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Abstract. A process fault identification and classification scheme for an automobile door assembly process is 
presented based on multivariate in-line dimensional measurements and principal component factor analysis. First, 
the door assembly process and the dimensional measurement system are briefly introduced. Second, the techni- 
que of principal component factor analysis is presented for process fault identification. Process faults are sum- 
marized based on off-line identified case studies. Finally a machine classification scheme based on principal 
components and principal factors is presented and evaluated, using the pattern knowledge obtained off-line. This 
scheme is shown to be effective in classifying process faults using production data. 
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1. Introduction 

An inadequate door fit on the car body will not only affect the aesthetic value of the vehi- 
cle, but wil also cause functional problems such as wind noise, water leakage, and ex- 
cessive door closing effort. Variation in the door fit may arise from four different sources: 
(1) Dimensional variation of  the doors; (2) variation in the body openings; (3) variation 
in the door hanging and fitting process; and (4) effects of painting and general assembly, 
such as deformation due to weather strips, etc. Variation in the body opening and door 
fitting process have been addressed in previous publications by Hu and Wu (1992), and 
Wu et al. (1994). This paper will only address variation source identification and classifica- 
tion for a door assembly process. 

Variation in a complete door results from variation in the panel stamping process and 
the assembly process. The panel shape variation in the stamping process is in general not 
correctable in the downstream process (Wu 1991), and needs to be corrected upstream 
in stamping. However, variation in the door assembly process also results from faults oc- 
curring in each assembly station, and can be detected and corrected case by case. 

Statistical process control (SPC) using control charts has been used as a tool to monitor 
and control some assembly processes. To obtain data for process monitoring, traditional 
checking fixtures were used. With checking fixtures, although measurements are taken on 
selected points on a door, these checking fixtures can usually provide visual feedback of 
the spatial relationship between different points checked, which could help operators iden- 
tify the root cause of variation. But the speeds of these fixtures are too slow to provide 
a statistically significant sample size. Since the late 1970s, coordinate measuring machines 
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(CMM) have been introduced into stamping and assembly plants. Because of their accuracy 
and flexibility, CMMs are gaining wide acceptance. CMMs measure the dimensions of 
selected points on a door based on sampling. Usually, only two to three doors are measured 
in an eight-hour shift due to the difficulty of transporting the door from the production 
line to the CMM room, setting it up for measurements, and transferring back to the pro- 
duction line. Therefore, both fault detection and diagnosis were not very effective because 
of the limited amount of data. Also, when plotting the data, relationships between measure- 
ment points were not explored. 

With the availability of in-line measurement, such as the in-line optical coordinate 
measurement machines (OCMM), every door assembled can be measured, resulting in 
100% measurement data (Wang 1991). Also, the in-line OCMM can measure a large number 
of points on a door, resulting in a high dimensional vector series over time. The abundant 
process information contained in the multivariate data makes effective process fault iden- 
tification feasible. 

The multivariate approach to quality control was first introduced by Hotelling (1947), 
who proposed the use of the T 2 control chart as a technique for monitoring two related 
variables. Later, Jackson (1980) extended Hotelling's procedure for use with principal com- 
ponent analysis. However, these procedures lacked the physical interpretation of the eigenvec- 
tors of the principal components. 

This article will present a fault identification and classification scheme for a door assembly 
process using multivariate data from the in-line OCMM. The paper is organized as follows. 
The door assembly process and the in-line dimensional measurement system is introduced 
in section 2. Case studies identified off-line from the door assembly processes are presented 
in section 3. Based on these case studies, a two-level fault classification scheme is developed 
and evaluated in section 4. 

2. The door assembly process and dimensional measurement 

To provide the background for process faults identification and classification, the door struc- 
ture, the assembly process, and the dimensional measurement system are briefly introduced 
in this section. 

2.1. Elements of  an automobile door 

A typical automobile door is made by assembling the inner panel, the outer panel, the 
inner and outer belt reinforcements, the crash bar, and the hinge pillar. The inner panel 
constitutes the major stiffness of the door, while the outer panel constitutes the fit and 
finish. The crash bar provides the stiffness for side impact. These structural elements are 
shown in figure 1. Also shown in figure 1 is the coordinate system used to measure doors, 
described using a car body coordinates Fore/Aft (F/A), High/Low (H/L), and Inboard/Out- 
board (I/O). 
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Figure 1. Elements of an automobile door with coordinate convention. 
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2.2. Door assembly process 

The essential parts of a door assembly process include part positioning, clamping, welding, 
and hemming. The schematic flowchart of a typical door assembly process is shown in 
figure 2. The operations at each station are tabulated below: 

Station 
Station 
Station 
Station 
Station 
Station 
Station 
Station 
Station 
Station 
Station 

1: Weld inner belt reinforcement and hinge pillar to door inner panel 
2: Enhancement welding 
3: Weld outer belt reinforcement and crash bar to door inner 
4: Provide deadener to outer panel 
5: Provide adhesive to outer panel 
6: Match inner panel to inside outer panel 
7: Position inner relative to outer and weld 
8: Hem the outer panel flange to cover the inner panel 
9: Heat and solidify the adhesive between inner and outer 

10: In-line dimensional measurement by OCMM 
11: Surface inspection, general visual inspection 
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2.3. In-line dimensional measurement 

Every door assembled was measured by the in-line OCMM. A typical OCMM for door 
measurement consists of a frame supporting about 30 vision sensors. Sensors are aimed 
at selected checking points. A sensor projects a laser line to the part feature to be measured 
with a camera looking at the projected laser line. The laser line forms an image in the 
photodetector arrays inside the sensor. The positions of the image in the image space will 
reflect the feature position in the part coordinate. For a station, say, with 30 sensors check- 
ing about 50 dimensions on a door, it generally takes less than 10 s to complete the measure- 
ment. Figure 3 shows the typical measurement locations on a door. 

Positioning of doors on the OCMM station does not have to be exact. In the case of 
nonexact positioning, the door is left in the fixture free from clamping. The six degrees 
of freedom needed for part locating can be replaced by six measurements. Then the dimen- 
sional variation of the doors is reported relative to these six measurements. 
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Figure 3. Typical optical sensor aiming locations on a door. 
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3. Assembly process fault identification 

OCMM measurements are made at spatially sampled points• To help identify the sources 
of dimensional variation, it is important to relate the variation of various points on the 
door. One technique to accomplish this is multivariable correlation analysis and principal 
component analysis• 

3.1• Principal component and factor analysis 

The purpose of principal component analysis is to find the interrelationships between multiple 
variables by finding combinations of them to produce uncorrelated variables• 

3.1.1 Principal component  analysis. Principal component analysis is a simple analysis 
method for multivariate data interpretation. It finds combinations of p variables, xl, x2, 
• . . ,  xp, to produce indexes, zl, z2 . . . .  , Zp, that are uncorrelated. The uncorrelatedness 
of the p indexes is then utilized to separate the different "modes" of variation in the data. 

When conducting a principal component analysis, it is assumed that the variation in the 
data set can be adequately described by a few (<  p) new variables, say, zi. The variances 
of the rest of the indexes are expeced to be negligible• Since the variation of the p original 
x-variables can be accounted for by a few z-variables, the data reduction results in a certain 
degree of economy• For highly correlated variables, principal component analysis will result 
in a relatively few principal components. The principal components will also facilitate easier 
interpretation of the major sources of variation in the data. For p original variables, the 
ith principal component is a linear combination of variables, Xl, x2 . . . .  , Xp: 

Zi = a i l X l  + ai2x2 + . . .  + aipXp 

subject to the condition that 

p 

Ea j= 1 
j=l 

(1) 

The variance of zi, denoted as Var[zi], should be as large as possible given the constraint 
of equation (1). The aij  c a n  be interpreted as the contribution of each variable :9 on the 
ith principal component zi. The indexes zis are also ordered in such a way that 

Var [Zl] ~-~ Var [~'2] >" " ' "  -~ Var [Zp] 

Principal component analysis can be approached by solving the eigenvalue problem of 
the sample correlation matrix or covariance matrix (Manly 1986; Therrien 1989), with 
the variances of the principal components being the eigenvalues of the correlation matrix 
R, and weight aijs being the elements the normalized eigenvector corresponding to the 
ith eigenvahie. The steps in a principal component analysis can be summarized as: 
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1. Estimating the correlation matrix R 
2. Solving the eigenvalue problem of R 
3. Interpreting the patterns of variation using eigenvectors with large eigenvalues. 

Therefore, the relative magnitude of the eigenvalues, i.e., the variance of principal com- 
ponents, will prioritize actions for variation reduction. The eigenvector for each principal 
component, showing the relative contribution of each original variable to the component, can 
be used to reveal any relative movement or deformation pattern of each "mode" of variation. 

3.1.1.1. Improvement evaluation. When the process faults are prioritized by the principal 
components, the improvement by correcting each eigenmode can be evaluated both in the 
space of the principal component and in the original data space. To clarify the procedure, 
the eigenvalue problem is briefly reviewed and then the evaluation of improvement is 
discussed. 

For a p-dimensional correlation matrix R, the diagonalization of R can be done by: 

1/ = Q - 1 R Q  

where 

and 

R = correlation matrix (or covariance matrix); Q = [ v  1 v 2 - ' '  gn ]  ; 

t i  = 

hi 0 0 

0 X2 0 

0 X. 

vis = normalized eigenvectors. 

The eigenvalue represents the variation association with each principal component. When 
the ith principal component is removed, the reduction of variation in the principal compo- 
nent space thus can be calculated as follows: 

% variation reduction - Xi 

•]Xi 
i=1 

(2) 

It should be noted that when the covariance matrix is used in the analysis, this percent- 
age of variation reduction is compatible in scale with the variation reduction in the original 
data space. However, when the correlation matrix is used for principal component analysis, 
the percentage of variation reduction calculated using equation (2) is not compatible with 
the variation reduction in the original data space, and the evaluation needs to be done in 
the original data space. 
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To evaluate the variation reduction associated with each physical measurement point, 
variation in each principal component needs to be transformed back to the original variable 
domain. For example, when the first principal component is eliminated, the first eigen- 
value in the diagonalized matrix becomes zero and results in matrix I i ;  as in equation (3). 
The matrix is then transformed back to the original variable domain as R ;  by equation 
(4). The diagonal terms in R;  can then be evaluated separately as the improvement for 
each measurement point. 

0 0 0 

0 X2 0 
1~1 = 

0 X~ 

(3) 

R~ = Q Ii; Q-1. (4) 

Improvement through elimination of other principal components can be evaluated in a 
similar way by setting the corresponding eigenvalues to zero and transforming back to the 
original variable space. 

When the covariance matrix is used for principal component analysis, the inverted matrix 
after removing the ith principal component directly provides the information of variance 
reduction in the original data space. When the correlation matrix is used in principal com- 
ponent analysis, the diagonal term in the correlation matrix needs to be scaled by the variance 
of each variable. That is, 

f 

ri i  = r i i "  Var[Xi]. 

3.1.2. Factor analysis. The orthogonal eigenvectors were shown to be optimal in represent- 
ing relationships between a set of multiple variables in the sense of minimal mean-square- 
error (Therrien 1989). Principal component analysis solves the eigenvalue problem for 
the multivariate correlation matrix and approximates the original data set by smaller dimen- 
sions of principal components. The omitted eigenmodes thus become errors associated with 
representing the original data set with smaller dimensionality of principal components. 
Although the principal components (eigenvectors with eigenvalues larger than one) are or- 
thogonal to each other, the errors (also called specific factors) are not orthogonal. A rota- 
tion, orthogonal or oblique, is frequently applied to the eigenvectors to seek for clearer 
feature of the factors. The task to search for clearer factors is called factor analysis. 

Factor analysis is frequently approached by performing the principal component analysis 
first (Manly 1986). The orthogonal principal components are then further converted to 
factors and then subject to rotation if necessary. The p uncorrelated principal components 
can be represented as: 

Z j  = b j l  X 1 q'- b j2  X 2 -t- . . .  -}- bjpXp, j = 1 . . . . .  p .  
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The inverse of the above gives the representation of the original variables using the un- 
correlated principal components: 

X j  = b u Z  1 + b 2 j Z  2 + . . .  + b p j Z p ,  j = 1 . . . .  , p .  

By retaining only m (m < p) principal components and normalizing each principal com- 
ponent with the square root of their associated eigenvalues, the unrotated factor model results 
as equation (5). Proper rotation then can be applied to the orthogonal unrotated factor model 
to obtain the better interpretable factors. 

X j  = a l j F 1  + a 2 j F 2  + . . .  + a m j F m  + ej, j = 1, . . . ,  p ,  (5)  

where 

Fj = Z j /~ j  and aij = f~jj bji. 

Rotation of the unrotated factor model can be either orthogonal or oblique. Orthogonal 
rotation retains the uncorrelatedness between factors after rotation. The oblique rotation 
relaxes the constraints of uncorrelatedness and allows for correlation between rotated fac- 
tors. The amount of rotation is determined by maximizing or minimizing certain criteria 
(e.g., variance of square of factor loadings). Different criteria have been developed and 
compared. The main purpose of the rotation is such that a simple structure can result with 
the factor loadings being either closer to zero or further away from zero. (Thurstone 1947). 
Therefore, the resulting simple structure is easier for factor interpretation. Since uncor- 
relatedness is one characteristic of interest in this research, the orthogonal Varimax criterion 
is implemented in searching for factors. 

3.1.2.1. I m p r o v e m e n t  e v a l u a t i o n .  The original correlation matrix R can be approximately 
reconstructed by the factors as in equation (6). When the first factor is removed from the 
correlation matrix, the reduction of the variance in the original variable space can be 
evaluated by setting the associated eigenvalues X i' --- 0 in the F*F *v, and then rotated back 
to the original variable space as in equation (7). Since Xi is nothing but the normalized 
eigenvalues rescaled by themselves in the factor analysis procedure, they will simply be 
unity. Thus the reduction in the variance can be evaluated by the diagonal terms in the 
correlation matrix with proper scaling by their standard deviations, as was discussed in 
principal component analysis. 

=- [7~ X T]pxp "= apx m [F'F* T]mxm GTp (6) 

[F*F*T]mxm diag [(~kl)  2, t 2 = (x2)  . . . . .  (Xm)2lm~,. 

= (GTG)-~GZR G (GrG) -1 (7) 

where 1~ = approximated correlation matrix; F* = rotated factor matrix; and G = factor 
loading matrix. 
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3.1.3. Principal components versus rotated factors. It has been stated (Gorsuch 1983) that 
Varimax orthogonal criterion is inappropriate when there is a general factor existing among 
the variables. In fact when there is one dominant general factor existing among the variables 
under study, the eigenvector corresponding to the largest eigenvalue is the best representa- 
tion of the underlying factor in minimum mean square error sense. However, when there 
are more than one common factors existing among variables, the eigenvectors, although 
having largest eigenvalues in order, are in general inappropriate for factor interpretation. 
An appropriate rotation is usually needed to extract interpretable factors. Therefore, both 
the eigenvectors and the rotated factors are needed for data interpretation, with the former 
for one general factor situation and the latter for multiple factors. 

As has been stated earlier, the eigenvalues in principal component analysis are so ordered 
such that the first eigenvalue is larger than the second, and so forth. To discriminate be- 
tween the single factor case and the multiple factor case, only the second eigenvalue needs 
to be inspected. The procedure to determine which feature to use for data interpretation is: 

1. Perform the principal component analysis. 
2. If X2 < 1 (for correlation matrix), then conduct analysis using the eigenvector from 

principal component analysis. 
3. If X2 > 1 (for correlation matrix), then conduct analysis using the Varimax rotated 

factors. 

3.2. Process fault types 

Based on principal component and factor analysis, four subgroups of faults can be classified 
based on data. They are: (1) Whole door shifting (type I shifting); (2) inner panels shifting 
inside outer panels (type II shifting); (3) increased variations due to improper fixturing; 
and (4) local errors. The type I shifting usually resulted in large variations in measurements 
of the door. The type II shifting usually causes variations either in the inner panel or outer 
panel only. The improper fixturing happens by bending the door header. The inconsistent 
spring back will cause the header dimensions of both inner and outer panels to vary. When 
the fault is not any of the above, it is then categorized as local process fault. A detailed 
description of the four types of process faults is provided in Wu (1991). 

A typical local variation is the window opening channel width variation (Wu 1991), which 
results from the inconsistency in respot welding of the inner belt bar to the door inner 
panel. Figure 4 shows the measurement location on both the inner panel and the outer 
panel. By ranking the 6-sigma variation from smallest to largest for all the points measured, 
points on the outer panel showed very small variation, while points on the inner panel 
showed large variation. Small variation on the outer was due to the fact that doors were 
measured relative to four datum points on the outer surface. The patterns 
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Figure 4. Checking points at day light opening in inner and outer panels. 

of variation on the inner panel showed to be bimodal as shown in Figure 5. Principal com- 
ponent analysis was performed using data obtained form measuring 80 doors. The rela- 
tionship between the points, i.e., A(I/o), A(H/L), B(I/O), and B(H/L), are represented 
in the correlation matrix, eigenvalues, and eigenvectors as shown in tables 1 and 2. It was 
found from the first mode that the belt bar area was not only being pulled in and out, but 
also being pulled up and down as shown in figure 6. The bimodal pattern was due to the 
fact that two robots performed the belt bar welding alternately, and the two robots were 
not calibrated the same in their nominal position. Figure 7 shows the result after reprogram- 
ruing the robot in the direction normal to the inner panel. 

4. Fault classification scheme 
The dimensional quality problem identified and corrected previously can reoccur. With 
the knowledge of door assembly process faults constructed based on off-line data analysis, 
a machine fault classifier is proposed using principal components and factors from the 
multivariate data to quickly classify the faults for efficient fault correction. 

4.1. The two-level classification scheme 

As was presented in the previous section, principal component factor analysis is effective 
in locating the process faults. The eigenvectors and rotated factors, which are the multidimen- 
sional door variation vectors in the pattern space, are used for machine fault classification 
in this section. 
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Figure 5. Measurement  data f rom inner  panel  and  their  distributions. 
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Table 1. Correlation matrix for H/L and I/O of sensor A and B. 

Point A, H/L A, I/O B, H/L B, I/O 

A, H/L 1.000 -0.930 0.985 -0.956 
A, I/O 1.000 -0.914 0.946 
B, H/L 1.000 -0.968 
B, I/O 1.000 

Table 2. Eigenvalues, their energy proportion, and eigenvectors of the correlation matrix. 

1st 2nd 3rd 4th 
Component Eigenvalue Percent Eigenvector Eigenvector Eigenvector Eigenvector 

1 3.850 96.250 -0,503 -0.345 0.534 -0.585 
2 0.100 2.500 0.492 -0.804 -0.271 -0.195 
3 0.04 l 1.025 -0.502 -0.482 0.002 0.718 
4 0.009 0.225 0.503 -0.040 0.801 0.323 

H / L ~  

1 st principal ~ 
(Inner panel) 

component 

Figure 6. First principal component of inner belt bar twisting. 

A two-level classification scheme is implemented for fault diagnosis for the door assembly 
process. The first level classification is the problem classification, and the second level 
classification is the diagnostic classification. The reason for implementing a two-level 
classification scheme is to reduce the data dimensionality by focusing only on the specific 
data points with variations exceeding a certain level, e.g., 3 ram. After the problem zone 
has been classified by the first level classification, the principal components and rotated 
factors are calculated and the second classification scheme is used for diagnostic classifica- 
tion. The schematic flowchart for the two-level classification scheme is shown in figure 
8. The first level and second level classification subschemes will be discussed in the follow- 
ing sections. 
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Figure 8. Flowchart for the two-level classification. 

4.2. First level classification 

The first level classification is to identify if the points with large variation are the same 
as the points previously identified as having large variation. For a p-dimensional measure- 
ment vector, X = [x(1),x(2) . . . . . . . .  x(p)] T, a corresponding p-dimensional class pat- 
tern can be formed. The p-dimensional class pattern is so formed for a specific type of 
problem that the x(i)s are set to one if previously found to have large variation, and the 
rest of  the x( j )s  are set to zero. 

As an example, let x(a),x(a+l), x(a + 2), and x(a + 3) be the four DLO measurements. 
Since the DLO was found to have large variations, a class pattern for first level classifica- 
tion can be formed as figure 9, such that x(a) to x(a + 3) are ones and zeros elsewhere. 
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Figure 9. Mapping of data space vector to first level pattern space. 

When a new set of data showing large variation in different locations (including DLO) 
is collected, a new pattern feature (p-dimensional vector in pattern space) can be formed 
by switching the corresponding elements in the null vector from zero to one for points 
with large variations as in figure 10. 

A simple inner product classifier is implemented for quick problem zone classification. 
The inner product between the new pattern and the class pattern is calculated. The inner 
product is then compared with a threshold for decision making. Using the DLO problem 
as an example, when any of the DLO points have large variation, the DLO variational prob- 
lem an be suspected to be happening again. The threshold thus can be set to 0 such that 
a decision can be made for the following hypothesis. 

Inner Product [new pattern, class 1 pattern)] = 0, Null hypothesis 
Inner Product [new pattern, class 1 pattern)] > 0, DLO problem 

The first level classification for the other types of problems can be designed in a similar 
way. 
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Figure 10. Mapping of data space vector to first level pattern space for new observation. 

4.3. The second level classification 

The second level classification is for the purpose of fault diagnosis once the fault zone 
has been identified by the first level classifier. In the second level classification, the class 
patterns are the average normalized factors obtained from previously solved problems. For 
a problem with m principal components, there will be m factors and thus m classes in the 
pattern space. Take the DLO case study discussed previously as an exmaple.. A 4 × 1 
normalized pattern vector, which is the eigenvector for the case, can be formed for the 
second level classification. 

After the first level classification is completed, a principal component analysis will be 
conducted for measurements of these points with large variation. The second eigenvalue 
will then be checked to decide whether the eigenvector or the rotated factors should be 
used for diagnostic classification. Then the quadratic Mahalanobis distance, as in equation 
(8), is calculated and the nearest neighbor approach is implemented to select the shortest 
distance for fault classification. 

= ~x - 2,.) T c7  ~ ~x - 2?/) (8) 

where ~ = quadratic Mahalanobis distance; X = newly observed pattern; )~i = pattern 
of  class i; Ci = variance-covariance matrix of  class i. 
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Since the nearest neighbor classification will always result in a solution, even if the newly 
observed factor does not belong to any of the existing classes, a confidence checking is 
necessary to confirm the classified result. To do this, the maximum distance in the training 
data is stored for result checking. When the newly calculated distance is less than the max- 
imal distance, the classified result is confirmed without vagueness. When the newly 
calculated distance is larger than the maximal distance in the training set, a heuristic deci- 
sion has to be made to either confirm the classification and update the class pattern, or 
add a new class pattern to the classifer. 

To summarize, a schematic structure of the second level classification is shown in figure 
11. 

5. Evaluation of the proposed classification algorithm 

To evaluate the classification scheme, the DLO data was collected over a wide span of 
production time. Three patterns were found to happen more frequently than others. The 
patterns represent different types of distortion in the DLO, and are stored as class patterns. 
These three different patterns with their associated variance-covariance matrices are listed 
in tables 3 (a) and (b). 

The Mahalanobis distances of the training data for the three classes are first calculated 
to show that these class patterns are separable. Figures 12 (a), (b), and (c) tabulate and 
plot the square roots of the quadratic Mahalanobis distances. As can be seen from the 
orders of the distances, the three class patterns are well separable in the pattern space 
and the Mahalanobis distance is shown to be an adequate classification index. The distribu- 
tions of the distances for factors 1 and 2 around their class patterns are also shown in 
figures 13 (a) and (b), which can be seen to approximate exponential distribution. 

The patterns of the newly collected test data with large variations in DLO are tabulated 
in table 4. The distances of newly observed patterns to each class are also listed in table 
4. For the data used in the evaluation, no misclassification is found for pattern 1 and pat- 
tern 2. 

The last set of data was classified to be pattern 2 by the nearest neighbor approach. 
However, it does not pass the confidence threshold (maximal distance in training data), 
and is concluded to be new. As can be seen in the patterns, the DLO reinforcements are 
not only pulled in I/O direction, but also twisted especially in the B-sensor side. 

Based on the test results, it can be seen that the proposed classification scheme func- 
tioned effectively in detecting and diagnosing an already identified variation problem. In 
our case, it is the door DLO variation. In addition to the implementation of the proposed 
techniques on production floors, techniques will be developed in the future to facilitate 
the automatic grouping of measurements into variation case studies. 

Due to the necessity of having large samples for conducting the proposed analysis, 100% 
process measurement is the key for the proposed approach. Recent development and suc- 
cessful implementation of the real-time-in-line optical coordinate measuring machines made 
this proposed approach feasible. 
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Figure 11. Second level classification procedure. 
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Table 3(a). Class patterns for DLO. 

Sensor, Direction )~1 )~2 )C3 

A, I/O -0.032 0.698 -0.5021 
A, H/L 0.692 0.025 0.4948 
B, I/O 0.023 0.685 -0.5020 
B, H/L 0.698 -0.028 0.5012 

Table 3(b). Variance-covariance matrix for DLO class patterns. 

C1 

.015 0 -.001 .001 1 
0 .002 -.002 -.001 

-.001 -.002 .017 0 
.001 -.001 0 .001 

C2 

.001 .001 -.001 -.001 

.001 .034 -.002 -.006 
-.001 -.002 .001 0 
-.001 -.006 0 .01 

C 3 1 
10000 

0.0755 0.1168 -0.0029 -0.0454 7 
0.1168 0.3136 0.0071 -0.1893 | 

-0.0029 0.0071 0.0229 0.0129 | 
-0.0454 -0.1893 0.0129 0.1564 ] 

6. Conclusions  

The development in sensing and computers made it possible to measure a large number 
of  points on every part produced. Effective utilization of  measurement data promoted the 
development of  automated process monitoring and diagnostic systems. A simple and robust 
two-level classification scheme based on principal components and rotated factors is 
presented for the monitoring and diagnosis of  an automobile door assembly process. 

• Principal component analysis was used to investigate the spatial relationship between 
measurement points. The eigenvectors obtained represent the patterns of  variation among 
the points. Visualization and animation of  these patterns will help manufacturing engineers 
identify the possible locations of  root causes of  variation. 

• Based on off-line identified case studies, a two-level fault classification scheme is pro- 
posed using eigenvectors or rotated factors. This scheme is shown to be effective in 
classifying process faults using production data. 

• This classification scheme can be easily expanded upon discovery of  new process fault 
patterns, and is also suitable for other production processes where in-line measurements 
are available. 
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Distance of 
class 1 data to 

class 1 class 2 [ class 3 
1.273 49.836 1865.8 
1.518 55.967 1576.3 
2.425 64.710 842.0 
1.590 59.398 1107.5 
1.282 44.786 2205.9 
1.190 48.016 1958.9 
3.654 41.299 3016.5 
1.209 49.423 1804.1 
1.049 47.933 1932.4 
1.091 52.922 1597.1 
1.871 41.268 2498.5 
2.635 48.964 1897.2 
2.017 52.767 1858.0 
2.267 63.342 1013.1 
1.961 56.931 1292.2 
1.499 53.607 1543.1 
1.583 54.895 1566.3 
2.694 50.027 1787.6 
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Figure 12(a). Distances of class 1 data to every class. 
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Figure 12(b). Distances of class 2 data to every class. 
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Distance of 
class 3 da~ to 

class 1 [ class 2 class 3 
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Figure 12 (c). Distances of class 3 data to every class. 
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Figure 13(a). Histogram of distances in pattern 1. 
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Table 4. Classification test results. 

Test Pattern Distances 

A A B B D 1 D2 D 3 Resulting 
I/O H/L I/O H/L max 3.65 max 3.41 max 2.48 Class 

-0.124 0.693 -0.096 0.704 1.288 59.743 1,11710 1 

-0.100 0.713 0.072 0.691 1.318 53.219 1,654.6 1 

0.039 0.709 -0.101 0.697 1.098 53.117 1,529.0 1 

-0.001 0.704 0.001 0.710 0.988 51.305 1,692.5 1 

0.052 0.709 0.153 0.687 1.567 44.102 2,334.7 1 

-0.017 0.709 -0.093 0.698 0.907 55.161 1,393.7 1 

0.013 0.708 -0.102 0.699 1.008 54.221 1,450,9 1 

0.119 0.699 -0.029 0.705 1.283 47.348 1,967.1 1 

0.699 -0.112 0.703 -0.072 74.256 1.135 10,259 2 

0.696 0.063 0.710 -0.085 67.304 1.021 9,810 2 

0.708 0.039 0.699 -0.095 68.935 0.992 9,909 2 

0.705 0.049 0.705 -0.049 66.129 1.023 9,757 2 

0.705 0.038 0.689 0.167 55.770 2.316 9,120 2 

0.706 0.001 0.698 -0.117 71.684 1.100 10,072 2 

0.706 0.021 0.698 -0.115 70.722 1.053 10,009 2 

0.698 0.085 0.711 0.005 61.785 1.338 9,497 2 

0.687 0.059 0.653 -0.315 79.442 3.824 10,293 new 

0.658 0.144 0 .661 -0.330 76.490 4.551 10,035 new 

0.696 0.149 0.622 -0.327 76.434 4.406 10,005 new 

0.654 0.255 0.648 -0.297 70.209 4.726 9,575 new 

0.640 0.028 0.633 -0.434 86.769 6.942 10,534 new 

0.670 -0.024 0.674 -0.311 82.613 3.915 10,531 new 
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