Storage Module I 

._1 
-I I 

L 

l 
,d-" 1 

r l  External Module I 
I I 
t . . .  .I 

Figure 6. The module-chart of STATEMATE. 



120 JARIR K. CHAAR, DANIEL TEICHROEW AND RICHARD A. VOLZ 

Non-Basic 
ActivitY 

/ 
I 

/ 
/ 

Basic 
Activity - -  - -  - -  

J, 
I 

Storage Store i 

Non-Basic 
ActivitYl..._ - ~  

I 

-@, 
I 

Basic 
Activity 

I 
Basic 

Activity 

t 

,5  I 
] External Module I 
' I 

Figure 7. The activity-chart of STATEMATE. 

inputs and outputs are controlled during system operation. The functional view of a system 
is captured by the language of activity-charts. Graphically, an activity-chart (figure 7) is 
very similar to a module-chart, but the rectilinear shapes of this chart stand for the activi- 
ties, or the functions carried out by the system. Solid arrows represent the flow of data 
items and dashed arrows capture the flow of control items. 

A typical activity will accept input items and produce output items during its active time- 
spans, its inner workings being specified by its own lower-level decomposition. Activities 
that are basic (i.e., cannot be decomposed further into lower-level activities) are described 
as simple input/output transformations. Furthermore, the module that implements a given 
activity is specified at this stage. 

Activity-charts may also contain two additional kinds of objects: data stores and control 
activities. Data stores can be databases, data structures, or buffers, and typically correspond 
to the storage modules in the module-chart. Hence, the storage module that implements 
a given data store is also specified at this stage. The control activities constitute the behavioral 
view of the system, and appear in the activity-chart as empty round-edge boxes only, one 
(at most) within each nonbasic activity. In general, a control activity has the ability to con- 
trol its sibling activities by essentially sensing their status and issuing commands to them. 
The statecharts graphical language is used to describe the contents of these control activities. 

Statecharts were introduced by Harel and Pneuli (1985), Harel (1988) and Harel et al. 
(1988). They are extensions of conventional finite-state machines (FSMs) and their visual 
counterpart, state-transition diagrams. Conventional state diagrams are inappropriate for 
the behavioral description of complex control since they suffer from being flat and unstruc- 
tured, are inherently sequential in nature, and given rise to the so-called state explosion 



REAL-TIME SOFTWARE METHODOLOGIES 121 

phenomenon (i.e., small extensions of a system cause unacceptable growth in the number 
of its states). These problems are overcome in statecharts by supporting the decompositions 
of states in an AND/OR fashion, combined with an instantaneous broadcast mechanism. 
Furthermore, these extensions allow transitions to leave and enter states on any level of 
the decomposition. 

In a statechart (figure 8), states that have common input and/or output transitions can 
be clustered into a new higher-level state (OR clustering). States U and W are examples 
of this clustering; the system is in state U whenever it is in either states S or T, and is 
in state W whenever it is in either states X or Y. The components of this OR clustering 
are called exclusive states. On the other hand, state Z is decomposed (AND decomposi- 
tion) into states U and W; the system is in state Z whenever it is in both states U and W. 
The components of an AND decomposition are graphically separated by dotted lines, and 
are called orthogonal states because concurrent and independent state transitions can be 
represented in these components. The AND decomposition can be carried out on any level 
of states, and is therefore more convenient than allowing only single-level sets of communi- 
cating finite-state machines; orthogonality is the feature that statecharts employ to solve 
the state explosion problem. 

The general syntax of an expression labeling a transition in a statechart is ot[C]/l~ where 
is the event that triggers the transitions, C is a Boolean condition that guards the transi- 

tion from being taken unless it is true when cz occurs, and/5 is an action that is carried 
out if, and precisely when, the transition is taken. Any of these can be omitted. An action 
can also be associated with a state of the statechart. 

In STATEMATE, the consistency and completeness of the module-charts, activity-charts, 
and statecharts of the specification of a system can be checked, and the dynamics of the 
system can be simulated by executing this specification. Furthermore, the activity-chart 
and the statecharts of a system can be automatically translated into Ada. Code can also 
be added by the user to emulate the environment and/or implement the bottom-level basic 
activities. This translation results in an executable prototype of the system because the Ada 
code produced by STATEMATE will not necessarily be as efficient or as fine-tuned as 
production code. 

E 

J 

Figure 8. The statechart model of STATEMATE. 



122 JARIR K. CHAAR, DANIEL TEICHROEW AND RICHARD A. VOLZ 

STATEMATE can be used in developing the control software of manufacturing systems. 
The manufacturing components of such systems are encapsulated in module-charts. The 
operations and fault recovery actions of each such component are captured as activity-charts. 
Job plans and schedules are expressed as statecharts. An implementation of the control 
software of these systems can be automatically derived in a high-level language. This imple- 
mentation is also used to simulate the behavior of these systems. However, the optimality 
of both the job plans and the schedules of such systems is not guaranteed. 

The Modechart, a variant of the statechart visual language that provides a more ade- 
quate treatment of the stringent timing constraints of hard-real-time systems, has been pro- 
posed by Jahanian, Lee and Mok (1988). Modecharts make use of the concept of modes; 
modes are partitions of the state space of a system, and are an effective way for the modular 
specification of large state machines. The formal semantics of Modecharts are expressed 
in terms of Real Time Logic (RTL). RTL is a first-order predicate logic invented primarily 
for reasoning about timing properties of real-time systems (Jahanian and Mok 1986). RTL 
provides a uniform way for the specification of both the relative and the absolute timing 
of events. 

9. Conclusion and Critique 

Table 1 is a summary of some of the features of the approaches to developing real-time 
software presented in this paper. These approaches stress the importance of formal models 
and specification languages in capturing the functional and timing requirements of real- 
time embedded systems, and the role of prototyping in refining these requirements. Fur- 
thermore, the semantics of these models and languages can capture the behavior of their 
specified systems. 

Table 1. Approaches to developing real-time software. 

Basis of Specification Environment/ Developer/ 
Acronym Domain Approach Language Tools Marketer Status 

SREM/DDM Ballistic K_nets RSL, SSL, REVS TRW Developed 
missiles MDL, TSL for US Army 

SARA Hardware GMB SL, MID Multix/CFA UCLA Academic 
design research 

MASCOT Military ACP Military UK's Developed 
hardware computers DD-RE for UK's DD 

ESML Real-time SART Extended Many Many Commercial 
sofware DFD product 

STATEMATE Real-time statechart Graphical Many i-logix Commercial 
software product 



REAL-TIME SOFTWARE METHODOLOGIES 123 

Various teams have designed and implemented software tools that enhance the use of 
the above formal models and specification languages. These tools are targeted towards veri- 
fying the consistency and completeness of the specification of a real-time embedded system. 
System behavior can also be simulated to detect synchronization, mutual exclusion, or 
deadlock situations in this system, and to verify the timing requirements of the system. 

Hierarchical decomposition of real-time embedded systems is also supported by the above 
models and languages. This decomposition is primarily used to manage the complexity 
of the specification diagrams and modules of these systems. On the other hand, the reuse 
of these diagrams and modules is highly dependent on the strategy followed by the soft- 
ware designers of a system. In particular, the methodologies of this paper can support the 
reuse of the objects, the processes and the functions of a real-time embedded system 
specification. SREM's R-nets and ESML's transforms permit the reuse of both objects and 
functions. SARA's modules, MASCOT's subsystems, and STATEMENT's modules permit 
the reuse of objects. 

By following an object-oriented, process-oriented, or function-oriented approach, the 
above methodologies cover the design phase of the software life-cycle. Moreover, the genera- 
tion of an executable prototype of a real-time embedded system provides a platform for 
incrementally refining this software into a production quality product, and for thoroughly 
testing this product. 

Consequently, the methodologies of this paper may be used to develop the real-time control 
software of efficient and dependable manufacturing systems. Integrating the planning, 
scheduling and monitoring activities of this control software is essential to achieving effi- 
ciency and dependability for these systems. However, none of the above methodologies 
supports this integrated approach. In particular, the formal models and specification 
languages of these methodologies assume that a fixed control sequence is repeatedly per- 
formed by their specified real-time embedded systems, and do not provide any capabilities 
for optimizing the use of the resources of these systems. Furthermore, it is assumed that 
the behavior of the system under both normal and faulty conditions is fully simulated before 
the software product controls the actual system. 

Planning the control sequence of efficient and dependable manufacturing systems is re- 
quired because these sequences are job-specific. The execution of these control sequences 
requires the use of the devices of these systems. Hence, scheduling attempts to maximize 
the usage of these expensive devices. On the other hand, monitoring permits the detection 
and subsequent correction of any faults that may occur to these devices during the execu- 
tion of the above control sequences. 

To cure the deficiences of real-time software methodologies when used in developing 
the control software of efficient and dependable manufacturing systems, a methodology 
for developing this software and a set of software tools that enhance the applicability of 
this methodology have been implemented (Chaar 1990; Chaar, Volz and Davidson 1991). 
The tools aid in planning the set of operations of a manufacturing job, generating a cyclic 
schedule for processing a batch of jobs, and monitoring the operations of the system while 
this batch is being processed. 

In this methodology, a component-oriented rule-based language is used to specify the 
formal models of manufacturing systems. A model captures the state of a component of 



124 JARIR K. CHAAR, DANIEL TEICHROEW AND RICHARD A. VOLZ 

the system in a set of first-order logic predicates, and it captures the semantics of the opera- 
tions performed by this component in a set of rules that determine the preconditions and 
postconditions of an operation. These models are used in planning the sequence of opera- 
tions of each class of jobs to be manufactured by these systems. 

To achieve efficiency, the reservation table technique is used to create optimum cyclic 
job-shop schedules for processing a batch of identical jobs or a mix of jobs from several 
classes on these systems. A reservation table is derived from the plan of a job. This table 
is then used to determine the theoretical maximum job initiation rate and the set of all 
possible initiation strategies for the batch. In some cases, this theoretical maximum rate 
is achieved by increasing the flow time of the job. The above technique inherently allows 
multiple devices to be reserved concurrently, it can deal with transport time explicitly, and 
it achieves higher initiation rates by including cycles that involve multiple job initiations. 

To achieve dependability, a plan-oriented fault detection and correction strategy is pro- 
posed. This strategy can automatically handle any combination of faults that may occur 
when monitoring the operations of manufacturing systems. A fault-tree is consulted prior 
to executing the scheduled operations of a plan, and the faults that affect the execution 
of these operations are handled subsequently. Resuming the original cyclic schedule is at- 
tempted, whenever feasible. 

References 

Ada Joint Program Office, '~da Methodologies: Concepts and Requirements" Technical report, The United States 
Department of Defense (November 1982). 

Agerwala, T., "Special Feature: Putting Petri Nets to Work" Computer, pp. 85-94 (December 1979). 
AI Jaar, R.Y. and Desrochers, A.A., "Performance Evaluation of Automated Manufacturing Systems Using 

Generalized Stochastic Petri Nets," IEEE Transactions on Robotics and Automation, Vol. 6, No. 6, pp. 621-639 
(December 1990). 

Alford, M.W., '~A Requirements Engineering Methodology for Real-Time Processing Requirements" IEEE Tran- 
sactions on Software Engineering, Vol. SE-3, No. 1, pp. 60-69 (January 1977). 

Alford, M.W., "SREM at the Age of Eight: The Distributed Computing Design System" Computer, pp. 36-46 
(April 1985). 

Aoyama, M., "Concurrent Development of Software Systems: A New Development Paradigm," ACM SIGSOFT 
Software Engineering Notes, Vol. 12, No. 3, pp. 20-24 (July 1987). 

Avrunin, G.S. and Wileden, J.C., "Describinig and Analyzing Distributed Software System Design," ACM Tran- 
sactions on Programming Languages and Systems, Vol. 7, No. 3, pp. 380-403 (July 1985). 

Avrunin, G.S., Dillon, L.K., Wileden, J.C. and Riddle, W.E., "Constrained Expressions: Adding Analysis 
Capabilities to Design Methods for Concurrent Software Systems," 1EEE Transactions on Software Engineer- 
ing, Vol. SE-12, No. 2, pp. 278-292 (February 1986). 

Bell, T.E., Bixler, D.C. and Dyer, M.E., '~n Extendable Approach to Computer-Aided Software Requirements 
Engineering;' IEEE Transactions on Software Engineering, Vol. SE-3, No. 1, pp. 49-60 (January 1977) 

Ben Hadj-Alouane, N., Chaar, J.K. and Naylor, A.W., "The Design and Implementation of the Control and In- 
tegration Software of a Flexible Manufacturing System," The Proceedings of The First International Conference 
on Systems Integration, New Jersey, pp 494-502 (April 1990). 

Berztiss, A.T., "Specification of Visual Representation of Petri Nets," The Proceedings of the 1987 Workshop 
on Visual Languages (August 1987). 

Berztiss, A.T., "Survey of Formal Specification Methods," Technical report, Software Engineering Institute, 
Carnegie-Mellon University (1987). 



REAL-TIME SOFTWARE METHODOLOGIES 125 

Blumofe, R. and Hecht, A., "Executing Real-Time Structured Analysis Specification" ACM SIGSOFTSoftware 
Engineering Notes, Vol. 13, No. 3, pp. 32-40 (July 1988). 

Boehm, B.W., 'A Spiral Model of Software Development and Enhancement" ACM SIGSOFT Software Engineering 
Notes, Vol. 11, No. 4, pp. 14-24 (August 1986). 

Boehm, B.W., "Improving Software Productivity," Computer, pp. 43-57 (September 1987). 
Bruyn, W., Jensen, R., Keskar, D. and Ward, P.T., "ESML: An Extended Systems Modeling Language Based 

on the Data Flow Diagram" ACM SIGSOFTSoftware Engineering Notes, Vol. 13, No. 1, pp 58-67 (January 1988). 
Budgen, D., "Combining MASCOT with Modula-2 to aid the Engineering of Real-Time Systems," Software- 

Practice and Experience, Vol. 15, pp. 767-793 (August 1985). 
Campos, I.M. and Estrin, G., "Concurrent Software System Design SuppoSed by SARA at the Age of One;' 

The Proceedings of the 3rd International Conference on Software Engineering, Atlanta, Georgia, pp. 230-242 
(1977). 

Chaar, J.K., "Software Design Methodologies: A Survey;' Technical Report RSD-TR-20-87, Robot Systems Division, 
The University of Michigan (Ocotber 1987). 

Chaar, J.K. and Davidson, E.S., "Cyclic Job Shop Scheduling Using Reservation Tables," The Proceedings of 
the 1990 IEEE International Conference on Robotics and Automation, Cincinnati, Ohio, pp 2128-2135 (May 1990). 

Chaar, J.K., Teichroew, Do and Volz, R.A., "Developing Manufacturing Control Software: A Survey and Criti- 
que," International Journal of  Flexible Manufacturing Systems, Vol. 5, No. 1, pp. 53-88 (1993). 

Chaar, J.K., Volz, R.A. and Davidson, E.S., "An Integrated Approach to Developing Manufacturing Control 
Software," The Proceedings of  the 1991 IEE International Conference on Robotics and Automation, Sacramen- 
to, California, pp. 1979-1984 (April 1991). 

Cherry, G.W. and Crawford, B.S., "The PAMELA Methodology," Technical report, Thought**Tools (November 
1985). 

Cherry, G.W., "PAMELA 2: An Ada-Based Object-Oriented Design Method;' Technical report, Thought**Tools 
(1987). 

Chin, R.S. and Chanson, S.T., "Distributed Object-Based Programming Systems," ACM Computing Surveys, 
Vol. 23, No. 1, pp. 91-124 (March 1991). 

Chong Yi, Y., "Synchronic Distances in C/E Systems," Advances in Petri Nets, pp. 101-121 (1985a). 
Chong Yi, Y., "Process Periods and System Reconstruction" Advances in Petri Nets, pp. 122-141 (1985b). 
Coolahan Jr., J.E. and Roussopoulos, N., "Timing Requirements for Time-Driven Systems Using Augmented 

Petri Nets," 1EEE Transactions on Software Engineering, Vol. SE-9, No. 5, pp. 603-616 (September 1983). 
Dasarathy, B., "Timing Constraints of Real-Time Systems: Constructs for Expressing Them, Methods of Validating 

Them" 1EEE Transactions on Software Engineering, Vol. SE-11, No. 1, pp. 80-86 (January 1985). 
Davis, A.M., ' ~  Comparison of Techniques for The Specification of External System Behavior" Communica- 

tions of the ACM, pp. 1098-1115 (September 1988). 
Davis, C.G. and Vick, C.R., "The Software Development System" 1EEE Transactions on Software Engineering, 

Vol. SE-3, No. 1, pp. 69-84 (January 1977). 
Dibble, R., "Software Design and Development Using MASCOT" Software for Avionics, AGARD Conference 

Reprint nbr. 330, (1982). 
Dowson, M., "ISTAR--An Integrated Project Support Environment," Proceedings of the 2nd ACM 

SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Development Environments, pp. 
27-33 (January 1987). 

Du Plessis, A.L., '~1 Software Engineering Environment for Real-Time Systems" PhD thesis, University of South 
Africa (june 1986). 

Estrin, G., Fenchel, R.S., Razouk, R.R. and Vernon, M.K., "SARA (Systems Architects Apprentice): Model- 
ing, Analysis and Simulation Support for Design of Concurrent Systems" IEEE Transactions on Software Engineer- 
ing, Vol. SE-12, No. 2, pp. 293-311 (February 1986). 

Feldbrugge, E, "Petri Net Tools," Advances in Petri Nets, pp. 203-223 (1985). 
Fisher, J.P., "Zone Logic--Increased Machine Productivity through Artificial Intelligence" The Proceedings of 

the 18th Annual International Programmable Controllers (IPC) Conference (April 1989). 
Freeman, P. and Wasserman, A.I., Tutorial on Software Design Techniques. (eds.) IEEE Computer Society, 

Washington, D.C. 4th ed. (1983). 



126 JARIR K. CHAAR, DANIEL TEICHROEW AND RICHARD A. VOLZ 

Genrich, H.J., "Net Theory and Application" Kugler, H.-J., editor, Information Processing (IFIP) 86, pp. 823-831 
(1986). 

Ghezzi, C., Mandrioli, D. and Pezzd, M., "Petri Nets as a Support to Symbolic Execution of Concurrent Ada 
Programs," Technical Report 87-007, Politecnico di Milano-Dipartimento di Elettronica (1987). 

Giordana, A. and Saitta, L., "Modeling Production Rules by Means of Predicate Transition Networks," Informa- 
tion Sciences, Vol. 35, pp. 1-41 (1985). 

Goltz, U. and Chong Yi, Y., "Synchronic Structure," Advances in Petri Nets, pp. 233-252 (1985). 
Gomaa, H., '`A Software Design Method for Real-Time Systems," Communications of the ACM, Vol. 27, No. 

9, pp. 938-949 (September 1984). 
Gomaa, H., "Software Development of Real-Time Systems, ~' Communications of the ACM, Vol. 29, No. 7, pp. 

657-668 (July 1986). 
Gomaa, H., "Extending the DARTS Software Design Method to Distributed Real Time Applications," The Pro- 

ceedings of the 21th Annual Hawaii International Conference on System Sciences (HICSS-21), Hawaii, Vol. 
II: Software, pp. 252-261 (January 1988). 

Griffiths, S.N., "Design Methodologies--A Comparison," Structured Analysis andDesign, Vol. 11, pp. 133-166 
(1978). 

Harel, D. and Penuli, A., "On the Development of Reactive Systems," Apt, K.R., (ed.), Logics and Models 
of Concurrent Systems, Vol. F13, pp. 477-498. NATO ASI Series (January 1985). 

Harel, D., Lachover, H., Naamad, A., Pneuli, A., Politi, M., Sherman, R. and Shtul Trauring, A., "STATEMATE: 
A Working Environment for the Development of Complex Reactive Systems," Proceedings of the lOth IEEE 
International Conference on Software Engineering, pp. 396-406, Singapore (April 1988). 

Harel, D., "On Visual Formalisms" Communications of the ACM, pp. 514-530 (May 1988). 
Hartley, D., "The Use of Structured Methods in the Development of Large Software-Based Avionics Systems," 

Proceedings of  AIAA/IEEE 6th Digital Avionics Conference, Baltimore, Maryland (1984). 
Hekmatpour, S., "Experience with Evolutionary Prototyping in a Large Software System" ACM SIGSOFTSofi- 

ware Engineering Notes, Vol. 12, No. 1, pp 38-41 (January 1987). 
Holliday, M.A. and Vernon, M.K., '`A Generalized Timed Petri Net Model for Performance Analysis," IEEE 

Transactions on Software Engineering, Vol. SE-13, No. 12, pp. 1297-1310 (December 1987). 
Houghton, Jr., R.C. and Wallace, D.R., "Characteristics and Functions of Software Engineering Environments: 

An Overview," ACM SIGSOFT Software Engineering Notes, Vol. 12, No. 1, pp 68-84 (January 1987). 
Jackson, K. and Simpson, H.R., "MASCOT--A Modular Approach to Software Construction Operation and 

Test," Technical Report, Royal Radar Establishment (RRE) Technical Note 778 (October 1975). 
Jahanian, E and Mok, A.K., "Safety analysis of Timing Properties in Real-Time Systems," IEEE Transactions 

on Software Engineering, Vol. SE-12, No. 9, pp 890-904 (September 1986). 
Jahanian, E, Lee, R. and Mok, A.K., "Semantics of Modechart in Real Time Logic," The Proceedings of the 

21th Annual Hawaii International Conference on System Sciences (HICSS-21), Hawaii, Vol. II: Software, pp. 
252-261 (January 1988). 

Kelly, J.C., '`A Comparison on Four Design Methods for Real-Time Systems," Proceedings of the 9th Interna- 
tional Conference on Software Engineering, Monterey, California, pp. 238-252 (May 1987). 

Kenny, K.B. and Lin, K.-J., "Building Flexible Real-Time Systems Using the Flex Language;' Computer, pp. 
70-78 (May 1991). 

Lauer, P.E. and Shields, M.W., "COSY: An Environment for Development and Analysis of Concurrent and 
Distributed Systems," The Proceedings of the Symposium on Software Engineering Environments, Lahnstein, 
Germany (June 1980). 

Leveson, N.G. and Stolzy, J.L., "Safety Analysis Using Petri Nets," IEEE Transactions on Software Engineer- 
ing, Vol. SE-13, No. 3, pp. 386-397 (March 1987). 

Luckham, D.C. and von Henke, F.W., '`An Overview of Anna, a Specification Language for Ada," IEEE Soft- 
ware, pp. 9-22 (March 1985). 

Luckham, D.C., Neff, R. and Rosenblum, D.S., "An Environment for Ada Software Development Based on For- 
mal Specification: Status and Development Plan," Ada Letters, Vol. VII, No. 3, pp. 94-106 (May/June 1987). 

Mantei, M.M. and Teorey, T.J., "Cost/Benefit Analysis for Incorporative Human Factors in The Software Lifecycle" 
Communications of the ACM, Vol. 31, No. 4, pp. 428-439 (April 1988). 



REAL-TIME SOFTWARE METHODOLOGIES 127 

Marcus, M., Sattley, K., Schaffner, S.C. and Albert, E., "DAPSE: A Distributed Ada Programming Support 
Environment" The Proceedings of the IEEE 2nd International Conference on Ada Applications and Environments, 
pp. 115-125 (1986). 

Molloy, M.K., "Discrete Time Stochastic Petri Nets," IEEE Transactions on Software Engineering, Vol. SE-11, 
No. 4, pp. 417-423 (April 1985). 

Murata, T. and Zhang, D., "A High-Level Petri Net Model for Parallel Interpretation of Logic Programs" The 
Proceedings of  the 1986 Conference on Computer Languages, pp. 123-132 (October 1986). 

Murata, T. and Komoda, N., "Liveness Analysis of Sequence Control Specifications Described in Capacity 
Designated Petri Net Using Reduction" The Proceedings of the 1987 IEEE International Conference on Robotics 
& Automation, Raleigh, North carolina, pp. 1960-1965 (March 1987). 

Murata, T. and Zhang, D., ' ~  Predicate-Transition Net Model for Parallel Interpretation of Logic Programs," 
IEEE Transactions on Software Engineering, Vol. t4, No. 4, pp. 481-497 (April 1988). 

Murata, T., Shenker, B. and Shatz, S.M., "Detection of Ada Static Deadlocks Using Petri Net Invariants," IEEE 
Transactions on Software Engineering, pp. 314-326 (March 1989). 

Naylor, A.W. and Volz, R.A., "Design of Integrated Manufacturing System Control Software" IEEE Transac- 
tions on Systems, Man, and Cybernetics, Vol. SMC-17, No. 6, pp. 881-897 (November/December 1987). 

Nelson, R.A., Haibt, L.M. and Sheridan, P.B., "Casting Petri Nets into Programs," IEEE Transactions on Soft- 
ware Engineering, Vol. SE-9, No. 5, pp. 590-602 (September 1983). 

Parnas, D.L., "On the Criteria to be Used in Decomposing Systems into Modules," Communications of the ACM, 
Vol. 15, No. 12, pp. 1053-1058 (December 1972). 

Peterka, G. and Murata, T., "Proof Procedure and Answer Extraction in Petri Net Model of Logic Programs," 
1EEE Transactions on Software Engineering, Vol. SE-15, No. 2, pp. 209-217 (February 1989). 

Peters, L.J. and Tripp, L.L., "Comparing Software Design Methodologies;' Datamation, Vol. 23, No. 11, pp. 
89-94 (November 1977). 

Peterson, J.L., Petri Net Theory and the Modeling of Systems, Prentice-Hall, Englewood Cliffs, NJ (1981). 
Privitera, J.P., '~da Design Language for the structured Design Methodology," Proceedings of the AdaTEC Con- 

ference, pp. 76-90 (October 1982). 
Ramamoorthy, C.V., Tsai, W., Yamaura, T. and Bhide, A., "Metrics Guided Methodology;' Proceedings of COM- 

PSAC'85: 9th Conference on Software Applications, Chicago, Illinois, pp. 111-120 (October 1985). 
Riddle, W.E., "An Event-Based Design Methodology Supported by DREAM," Schneider, N.-J., (ed.), Formal 

Models and Practical Tools for Information Systems Design. IFIP (1979). 
Royce, W.W., "Managing the Development of Large Software Systems: Concepts and Techniques," Proceedings 

of the 9th International Conference on Software Engineering (a Reprint of 1970 article), Monterey, California, 
pp. 328-338 (March 1987). 

Shaw, A.C., "Software Specification Languages Based on Regular Expressions," Riddle, W.E. and Fairley, R.E., 
(eds.), Software Development Tools, pp. 148-175, Springer-Verlag (1980). 

Simpson, H.R. and Jackson, K., "Process Synchronization in MASCOT" The Computer Journal, Vol. 22, No. 
4, pp. 332-345 (1979). 

Simpson, H.R., "Act Parallel: Use MASCOT," Computer Bulletin, pp. 6-9 (March 1982). 
Stankovic, J.A., "A Serious Problem for Next-Generation Systems," Computer, pp. 10-19 (October 1988). 
Stotts, P.D., "The PFG Environment: Parallel Programming with Petri Net Semantics," The Proceedings of the 

21th Annual Hawaii International Conference on System Sciences (HICSS-21), Hawaii, Vol. II: Software, pp. 
630-638 (January 1988). 

Taylor, R.N., Belz, EC., Clarke, L.A., Osterweil, L., Selby, R.W., Wileden, J.C., Wolf, A.L. and Young, M., 
"Foundations for The Arcadia Environment Architecture" S1GPLANNotices, Vol. 24, No. 2, pp. 1-13 (February 
1989). 

Taylor, R.N. and Standish, T.A., "Steps to an Advanced Ada Programming Environment" IEEE Transactions 
on Software Engineering, Vol. SE-11, No. 3, pp. 302-310 (March 1985). 

Teichroew, D., "The Development of Software Support Environments" Proceedings Canadian Information Pro- 
cessing Society (CIPS), 1982 National Conference, Saskatchewan (1982). 

The United States Department of Defense, Ada Programming Language (ANSI/MIL-STD-1815A) (February 1983). 
Ward, P.T., "The Transformation Schema: An Extension of the Data Flow Diagram to Represent Control and 

Timing," IEEE Transactions on Software Engineering, Vol. SE-12, No. 2, pp. 198-210 (February 1986). 



128 JARIR K. CHAAR, DANIEL TEICHROEW AND RICHARD A. VOLZ 

Ward, ET., "Embedded Behavior Pattern Languages: A Contribution to a Taxonomy of CASE Languages," The 
Proceedings of  the 21th Annual Hawaii International Conference on System Sciences (HICSS-21), Hawaii, Vol. 
II: Software, pp. 273-284 (January 1988). 

Watson, A.G., "Petri Net Topologies for a Specification Language," Master's thesis, University of Witwatersrand 
(1987). 

Webster, D.E., "Mapping the Design Information Representation Terrain," Technical Report MCC-STP-367-88, 
Microelectronics and Computer Technology Corporation (November 1987). 

White, S.M., A Pragmatic Formal Method for Computer System Definition, PhD thesis, Polytechnic University 
(June 1987). 

Wolff, J.G., "The Management of Risk in System Development: 'Project S' and the 'New Spiral Model'," Soft- 
ware Engineering Journal, pp. 134-142 (May 1989). 

Yau, S.S. and Shatz, S.M., "On Communication in The Design of Software Components of Distributed Com- 
puter Systems," Proceedings of the 3rd Conference on Distributed Computing Systems, pp. 280-287 (1982). 

Yau, S.S. and Caglayan, M.U., "Distributed Software System Design Representation Using Modified Pctri Nets," 
1EEE Transactions on Software Engineering, Vol. SE-9, No. 6, pp. 733-745 (November 1983). 


