The International Journal of Flexible Manufacturing Systems, 6 (1994): 99-121
© 1994 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Optimal Door Fitting with Systematic Fixture Adjustment
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Abstract. A systematic approach is presented to obtain the best door gap quality through optimal door fitting
in automobile body manufacturing. First, three indexes of gap quality are defined; they are: (1) door gap width
deviation relative to design nominal; (2) door gap parallelism; and (3) car-to-car gap consistency. Then the door-
fitting problem is formulated into a general constrained optimization problem. The effects of optimal door fitting
on the three quality indexes are evaluated through computer simulation. These results provide a lower bound
on the design of nominal door gap by considering process capability. Finally, a computer-aided fixture adjustment
scheme is developed to orient a door in a body side opening to achieve the optimal fitting. The amount of adjust-
ment, with the desired orientation obtained from optimization, is calculated based on parametrically modeled
local surface features of the fixture and the door. The adequacy of door feature modeling is verified through
a door-fitting experiment.
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1. Introduction

Among automobile body fit and finish concerns, door-fit problems have been ranked within
the top items due to the high warranty cost. An inadequate door fit on the car body will not
only cause functional problems such as wind noise, water leakage, and difficulty in closing
the door (excessive door closing effort), but also affects the aesthetic value of the vehicle.

The dimensional variations of gap and flush between a body-in-white (BIW) and doors,
or between doors, arise from four sources: (1) dimensional variation of the doors; (2) dimen-
sional variations in the BIW openings; (3) variation of the door hanging process; and (4) ef-
fects of painting and general assembly. The first two variations are subassembly process
variations and need to be improved upstream, and have been addressed by Hu, Wu and
Wu (1991). This paper will address the improvement of door hanging processes.

Door hanging is one of the major operations on the production floor, either manual or
automatic. In manual operation, a door is positioned onto the BIW opening using a hanging
fixture, bolted with hinges, and adjusted when necessary upon visual inspection. Adjust-
ments can include bending and twisting the door, or moving the hinges. Problems with
this approach are summarized as follows:

1. The spring back after bending the doors may introduce inconsistency and thus may not
always be effective. This inconsistency in the current practice of door fitting calls for
the development of a systematic hanging fixture adjustment scheme.

2. The capability of correcting the gap deviations through door fitting is not well understood.
Consequently, the variational fault sources cannot be effectively located for corrections.
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3. A systematic procedure is not available for door hanging fixture adjustment. The current
practice of door hanging fixture adjustment is done by investigating the measurement
data followed by a heuristic decision. The investigation and decision-making procedure
is time-consuming if not ineffective.

In automatic door hanging, robots are usually used to position the door relative to the
door opening, with the end effector working as the hanging fixture. Consistent gap and
flush depends on the positioning of the body, the repeatability of the robot, and the varia-
tion of subassemblies, i.e., doors and bodies. With in-line measurements for both doors
and side openings, flexible assembly systems could be developed to accommodate part-to-
part variation. Furthermore, optimal door fitting is feasible through the use of controlled
fixture adjustment based on a well-defined objective function and constraints.

In this paper, a systematic approach to obtain optimal door fit is presented based on con-
strained optimization and systematic fixture adjustment. Simulations are used to reveal the
relationship between gap quality and part (door and body) variations through optimal door
fitting. Results are discussed to facilitate the determination of (1) the necessity of variation
reduction on the door and body side opening for a designed gap; and (2) an adequate nominal
gap design to accommodate known process capability. The contact surfaces of the locators
and the door are then parametrically modeled so that the fixture adjustment can be deter-
mined systematically. Experimental results are presented to demonstrate the effectiveness
of parametric modeling in door hanging.

2. Optimal door fitting
2.1. Definition of quality indexes

As measures of the quality of gaps, the following three indexes are used; they are: (1) average
gap width deviation (GWD) relative to design intent, i.e., the nominal gap; (2) gap paral-
lelism (GP), i.e., gap width variation from top to bottom of the door; and (3) consistency
from car to car. Figure 1 shows a rear door on the body side opening. These three door-fit
quality indexes are quantitatively defined as follows:

n
Z (x; — nominal gap)
1. GWD = gap width deviation =

n

n
Z (x; — nominal gap)?
i=1

2. GP = gap parallelism = .

3. ogwp = variation of gap width from car to car.
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Figure 1. An automobile rear door on the body side opening.

Among the three indexes, GWD and GP are the within-car variation, and ogpyp is the car-
to-car variation. Theoretically, the target values for GWD, GPF, and agyp are all zero. How-
ever, usually tolerances are specified, and they vary from car to car.

2.2. Formulation of optimal fitting problem

The optimal door-fitting problem is formulated as a general constrained optimization prob-
lem to orient the door in the three-dimensional space using a homogeneous transformation,
such that the objective function is minimized. The calculated transformation variables are
then converted to the amount of fixture adjustment.

2.2.1. Homogeneous transformation. A homogeneous transformation matrix T can be used
to represent the relationship between representations of a set of spatial position measure-
ments with respect to either the global reference coordinate or the body frame coordinate
(Paul 1981).

T = |:Q3><3 Dslxl] 1)

013

where Q = coordinate rotational matrix; D = coordinate translational matrix; 0 = perspec-
tive transformation: all zeros for current application; and 1 = scaling factor: assigned to
be one in the current application.

Thus, a spatial vector U with respect to a coordinate frame A can be transformed into
vector V with respect to the same coordinate frame A by premultiplying U with the homo-
geneous transformation matrix T, where T can be shown to be equivalent to a rotation
followed by a translation. That is,

Vemteus [ $ P [F] =[P ] .
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where Uy, V, = positional vectors with respect to coordinate frame A; and T = homo-
geneous transformation matrix.

In an automatic assembly line, where real-time measurement and robots are used for
door fitting, the rotational and translational variables can be used to determine the move-
ment of a robot manipulator to achieve the best fit.

2.2.2. Constrained optimization. The best door-fitting problem is similar to that of part
mating, as proposed by Bona and Menga (1984) and Gottschlich and Kak (1989). The prob-
lem is now to find the optimal orientation of the door in the three-dimensional space which
gives the least variation to the designed nominal gap. The problem can be formulated as
a general constrained optimization problem with objective function J, subject to equality
and inequality constraints.

min J(X;)
Q
JX) =D, WlB; — T(X) * 4)|l - GF)? 3)
J

with equality and inequality constraints
EX) =0
GX) =0

where J(X;) = objective function to be minimized; X; = homogeneous transformation var-
iables; W; = weights of importance for each fitting point; B; = jth measurement point on
the body; 4; = jth measurement point on the door; GF; = jth nominal gap or flush; T(X;)
= homogeneous transformation matrix (4 X 4); E = equality constraints; G = inequality
constraints, for example, tolerances of gaps; and ||+|| = Euclidean norm of a vector.

The objective function in the current study as described is the variation of the distances
between the BIW opening dimensions and the corresponding door dimensions from the
target gap or flush. In some instances, only one-directional distance is of concern. Under
such circumstances, the objective function can be modified by adding a “directional weight”
when calculating the weighted distance. Equation (4) shows the variation of point j to its
target gap.

J; = (Vo — x4)? + 855(yp ~ Ya)* + 8325 — 24)* — GF;)? C))
where 6; = directional weights; (xs, yz, zg) = jth body side opening point or target point;
(X4, Y4, 24) = jth door point; and GF; = jth nominal gap.

Equation (3) then becomes a scalar function as in equation (5).

J(X) = TW;J, 5)
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The transformation variables in the current study are the six degrees of freedom kinematic
variables of the homogeneous transformation (Asada and By, 1985). In the determination
of the homogeneous transformation matrix, the roll, pitch, and yaw angles and the three
translational variables are determined with respect to the body coordinate on the door by
translating the global origin to a defined body coordinate origin. The body coordinate origin
is determined based on the nominals of the fixturing points (X, Yoer» Zner) @S follows:

Ko Yo0r Zo0) = = | D K 2 Yoesir 2 Zoets | - ©
i=1 i=1 i=1

The locating points are so constrained such that the adjustment is within the range of
feature modeling. For the rest of the checking points, the distances between the door and
BIW opening can be specified by the tolerances as inequality constraints. Finally, for locators
which may not be adjusted, they will constitute the equality constraints in the problem.

The features of the fitting areas can be defined as either points, lines, or planes, which
will be presented in section 3.2.

2.3. Simulation and analysis

The effectiveness of optimal door fitting, measured by the three quality indexes, were eval-
uated by fitting a rear door to the BIW opening under different conditions of nominal gap
and process variation.

The variations in the BIW opening and in the door are assumed to be on the same order
of magnitude, and both contribute to the variations of the door gaps. The variations are
simulated by superimposing Gaussian white noises to the nominals in x-, y-, z-dimensions
with desired mean values for both door and BIW points. The magnitude of variation relative
to the nominal gap is measured by the signal-noise ratio (S/N), which is the mean devia-
tion divided by the standard deviation (o) of superimposed noise, that is:

§ _ magnitude of mean deviation

N standard deviation of noise

The gap width deviation and gap parallelism for each door are calculated for both with
and without optimal fit situations. The average of the GWD and GP for 30 doors is used
to evaluate the improvement with optimal fitting on the GWD and GP, and the standard
deviation of GWD (for 30 doors) is used to evaluate the car-to-car variation.

Without loss of generality, the directional weights are all set to be one, and all the points
are treated as equally important.

2.3.1. Within-car variation. The first and second door-fitting dimensional quality require-
ments, GWD and GP, are studied assuming different nominal gap designs and different
process capabilities.

Figure 2 shows the GWD and GP of individual doors before and after optimal fit for
3-mm nominal gaps. It is clear from the figure that the larger the noise (the smaller the
S/N ratio), the less the improvement after door fit, especially for gap parallelism.
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Figure 2. GWD and GP for individual doors with nominal gap 3 mm.

Figures 3 and 4 show the results of averaged GWD and GP before and after optimal fit
with respect to different levels of variation. Zero mean deviation is assumed in figure 3,
while a I-mm mean deviation is assumed for figure 4. It can be seen from both figures
3 and 4 that when the gap is reduced the variation tends to be more visible. Thus, the
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Figure 3. Averaged GWD and GP for zero mean deviation with different nominal gaps.

smaller the gap, the more prominent the variation will be, and consequently higher quality
parts with less variations are required for good door fit. The quality after fitting is also
found to be affected more by the variation (o of noise) than by the mean deviation, especially
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Figure 4. Averaged GWD and GP for 1-mm mean deviation in (—x)-direction.

for the rigid body door movement. Thus, the optimal fitting will be more effective in cor-
recting the process mean deviations than random variations, especially when a smaller nom-
inal gap is designed.
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The necessity of variation reduction can be demonstrated using figure 3. From the view-
point of process improvement, the nominal gap is fixed for a given design. Assume the
GWD requirement is designated to be (GWD =< 0.1 mm), and the gap parallelism is desig-
nated to be (GP < 0.2 mm) while the nominal door gap is 4 mm. As shown by figure 3,
in order to achieve the quality requirement, the variation (o of the noise) needs to be con-
trolled under 0.3 mm.

Figure 5 shows the GWD and GP before and after optimal fit of zero mean deviation
for different nominal gap designs. From the viewpoint of design, one needs to design the
achievable nominal gap based on known process capability. Figure 5 can be used to identify
the relationship between variation and nominal gap design. For example, assuming the noise
level is 0.3 mm (1 standard deviation) and the quality requirements to be the same as before,
from figure 5, the nominal gap must be at least 4 mm so that the quality level can be achieved
after optimal fit, It can also be found that a 6-mm nominal gap can only achieve 0.3 mm
gap parallelism when the process capability (¢ of noise) is 0.5 mm.

2.3.2. Batch-to-batch fit vs. 100% door fitting. The previous discussions are based on
100% door fitting. When only batch-to-batch fit is implemented, as in the case of manual
operation, the mean value of a batch of doors will be used for optimai fitting. Under such
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Figure 5. Averaged GWD and GP for different noise levels.
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circumstances, only the mean deviations can be corrected by optimal door fitting while
the door-to-door variation still remains. The GWD and GP curves before optimal door fit
in figure 3 for zero mean deviation provide the best gap quality possible for batch-to-batch
fit. Therefore, the difference between the curves before fit and the curves after fit in figure
3 shows the difference between batch-to-batch fit and 100% optimal door fit.

2.3.3. Car-to-car variation. The third door-fitting criterion is the consistency of door gap
widths from car to car, which is measured by the standard deviation of GWD. The ¢ of
GWD vs. different nominal gaps for several S/N ratios are shown in figure 6. Taking the
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zero mean deviation case as an example (S/N = 0/0), the GWDs tend to be more severe
for smaller nominal gaps. Therefore, when the gap is small, the GWDs between cars are
“consistently bad” before optimal fit. After optimal fit, although the GWDs are improved
as in figures 3-3, the quality tends to be “inconsistently good.” This explains the larger
o of GWD after optimal fit in the small nominal gap region.

When there is a mean deviation, for example, 1 mm to the fore direction, it is equivalent
to a widening of the gap. A wider gap resulted in better variation tolerating capability.
Thus, it is seen in figure 6 that the curves of before fit and after fit intersect when the
g of noise is larger than 0.3 mm, and the point of intersection changed from 2-mm nominal
gap without mean deviation to 0.8-mm nominal gap with 1-mm deviation.

3. A systematic fixture adjustment scheme

The realization of the optimal door fit requires adequate adjustments of the door hanging
fixture. A door hanging fixture with its locators, or nets for two-directional positioning is
shown in figure 7. Conventionally, the adjustment of fixture for door fitting is based on trial
and error. Also, the local features of the door in the contacting areas are not considered
in fixture adjustment. For example, when a door is found to be “high,” the H/L locator
in z-direction is adjusted as shown in figure 8(a). The local featrues of the other locators,
such as the x-directional locator in figure 8(a), are considered to be irrelevant to the part
movement. This assumption of irrelevance will be inadequate if the local feature of x-
directional locator is not perpendicular to the direction of part movement as shown in figure
8(b). Adjustment of the z-directional locator alone will either cause incorrect door move-
ment or indent the contact surface of the door. Thus, the local features of the surfaces around
the locating point need to be considered in the determination of fixture adjustment.

H/L locator H/L locator
to Door to Door

H/L locator to
body-in-white Door Hanging
Fixture

F/A locator
to Door

H/L locator to
@ Measurement location body-in-white

Figure 7. Door hanging fixture and F/A measurement location on a door.
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(b)

Figure 8. Error in locating when local feature is not considered.

Take a point locator as an example. The door surface in contact with the locator needs
to remain in contact after the locator being adjusted, as shown in figure 9. After the adjust-
ment, the contact point on the surface will move to a new location in the neighborhood
of the original contact point. The local surface feature around the original contact point
needs to be modeled to determine the location of the new contact point and the amount
of adjustment.

shims for
adjustment

Locator

Part surface

Area for
modeling

Figure 9. A locator in contact with part surface.
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A systematic scheme to determine the fixture adjustment considering the netting features
is presented as follows.

3.1. Geometric modeling of local features

3.1.1. Parametric modeling of geometry. A spatial surface can generally be represented
using a parametric algebraic form (Mortenson 1985; Hoffmann 1989) as in equation (7).
Here a;;, by;, and ¢;; are the coefficients to describe the surface. Parameters u and w, when
assigned fixed values, will represent a specific point on the modeled surface. For the case
when m = n = 3, equation (7) becomes the bicubic representation of a surface patch.
When n = 0 in equation (7), the spatial surface equation simplifies to a spatial curve,
which is now a function of parameter u only. Again m needs to be determined depending
on the complexity of the curve.

Cwow )
Z a;u'w’
i=1 j=0
X(u, W) m n m n
P, w)y =< Y, w) 0 =2 >, D2 Pjuwi =< 23 > buiwl » (D)
Z(u, w) i=0 j=0 i=0 j=0
m n
20 25 cyu'w!
i=0 j=0
. .

3.1.2. Geometry parametric fitting using CMM data. To obtain the local feature around
a contact point, data from a coordinate measuring machine (CMM) were used for feature
model fitting. Using the general bicubic surface as an example, the objective is to obtain
the parameters a;;, b;;, and c; by measuring some points (X;, Y;, Z;) on the surface to be
modeled. These parameters can then be estimated by minimizing the distances between the
measured dimensions (X;, Y;, Z;) and their algebraic parameteric form, as in equation (8).
np m n z
min J(ay, by, ) =0 || P =2, 20 Pyuiwi || (8)

apbyjicij k=1 i=0 j=0

where k is the kth measured point and np is the total number of points used for fitting.
The number of points needed for fitting, np, is different depending on the assumptions
about the local feature. For the surface represented by equation (7), 3« (m + 1) (n + 1)
parameters of a;; and b;; need to be determined. Each measured point provides three equa-
tions. Thus the number of points required to fit a surface of equation (7), np, can be deter-
mined by:

v

3np 3(m+ 1) (n+ 1)), or

v

np=@m+ 1) (n+1). &)
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Similarly, the number of points needed to fit a curve is:
np = (m + 1). (10)

When the number of points used is more than the number of points needed, the minimi-
zation problem is in the sense of a least squares fit.

Since the adjustment of a door on the body side opening is usually small, the local feature
can generally be modeled as a planar surface unless there is a large curved surface for a
specific body type. A planar surface, which is assumed for the body type under study, can
always be represented by a point and two vectors on the surface. The general bicubic repre-
sentation of the surface described by equation (7) then simplifies to equation (11). In equa-
tion (11), P(0, 0) is the original locating datum. P(1, 0) and P(0, 1) are the two nonparallel
vectors on the surface which are determined by measuring three points 3 mm away from the
locating datum as shown in figure 10. For the edge in F/A locating, nine points 3 mm apart
in z-direction are measured for cubic curve modeling, as shown in figure 11.

X(u, w)
Pu,w) =< Yu,w » =P0,0 +P1,0 - u+ PO, 1) w (11)
Z(u, w)

3.2, Determination of fixture adjustment

In this section, three commonly used locator/part combinations for door hanging are ana-
lyzed; they are: (1) a locator point in contact with a part surface; (2) a locator surface with
a part surface; and (3) a locator surface with a part edge (spatial curve).

3.2.1. A locator point with a part surface. The point in contact with a part surface in part
fixturing was shown in figure 9. After the local feature is properly modeled, the correspond-
ing adjustment for a point locator can be determined by equation (12).

Figure 10. Datum measurement for surface feature modeling.
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nominal
locating point

2@ ] 3
—
Figure 11. Datum measurement for edge modeling.
X(u, w) X(met) + K+ a
) Y, wy Y(net) + K+ b
T Zuw,w) () Z@met) + K+-c [’ 2
1 1

where T = homogeneous transformation matrix; (a, b, ¢)’ = unit vector in the direction
of adjustment; X = amount of adjustment; and u, w, K = variables.

3.2.2. A surface locator with A part surface. A block with a locating surface rather than
a point is frequently used for part fixturing as shown in figure 12. When the door is oriented
for optimal door fit, the amount of adjustment is determined by minimizing the distance
between the oriented door and the NC block surface in the adjustment direction, as shown
in figure 13.

‘When the two contact surfaces are relatively convex to each other as shown in figure 14,
a unique solution is readily available by minimizing the distance between the transformed
door surface and the locator block surface in the direction of adjustment subject to the
constraint G{(x(u, w), y(u, w), z(u, w)) < (or =0). Here G(x, y, z) is the explicit form
of the locator block surface. The objective function J to be minimized is equation (13).

Xpan(uv w) Xoerls, 1) 2
Yian(u, w) Yieds, 1)

J — T % part _ T * net , 13
Zpart(us W) net Znet(s ’ I) ( )

1 1
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contact surface

Figure 12. Locating block results in a contact surface instead of point contact.

Amount of
adjustment

Direction of
Adjustment

s
Door .

Locators L’ Y

(side view)

Figure 13. Finding amount of adjustment in the adjustment direction.

(a) (b) ©

Figure 14. Relatively convex surfaces (side view).



OPTIMAL DOOR FITTING WITH SYSTEMATIC FIXTURE ADJUSTMENT 115

where T = known homogeneous transformation matrix for optimal door fit

1 00 a*'K
T = 010 bK
net 001 ¢-K
1 11 1

"

which is the transformation matrix for locator adjustment in the specified direction; (a, b, ¢)’

= unit vector defining the direction of adjustment; K = amount of adjustment; X(#, *) =

parametric representation of X in # and -, same for Y and Z; and = Buclidean norm.
The procedure for finding the locator adjustment can be summarized as follows:

. Model the contact surface in parametric form,

. Obtain the optimal orientation of the door, T,

. Transform the parametric representation of the door surface, and

. Find the amount of adjustment (figure 13) by minimizing the distance between the trans-
formed door surface and the locator block in the direction of adjustment.

BW N

For most applications in door fixturing, a rectangular planar surface is designed for the
part positioning. The problem is then simplified to solving four point-surface contact prob-
lems as was described in section 3.2.1 for the four boundary corners. The corner which
gives the minimal distance provides the solution for the amount of adjustment.

3.2.3. A locator surface with A part edge. When the part to be fixtured has a feature of
a curved edge (F/A locating area in the door), the point locator will be inadequate because
it will no longer be possible for the locator to be in contact with the edge after the part
is oriented. A locator block with a planar surface is usually implemented in such circum-
stances. A graphical description of the edge fixturing is shown in figure 15,

contact point

Locating block

Figure 15. Locating block in contact with an edge of a door.
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The procedure to find the amount of adjustment for the net to achieve the optimal door
fit is as follows:

. Model the curved edge of part in parametric form,

. Model the surface of locating block in parametric form,

. Model the boundary of the locating block,

. Transform the parametric representation of the edge curve,

. Find the amount of adjustment (similar to figure 13) by minimizing the distance J between
the transformed curve and the locating block surface in the direction of adjustment (equa-
tion (14)) subject to the constraint of G((x(), y(u), z()) = 0 for the right door, if the
edge and the locating surface is relatively convex (here, G(x, y, z) is the explicit form
of the locating surface), and

6. Find the amount of adjustment by minimizing J in equation (15) if the edge and the

locating surface is not relatively convex.

(9 e NIV SR

Xpart(u) Xneils, 1) 2
Y (u) Y, (S ’ t)
J = T * part — T * net , 1 4
Zpar) " Zugls, 1) 19
1 1
Xoari®) X ) ||
Yoart(1) Yiels)
J — T * part — T ® net , 1 5
Zolt) ) Zol) )
1 1

where (X(v), Y(u), Z(u)) = parametric representation of the door edge.

3.3. Door-fixture-body adjusting mechanism

To hang a door on the body side opening, the door is first positioned on the fixture using
locators between the door and fixture. The door-fixture is then positioned on the body
side opening using locators between the fixture and BIW. Thus there are two adjusting
mechanisms: adjustment between door and fixture, and adjustment between fixture and
body. The schematic representation of the two locating mechanisms are shown in figure
16(a). When the amount of door translations and rotations are determined, either one of
the adjusting mechanisms can be used to achieve the desired door orientation. The adjust-
ment of the two mechanisms are discussed as follows.

3.3.1. Adjustment between door and hanging fixture. To achieve the desired door orienta-
tion, the door is first computationally oriented in the space. The amount of adjustment for
the locators on the fixture are then determined by extending/retracting the locators until
they touch the door surfaces again. Figure 16(b) shows the adjustment of locators between
door and fixture while the fixture-body locators remain unchanged. Derivations in previous
sections for fixture adjustment are thus for the door-fixture mechanism.
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3.3.2. Adjustment between hanging fixture and BIW. When the locators between the fix-
ture and BIW are used for door-fitting adjustment, the fixture frame is now being oriented
in the space together with the door as in figure 16(c). Once this is done, the locators are
computationally extended to touch the body locating surface and the amount of adjustment
determined.

Since the orientation of the door relative to the car body can be treated as the inverse
orientation of the body to the door, the problem can be solved in a similar way as before
except that the determination of the locator adjustment is done by orienting the body rather
than the door. The procedure is as follows:

1. Model the surface feature in the contact area of the car body,

2. Determine the desired door orientation by homogeneous transformation,

3. Find the inverse transformation of step 2, and

4. Multiply the body surface feature with the inverse transformation and solve for the amount
of adjustment as equation (16).

X, w) X(net) + K+ a
_ Y(u, w) Y(net) + K+ b
1, _
T Z(u, W) Zinet) + K - ¢ ’ (16)
1 body 1 body-fixture

where T™! = inverse transformation of T; K = amount of adjustment; and (a, b, ¢)’ =
unit vector defining the direction of adjustment.

3.4. Experimental verification

The objective of fixture adjustment is to fit the door to the side opening to obtain the best
gap and flush dimensional quality possible. The presented door-fitting approach includes
(1) the determination of the desired door orientation; and (2) the determination of fixture
adjustment to achieve the door orientation. The determination of door orientation is a
straightforward optimization based on door and body measurements, which demands no
verification if the measurements are reliable. The determination of fixture adjustment, how-
ever, involves local feature modeling in the netting area, and needs to be verified through
experiment.

To verify the local feature modeling, intuitively one wants to measure the dimensions
before fit, find the desirable fixture adjustment, and measure the dimensions after fit to
confirm the result of fixture adjustment. Since only the fixture adjustment needs to be veri-
fied, an inverse verification is incorporated here to simplify the experimental procedure.
The inverse verification is to conduct a predetermined fixture adjustment, and compare
the computed dimensions with the measured dimensions to confirm the local feature model-
ing. An experiment was conducted on the production floor to verify the modeling of the
rear edge of a door for F/A fixturing.

A right-hand rear door, a BIW, and a door hanging fixture for production are used for
the experiment in the body assembly plant. The door hanging fixture and the checkpoints
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on the door are shown in figure 7. The resolution of the hanging fixture was usually 0.25 mm
(the thickness of the smallest shim used for production), even though 0.1-mm resolution
was possible. The door-fitting experiment, the computational detail, and the comparison
of the results are discussed in the following sections.

3.4.1. Door-fitting experiments. Two sets of evaluations were conducted with the door hung
and measured on the body side opening by the hanging fixture. The general experimental
procedure is:

1. Put the BIW on the layout plate (similar to a “manual CMM”),

2. Conduct shimming on the H/L nets of the door hanging fixture,

3. Hang the door on the body side opening using the hanging fixture and tighten the bolts
at hinge to the side opening, and

4. Measure the door dimensions at the checking points.

The door was first hung on the side opening and measured without shimming. The dimen-
sions measured without shimming were then used as the datum for computation. A 2-mm
shim was then added to both H/L nets in the fixture, causing the door to move down (—2 mm),
and then the door was bolted on the body and again its positions measured for comparison.

34.2. Computation. The F/A door edge and its planar locator surface were modeled first.
The modeled surface and edge models are:

1. Locator surface
X(s, ) 4296.37 0 5.71 1
Y(s, ) = 96190 1 0.27 s
Z(s, t) 864.75 0 11.9 t

2. Cubic curve of rear door edge

X(w) 4206.3703 5.7103 —0.1563 —0.0436 th
Yw) » =| 961.9024 0.2726 -0.0955 —0.0241 2
Z(u) 864.7421 11.9972 0.000029 —0.0324 Z3

The H/L locators, being far apart from each other, were assumed to be point contacts.
The amount of adjustments in the H/L locators were substituted into equation (12) for Ks
solved simultaneously with equation (14) for the homogeneous transformation matrix. The
F/A checking points before shimming were then multiplied to the homogeneous transfor-
mation matrix and also tabulated as the calculated dimensions in table 1.

Shimming by 2 mm for both H/L locators is equivalent to lowering the door. Due to
the feature in the F/A edge, as can be seen in figure 7, the door will be pushed forward
in addition to a simple H/L movement. From table 1, the upper and lower measured points
were found to be very consistent with the calculated ones after shimming. The central point,
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Table 1. Measured and calculated F/A dimensions due to shimming.

Net 1 Net 2 Net 1 Net 2 Resultant Movement
(0 mm, 0 mm) (—2 mm, —2 mm) (mm)

Measured Calculated Measured Calculated Measured Calculated

Upper point 4099.0 . 4907.8 4097.766 1.2 1.234
Middle point 4225.4 . 4223.7 4224.279 1.7 1.121
Lower point 4250.9 . 4249.87 4249.811 1.1 1.089

being in the way of the measuring arm of the layout plate, showed a 0.58-mm difference
and can be considered as measuring error. The result thus verified that the modeling of
F/A edge netting is adequate.

4. Conclusions

The door-fitting problem was formulated as a constrained optimization problem in this
paper. Three indexes: (1) door gap width deviation relative to design nominal; (2) door
gap parallelism; and (3) car-to-car gap consistency; were defined to evaluate the door gap
quality quantitatively. Simulations were conducted to evaluate the optimal fitting on the
improvement door gap quality. Based on these simulations, the following observations can
be made:

1. The quality of the gap is influenced more by the variation of the door (and the open-
ings) than by the average deviation. Therfore, reducing the variation of the door is impor-
tant to obtain quality gap.

2. Fitting individual doors to the door openings can improve the quality of fit. Batch-to-
batch door fit can only correct for process mean deviations.

3. The size of the designed nominal gap should be process driven. The smaller the nominal
gap, the more capable the door manufacturing processes should be.

To achieve the optimal fit, a systematic tooling adjustment determination scheme was
then proposed to achieve the desired door orientation for best door fit. The tooling adjust-
ment scheme considered both the geometric features of part and the locators around the
netting area for exact fixturing. The geometric modeling of a door edge for F/A fixturing
was experimentally verified in a production environment. The results showed good con-
sistency between computed dimensions and measured dimensions.
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