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ABSTRACT

Generation and Amplification of Coherent Electromagnetic Energy in the
Millimeter and Submillimeter Wavelength Region

An experimental low-frequency model of the frequency multiplier
has been designed. A scheme of feedback to enhance the transfer effi-
ciency is included. The tube is in the final stage of assembly and
alignment.

Difficulties in loading a helix designed to operate at 30 Gc
into a BeO tube have not been fully resolved. Experimental data indicates
that a material having a higher resiliency than tungsten should be used
for the helix.

Analysis of Amplitude-and Phase-Modulated Traveling-Wave Amplifiers

The analysis of the operation of the TWA with a multi-frequency
input has been extended to account for the multivalued nature of the
electron velocity in the beam. Boltzmann's transport equation is used
to describe the kinematics of the electron beam.

Study of a D-c Pumped Quadrupole Amplifier

A comprehensive study of the coupling mechanism between the
various modes of operation of a d-c pumped transverse wave device
has been made by means of the coupled-mode theory. Equations for
the gain for the various modes and different pump fields are computed
and compared.

-iii-



TABLE OF CONTENTS

Page
ABSTRACT iii
LIST OF ILLUSTRATIONS vi
LIST OF TABLES viii
PERSONNEL ix
ARTICIES PUBLISHED DURING THE LAST QUARTER x
1. GENERAL INTRODUCTION 1
2. GENERATION AND AMPLIFICATION OF COHERENT ELECTROMAGNETIC
ENERGY IN THE MILLIMETER AND SUBMILLIMETER WAVELENGTH
REGION 2
2.1 Study of the Interaction Between an Electron Beam
and a Dielectric Circuit 2
2.2 Study of Frequency Multiplication in an Angular
Propagating Circuit 2
2.2.1 Construction of the Experimental Tube 2
2.2.1a The Electron Gun L
2.2.1b The Input Coupler L
2.2.1c The Multiplier Cavity L
2.2.1d The Feedback Coupler 5
2.2.1e The Collector 5
2.2.2 Future Work 5
2.3 Investigation of High-Thermal-Conductivity Materials
for Microwave Devices Above X-Band 5
2.35.1 Introduction 5
2.3.2 Experimental Effort 6
2.%5.3 Future Work T
5. ANALYSIS OF AMPLITUDE AND PHASE-MODUIATED TRAVELING-
WAVE AMPLIFIERS 8
3.1 Introduction 8
3.2 Method of Analysis 8
3.3 Solution of the Equations 18

3.4 Program for the Next Quarter Lo

-iv-



5.

STUDY OF A D-c PUMPED QUADRUPOLE AMPLIFIER
k.1 Introduction
k.2 Coupled-Mode Equations of Beam Dynamics

4.3 Coupled-Mode Analysis of D-c Pumped Quadrupole
Amplifiers

General Procedure of the Analysis
Staggered Quadrupole Amplifier
Other Pumping Fields

= F &=
W AN WY
W

k.3.3a Twisted Quadrupole Pump Structure
4.3.3b Periodic Ring Quadrupole Structure
4L.3.3¢c Electrostatic Slot Pump Field Structure
4.3.4 Gain Computation of the D-c Pumped Amplifiers
4.4 Future Work

GENERAL CONCLUSIONS

Page

Lo
Lo
41



Figure

2.1

L.

L.2

b3

L.k

k.5

4.6

L1

L.8

k.9

k.10

LIST OF ILLUSTRATIONS

Assembly Drawing of Cyclotron-Frequency
Multiplier.

Geometrical Configurations of a Staggered
Quadrupole Pump Structure.

Phase Constant vs. Pumping Parameter M for
the Fast Cyclotron Wave in a Staggered
Quadrupole Pump Structure. Bq = ZBC, Fast

and Slow Cyclotron Wave Interaction.

Amplitude Gain vs. Pumping Parameter M for
the Fast Cyclotron Wave in a Staggered
Quadrupole Pump Structure. Bq = 2BC, Fast

and Slow Cyclotron Wave Interaction.

w=-B Plot of the Cyclotron-to-Synchronous
Wave Interaction in a Staggered Quadrupole
Pump Structure, Passive Coupling.

w-B Plot of the Cyclotron-to-Synchronous
Wave Interaction in a Staggered Quadrupole
Pump Structure, Active Coupling.

Phase Constant vs. Pumping Parameter M for
the Fast Cyclotron Wave in a Staggered
Quadrupole Pump Structure. Bq = BC Fast

Cyclotron-to-Synchronous Wave Interaction.

Geometrical Configurations of (a) Twisted
Quadrupole-Type, (b) Periodic Ring-Type and
(c) Periodic Slot-Type of Quadrupole Pump
Structures.

Gain vs. Pump Voltage for Cyclotron-to-
Cyclotron Type of Interaction in Different
Pump Fields for V= 100 Volts, B a = 1,
and n = 4 ° ¢

Gain vs. Pump Voltage for Synchronous-to-
Synchronous Type of Interaction in Different
Pump Fields for V_ = 100 Volts, B a = 1,

and n = 4, ° ¢

Gain vs. Pump Voltage for Cyclotron-to-
Synchronous Type of Interaction in Different
Pump Fields for V_ = 100 Volts, B a = 1,

o} c
and n = k.

-vi-

Page

b7

52

55

o7

58

61

67

68

69



Figure

k.11

Page

Gain vs. Bca for Synchronous-to-Synchronous

Type of Interaction in Different Pump Fields
for Vp/VO =4, L =40 cm and U, = L.2 x 108

m/sec. 72

-vii-



LIST OF TABLES

Table Page

4.1 Gain Equations for Various Types of Beam Inter-
action and Different Types of Pump Fields 70

-viii-



PERSONNEL

Time Worked in

Scientific and Engineering Personnel ~ Man Months¥
G. Hok Professor of Electrical Engineering .50
C. Yeh Associate Professor of Electrical Engineering 1.16
M. El-Shandwily Research Associate 1.%6
H. Detweiler Research Assistants 1.36
B. Ho 1.36
Service Personnel 5.27

* Time Worked is based on 172 hours per month.

-ix-



ARTICLES PUBLISHED DURING THE LAST QUARTER

C. Yeh, J. C. Lee, "Feedback in Cyclotron-Wave Frequency Multiplier",
Proc. IEEE, vol. 52, No. 3, p. 31k; March, 196k.




INTERIM SCIENTTFIC REPORT NO. 3
FOR

BASIC RESEARCH IN MICROWAVE DEVICES AND QUANTUM ELECTRONICS

1. General Introduction (C. Yeh)

The purpose of this project is to investigate new ideas in the
area of microwave devices and quantum electronics. The program is
envisioned as a general and flexible one under which a wide variety
of topics may be studied. At present, the following areas of investi-
gation are in progress:

A. Study of frequency multiplication in an angular propagating
circuit. A tube based upon the analysis described in the preceding
reports, No. 1 and No. 2, is designed. The construction of this
tube is nearly completed.

B. Investigation of high-thermal-conductivity materials for
microwave devices above X-band. The work on developing a technique
to braze a 30 Gc helix to a BeO tube is continuing.

C. Analysis of amplitude- and phase-modulated traveling-wave
amplifier. The theory has been extended to cover the possibility of
having multivalued functions of electron velocity in the beam.

D. Study of a d-c pumped quadrupole amplifier. A comprehensive
study of the d-c pumped transverse wave device has been made by means
of the coupled-mode theory. Some interesting aspects of the coupling
mode are discussed.

The work on the study of interaction between an electron beam

and a dielectric circuit has been temporarily suspended.
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2. Generation and Amplification of Coherent Electromagnetic Fnergy in

EEE Millimeter gﬁé Submillimeter Wavelength Region

2.1 Study of the Interaction Between an Electron Beam and a

Dielectric Circuit (G. Hok)

The work on this task has been temporarily suspended because
of shortage of available manhours.

2.2 Study of Frequency Multiplication in an Angular Propagating

Circuit (C. Yeh, B. Ho)

2.2.1 Construction of the Experimental Tube. The design of

the experimental frequency multiplier tube using a multipole cavity as
the multiplier element and a feedback scheme to enhance the conversion
efficiency was presented in Quarterly Progress Report No. 2. During
the present period, progreas has been made in the actual construction

of such a tube. The design data are as follows:

Input frequency 696.% me/s
Output frequency 2785.0 me/s
Magnetic flux density 250 gauss

Beam voltage 20 volts

Beam current 250 microamperes
Maximum r-f beam power 770 mw

Maximum beam cyclotron radius 17/52 inch

Input coupler plates 2-1/4" x 9/16"
Input coupler separation 9/16"

Feedback coupler plates 1-15,16" x 31/64"
Feedback coupler separation 31, 64"

The detailed diagram of the assembly of the cyclotron frequency

multiplier is shown in Fig. 2.1.
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2.2.1la The Electron Gun. The electron gun used in this

design is a conventional cathode ray gun with the second anode section
removed. Since it i1s to be used as a low voltage gun, it may be
necessary to apply a slightly positive potential to the control grid
in order to get sufficient emission from the gun. The remaining parts
of the tube, i.e., the coupler plates, the cavity, the feedback plates
and the collector, will all be connected to the same d-c potential

as the first anode. The focusing of the beam is helped by the magnetic
field.

2.2.1b The Input Coupler. The input coupler consists

of two pairs of mutually perpendicular Cuccia couplers. They are all
comnected to the same d-c potential as the first anode of the gun, but
are excited, r-f wise, from two separate sources. This scheme can be
achieved by a network of r-f chokes and d-c blocking capacitors, which
is not shown in the assembly drawing. The plates are held together by
ceramic insulators and fit into the glass wall by finger springs. The
centers of the coupler are carefully aligned with the gun on one end
and the cavity on the other end. One r-f source, the lower frequency
input source, is connected to one pair of the couplers while the feed-
back source is connected to the perpendicular pair. The leads are
brought out through the pins on the base.

2.2.1c The Multiplier Cavity. The multiplier cavity

is adapted from a hole-slot-type cavity of an S-band magnetron. The
cathode of the magnetron is removed to make room for the whirling

cyclotron wave beam. The magnetic pole pieces are replaced by metal
rings which extend on both sides to make connections for the couplers

and the rest of the tube. The cavity has a resonant frequency of
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2785 me/s. It has a total of N = 8 holes. The tips of the slots are
strapped so that the desired Il-mode is well separated from other modes.
The output, at frequency (N/2) wc is taken from the cavity by a
coupling loop located in one of the holes. The output connector is
modified from the original design by bending it toward the cavity so
that the entire structure may be inserted in a long magnetic coil
three inches in diameter.

The cavity will again be biased at the same d-c potential as
the first anode of the gun.

2.2.1d The Feedback Coupler. The feedback coupler

consists of a single pair of plates of similar design to that of the
input coupler but modified in dimensions. The leads for these plates
feed through the pins on the collector side of the tube. This facili-
tates making the feedback connections with the input coupler outside
of the tube with any desirable amount of delay inserted. The d-c
potential on the plates is again the same as that on the first anode
of the electron gun.

2.2.1e The Collector. The collector is simply a flat

metal disc. It is maintained at the same d-c potential as the anode.
Since the electron‘energy will be low, no special problems arise in the
design of the collector.

2.2.2 Future Work. It is expected that the final assembly

of the tube will be completed during the next period. Experiments with
the tube can begin immediately.

2.3 Investigation of High-Thermal-Conductivity Materials for

Microwave Devices Above X-Band (H. K. Detweiler)

2.%.1 Introduction. Further efforts have been made during

this period to develop a satisfactory technique for brazing a tungsten
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helix designed for operation at 30 Gc into a smooth-bore BeQO tube.

The present effort has been directed toward finding a means for loading
the helix into the tube in such a way as to obtain wniform contact. A
detailed account of the work performed is given below.

2.%.2 Experimental Effort. At the conclusion of the previous

quarter a procedure for preparing the helix for brazing and a satis-
factory brazing cycle had been established. However, a serious difficulty
had been encountered when attempts were made to load the helix into the
tube. The loading technique was to first wind the helix on a mandrel
so that the helix outside diameter exceeded the inside diameter of the
tube by about 2 mils. After firing the helix to set it, it was wound
on a smaller size mandrel so that its 0.D. was about 2 to 2-1/2 mils
smaller than the tube I.D. This amount of clearance was necessary so
that the titanium coating on the helix would not be rubbed off during
loading. It was then inserted in the tube and released. When this was
done it was found that the helix did not spring back enough to make
good contact with the tube. A program was undertaken to determine the
firing cycle which would give the desired amount of spring to the helix
in order to ensure good contact.

The first series of tests involved firing the helices in a
hydrogen atmosphere at 1050°C for periods of time ranging from 25 minutes
to 1-1/2 hours. In each case the helices were found to have insufficient
spring-back; the helices increased on the average only 1-1/2 mils in
diameter when released, whereas at least 2-1/2 mils is required.

In the next series of tests the helices were fired for long periods
of time, i.e., 1 to l-l/2 hours, in hydrogen at lower temperatures and
allowing them to cool with the furnace. Again the helices failed to

spring back a sufficient amount.
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Next, vacuum firing of the helices was attempted. When fired at
temperatures between 800°C and 1000°C for 15 minutes they were brittle
and broke during attempts to wind them on the smaller diameter mandrel.
When fired at temperatures below 800°C the helices did not break but
as before they did not spring back enough when released.

The most recent test consisted of firing in hydrogen at 1150°C
for 20 minutes. Of three helices fired in this manner, one broke
when being wound down and the other two did not spring back enough
when released.

It can be seen from the outcome of the above tests that the
loading difficulty has not been resolved. The results of these tests
seem to indicate that, when the point is reached where the helices are
no longer so brittle that they break when being wound down , they
do not possess sufficient resiliency to spring back more than about
1-1/2 mils. At this time, this particular approach to the problem does
not seem to offer much hope of success.

2.3.3 Future Work. Work will be continued to develop a

helix loading technique. An investigation will be made into the possi-
bility of finding another suitable helix material which has a higher
resiliency than tﬁngsten. Attempts will also be made to obtain BeO
tubing with greater dimensional uniformity so that less clearance between
the helix and tube is required for loading. Pending successful solution
of the loading problem, d-c heat tests of the power handling capability
and r-f cold tests of the electrical characteristics of the brazed-

helix structure will be conducted.



-8-

3, Analysis of Amplitude and Phase-Modulated Traveling-Wave Amplifiers

(M. E. El-Shandwily, J. E. Rowe)

5.1 Introduction. In the previous quarterly progress reports,
an analysis was made of the operation of the TWA with a multi-frequency
input. In this report, the problem is treated by another method. The
reason is that the previous analysis was based on Pierce's?® theory in
which it was assumed that at any plane z = constant the electron
velocity is a single-valued function. Even if the initial thermal
velocity spread is neglected, the crossing of the electrons when the
beam is bunched makes that assumption invalid.

In order to account for electron crossovers (multivalued velocity
function), the kinematics of the electron beam will be described by the
Boltzmann transport equation®.

This approach has been applied by Watkins and Rynn® to study
the effect of the initial velocity distribution on TWT gain, by Kiel
and Parzen* to study the nonlinear interaction in the TWT and by others

to study the noise propagation on electron beams.

5.2 Method of Analysis. To reduce the calculations to a

reasonable amount the following assumptions are made:
1. The gain parameter C is small compared to unity.
2. The tube is long enough so that at the output only the

largest growing wave is considered.

1. Pierce, J. R., Traveling Wave Tubes, D. Van Nostrand Co., New York,
N. Y.; 1950.

2. Rose, D. J. and Clark, Jr., M., Plasma and Controlled Fusion, M. I. T.
and Wiley, N. Y., p. 58, 1961.

3. Watkins, D. A. and Rynn, N., "Effect of Velocity Distribution on TWT
Gain", Jour. Appl. Phys., vol. 25, pp. 1375-1379; November, 195h.

L. Kiel, A. and Parzen, P., "Nonlinear Wave Propagation in TWA", IRE Trans.
PGED, vol. ED-2, pp. 26-34; October, 1955.
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3. There are no space-charge forces (QC = 0).

4. There is no loss.

5. The collision between electrons and gas molecules is neglected.

6. One-dimensional analysis.

The circuit model used is that of Brillouin®, and the electronic
equations are replaced by the Boltzmann transport equation. Therefore
the two working equations can be written as follows:

The circuit equation is

2 2 2
a V(Z)t> - V2 a V(ZJt> = ZOVO a O(Z t) (5.1)
dt2 dz2 dt2
and the Boltzmann equation is
OF(z,u,t) tu OF(z,u,t) o v(z,t) OF(z,u,t) -0, (3.2)
ot oz dz du
where p is the beam charge density and is given by
[o¢]
p = - f F(Z:u)t)du . (5-5)

- 00

V(z,t) is the circuit voltage,
v_is the,phase.velocity of the circuit voltage,
Z 1is the circuit impedance,
F(z,u,t) is the density function which gives e times the number of
electrons between z, z + dz with velocity between u, u + du
per unit beam cross section,

n = |e|/m, the magnitude of the charge-to-mass ratio of the electron.

5. Brillouin, L., "The Traveling Wave Tube", Jour. Appl. Phys., vol. 20,
pp. 1196-1206; December, 1949.
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To solve Egs. 3.1 and 3.2, the boundary conditions must be
specified. In this analysis it will be assumed that the input consists

of two signals with angular frequencies w , o .

1T 2
V(0,t) = B cosw t +B cosw t
1 1 2 2
1 R A ot -t
= =B (e 1 +e 2 +=B (e 2 4+e Z > . (3.4a)
2]_ 2 2
The voltage should behave initially as
-0 Z -0 z
B e Ycos(wt-Bz+B e Zcos(wt-Bz) ,
1 1 1 2 2 2

where B = /v , B = /v . Assuming that @ <<B , @ << B , gives
1 11 2' 2 1 17 2 2

2
the following for dV(z,t)/dz:

B B sinwt + B B sinw t
11 1 2 2 2

: Wt -t : Wt st
= -2 B B <; 1 e L > -4 B B <% 2 e 2 > .
271 27272
(3.4b)

At the input to the tube, the beam is assumed to be unmodulated and

neglecting the thermal velocity the density function becomes

F(Ou,t) = ad(u-u) , (3.4¢)

2

where u®= =
o]

2e/m V,» V, is the d-c beam voltage and ®(u) is the Dirac
delta function.

Also,
F(z,u,t) 50 as u -0, u > o . (3.4a)
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The problem is to solve Egs. 3.1 and 3.2 subject to the boundary
conditions (Egs. 3.4). It is to be noted that although the circuit
equation (Eq. 3.1) is linear, the Boltzmann equation is not. Therefore,
the density function and the circuit voltage will contain, in addition
to the input frequencies and their harmonics, all possible combinations
-of frequencies.

The circuit voltage and the density function will be written in

the following general forms:

i S s w (s,w) J(nw +mw )t
V(z,t) = }Z }; }; Bl 32 vn’m e 1 2 s (3.5)

S,W=0 N=-S mM=-8

(s,w) (s,w)
where V is a function of z and F is a function of u and z.
n,m n,m

The expansion in the input voltages B and B is valid provided
1 2

that these quantities are small, which is usually assumed in solving
nonlinear differential equations®. The harmonic expansion in the input
frequencies is stopped at |n[ = s, |m] = w, since there can be no
harmonics higher than the nonlinearity. Also, since the voltage should
jo t Jo t

behave initially as Bl e * + B2 e 2, thenn +s and m + w must be
even.

Equation 3.1 was derived originally for a single driving fre-
quency. This is done by replacing the helix by an equivalent transmission

line with current injected along its length. Since the equation is

linear, then for every charge density component on the beam there will be

6. Minorsky, N., Non-Iinear Mechanics, Edwards Brothers, Inc., Ann Arbor,
Mich.; 194T.
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a circuit voltage of the same frequency. Therefore Eq. 5.1 is valid

for the general case of a multi-frequency input, where the circuit

voltage has the general form of Eq. 3.5. Equation 5.2 is valid for

any distribution function. Substituting Egs. 3.5 and 3.6 into Eq.

3.1 gives:

where v " is the phase velocity at frequency !mb + mo I and. Zn
1 2

n,

the circuit impedance at frequency |mb + mb |.
1 2

Equating powers of Bs B" on both sides, and noting that the
1 2

is
m

exponentials are orthogonal functions, then one can equate the coeffi-

cient of the exponential term on each side of Eq. 3.7 to get

(s,w)

(s,w) azv
(o + mo )2V + ve 20
1 2 n,m n,m ng
(s,w)
= -2 v (o +m)? /PF du
nm nm 1 2 n,m

Substituting Eqs. 3.5 and 3.6 into Eq. 3.2 yields



0 S W
(s,w)  J(mw +mo )t
}: }z }: J(w +m ) BZBY F e 1 2
2 2 n,m
S,W=0 n=-§ m=-w

1]
1
-
RN
L\/J 8
ws)
/)
o
=
=]
:3—
N
E—'
0]
c
5-‘
&
'_l
+
B—n
=
o
ct
~—

(s,w)

S w
- s » OF . . e +me)t
1 2 au
n's-s n's-w

S ,W=0

Using the Cauchy product, and letting m"+m = m, n" + n = n, the right-
hand side of the above equation can be written as
n=n'+n m'+f  s-7 w-€

L

$,W=0 nN=0 E=0 n=n'- m=m'-§ n'=-s4+1 m'=-w4

(n,8) (s-n,w-£)
1 [l aF 1 1 J(I’KD + mbo )t
n-n’',m-m n ,m . e 1 2
Jz ou

The index of summation can be arranged such that the following holds:

- 5 L s (s,w) J(ow +mo )t
z 7 zj(m) +m ) B B F e 1 2
- 1 2 1 2 n,n
S,W=0 n=-5 m=-w

(s,w)

> s ¥ o o OF (o +m )t
+u }: }Z zg: BB — ¢ 1 2
1 2 aZ



“1h-

Equating the coefficient of the exponential in the above equation

gives

(T],g SF (S TI;W -£)
- - }: }; }: }: Vi-n' ym-m'  n',m’ . (3.9)
n=0 £=0 n's=-s m'=-w ou
It is found that it is more convenient to write V(z), F(z,u) in
terms of the slowly varylng variable ¢ = BCz.
)
5 _m
(S,W) (S;W) - C
—_ 1 nm
Vn,m (z) = Vn,m (Ql) e 5
¢
(s,w) (s,w) e
= nm (3.10)
Fn,m (z,u) = Fn,m (@l,u) e ,

where ¢ = Be C z and Be =W /uo.
1 1

1 1 1

The introduction of these variables will reduce the amount of algebra

and facilitate the subsequent calculations considerably.

gs. 3.8 and 3.9 reduce to

(S)W)
(o +m )2 V!
1 2 n,m

and

(s,w)

2V|

ae°

(o + nwz)a

v
nm nm 1

2 . 2 A2 n,mn
(9) + Vom [B oF

Using Eq. 5.10,

av'

(s,w)
n,m

dasd



(s,w)
(s,w) OF' (s,w)
J (w4 m ) F',m (¢,u) +u [BC a; - 3B, 'n)m (o,u) ]

( ) 3 (S~T],W-§)
n,€ Fr‘l' o
- Bn_n"m_m, Vn-n‘,m-m'] gu . (3.12)

A convenient way to solve the above two equations is to use the ILaplace

transform’ as given in the following definition:

(o]

i ( )g) ( ;§) _( ,§)
L[V' ! (o)] = fv' ! (o) e®? a0 = T ! (), Re(8) > o

]

n,m n,m n,n 1’
0
(3.13a)
(n,8) S (k) (
1 — ] - 6¢+pu)
LL [Fn’m (Q,u)] = ff Foom (®u)e dodu
0 0
=(Tl;§)
= Fn,m (8,p), Re (3) > o (3.13D)

where ¢ , 0 are some constants which make the integration in Egs. 3.13a
1 2

and 5.15b converge.

Taking the Iaplace transform of Eq. 3.1l and using the boundary

conditions gives

7. Churchill, R.V., Operational Mathematics, McGraw-Hill, New York;
19580




1

3%,C 5 d(w,1) a(s,o)] - vflm 2 38C B, [6 \ (8)

I+

1 1 2 p2 7
- 5 5(s,1) &(w,0) - 5 5(s,0) B(W,l)] Von Bon vn}m (3)
, (sw) '
= -Z V. (rml + nn)2) Fn’m (5,0) . (3.14)
The positive sign is for n = 1, while the negative sign is for n = - 1.

Taking the double Laplace transform of Eq. 3.12 and using the boundary

conditions yields (s,w)
J

. =(S,W) af‘n)m (5;P)
J(m)l + nmg) Fn)m (Blp) +BC (-3 5
=(SJW)( )
-u p OF 5,p
-au_e 2 8(s,0) 8(w,0) + 3B n,m
op
C+Jjw 8 w S W (
ns¢)
- ) ) ) [e(omr) Ty (552)

1

5(s,1) 8(w,0) BC - 5 8(s,0) &(w,1) BC

1
o]

-J B

1 1 V 1 1
n-n',m-m' ‘n-n',m-m
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where 0 = Re(d),
n,m) = 0, n#m
= l,n=m

C = Re(r),

o] < C<o=-0.
1 2

In writing Eq. 3.15 the complex convolution formuls has been
used to write the right-hand side®. The condition on the real part
of r in Eq. 3.15 defines a strip in the r plane for the integration of
the right-hand side. Only the poles of F(r,p) will contribute in
evaluating the integral. This is because the path of integration
always lies to the right of the poles of F(r,p) and to the left of
the poles of the bracketed term. Therefore, by closing the contour
to the left, the value of the integral over the semi-circle will vanish
if F(r,p) and the bracketed term are proper rational fractions (which

will be assumed), and the integral gives
(Tl}g)
. . . = 1
on }:Ie51due of [ {?C(S-r) - 5n_n,)m_m;} Vn_n,)m_m,(ﬁ—r)— 3 5(s,1)8(w,0)BC

_(s-n,w-£) _(s-n,w-£)
3(s,0) d(w,1) BC Foo (r,p) at the poles of Foo (r,p)

1
| =

,m

Rearrange the terms in Egs. 3.14 ang 5.15 and rewrite in the

following final form:

8. Aseltine, J. A., Transform Method in Linear System Analysis, App.
A-T7, McGraw-Hill, New York; 1958.
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(s,w)
= 2 2 2 A2 w2 . 2
Vn,m (6)[(nbl + mbg) Vo (B2 c2 32 - 2 BCBnm 5 - Bnm)]

__(S' Jw-g)
vos,0) s B () ar (5.17)

In the above equations BC is Blo Clo'
3.3 Solution of the Equations. The starting point in solving Egs.
_" _(0,0)
3.16 and 3.17 is to let s = 0, w = 0. From Eq. 3.17 one gets Fo o (8,p).
_< O)O) ’
By knowing Fo o (3,p) and putting s = 1, w = O in Egs. %.16 and 3.17, then
J
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(1,0) (1,0]

it is possible to get Fl o (8,p) and V.o (8) and repeating for s = O,
) )

w =1 to get ﬁg?il)(a,p) and Vé?il)(S), which are the first-order
approximations. From the first-order solution the second-order
approximation can be obtained and the process is repeated to get higher-
order approximations. This process is carried out as follows:

From Eq. 3.17 for s = 0, w=0

(0,0)

OF ) au -u
0,0 (5,0 L9 of -0
3p °
therefore,
(0,0) -u_p
F. (5p) = fe (5.18)

First-Order Solution

Let s = l, n =+ l, w =0 in Eq. 5« 1]
._(l)o)( ) ( ) c J-
BF o} jw 1,0

)p J - ) _ np ]

- + L F _ (5,0)
op JB -BCD ’ B -pCO 2rj

C-joo

=)

1,0 (0,0)
[{EC(S-r) - B}-Vl’o (8-r) - %?] ", o (rp)ar

Carrying out the contour integration on the right-hand side and then

_(1,0)
solving for F, (5,p) yields
)

(.1,0)(6 oo nal(c, 8-3) ¥, o (8) - -%9]tpuo Cpp - d+C Ble

eall]

For s =1, w = 0, n = 1, the circuit equation (Eq. 3.16) gives:
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(1,0) V@
= 2 .2 2~2:2 s p2 2 10 . 2n2
V.o (3) knl+vlo (B%c%0% - 2§ pCd - B%)] + —5= [(-d+jb, C ) B*C
. _ (350)
+2)p%] = -2 v o] Fl’o (5,0) . (3.20)

let p = 0 in Eq. 3.19 and then substituting into Eq. 3.20 and arranging
terms one gets:

(l,o)

Vl,o (8)
nalyo 2 : 3 «2,2 . 2 s
Vo o Pio (-3 + Clos) * 0.0 Blo[_5C10+Jbloclo+23]
- ZILOT]a
2 [sfocio 52 (2Cloblo-ejC106+C§dbio+ci082) - -;:;- B2( - 3+08)2]

(3.21)

At this point some useful definitions will be introduced.
Pierce's gain parameter C3 =7 T /4V , where Z _ is the circuit
nm nm o o nm
impedance at frequency (nm® + mov ). Also, from the definition of the
1 2

density function it follows that

I = /nF udu = au
Q . 0

/

Introducing this definition into the definition of Crl

m gives
naan
3 _
Cnm - 2uo (5.22)

Substituting from Eqg. 3.22 into Eq. 3.21 and neglecting terms of the
order of C compared to 1 yields
_(l)o) 82

V.o, (8) = : (3.23)
’ 2J [8%(-3d+b, )+1]

It is seen that when the denominator is equated to zero, it gives the

determinantal equation of the traveling-wave tube under theassumptions made.
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It will be assumed that the tube is long enough such that only the wave
which corresponds to the pole with the largest real positive part is
present at the output.

Taking the inverse Iaplace transform of Eq. 3.23 and using the
definition Eq. 3.10, one finds for the first-order approximation for the

voltage with frequency w
1

BCDdz
(1,0) 32 e 111 ot -B2)
Vl o (z,t) = L e ! 1 . (3.24)
’ 25(5,-8 ) (61-83)

From the original definition of the voltage it is seen that the voltage
(1;0)
is given by 2R_V Z,%).
g y 2RV, o (25%)

Substituting Eq. 3.23 into Eq. 3.19 and making the same
approximations, one gets

-pu
(1,0) na [pu_C 8-jle ©°
F o (5,p) = °_° : (3.25)
2u§ cio [(32(-3 d + b ) + 1]

o

To obtain the first-order solution for the signal with frequency

® , the above procedure is repeated for s = 0, w = 1, m = 1, and the
2

result is
2 a2
B1oclo 52
(0,1) 2 c2
— o1 01
v 3) = .26
©, (®) 501001 B?ocio > B1cC10 ’ (520
2 55 7oz O <}j 50+ bo;> +1
10 10 01”01 o1 01
-puo‘puoaloclo .
e 7B c. Cor®
_(0:1)( 01 01
F 6’p) = oy .
= -
> ou2 02 Por”01 [P0 52 EE&QE&E 5 +D 1
o o1 B C__ |p2cC2 "B C o1) *
10 10 LFo1” 01 o1 01

(3.27)



-00.

Assuming that the circuit is nondispersive in a certain frequency band

and that @ and ® are within this band, then b =b . Taking the
1 2 10 o1

inverse laplace transform of Eq. 3,26 one obtains

2 BOlCOlalZ .
(0,1) 5% e J(o t-BOlz)
VO 1 (Z)t) = . € 2 ) (3-28)
g 25 (8 -3 ) (5 -3 )
12 1 83

which, when multiplied by the input with frequency mz, gives the first
approximation to the circuit voltage with frequency w2.

Second-Order Solution

The second-order approximation is obtained from the general
Egs. 3.16 and 3.17 by letting s =2, w=0; s =0, w =2 and s = 1,

w = 1. Considering the case s = 2, w = 0, therefore m = O, n = 0 or

2. Fors =2, w=0,m=0,n=0, Eq. 3.17 gives

_(2,0) .
3F (5,p) ST (3,0)
0,0 np 1 =
= - f [V-l)O (S-r)
op Bictic® 2 oM
_(1,0) _(1,0)
o (F7R) 1B C (8-)-3B_ 1+ ¥, o (8-7)
_(lJO)
" F o (mp) [B O (0-r) - 3B Tlar
_(1)0) =(l:0) _(110) =(110)
Note that V_l)0 and F_l, are obtained from Vl,o and Fl,o )

respectively, by changing j into (-j). The complex integration on the
right-hand side is carried out only over the pole with the largest
positive real part. Carrying out the complex integration and then

integrating with respect to p, the result is:
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(2 )O) 2 -puo
= a e
Fo o (6,p) = D—___
’ b jc% u®s
10 o

2 . .
6—61) {010(6‘51) + J][puo(-3.+ puocloal) + (J+2puOC1051) 2c, 8,

(5 -5 ) (5 -8 )[(8-5 )2(J (8-5 ) + b} + 1]
1 2 1 s 1 1

*\ 5 X . .
(6-5 )% {c (8-5 ) - 3}(pu (J+puC B

6*) (342 5* *
+(J+ puoClO LY EClOSI] ]

(57-8") (5 -5 )[(8-8")2(-3(5-5") + b) + 1]
1l 2 1 3 1 1

(3.29)
For s =2, w=0,m=0, n=2, Eg. 3.17 gives
_(2,0) ,
oF, , (8,p) 240 (2,0) C+doo
2 = l
50 + 1 Fz,o (8,p) = - np jf
o Jﬁ20_610C106 PBooProlred 2t c- joo

_(l,o) _( 1,0)

(B Ly0mr) - 3B I T (8en) By ()

+{B. C (d-r) - 3pB. 1}V (3-r) FO o (S-r)]dr .

10 10 2,0° 2,0

Carrying out the cbmplex integration on the right-hand side as before

and then integrating the resulting linear differential equation in

=(2,0)

Fe,o (5,p) gives
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The pole with the largest positive real part of Eq. 3.32 is

O =293 . Therefore,

1
(2,0)
2,0 (@)

52 281001061 EJ(wlt-BlOZ)
B 5 2,0 3 1 e e
"'l 1,0 C2 ’
’ 2 S V2(s s V2 | =2 2 (.
VLes, (61 62) (al 53) [ =t 52 ( 351 + bzo)]
10

(3.33)

where C20 in the gain parameter at frequency Bml.
If the circuit is nondispersive then b,y will be equal to blo’
2 (_3 _ 3
and therefore 82 ( J51+b20) =-1. If (Cgo/clo) can be neglected
compared to unity (which is almost true, since the circuit impedance

at the harmonic frequency is much smaller than its value at the funda-

mental), Eq. 3.33 reduces to the following expression:

261001051 EJ(mlt-BlOZ)

2,0) C 52 e e
v, (o) = %( 2°>3 - e (334

C 2
10 v.eZ (8,-8,)(5 -5)

Multiplying Eq. BfBM by Bi and taking twice the real part gives the
second harmonic voltage of the signal at frequency w,. It should be
noted that the above expression gives the first-order approximation
to the second harmonic voltage. Higher-order approximations could be
obtained. However, the next order will be proportional toZBi and to

B2 Bi. This will not be carried out here.
1

By the same procedure, the second harmonic voltage of the signal

at @ can be obtained. The result is
2
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2 e2501C0161 QJ(th-BOlZ)

3 o) e
= > L . (5.55)

2 2 2
o1 VOCOl(ﬁl—SZ) (61-53)

(0;2) C
T 5
Vo,z (p) = - 5T < G

Third-Order Solution

The third-order approximation to the voltage at frequency w is
1
obtained by putting s =3, w =0, n=1land s =1, n=1,w=2m= 0.
The first case gives the dependence on B as Bs, whereas the second
1

1
case gives dependence on B and B as B BZ.

1 2 1 2
7. (b (3,0)
F )P Jo ={3,0
2ot F, . (6,p) = - —1@
. J 3
op JB1-B,C, 0 BBl R
L (0 (2,0) ,
= B L COR A EIC TR,
c-Joo

_(310) _:(O;O)
+V, o (Br) B (rp) - (B L (8-T) - 3B, ] ]dr - (5.36)

1,0 10710

To facilitate the calculations, the second harmonic voltage
will be neglected. Use Egs. 3.23, 3.27, 3.29 and 3.30 and integrate

over the pole with the largest positive real part, then integrating the
_(3,0)

resulting first-order equation in Fl o (8,p), the result is
)
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(3.37)
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where A = uOClOS/(j - 0106).

From the circuit equation (Eq. 3.16) for s =3, n =1, w = O,

(3,0) (3,0)

2, .2 (g2 (2 82_n:a2 2
Vi0 (8) of + 5, (B o070 "20B7 € 150-P1,) ]

(3)O>
By solving Egs. 3.37 and 3.38 for Vl o (8), the result is
2
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T
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By taking the inverse transform of Eq. 3.39, neglecting terms of

order of C compared to unity and rearranging terms, the final result is:

(3,0)
Vl’o (Z’t)
B. C (2545 )z (0 t-p_z)
- Z
. * *2 *2 * 1o 10 171 1 10
J[5516§-26§+55l5l.45ﬁy61 (251+6l)] e e

2.4 > o ¥ ¥ * % * * % ¥ « *
52V0c10(8l-52) (61-63) (61-82)(61-63)(261+61)(6l+61)(261+6l-62)(26l+6 -24)

,.40)

Equation 3.40 does not give the total third-order approximation, it is

only that part which depends on BJ. The other part depends on B, BZ, it
(1,2)
is Vl)o (3). This is obtained from Egs. 3.16 and 3.17 for s = 1, w = 2,

m=0,n=1. Equation 3.17 gives

(1,2)

3F.  (5,p) 0 (1,2) e
1,0 1 =\ 7/ 1
’ + Fl,o (5)p) = - y Tlp * /
dp 3,578, L oD BB LL 2nd o= oo

0,-1 ) 10 10 0,-1
(0,1) (1,2)
+Vy, (B-r) F ) (r,p) B, C (6-7)-08,,]
(170) =(O,2)
+V, o (o) By o (r,p) (B, C (8-1)-38 ]
(1,1) _(0,1)
+Vy o) B (rp) (B, C (8-x)-38, ]
(l;l) _(O,l)
+V 0 (B By (rop) (B, L (8-r)-08, ]

(;,p) (8,0, (8-r) - jﬁlo]]dr . (3.41)
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As before the second harmonic voltages will be neglected, also the

voltages at frequencies W+, and w, - will be neglected. These

are reasonable assumptions when the fregueicies w and w are not
1
very much different and both near the center of the band. It should
_(l;l) ___( l)l> =( l;l)
be noted that although V. | (3), Vo (8) can be neglected but F (3,p),
*( 1)1) ) ’ )

H
Fl 1 (S,p) cannot. This is because the harmonic content of the beam
)

might be large, but its effect on the circuit is small because the
impedance of the circuit at these frequencies is small.

To evaluate Eq. 3.41 one needs the following quantities in

_(1,1) _(1,1)
additionto those previously derived: F, ., (®,p), F| (3,p) and
_(0,2) ’ ’

Foos (8,p). Using the same procedure as before, these are:
J
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Using Eqs.: 3.42, 3.4%, 3.4 and the previous quantities, it is possible

to evaluate the complex integration of Eq. 3.40 and then solve the

_(1,2)

resulting linear first-order differential equafion in Fl o (8,p). After
_(1,2) (1,2) ’
obtaining F, _ (5,p), together with L (8) (from the circuit equation),
’ (1,2) ’
one can solve for Vl o (8); the result after taking the inverse
)

transform is
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Multiply Eq. 3.40 by Bl and Eq. 3.45 by BlBi and add; then take
twice the real part, which gives the third-order voltage. In this
analysis it will be considered sufficient to stop at the third-order
approximation.

High-Order Difference Frequency Components

If the frequency difference (w 4D2) between the two input signals
1

is not large, according to the general expressions, Egs. 3.5 and 3.6,
there will be components with frequencies in the passband of the circuit.
Two of these components are with frequencies 2w -w and 2 -® . The

1 2 2 1

component with frequency 2w -w will be derived.
2

1
Substituting s =2, n =2, w =1, m = - 1 in Egs. 3.16 and 3.17

one gets:

(2)1)

2.2 2 n2 82 s _p2
Vo o (®) [(an w0 )2wg (BT 050 2B, CaPa, 0Ps 1]

(2,1)

= - Ze,-lva-;(abl*bg)g ﬁ2,-l (8,0) , (3.46)

_(2,1)( )
oF, . (8,p Jlaw, -w ) _(2,1)

2} 1 + 1l 2 F2 il (6,p)

9% J(251.0-{301)'6100106 ’
S (2,1) (0,0)
= - np 1 jﬁ [V; . (5-r) ﬁo ; (r,p)
H28,5-Boy) B0 8 2xd LT .

(110) (l)l)

(B, C1o(8)-08, + ¥y o (8-7) F, _ (r,p)
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Integrate the right-hand side and then solve the linear first-

=(2Jl) =(2;l)
order equation in F, (3,p). The solution of Eq. 3.47 for F, | (5,p)
- -

’ (2,1)
is solved simultaneously with Eq. %.46 for Vz L (8), and the result
-

after taking the inverse laplace transform is:
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The circuit voltage at 3D24Dl can be obtained from Eq. 3.48 by
interchanging 1 and O.

It should be noted that the circuit voltage is obtained from Eq.
3.48 by multiplying the right-hand side by Bi B, and taking twice the
real part.

Other intermodulation components can be obtained in the same way.

3.4 Program for the Next Quarter. The equations presented in

the first quarterly progress report are being programmed for digital
computer solution. The results will be presented in the form of curves
representing different operating conditions. Also, it is intended
to program the equations of the second progress report.

No experimental work has been done during this period. However,
it is planned to initiate experimental studies on an X-band TWA during

the next period.

4. Study of a D-c Pumped Quadrupole Amplifier (C. Yeh, B. Ho)

4.1 Introduction. 1In Quarterly Progress Report No. 2, the

state-of-the-art of cyclotron-wave devices was reviewed. It was
suggested then that a unified analysis should be carried out so that

the coupling mechanism among different modes of operation could be better
understood, and a fair comparison between the different coupling
mechanisms could be made. To achieve these objectives, an analysis based
upon coupled-mode theory was carried out during this reporting period.
Although the coupled-mode method does not represent an accurate picture
of this device, especially for large-signal operation, the simple
mathematics it uses enables one to visualize the physical insight of the
device and, in particular, the interaction mechanism between the

different modes of coupling.
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L.2 Coupled-Mode Equations of Beam Dynamics. Consider a

filamentary electron beam in spatially varying electric and magnetic

fields, the transverse equations of motion in rectangular coordinates

are
L, o n(E. +v.B -vB) (k.1)
dt 'x X y 2z zy

and
da
FEVy = -0 (Ey -v,B o+ VZBX) , (4.2)

where n is the charge-to-mass ratio. The transverse displacements

and transverse velocities are related by

d

E% = Y% (4.5)
and

ay _

E;C- = Vy . (Lk.l#)

With a static axial magnetic field BZ = Bb’ and assume constant
v, =u,, Egs. 4.1-L.4 can be put into a set of coupled-mode equations

in terms of mode amplitudes as follows:

(d% - ) a = -1 KE + JuB) +%%% a (k.5)
(él + ch) a = -1 kXE - quB_) + % %% a (4.6)
i;% = - k(E + ] u B+) + % %% a_+ 3: ?2% (a3 - al) R (4.7)
g;% = -nk(E -Jju B) + % %% 8, +-£— i;% (a4 - az) , (L4.8)
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where a = Tfast cyclotron wave
1 N
-iB, - B )z
= A e e C
l .
= kv +dv) (4.9)
a = slow cyclotron wave
2 .
-i(B, +B_)z
- A e e c
2
= k(VX - J Vy) ) (“—.lO)
a = negative (kinetic power)
3
synchronous wave
_B 7
= A e °©
3
= klv#dvo-dolx gyl (4.11)
a = positive (kinetic power)
4 ,
synchronous wave
- 2z
= A e °
4
= klve-dvor o (x - a)] (k.12)
A; = amplitude of the wave, i =1, 2, 3, L,
——— ® ®e
k = NI/, , B, = — B, = T
o 0
B, = Ex £ Ey ’
B, = B *] By s
e =0 Bo

The transverse displacements and velocities can also be expressed in

terms of mode amplitudes by using Egs. 4.9-4.12, as



a -a =-8a +a
X = & 5 3 K wa 1 ) (ll»-l5)
c
a4 -a +a =-a
_ 2 3 1
y = 2k W ) ()'I"lh)
c
a + a
- 1 2
v, = 5 (L.15)
and a - a
— 1 2 .
v.T BTR (4.16)

4.3 Coupled-Mode Analysis of D-c Pumped Quadrupole Amplifiers

4.3.1 General Procedure of the Analysis. To simplify the

analysis of a d-c pumped quadrupole amplifier, let us assume that the
a-c magnetic fields in the transverse direction are negligible, i.e.,
B, = 0 and that ®, is a constant and that dk/dt = 0. The coupled-

mode equations (Eqs. 4.5-4.8) reduce to

<a€ - wc) a = - kE,
d .
(EE + wc) a = -0 kE_
da
- = .
dt nk E;
da
—% = -
3 nkE . (4.17)

In order that parametric pumping can be achieved in a d-c
pumped quadrupole amplifier, the pump field must be an appropriate
function of x, y and z. Let the transverse fields E+ and £ be a

function of the coordinates of the form,



t=
]
H
—
e
-
<
'_'3
—
N
~

=1
n
[—b
—~
»
<
.—b
—
N

(L.18)

By means of Egs. 4.13 and 4.14, it is possible to express E, and E as

a function of the coupled modes a ---, a . Thus, one may write
1 4
E = f (a,a,a,a)f(z
RESECHEWEESEXC)
E = f (a,a,a,a)Tf(z) . (4.19)
- 1- 1 27 3 4 & :

Hence Eq. 4.17 can be rewritten as

d

— - jJw ) a = - kf (a a a a f(z
(dt J C> 1 n l+( l’ 2) 3) 4) 2( ) J
(g—+jw)a =-nkf(a,a,é,a)f(z) )
dt ¢’ 2 1- 10 27 3 4 4
da3
_ = - k f
at M -+ (al, 8'2) as) 34) fz (Z) )
da
4
—= = - nkf (a,a,a,a)f(z) . I .20
at ] l-( IR 4) 4( ) ( )

Equations 4.20 enable one to discover which pair of modes has
strong coupling. Depending upon the actual field configuration, the

f + and f may or may not contain all the terms in a's. By inspecting
1 1

each part of Eq. 4.20 separately, one may identify which of the pairs
of modes are coupled together, This point will be made clearer in an

example in a later section.
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Equation 4.17 can further be simplified for the case of constant
axial velocity and a d-c pumping, i.e., v_ = uo = constant and w = O.

Assume sinusoidal variations, then

a 9 )
3 = Jo+u 3 - U 3
Equation 4.20 becomes
d ok
(SZ - 3 B,) a = - o E, (4.21a)
(i+ B)a = -2 g (4.21b)
5z J c s u_ _ .
da X
aTs = = {]1—- E+ I} (ll-.glC)
o)
da
—4 = g—k E . (k.21d)
02 o

In order to examine the effectiveness of the mode coupling, a
set of second-order coupled-mode equations will be derived. Differenti-
ating Eqs. 4.2la and 4.21d, subtract, and then adding Eq. 4.21d which is
multiplied by J Bc’ one obtains after some simplifications, the

following expression:

e

JB.2 d%A oA aZAS SAS
N 1 . 1 . _ . nx
RY Pe X > " 3,2 AP T R Uy B (k-22)

Similarly from Eqs. 4.21b and 4.21c, the following is obtained:

-Bz s O%A oA dZA 0A nk
e C < 2 . __§.> -2 —% - 33 Xwp . (L.03)
322 ¢dz 9z oz €Y% -

Equations 4.22 and 4.2% are the general expressions which can be
used. to analyze all types of d-c pumped amplifiers as long as the

pump field E_ can be determined.
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4.3.2 Staggered Quadrupole Amplifier. As a typical example,

a detailed discussion based upon Egs. 4.20, 4.22 and 4.23 will be given
for a staggered quadrupole amplifier. The pump electrode configuration
of such a device is shown in Fig. k4.1.

The potential in the pump region is given by

V(r,o, z) = Vp (

o

)2 cos 20 cos qu . (k.2k)

In rectangular coordinates, the field intensities are

v
E = -2-2x cos Bt ,
X a2 q
VP
EE = 2= cos B t 4.2
. = y Bt (4.25)
where Bq = Qﬁ/L.
Then
2V
p
E =3 (a -a)cospz |,
* a® k w ¢+ 2
c
2V
E = - —FP (a -a)cospz . (4.26)
azkmc 1 3 q

Substituting these quantities into Egs. 4.20, one obtains

4 2n v
(ag -J wc) al = -] > mp (a4 - a2) cos Bq; , | (k.27a)
c
a 2n v
(EE + wc) & = - 3 = (al - as) cos qu s (k.27D)
da en v
2 = - (a -a)cosBz , (k.27¢)
22 o 4+ 2
¢
da4 2n v
=t o= - . (al - as) cos qu . (4.274)
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FIG. 4.1 GEOMETRICAL CONFIGURATIONS OF A STAGGERED

QUADRUPOLE PUMP STRUCTURE.
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The important feature of the parametric coupling can readily
be seen from this set of equations. With a staggered quadrupole
d-c pump field, the following mode couplings are possible, Eq. 4.27a
indicates the possible coupling between the fast cyclotron wave al to
the slow cyclotron wave a2 and the positive synchronous wave a4, similar
coupling pairs can be sorted out easily from the other equations.
However, two types of coupling are not possible, namely, al and aa, and
a and a .

2 4
Let us proceed to study the different cases of couplings more

carefully. Substituting the fields E+ and E_ for the staggered

quadrupole of Eq. 4.26 into Egs. 4.22 and L4.23, one obtains

d°A dA Bz %A dA Bz -iB.z
< Loy —)e © - 3+jB-—-—§=M[Ae Tiae ¢
dz2 € dz2 ¢ 3z 4 4
J(B, - B)z -iB +B )z
-ae 3¢ _a e 4 e} (4.28)
2 2
and
9°A OA -z 33 JA Bz -B z
< 2- g, —2 e ¢ 2. -—4=M[Ae +Ae
dz2 oz dz° €3z 3 3
J(B +B )z ~i(B. - B )2
-A e 4 € A e 4 ¢ } , (k.29)
1 1

where M = (VpnBc/ud»Caz) = (Vp/2Voa2),and the A's are the amplitudes of
the coupled modes.
Equations 4.28 and 4.29 may be used to discuss the coupling modes

and the gain of the device. There are several cases of interest
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depending upon the spacing between the quadrupole sections, which can
be discussed separately.
Case I. Coupling between Cyclotron Waves.

Iet the spacing L = xc/z or Bq =28,

Equations 4.28 and 4.29 become

3% OA 3B,z 32 OA JoB z -joB z
[ L4 jBC 1 } e - S 4+ 3B, 2 =M e ¢ +Mm e ¢
dz2 dz dz2 dz 4 4
JB z -J5B 2
-MA e -MA e ,  (4.30)
2 2
d°%A JA -jBz %A oA joB z -2iB z
[———3 - B, —2 ] e © % B, —* = MA e Cimoe
dz2 dz dz2 dz 8 8
3B 2 -JB 2
- MA e - MA e . (’-#.31)
1 1
Equating z-dependence ters,
d2A 0A
L, —L = -Mm (4.32a)
dz? €z 2
32 A
2.8 —2 = -M (k.52b)
dz2 €z 1
d%A oA
—3 - ch -3 = 0 , (4.32¢)
dz2 dz
9% oA

n
(@)

—4 B, —* (L.324)

922 dz.
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It is obvious that there is no coupling for the synchronous
waves, but the fast and slow cyclotron waves are closely coupled.

The roots of Eqs. 4.32a and 4.32b are

y = — [-1+ ﬁ+u(M/a§)2 , (4.3%a)

B
- 5 _C 272 _ s
7, = JJ_Q,. \/1 N1+ b (MBS = B, (4.33D)
B
y = = \/: 1 +WN1 + 4 (MB23)2 = -9y (4.33c)
BC
- . 3_c 2\2  _ o g
7, = ,_]J_é fl +N1 + L (M/BC) B, (4.334)

where

p
A c
B, = 7 1+N1 + b (M/p2)2

It is noticed that y is a positive real quantity for all possible M's
1
(M varies as Vp»varies) and y is pure imaginary. y = -y and
2 3 1
y = -7 . It is clear that a growing wave is possible in this case.
2

4

The solutions for the fast cyclotron wave a and its slow
1

cyclotron wave a are, respectively,
2

7 2z JB z -y z -8z B2z
= (f el +f e 2 4+f e * +f e 2)e (k.3k)
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and

It is noticed that there are four component waves in each mode; one is
a growing wave, one is a decaying wave and the other two waves are
constant amplitude waves with phase velocities corresponding to 52 t Bc
respectively. The phase constants of these component waves are plotted
in Fig. 4.2 as a function of the pumping parameter M. The amplitude

gain of the growing wave vs. pumping parameter M is shown in Fig. 4.3.

Case II. Coupling between Synchronous Waves.

Let the spacing L - o (i.e., single extended section).

21
6q = 3 = 0

From Egs. 4.28 and 4.29, one obtains

32A dA 3Bz d2A dA
Lo+ 3B —i}e -—2 488,
dz2 €3z dz € dz
-JB 2
= 2M (A - A e ) (Lk.36)
4 2
and.
32A dA -jBz 33 JA JB z
2. —= } e & 2. —% = 2M(A -a e °) . (%.37)
dz2 ¢ 3z dz2 €z 3 1
Thus,
d2a OA
Lyp, — =0, (4.38a)

dz2 €3z
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d2A oA
a 22 - JBC _5—_2 = 0 b}
Z Z

%A JA
a?_s-JBCS—-§ = -2MA4 ’
2 Z
d32A OA

2 3B, —£ = .o
dz2 dz 3

(4.580)

(4.38¢c)

(4.384)

It can be seen that there is no coupling for the fast and slow

cyclotron waves, while there is coupling between the synchronous waves.

The propagation constants are found to be

B,
71 =»J_:2:'\/-l +~/l+(hM/B§)2 ,

<
]

2
B
7. o= = ﬁ+41+<4M/B§)2 .
3 N 2
B
y =-j-£’l+\/l+4M/B§)2=-JB
4 NE 2

B
_J_Es\[“uuuwag)z - -7

(L.39a)

(4.39p)

(4.39¢)

(4.394)

They are of the similar form as in the previous case and thus gain can

be obtained in this case.

Case III. Coupling between Cyclotron and Synchronous Waves.

Let the spacing L be equal to the cyclotron wavelength xc; then,

B = Bc' Equations 4.28 and 4.29 become



324 OA +iB 2 32 OA
[-—l +Jp —* } e © - 3+ 8 —2
c
Jz2 dz dz2 dz
JB z -JB z
=M[Aec+Aec-A
4 4 2
and
d3a QA -jBa 33 OA
R TR
dz2 € dz d.22 € )z
JB .z -JB z
= M [A e ¢ + A e ¢ . A
3 3 1

Equating the corresponding z-dependence

d2A
1

dz2

d32a
4

dz2

d32a
2

dz2

d2A
3

dz2

1. Coupling between fast cyclotron wave and positive kinetic power

synchronous wave.

+ Jb

- JB

JA
1

—

oA

2

¢ dz

OA

3

© 3z

terms, one obtains

MA

2

(k.ko)

(4.41)

(4.42a)

(L4.42p)

(4.hoc)

(L.42d)

The coupling between A and A can be analyzed in the following
1 4

manner. By solving simultaneously Egs. 4.42a and 4.42b, one finds the

roots of y of the characteristic equation (7% + jBC7)2 - M® =0 as
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ml o

(1 -N1-(h/p?)) (%.h3a)

B
y, = - (141 (b))

. : (14.50)
B

y, = -0 (1-N1e(hp2) (4.ksc)
B

y, = 37 (L1 (l?) (4.43a)

There are two possible cases of operation:

a. For M < Bi/h, all four y's are pure imaginary, the amplitudes
of the component waves are constant. Al and A4 are sald to be coupled
passively.

b. For M > ﬁi/h, 71 has a positive real part, which indicates
that fll and f41 are growing waves, therefore, gain can be obtained.

The w-B diagram for both cases are shown in Figs. L.k and L.5.

The phase constant for the component waves as a function of pumping
parameter M is shown in Fig. 4.6. Notice that for M > Bi/h the component
waves fll, flz, have constant B = -BC/E, and have growing and decaying
amplitudes.

2. Coupling between slow cyclotron wave and negative (kinetic power)
synchronous wave. Consider Egs. 4.42c and 4.42d, the propagation

constants are found to be

B
7= 35 (1-41- (hje?)) (. bha)

Bc (1 +JJ,-(4M/B§» , (4.4bp)

Y = J )
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B

v, = §5 (1 -N1e(/p2) (4.bbe)
B

, = 3z (L4 (lfs?) . (k.kha)

Again there are two possibii.cies as in (1), when.hM/Bi > 1 gain

is observed.

4.3.3 Other Pumping Fields.

L.3.3a Twisted Quadrupole Pump Structure. Figure L.7a

shows the geometrical configuration of a twisted quadrupole pump
structure.

The equation of the potential in rectangular coordinate system

is
1 \Y
Vo= -3 £ [(x2 - y?) sin 2Bz - 2xy cos 2Bqz] . (L.45)
2
a
The equations of the polarized field in terms of the coupled
modes are
v Jep z
E+ = - P (a -a)e % |
ko a2 4 2
\Y -joB 2z
E- = - P (a -a)e 4 (4.46)
W a2 3 1
c

The propagation constants for coupling between the fast and

slow cyclotron waves for

B = B coupling between A and A
q ¢ 1 2

are
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b) PERIODIC RING STRUCTURE

X Voo Y Vp
00
t ) _ i}

-~

¢) ELECTROSTATIC SLOT STRUCTURE

FIG. 4.7 GEOMETRICAL CONFIGURATIONS OF (a) TWISTED QUADRUPOLE-
TYPE, (b) PERIODIC RING-TYPE AND (c) PERIODIC SIOT-

TYPE OF QUADRUPOLE PUMP STRUCTURES.
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g
1 TRR + + 2 =
CF \[1 V1 (/B ) y

14 5
2 )= [1+NI+h(MB )2 = £ . (4.47)
y B c 2

For the coupling between synchronous waves A and A , Bq = 0, and
3 4

Roots of the propagation constant y are the same as in the previous
case, indicating the possibility of obtaining gain.

For the coupling between cyclotron and synchronous waves,

7 B
= 2T ()
Y B
3 - -350_(1 FN1+(ha/BY)) - (L.48)
Y
4

It can be seen from this equation that the passive coupling
occurs for 4M/B§ < 1, and the conditional coupling occurs for MM/Bi > 1.
For the coupling between A and AS, the same criterion applies.
2
4.3.3b Periodic Ring Quadrupole Structure. Figure L4.7b

shows the geometrical configuration of a periodic ring-type quadrupole

pump structure.
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The equation of the potential is

V = % 2 (x® 4+ y®) sin qu . (4.49)

The equations of the transverse polarized field in terms of

the coupled modes are

E+ = j—2 (& -2a)sinpz ,
W 82 3 1
c
\')
E- = -3} P (2 -a)sinpz . (4.50)
K a2 4 2 q

The propagation constants for coupling between cyclotron and

synchronous waves are

4 B,
71 = iﬁ\/-l +~/1+1+(N/5§)2 =ty (4.51a)

2

7 is real for all possible N, and

14 B

s . i_e\[1+~/1+u<w/a§>2 -t (4.51b)
7 2 2
4
where
nv
N = E— g,
oy w a?
o C

A and A can be actively coupled, and A and A can also be
1 3 2 4

actively coupled.
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4.3.3¢c Electrostatic Slot Pump Field Structure. Figure

.7c shows the geometrical configuration of an electrostatic slot
pump field structure.

The equation of the potential in the slot region is

00

coth an
VS = VO + Z Kn Vp C—éj't-H—é'n—a sin an ) (u'52)

n=1
where Kn is an amplitude coefficient and Vo is the potential in the
absence of the pump field. Consider only the fundamental component
of the potential
coth B x

V =V +V —% sinpz . (4.53)
5 P coth Bqa 4

The equation of the transverse polarized field is

B V. Bx Pz -z
= 3P a aq _ q
E- 7 Cotn B2 (e © ) (-54)

The propagation constants for coupling between A and A , A

1 3" 1
and A are
2
71 B
_ e[ o\ 2

. =t 1 +41 + 4 (W/BC) , (k.55a)

7 ) Be J BN

) = \ﬁ+ T IE (1.55D)
where 5

Bnve
— c' pg

bw u cosh B a
co q

In this case gain is possible.
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4.3.4 Gain Computation of the D-c Pumped Amplifiers. To

compute the gain, one needs only to consider the exponential amplifying

and decaying component of the wave. One may write

A(z) =B el +B e r (L4.56)

where Bij are the amplitudes to be evaluated from the boundary conditions

and
= ES\/‘l V1 4(.M/2)2
71 - 2 + + BC
~ M 2y2
= 5 for A(M/BC) <1
Now

and from the original differential equations,

21 11 22 12

Solve Bij in terms of A (O) and A2<O) and substituting into Eq. 4.56
1

A (z) = A (0) cosh LN jA (0) sinh M, ,
1 1 P. 2 B.
A(z) = -4 (0) sinh Mossa (0) cosh M. (L.57)
2 1 Peo 2 B.

The gain for the fast cyclotron wave is

A (z) y Wy
G = o7t cosh 5= cosh —=—s 2z . (Lk.58)

1 ¢ o cC
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For 2n sections, at the output

— 2nt  _ 2nx n
= — = s = — I}
Py 28, B,
nV_nx
G, = cosh b , (4.59)
w2 g2
c
or the gain in db is
nV_nx
Gpgp = 20 log cosh — (4.60)
W, &

The gain for other types of quadrupole structures and coupled
modes are computed and tabulated in Table 4.1. For the purpose of
comparison, two sets of plots are presented in Figs. 4.8 - 4.10. 1In
Fig. 4.8, the fast cyclotron to slow cyclotron wave coupled modes for
different pump structures are compared. Here, the gains in db are
plotted against the pump voltage for a constant set of parameters Vo’
BC a and n. It is obvious that the twisted quadrupole structure offers
the highest gain for the same pump voltage. In Fig. 4.9, the synchronous-
to-synchronous wave coupled modes are compared in a similar way. Here
the staggered quadrupole shows advantages compared to the twisted
quadrupole. In Fig. 4.10 cyclotron-to-synchronous coupled modes are
compared. Here, an interesting case can be pointed out. For example,
in the case of using staggered quadrupole structure, (see Eq. 4.43),
the coupling becomes active only when condition MNVBi > 1 is satisfied.

Under this condition, the gain is found to be

= 272
a(db) = 20 log  coshnx J(zvp/voa Bc,)' 1. (4.61)
The comparisons with other structures for similar sets of constants

are obvious.
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Table 4.1

Gain Equations for Various Types of Beam Interaction and Different

Types of Pump Fields

Type of Propagation Constant|Type of Gain Remark
Pump Field|for the Periodic Mode Copying (db)
Structure
= (2n/x
By = (2n/x)
B, = 2B, Cyclotron- 20 log 1)
4 Cyclotron cosh
V_nx
n D
2 .2
Staggered wc a
Quadrupole | 5 _ g Synchronous- 20 log |High gain
4 Synchronous cosh for synchronous-
2nv_L synchronous
P amplifier
afw u
co
B = Bc Cyclotron- 20 log(z)High gain
4 Cyclotron cosh for cyclotron-
2nV_nx  [cyclotron
P amplifier
2 .2
Twisted @ &
Quadrupole B =0 Synchronous- 20 log
4 Synchronous cosh
V_L
L p
a0 u
c o
B =8 Cyclotron- 20 logﬁa) High gain
a c
. Synchronous cosh for cyclotron-
Ring
2nV_nx synchronous
Structure p . s
amplifier.
w?a® Single field
structure

1. Gordon, E. I., "A Transverse Field Traveling Wave Tube", International
Congress on Microwave Tubes, pp. 389-390; 1960.

2. Mao, S. and Siegman, A. E., "Cyclotron Wave Amplification Using
Simultaneous R.F.-Coupling and D.C.-Pumping", International Congress
on Microwave Tubes, p. 268; 1962.

3. Bass, J. C., "Microwave Amplification in Electrostatic Ring Structures”,
Proc. I.R.E., vol. 49, p. 142L; 1961.
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Table 4.1 (contd)

Type of Propagation Constant|Type of Gain Remark
Pump Field |for the Periodic Mode Copying (db)
Structure
= (2rn/x
B = (2n/x)
B, = B, Cyclotron- | 20 log*) |Simple field
4 Synchronous cosh Structure
nﬂvp
3lot 5VOcoshBCa
Structure | g _ 28, Cyclotron- | 20 log
4 Cyclotron cosh
v
L D
Evocosh(ésca)

It is noticed that the plot of Eq. 4.61 brings out two important
points. First, for a pump voltage below 50 volts (for the set of other
parameters chosen), no gain is possible. Beyond this point, the gain
ri<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>