;“ Genetic Programming and Evolvable Machines, 2, 165-191, 2001
‘~ © 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

What Makes a Problem GP-Hard?
Analysis of a Tunably Difficult Problem in
Genetic Programming

JASON M. DAIDA, ROBERT R. BERTRAM, STEPHEN A. STANHOPE,
JONATHAN C. KHOO, SHAHBAZ A. CHAUDHARY, AND OMER A. CHAUDHRI

The University of Michigan, Artificial Intelligence Laboratory and Space Physics Research Laboratory,
2455 Hayward Avenue, Ann Arbor, MI 48109-2143 USA

JOHN A. POLITO, I1
Consilient, Inc., 1815 4th Street, Suite B, Berkeley, CA 94710 USA

Received August 2, 2000; Revised January 30, 2001

Abstract. This paper addresses the issue of what makes a problem genetic programming (GP)-hard
by considering the binomial-3 problem. In the process, we discuss the efficacy of the metaphor of an
adaptive fitness landscape to explain what is GP-hard. We indicate that, at least for this problem, the
metaphor is misleading.

Keywords: problem difficulty, test problems, fitness landscapes, GP theory

1. Introduction

What makes a problem GP-hard? Unlike other areas in evolutionary computation,
genetic programming (GP) has but a nascent body of theoretical work that has
addressed this subject. Guidance for understanding what makes a problem difficult
for GP has come from work and ideas in areas like genetic algorithms (GA). For
example, one could take a cue from previous works in GA and posit that what
makes for a GP-hard problem is what makes for a GA-hard problem—a rugged
fitness landscape (a deceptive fitness landscape, a flat fitness landscape, etc.). As
of this writing, however, GP theory has furnished only a few principles to guide
practitioners about whether a problem is difficult (or easy). The ability to score the
difficulty of a problem in advance of actually trying to solve it with GP has proven
troublesome, if only because investigators have yet to identify all of the essential
ingredients in creating a difficult problem for GP.

In place of theory, then, conventional wisdom in GP has suggested that what
makes a problem difficult in GP is a problem’s domain. For that reason, many
empirical papers that address GP theory feature several different problems from
several different domains. In recent years, researchers have moved toward an infor-
mal consensus in adopting several of these problem domains as being suitable for
investigations in theory.

166 DAIDA ET AL.

We have found in our investigations that perhaps for GP, neither prevailing
notions of fitness landscapes nor intrinsic properties of a problem’s domain have
sufficient explanatory power to account for what makes a problem GP-hard. To
accomplish this, we have investigated a tunably difficult problem that features the
following: a statistically invariant combinatorial search space, a fixed fitness func-
tion, a fixed set of GP operators, a fixed function set, and a fixed terminal set.

1.1. Previous work

There are but a few theoretical works that address problem difficulty in GP at
all. The first work to do so appeared in Koza [1], Chapter 8. In this work, Koza
provided a semi-empirical formula that estimated the number of trials needed to
solve a problem with a specified success probability. O’Reilly [2] attempted to extend
fitness landscape analysis in GA research (i.e., [3, 4, 5]) to GP. Langdon and Poli [6]
provided an alternative by proposing to sample a solution space (either exhaustively
or using Monte Carlo methods) and applying this technique to a particular problem
(i.e., artificial ant on the Santa Fe trail [1, 7].

A closely related issue involves GP test problems that are tunably difficult. As of
this writing, the GP community has not had a well-recognized suite of test problems
(along the lines of the De Jong [8] or Ackley [9] test suites in GA research). There
have been several promising candidates, however, Koza [1] provided the first set
of tunably difficult problems that have included the Boolean multiplexers and the
Boolean parity functions (i.e., both even and odd parity). In his second book, Koza
[10] included polynomials (a sextic and a quintic), Boolean symmetry (5- and 6-
symmetry), Fourier sine series (3- and 4-terms), the lawnmower problem and the
bumble-bee problem. Punch et al. [11] introduced a tunably difficult royal tree
problem, which they have designed along the lines of the royal road problem [12]
in GA. Gathercole and Ross [13] have proposed the MAX test suite, which they
have developed along the lines of the ones—max problem [9] in GA research. Foster
and his colleagues have offered the Maximum Clique problem for GP [14]. O’Reilly
[15] developed another tunable problem along the lines of the GA Royal Road
function. O’Reilly and Goldberg [16, 17] have also developed two other problems
called ORDER and MAJORITY that have also been patterned after the ones-max
problem.

For the most part, however, researchers have turned to examples from Koza’s
books [1, 10] in place of a recognized suite of test problems. Typical suites have
included multiplexer, lawnmower, symbolic regression, and artificial ant (in [18];
Boolean parity, symbolic regression, artificial ant (in [19]); Boolean parity, sunspot,
and intertwined spiral (in [20]). General domain themes have been to include a
problem from each of the following categories; Boolean, symbolic regression, and
finite-state machine.

WHAT MAKES A PROBLEM GP-HARD? 167

1.2. About this paper

This paper describes the binomial-3 problem and presents its statistical portrait as
the problem is tuned from relatively easy to relatively difficult. We show that under
certain conditions, the problem scales logarithmically in difficulty, where difficulty is
measured in terms of the hit-score metric. We present our analysis of this problem
and describe the process by which this problem can be tuned. In doing so, the
analysis challenges current views about what makes a problem difficult.

The conventional view for thinking about what makes any problem difficult for
any EC method has been the metaphor of an adaptive landscape in evolutionary
biology. The adaptive landscape, as posed in Wright [21], has suggested to EC practi-
tioners an optimization of fitness in a multi-dimensional, multi-modal search space.
A common idea in EC research has been that the adaptive landscape is primar-
ily an external consideration, an environment, and that EC individuals “walk” on
this landscape. This interpretation of the metaphor of an adaptive landscape is not
without precedent in evolutionary biology. After all, Wright’s illustration of adap-
tive landscapes looked like topographic maps (which Simpson commented upon in
his seminal work [22, 49]). Noted neo-Darwinist Dobzhansky took Wright’s figure
of speech one step further and mapped Wright’s abstraction of “hills” and “valleys”
to real mountains and valleys (i.e., the San Bernadino Mountains, CA, USA) [23; 24,
p- 294]. In essence, one can tell merely by looking at an environment how difficult
that environment will be for adaptation—a task similar to assessing the Antarctic
or the Amazonia for suitability of life. Likewise under the conventional view, one
can tell how difficult a problem would be for GP by inspection. Perhaps, one could
even rate GP problems in a way that is reminiscent of how rock climbers rate the
difficulty of their climbs—with a single metric, regardless of who is doing the actual
climb.

In his thesis, Jones [5, p. 46] correctly noted that this common idea of adap-
tive landscapes is fraught with pitfalls for EC. Instead, Jones proposed a one-
operator/one-landscape view of fitness for GA. In this view, landscapes are directed
graphs, the configuration and the traversal of which are determined by a particular
operator (e.g., mutation). In a sense, Jones’ proposal for a rigorous definition of a
fitness landscape is that of constrained externality. In particular, problem difficulty
is still primarily an external phenomenon. Problem difficulty is also a constrained
phenomenon as well, since the determination of which topological environment a
GA individual must traverse is determined by a GAs operators. By framing the
fitness landscape as such, Jones and Forrest [25] were able to propose a metric
of problem difficulty that was largely independent of a GA. Although there exist
counterexamples to Jones and Forrest’s metric [26], for the most they successfully
provided a rule-of-thumb measure that predicts a priori problem difficulty, at least
for GA.

However, GA behaviors are not necessarily precursors to ones that occur under
GP (see [27]). Despite Jones and Forrest’s measure, single metrics that describe the
potential difficulty of a problem under GP has proven elusive to find. Instead, con-
ventional wisdom in the field of genetic and evolutionary computation has asserted
that epistasis is responsible for the difficulties that one encounters. For that reason,

168 DAIDA ET AL.

it is a worthwhile to digress momentarily to consider epistasis and the role that it
may play in determining problem difficulty.

Like many concepts in the field of genetic and evolutionary computation,
epistasis—or “gene interaction”—is a term that has been borrowed from genet-
ics. Unfortunately, like many of these borrowed terms, the borrowing has been
imprecise and loose. (See [28]) for a discussion on how borrowed terms can over-
constrain theoretical development in genetic programming.) Many practitioners in
GP have come to think of epistasis as meaning one thing without ever realizing
that they are evoking disparate meanings of the term.

Wade [29] describes that in genetics, epistasis has two distinct definitions. In
molecular and biochemical genetics, epistasis involves a biochemical pathway, i.e.,
one gene is considered “epistatic” to another if the function of its product is condi-
tional to another gene that operates on the same biochemical pathway. In statistical
and quantitative genetics, epistasis is a population concept that describes a non-
linear relationship between phenotypic variations and their underlying genotypes.
Epistasis accounts for the phenotypic variation among individuals that cannot be
accounted for by an additive treatment of single loci.

The two definitions are not interchangeable. Biochemical epistasis can occur with-
out ever resulting in population epistasis. Population epistasis requires genetic vari-
ation; biochemical epistasis does not. Population epistasis cannot occur between
genetically identical individuals; biochemical epistasis can, regardless of whether
individuals are genetically identical. Population epistasis is intimately associated with
the fitness landscapes through Wright [21]; biochemical epistasis is not beholden to
any notion of landscape. Population epistasis has direct implications for individu-
als to evolve in a changing environment; in biochemical epistasis, the role of an
external environment is moot.

Not surprisingly, some of the earliest work in genetic and evolutionary compu-
tation defer to Wright’s usage of epistasis. For example, even though Fraser [30]
never really uses the term epistasis, he clearly employs it in the population sense
of the word (i.e., as inter-locus interactions). Likewise Holland (1975), also uses the
term in the population sense. To some degree, Jones and Forrest [25] do as well.
Later works in GA, as in [31, 32] also presuppose this view. In GA, a bit string that
is devoid of any environmental context is not meaningful—there is no sense that
bits would interact with other bits until a fitness function is defined.

On the other hand, in GP, an individual that is devoid of any environmental
context can still be evaluated. One can execute (though not score) a GP individual
without any knowledge of its fitness function. In many instances, one can even antic-
ipate node-to-node interactions, again without any knowledge of that individual’s
fitness function. For that reason, researchers in GP have correctly used the term
epistasis to describe these node-to-node interactions. However, and this is key, the
use of epistasis is in the biochemical sense of the term, which is in conflict with prior
usage of epistasis in the field of genetic and evolutionary computation.

In this paper, we show that problem difficulty can largely be driven by factors
that have usually been considered internal to an EC algorithm. In the binomial-3
problem, the “outside” is not the necessary component that determines problem

WHAT MAKES A PROBLEM GP-HARD? 169

difficulty. A fitness function does not need to correspond to a “rugged” environ-
ment for a GP to encounter difficulty. Instead, the source of difficulty stems from
“internal” conflicts involving content, context, and the emergent strategies that arise
to quell them. It is in the process of solving the problem and not the problem itself
that difficulty ensues. Perhaps difficulty for GP, then, is not so much pictured as a
photograph from Ansel Adam’s series “Sierra Nevada: The John Muir Trail” [33]—
a portfolio of the soaring peaks and the deep valleys of the Sierra Nevada. Perhaps
at least for some cases in GP, a more appropriate picture of difficulty would be
Edvard Munch’s painting “The Scream”—an oil depicting an internally tortured
soul on what would otherwise be a fairly mundane landscape. In other words, we
would claim that the metaphor of population epistasis, as has been traditionally
used in the genetic and evolutionary computation community, is not the appropri-
ate framing to understand problem difficulty in GP. We would, however, reinforce
the use of the metaphor of biochemical epistasis, and claim that node-node inter-
actions play a significant role in determining problem difficulty that is distinct and
separate from that of a fitness landscape.

2. Experiment description

This section describes our experiment and includes a description of the binomial-3
problem.

2.1. Binomial-3 problem description

The binomial-3 problem is an instance taken from symbolic regression and involves
solving for the function f(x) = 1+ 3x + 3x? + x>. The term “binomial” refers to
the sequence of coefficients in this polynomial; the “3” refers to the order of this
polynomial.

We define the binomial-3 problem as follows. Fitness cases are 50 equidistant
points generated from the equation f(x) = 1+ 3x + 3x%> + x* over the interval
[—1,0). Raw fitness score is the sum of absolute error. A hit is defined as being
within 0.01 in ordinate of a fitness case for a total of 50 hits. The stop criterion
is when an individual in a population first scores 50 hits. Adjusted fitness is the
reciprocal of the quantity one plus raw fitness score.

A function set is a subset of {+, —, x, =}, which corresponds to the arithmetic
operators of addition, subtraction, multiplication, and protected division. We define
protected division as the operator that returns one if the denominator is exactly
zero. Typical function sets include {+, —, x, <}, which we presume for this paper.
Other sets may include other permutations such as {4, x} or {—, x}.

A terminal set is a subset of {X, R}, where X is the symbolic variable and R
is the set of ephemeral random constants (ERCs). We presume that the ERCs
are uniformly distributed over a specified interval of the form [—aR, ag], where ag
is a real number that specifies the range for ERCs. We require that each ERC is
generated but once at population initialization and is not changed in value during the

170 DAIDA ET AL.

course of a GP run. Typical terminal sets include either {X} (a binomial-3 problem
without ERCs) or {X, R} (a binomial-3 problem with ERCs). For example, a small
population of two individuals consisting of two terminals apiece could have as a
terminal set {X, —0.1, 0.3,0.8}. It would not be unusual to have a terminal set
consisting of X and several thousand terminal constants for a population size in the
range of several hundred individuals.

Tuning is achieved by varying the value associated with ag. We defer until
Section 4 the discussion of how ag affects problem difficulty without changing the
combinatorial search space.

2.2. Binomial-3 problem background

The binomial-3 problem shares many properties that are common to other prob-
lems in GP. It requires symbol manipulation. It allows for nocs (i.e., non-coding
segments, also known as introns or unexpressed code). It affords GP to choose
from multiple approaches to solve for the same problem. Of these properties, the
latter two warrant further explanation.

The problem allows for several types of nocs, some of which involve the 3-tuple
structure (—X, X). Multiplication of this structure to any other results in a value
of zero. Division by this structure to any other results in a value of 1. We note that
other types can be derived or are similar to these basic two.

The problem affords GP to choose from multiple approaches. For example, equiv-
alent solutions include (1 + x)?, (1 4+ x)(1 4 2x +x?), (x — —1)* and (x + 1) = (1 =
(14 (x+0.5) 4+ (x = (1 +x))). In addition to these equivalent approaches, there
exists a number of approximate approaches (e.g., rational polynomials that fit all
50 points, but not necessarily anywhere else). There are several ways to generate
numerical coefficients as well. For example, the coefficient 2 can be generated by
using an ERC that (approximately) equals this value. It can be generated with the
value 0.5 and taking the reciprocal of that value. It can also be generated through
distribution, e.g., (x + x). We surmise that the total number of ways to solve the
binomial-3 problem to be on the order of a few thousand (i.e. see [34]).

The choice of coefficients, form, and order of the target function f(x) for the
binomial-3 problem was purposeful and deliberate. The use of f(x) = (1 + x)3 has
allowed for an extended mathematical treatment [34].

The binomial-3 problem does not share an antecedent with a related test problem
in GA research, but its domain has an extended history in GP. One of the earli-
est, intuitive applications of GP has involved data modeling under the moniker of
symbolic regression. In [1], symbolic regression has been synonymous with function
identification, which involves finding a mathematical model that fits a given data
set. Closely linked problems have included sequence induction, Boolean concept
learning, empirical discovery, and forecasting. Typically, practitioners use GP and
symbolic regression in several ways: as a benchmark problem to test GP systems,
as a software demonstration or tutorial, and as a means of generating mathemati-
cal models for real-world domains. The latter area includes applications in control
systems, bioengineering, biochemistry, image compression, and finance.

WHAT MAKES A PROBLEM GP-HARD? 171

In spite of these works, we recognize that from a purely practical standpoint, there
exist modifications to standard GP that may be better suited for data modeling.
This seems to have been particularly true in the generation of parameter constants,
which standard GP does awkwardly with ERCs. Recent developments in GP indicate
methods that appear to generate constants with greater efficacy than as with using
ERCs (e.g., [35, 36, 37)).

Our interest in using ERCs stems from their worth in illustrating fundamental
processes in GP dynamics. ERC values can serve as tracers that allow tracking of
individual nodes, if each ERC value is unique and generated just once. ERCs can
also be used to address building block issues, as we have done in [34].

2.3. Experiment procedure

We used a patched version of lilgp [38] to generate our data. Most of the modifi-
cations were done for bug fixes, as well as to add other features for use in other
experiments (e.g., strong typing and population initialization). The patches came
from three sources: Luke, Andersen, and Daida. Luke’s patches consist of mem-
ory leak fixes, multi-threading bug fixes. His enhancements also include provisions
for strong-typing (which we did not use) and population initialization. Andersen’s
fixes included patches to Luke’s population initialization routine, so that popula-
tion initialization could include integer-valued ERCs. Our patches include modi-
fications to the population initialization routine, so that population initialization
could include real-valued ERCs. We also replaced the random number generator
(RNG) in lilgp (Knuth subtractive RNG) with the Mersenne Twister [39, 40]. The
Mersenne Twister has excellent mathematical properties that make this RNG a
reasonable candidate for theoretical work in GP. (See [41-43] for issues concerning
RNGs.) We configured lilgp to run as a single thread, to mitigate against possible
artifacts introduced by parallelizing an RNG. We note that lilgp supports the use of
ERCs and that ERCs in lilgp are generated once at population initialization. For all
practical purposes, all ERC values generated at population initialization are unique,
with every ERC value having just one instance in an initial population.

Most of the GP parameters were identical to those mentioned in [1, chapter 7]:
population size = 500; crossover rate = 0.9; replication rate = 0.1; population ini-
tialization with ramped half-and-half; initialization depth of 26 levels; and fitness-
proportionate selection. Other parameter values were maximum generations = 200
and maximum tree depth = 26 (Note: these last two parameters differ from those
presented in [1], which specified a maximum number of generations = 51 and a
maximum depth = 17. Part of the reason we extended these parameters was to
delay possible effects that occur when GP processes individuals at these limits.)

The main experiment involved varying the tuning parameter ag. We used seven
values of ag : 0.1, 1, 2, 3, 10, 100, 1000. We also ran one control with no ERCs. Eight
data sets were collected in all: Control (No ERCs), Tenth (ERC: [—0.1, 0.1]), Unity
(ERC: [—1, 1]), Two (ERC: [-2, 2]), Three (ERC: [-3, 3]), Ten (ERC: [—-10, 10]),
Hundred (ERC: [—100, 100]), and Thousand (ERC: [—1000, 1000]). Each data set
consisted of 600 trials for a total of 4,800 runs for the main part.

172 DAIDA ET AL.

We did another, albeit limited, experiment that involved fixing the tuning param-
eter ag, but varying the population size. In this experiment, we collected two data
sets with ag = 1, but with population sizes of 50 and 5000, respectively. All other
parameters were set as in the main experiment. Each data set consisted of 600 trials
for a total of 1200 runs for the main part.

We note that the total amount of computation represented by both experiments
is specified as 1,086,000,000 GP individual evaluations, which is equivalent to about
21,720 trials of typical size in the GP community (e.g., 50 generations, population
size 1,000). This figure approaches the amount of computation indicated in [18]. All
trials were run on Sun Ultra workstations.

3. Results

Table 1 summarizes the best-of-trial results of the experiment. The best possible
score is 600. Throughout the course of this paper, we used perfect, upper decile,
and upper quartile hit-score measures of problem difficulty.

The inclusion of ERCs as a whole increased problem difficulty. Without ERCs,
the binomial-3 was an easy problem to solve, with five out of six trials resulting in
a perfect score. We note that for the most part, the general trend is that if ag > 1
and ap increasing, the problem becomes increasingly more difficult to solve. (That
trend does not hold for 0 < ag < 1). Figure 1 plots the results for ag > 1 in Table 1,
with hit scores normalized to 100%. The regression coefficient is —0.997.

Table 1 and Figure 1 represent just three slices of the best-of-trial distribution
associated with each data set. Subsequently, Figure 2 shows the full distribution of
hit scores per data set. The distributions are generally unimodal.

Figure 3 summarizes the results from the following data sets: Control, Tenth,
Unity, Two, Three, Ten, Hundred, and Thousand. Each plot shows 600 points, with
each point corresponding to a best-of-trial individual. Rows are arranged by data set.

In creating the plots for the second and third columns, we added a small amount
of uniform random noise to both (x, y) coordinates of each point. We did this for

Table 1. The total number of trials (out of 600 trials) that
scored perfectly in the upper decile and in the upper quartile

ag Perfect 1 Decile 1 Quartile
None 502 515 546
0.1 14 42 130
1 219 329 463
2 144 285 433
3 105 239 390
10 57 145 312
100 9 32 104

1,000 3 4 5

WHAT MAKES A PROBLEM GP-HARD?

Figure 1.

100

s
o

Number of Trials (%)

0.1

best score

[lJHI‘Il

1 JIIIIII

_| logy=-0.36log a; + 1.56

-%-- Upper Quartile

-4~ Upper Decile
71—+ Perfect
—“[T YIIIHW T Il\HH[T WII!HI‘
2 46 46 46
1 10 100 1000
ERC Range

173

Tuning of hit score vs ag. This log—log plot shows the relationship between the tuning param-
eter ap and the hit score. The problem becomes progressively more difficult as ay increases.

visualization only. The quantities corresponding to node count, depth, and gener-
ation are integer values—because of this, a single dot could correspond to many
data points. The noise was added to displace points visually away from each other.
That technique was not repeated for the first column, if only because adjusted fit-
ness is a real-, not integer-valued quantity.

Number of Trials

Number of Trials

107 —
(a) Control , | (b) Tenth
10" —
BT -
0 10 20 30 40 50 0 10 20 30 40 50
10° —
(e) Three (f) Ten
102
10" -
10°

T 1T 1
0 10 20 30 40 50

Hits

0 10 20 30 40 50
Hits

(c) Unity

LN
0 10 20 30 40 50

(9) Hundred

0 10 20 30 40 50

Hits

10

10

10

10

(d) Two

L
LN

0 10 20 30 40 50

(h) Thousand

wm L
T 17177177

0 10 20 30 40 50
Hits

Figure 2. Distribution of hit scores vs ag. Since the distributions are unimodal, the abbreviated sum-
maries presented in Table 1 and Figure 1 are indicative of their corresponding distributions.

174 DAIDA ET AL.

«
Q
(a) Control E
0 5 1015 20 25
2"] / o
; L
b h 8 L .!gi
(b) Tent E 5 N
24.: A
0 5 10 15 20 25
210_ / "'i"
0 . / bt
. S 28 . ‘
(c) Unity B
=2 25-:
2 ;I_“I—F‘T‘I“‘F' .
0 5 10 15 20 25
10 /
“ L i‘i
4} 8] / AT
(d) Two 3 2 i‘i,
2 0 e
2" —_]_'__]_'_f_r‘ S
0 5 10 15 20 25
Z'IO _ // " '.-'
8 1/ i
° — i k
(e) Three 2 :
8
o
(f) Ten k)
0 5 10 15 20 25
’ il
(9) Hundred 5
2
o
[}
(h) Thous. §

0.0 05 10 0 5 10 15 20 25
Adjusted Fitness Generation Depth

Figure 3. Best-of-trial results. Definite patterns in individual size and shape are correlated to ag. Each
row summarizes a data set, where each data set consisted of 600 trials. This figure shows the effect of
increasing ag on the size and shape of best-of-trial individuals.

WHAT MAKES A PROBLEM GP-HARD? 175

The first column of Figure 3 shows the effect of ERC range concerning node
count versus adjusted fitness. From Unity to Thousand data sets, the cluster of
points appears to progress from right to left (higher to lower fitness). The results
from the Tenth data set appear similar to the results from the Hundred data set. The
vertical line of data points in Control corresponds to those best-of-trial individuals
that had perfect adjusted fitness scores.

The second column of Figure 3 shows the effect of ERC range concerning node
count versus the generation in which the best-of-trial individual was identified. Note
that the individuals that occur near generation zero are generally concise and have
likely required less computational effort to generate than those solutions near gen-
eration 200. From Unity to Hundred, the cluster of points appears to progress
toward the right. That overall pattern breaks down for Thousand. The pattern for
Tenth is similar to that for Hundred.

The third column of Figure 3 shows the effect of ERC range concerning node
count versus the depth of the best-of-trial individuals. The lines indicate the upper
and lower bounds for the numbers of nodes that can be present in a tree for a
certain depth. From Unity to Hundred, the cluster of points appears to progress
toward the right. That overall pattern breaks down for Thousand, which appears
more like Control. The pattern for Tenth is similar to that for Hundred.

Figure 4 summarizes the results from the experiment that involved fixing the
tuning parameter ag, but changing the parameter for population size. One could
consider the limited experiment as population variations on Unity. Each plot shows
600 points, with each point corresponding to a best-of-trial individual. Rows are
arranged by population size. The layout and method of visualization for this data is
similar to that of Figure 3.

210] 210 N

2] 28]

(a) Pop 50 8 N K E
2t 2!

0. 100 200 0 5 1015 20 25

210] 210]

28] 28]

(a) Pop 5000 4 i
2° 2°

2 N 2]

0.0 0.5 1.0

Adjusted Fitness

100 200
Generation

0 5 101520 25

Depth

Figure 4. Effect of population. Although there are variations in pattern, the attractors that are asso-
ciated with ag = 1 do not change in position. Each row summarizes a data set, where each data set
consisted of 600 trials. This figure shows the effect of increasing population size (ag = 1) on the size
and shape of best-of-trial individuals.

176 DAIDA ET AL.

4. Discussion
4.1. Tuning

The experiment demonstrates clearly that the problem difficulty can be tuned by
means of varying ar. As shown in Table 1 and Figure 1, the hit scores for perfect,
upper decile, and upper quartile were monotonically decreasing for increasing ag
for ag > 1. The hit scores for perfect are well described with a log-log regression
fit. That the findings are representative of the data as a whole is supported by
the distributions of Figure 2, which indicated that perfect, upper decile, and upper
quartile are representative for the binomial-3 problem.

The crux of this paper addresses why the binomial-3 problem is tunable in this way.
A reasonable notion associated with increasing ag is that GP needs to sort through
an increasing number of ERCs. Consequently, the problem becomes more difficult
because there are that many more ERCs from which to choose. We show otherwise
by examining our claim that the combinatorial search space remains statistically
invariant even though ag varies.

As it turns out, the specification of ERCs as we have alluded to for the binomial-3
problem suggests the following (typical) implementation. Let there be two terminal
types X and r, where X is a symbolic variable and r a terminal of type ERC. From
the perspective of the user, this is what is typically specified, as opposed to X and the
N different terminals of constants that have a unique value. The terminal r serves
as a token, a placeholder. Instead of managing N different terminals, GP manages
one terminal type, r, which references a list of ERC values by means of an index
set (e.g., a hash table). In essence, GP operates on X and a set of tokens whose
values are determined elsewhere. Consequently, by changing ag, what is changed is
not the number of tokens, but the table of lookup values that are assigned to those
tokens. Figure 5 shows an example of this in a hypothetical population. The grayed
circles represent tokens. The accompanying table shows ERC values that occur
for two different ranges of ag. (Note: in actuality, two different random number

-0.537 -53.7
0213 213
0028 28
0783 783
0524 524
-0.087 -8
-0.963 -96.3
0.642 642
-0.110 -11.0

W W N A W N =

26 0.476 476

Figure 5. Illustration of statistical invariance in combinatorial search space. Although the values change,
the number of ERC tokens do not in this hypothetical population. ERC tokens are denoted in gray. ERC
values are shown in the accompanying table.

WHAT MAKES A PROBLEM GP-HARD? 177

seeds were chosen for each ERC range to generate two independent samples.) The
combinatorial search space remains statistically invariant even though ag varies.
(For example, the number of ERCs allocated for a population of 500 individuals,
regardless of ag, was roughly 4,500 & 400.) In other words, the total number of
structural permutations that are possible does not change (although the transition
matrix from one set of possible structures to another may change).

4.2, Internal conflict: content and context

If the combinatorial search space remains statistically invariant, and if fitness func-
tion, function set, and specifications for crossover and replication remain constant,
what causes the problem to vary in difficulty?

In posing a problem like the binomial-3, we have shifted away from linking prob-
lem difficulty with problem scalability. Examples of scalable genre include parity
and multiplexer problems (which increase in difficulty with increases to the num-
ber of inputs). Instead, we have linked problem difficulty with terminal selection,
in which the task is to choose the most appropriate set of terminals out of a large
set to solve for the problem. Genres like these also have practical implications for
real-world applications.

Without knowing the results presented in Section 3, one could reasonably hold the
expectation that the binomial-3 problem would actually get easier as ar increases.
Intuitively, this would make sense. It is easier to visualize how the value 1 makes
more sense in solving for (x + 1)* than the value 1,000. Clearly, the “obviously
wrong” values would be selected against. For example, [1] describes the Biathlon,
in which GP addresses two completely unrelated problems in the course of a single
run. In each version of the Biathlon, the problem changed from symbolic regression
to artificial ant. Only a single function set and a single terminal set was provided.
What was claimed was that GP was able to solve for each problem, in spite of a
large number of irrelevant functions and terminals.

By positing the hypothesis that the binomial-3 problem would actually get easier
as ag increases, one is arguing that content matters in what makes a problem GP-
hard. While for many GP practitioners this makes reasonable sense, in the larger
scope of EC theoretical research on fitness landscapes, the linkage is not obvious.
Terminal content is a matter that arguably goes beyond the operator and directed
graph formalism of fitness landscapes. Furthermore, it would also mean that one
intrinsically binds the concept of fitness landscapes to not just the fitness function
and parse-tree representation, but to the components used to solve for the fitness
function. In other words, one could recreate a fitness landscape, albeit one specific
to GP, by either an exhaustive or Monte Carlo sampling of random parse tree
programs created from program components.

We would agree that content matters. However, we would also argue that content
alone does not determine problem difficulty. After all, the binomial-3 problem became
harder as ap increased. We posit that context also matters and that context is an
emergent by-product of GP processing.

178 DAIDA ET AL.

To a GP system working with X and N random tokens r, at the outset, all values
corresponding to r are equally valid. It is only after a few iterations of GP that any
values of r gain any meaning (worth) towards solving the problem. Anything that
confounds moving toward a common meaning for a value of r hinders selection,
since the worth ascribed is inconsistent. What drives inconsistency is the context of
an ERC value in a parse tree. Figure 6 illustrates two common inconsistencies that
can arise.

Figure 6(a) shows the inconsistencies that arise when the context of an ERC
value switches from a noc to a functional expression. In this example, there are
two ERC tokens r; and r,, where r, is not expressed in Parent 1 and r; exists
as a part of Parent 2. In this hypothetical example, r; can occur in the next gen-
eration as part of either of two possible children. The possible tree fragments are
functionally equivalent to (x 4+ r;) or (x + 1). We assume that (x + 1) is a desired
fragment towards the solution of the problem. In either possible child, the meaning
of r; is conflicted: in one instance r; means nothing and in the other instance r,

Parent 1 Fragment Parent 2 Fragment Parent 1 Fragment Parent 2 Fragment
7

% S
(x+1) 7

(x+ 1+ (ra+rb)/r) s

g 7

+

x

Child A Fragment , '

(x+1+(ra+rl)/r[) il |

Child B Fragment 4 Child B Fragment 4
(x+1) V4 (X+l+(ra+rb)/rl) e

ONONBIONO 6(MO

Figure 6. Illustration of two different kinds of context shifts. The context of ERC helps to determine
its functional meaning: (a) for nocs; (b) for division.

WHAT MAKES A PROBLEM GP-HARD? 179

appears in the expression of the tree fragment. We note that the magnitude of
this conflict increases as r; increases. The probability of this occurring increases
as the range increases. For example, a value taken from the range [—1, 1], say 0.9,
appears alternately as (x + 1) or (x + 0.9). In contrast, a value taken from the range
[—1000, 1000], say 999.9, appears alternately as (x + 1) or (x 4+ 999.9).

Nocs probably represent the most dramatic way an ERC value can result in incon-
sistencies. However, there are other ways that produce such conflicts (e.g., as shown
in Figure 6b). As in the hypothetical example depicted in Figure 6(a), the meaning
of r; is conflicted: in one instance, r; appears in the numerator and in the other
instance, r; appears in the denominator. We note that as in the previous example,
the magnitude of possible conflict can increase as either »; > 1 and r; increases or
|ri] < 1 and r; decreases. We further note that Figures 6(a) and (b) represent just
two of several avenues in which inconsistencies can arise in trying to ascribe worth
to an ERC token.

We point out that context-driven inconsistency is not an either/or proposition. As
a GP run progresses, it is not uncommon for “relatives” to exchange subtrees, which
results in multiple instances of single token. We have shown in [34] that what starts
out as a single instance of a particular token value at generation 0 can result at the
end of a GP run, 10°-~10* instances of that same value. Not surprisingly, then, the
same ERC value can simultaneously exist on both sides of an inconsistency.

Taken in a different perspective, context-dependency is a consequence that can
occur as a result of crossover. Large swings in meaning can significantly affect
the functional meaning of an individual and these swings can be either benefi-
cial or deleterious. It is these deleterious swings that other researchers have labeled
as “destructive” crossover. In a sense, varying ag varies the destructive effect of
CrOSsover.

Evidence for the phenomena that we have described can be seen in Figure 3.
Works by others have indicated general trends when destructive crossover has taken
place. The amount of nonfunctional code increases with the destructiveness of
crossover; the nonfunctional code serves as a sort of buffer. Consequently, an
increase in destructive crossover tends to increase the amount of nonfunctional
code, which in turn creates for larger and deeper individuals [44, 45]. Thus trends
in program size and shape shown in Figure 3 support this. Shorter best-of-trial indi-
viduals tended to occur earlier in a GP-run; larger best-of-trial individuals tended
to occur later. As the difficulty of the problem increased, the runs generally took
longer and the programs were larger (Figure 3, column 2). Likewise, as the difficulty
of the problem increased, the programs were deeper (Figure 3, column 2).

Researchers have also argued that there are limits to this buffering effect and
that there are emergent processes that occur as GP evolves individuals toward the
depth limit, in part because of this code growth [44-46]. In Figure 3 column one, the
trend in adjusted fitness for Unity—-Hundred showed the distribution moving gradu-
ally from high fitness to low fitness. However, in Thousand, we not that the pattern
for adjusted fitness collapsed; the pattern for generations became inchoate, and
the pattern for depth no longer followed the general trend. We suggest that Thou-
sand represents a case where the buffering effect, as well as associated emergent
processes, was no longer able to overcome the destructive effect of crossover.

180 DAIDA ET AL.

That context and content ultimately lie at the root of the destructive effect of
crossover is indicated in Figure 3, Tenth. Figure 6(b) represents the case where
context switching between numerator and denominator can be significant, particu-
larly for values of |r| « 1.

For some, the issues of context and content are fairly obvious. For example, one
could pose the binomial-3 problem as a search and selection of suitable “instruc-
tions”: the better suited instructions are for solving a problem, the easier a problem
is to solve. Such concepts have been explored in [47, 48]. While work like Levin’s has
bearing on the binomial-3 problem, of interest to us has been how these seemingly
obvious concepts play out in GP dynamics. There are definite patterns in shape and
size of individuals that have occurred that are not fully explainable by these early
works concerning Kolmogorov complexity. Only recently has quantitative evidence
been found for O’Reilly, and Oppacher’s [49] conjecture that both context and con-
tent of subtrees matter [15-17]. Indeed, the results shown in Figure 3 and in [34]
also substantiate O’Reilly and Oppacher’s conjecture. Furthermore, our results pro-
vide quantitative evidence that links context and content with the phenomenon of
destructive crossover. Our results strongly suggest that destructive crossover and disrup-
tion are related, but not identical phenomena. Under O’Reilly and Oppacher’s con-
jecture, it is crossover that can destroy the organization of subtrees, consequently
disrupting their meaning. However, in the case of single-node subtress, crossover
within a leaf node is not allowable. What is left, instead, is the disruption of meaning
that occurs when moving a wholly intact leaf node to another part of an individual.

We also note that these effects of context and content represent an internal con-
sideration. They indicate that what makes a problem GP-hard is not solely an exter-
nal consideration—i.e., an environment. The fitness function did not need to be
“rugged” for GP to encounter difficulty. Moreover, it was a process of solving for
the fitness function and not intrinsically the fitness function itself in which diffi-
culty occurred. It is for reasons like these which beg the metaphor of landscapes in
describing what makes a problem GP-hard (See [34, 49]).!

4.3. Emergent strategies of meaning

Is syntactical representation—which is often implicit in EC landscape theories—
sufficient in describing what makes a problem GP-hard? Perhaps our current fram-
ing of context and content is incorrect. Perhaps we could recover aspects of the
landscape metaphor by framing functions and terminals as part of the external
environment, i.e., a landscape of content and context. Perhaps what needs to be
articulated is a local syntactical neighborhood of content and context and not, as
we have proposed, an alternative metaphor.

To a certain degree, it may be possible to consider context and content as purely
syntactical considerations. For example, (x + r;) and (x x r,) can be viewed as
an injective algebraic mapping from the set of reals to reals. Changing syntax can
change their mapping, i.e., (x + x) and (r; x r,). Given this interpretation, one can
design a “neighborhood” based on various permutations of x, r;, and r,. Neverthe-
less, we would assert that syntax would account for only a part of the phenomena
observed.

WHAT MAKES A PROBLEM GP-HARD? 181

In Section 4.1, we introduced the notion that the combinatorial search occurs
over ERC tokens, rather than ERC values. The notion is a fairly general one—we
can extend this notion to the other elements of the function and terminal sets. Com-
binatorial search space would therefore translate as a search through permutations
of various tokens in parse trees. However, what determines each token’s meaning?

We speculate that a token’s meaning and an individual’s fitness (relative to a GP
solving a specified problem) are not tantamount to each other and are therefore
not bound solely by considerations of representation. Not only does GP work with
syntactical traversals, say from (x 4 r;) to (x + x), but GP also needs to determine
workable meanings to the tokens that correspond to x, +, and r;. Furthermore, each
token’s meaning may or may not have anything to do with an individual’s fitness.
We would subsequently consider a token’s meaning to be a by-product of processes
like recombination and selection in GP.

Before we continue, we should note that work described in this paper does not
directly address the issue of the evolution of meaning for GP tokens. Nevertheless,
this work does offer clues that suggest this direction of inquiry.

One can consider this work’s experiments as exercises in GP “determining” the
meaning of various ERC tokens. Each trial consists of several thousand unique ERC
tokens. Some of these tokens represent values that are more meaningful to solving
the binomial-3 problem than would other values. Intuitively, one would expect that
values close to “1” would be more meaningful than say a value of “1000” in solving
for (x + 1)3. Intuitively, one would expect that the GP selection process would sift
for values close to “1.” If this were true, GP would have to solve not one, but
two problems. One problem involves creating a mathematical model such that this
model fits the supplied data points. This problem is the one a user specifies. The
other problem involves creating error-correcting mechanisms to deal with errant
ERC values that are not used or needed for a solution.

The error-correcting problem is an emergent one that GP would need to address
to solve for f(x). We can illustrate this need with the following scenario. Let f4(x)
be an individual in a GP population. Furthermore let f“(x) = f(x) + r, where r
is an ERC with a value of 5. GP can obtain the desired solution f(x) in the next
generation by eliminating r from an individual, i.e., by exchanging r with a subtree
that evaluates to zero. Alternatively, GP might eventually obtain f(x) by eliminating
r from a population, i.e., by placing r in individuals that are increasingly less likely
to reproduce in subsequent generations. GP can obtain f(x) by absorbing r, i.e.,
multiplying that ERC with a subtree that evaluates to zero. Finally, GP can obtain
f(x) by incorporating r into another individual f?(x), such that f(x) = f?(x) +r.
In this scenario, either elimination, absorption, or incorporation represent error-
correcting mechanisms that deal with errant ERC values.

We can partially illustrate this emergent determination of meaning by showing
two things: evidence of sifting and selection of certain ERC values over other ERC
values and evidence of a shift in strategies between Control and Unity. Concern-
ing sifting and selection of ERC values, we note that all we would need to do is
show that some ERC values are preferred over others. This preference would show
up quantitatively as increases in the number of tokens that correspond to certain
values—an increasingly “meaningful” token would result in increasing numbers of

182 DAIDA ET AL.

that particular token as a GP trial progresses. All ERC values have exactly one
token at start; any substantial increase of that number at the end of a GP trial
would suggest at least some utility of that token in solving for f(x). Furthermore,
while it seems commonsensical that the ERC values close to the absolute value
of “1” would appear to be most “meaningful,” it is possible that entirely different
ERC values are considered meaningful between various GP individuals. Evidence
for consistent “meaning” would be reflected in the sifting and selection of certain
ERC values not at the scale that observes individuals, but at, say the scale that
observes trends across many populations.

Concerning a shift in strategies, we note that Control represents a circumstance
in which the value “1” is relatively easy to attain, e.g., (x = x). It is also easy to
show that it is possible to solve for f(x) without having to resort to any constants
whatsoever. The introduction of ERC tokens in Unity increases the likelihood that
GP would need to respond with error correction. Error correction would result
in a pronounced shift in approaches used in solving for f(x). (We note that the
terminal set for Control is a subset of that in Unity. It is entirely possible for there
to be no shift in the approaches taken by the best-of-trial individual in Unity.) To
show this shift quantitatively, we would need to classify the types of GP best-of-
trial individuals and, subsequently, show the change in the number of individuals
that populate these classes between Control and Unity. Such a shift would yield
empirical evidence for the existence of the emergent error-correcting mechanisms.

As an aside, we mention that even for this modest amount of evidence, the effort
required to obtain it has been involved. Indeed, most of the software development
implicit in this paper lay not in the development of the binomial-3 problem, but in
the development of custom tools that could aid in our collection, management and
analysis of data (which currently amounts to a few gigabytes). For example, to col-
lect evidence of sifting, we designed software that would detect in which generation
a best-of-trial individual would be found, and then set up scripts which would rerun
all 600 trials in Unity such that a “snapshot” would be taken of the entire popula-
tion in which a best-of-trial individual appeared. After the Unity trials were rerun,
another software tool parsed each population snapshot to extract counts for each
ERC token—the counts were summarized in a file that contained token counts for
all Unity trials. A third software tool binned and visualized the token counts.

To collect evidence on a strategy shift for just the 50-hit best-of-trial individuals
for Control and Unity, we designed a software tool that could algebraically interpret
and subsequently translate a best-of-trial individual to a Mathematica expression.
This step was necessary and non-trivial, since all instances of divide-by-zero had
to be replaced with “1.” It was impractical to do this step by hand—a best-of-trial
individual could easily span several pages of type and there were several hundred
individuals to analyze. These Mathematica expressions were then algebraically sim-
plified, factored, and plotted. Again we would add that the simplifications resulted
in non-trivial expressions, some of which were rational polynomials equal to or
greater than the order of 50. We subsequently classified each expression by hand,
which meant perusing over 600 pages of polynomials.

Figure 7 shows a histogram of all ERC values from 30,000 individuals (500 indi-
viduals per population snapshot per trial, 600 trials). Each population snapshot was

WHAT MAKES A PROBLEM GP-HARD? 183

300x10°
g]
8 200—_
£ 4
g]
g 100 -
L2 1
T a1

0_|Illll1|lllllll|lllf]

-1.0 -0.5 0.0 0.5 1.0

ERC value

Figure 7. Histogram of ERC values for Unity (aq = 1). Certain ERC values are consistently selected
over others. This histogram plots the frequency values for 26.0 million ERC tokens, which were taken
from all populations in Unity when a best-of-trial individual was identified.

taken when a best-of-trial individual was identified. The histogram has been dis-
cretized in 0.01 intervals and represents 26.0 million ERC values. The histogram
clearly shows a pattern in which certain ERC values have been preferred over oth-
ers. (See [34] for an extended discussion on the idiosyncracies of this distribution.
A follow-up discussion of this distribution is also given in [27].

Figure 8 shows pie charts of how three broad classes of GP individuals are dis-
tributed between Control (no ERC tokens) and Unity (with ERC values distributed
[—1, 1]). Only individuals that scored 50-hits (i.e., those that met the stop criterion)
were classified. The three classes are Perfect, Close Approximate, and Approximate.
Perfect refers to those individuals that simplify to f(x) = (x + 1)3, exactly. Close
Approximate refers to those individuals that simplify to a third-order polynomial
with coefficients that are approximately equal to those in f(x). Approximate refers
to non-third order (including rational) polynomials that satisfy the hit criterion near
each of the 50 fitness cases, but are not necessarily approximate to f(x) anywhere
else. A comparison between Control and Unity individuals shows a distinct change
in approach. A much larger ratio of Approximate individuals occur in Unity than in
Control (43-84%). A much smaller ratio of Perfect individuals occur in Unity than
in Control (0.5-57%). There are no members of Close Approximate for the Con-

[__JApproximate [_]Approximate
Close Approximate ~ |Close Approximate
[rerfect frerfect

(a) Control (b) Unity

Figure 8. Effect of ERCs on types of solution approaches taken by GP individuals. The manner in which
GP solves the binomial-3 problem varies substantially from not using ERCs to using ERCs. These pie
charts compare and contrast three broad classes of solutions approaches for 50-hit individuals in Control
and Unity: (a) Control; (b) Unity.

184

DAIDA ET AL.

trol case, even though such individuals are possible. This shift in classification is
consistent with the hypothesis of error correction.

Figure 9 shows an example of individuals taken from Control and Unity, respec-
tively. Both individuals scored 50 hits. Both are typical individuals from the smaller
end (i.e., fewer nodes per individual) of their respective groupings. The statistical
trends of sifting (i.e., Figure 7) are reflected in the Unity individual. For example,
the Unity individual illustrates how one ERC value tends to predominate over all
other values in that individual. In this case, the value —0.82256 represents 45%

Control Individual

Unity Individual

(X (X (X (+ (+XX) (x (- X -0.82256)
(+XX) (+ (- X -0.82256)
(+ (xx %) (x 0.20529
(X (+ (X (+ (XX X) (- (X (+ (X (- X -0.82256)
(- X X)) (X (- (- (- X (+X
(+ X X)) (X (X {+ (+ X 0.70888)
(x (+ X X) (- X -0.82256))
(- X X)) X)) (+ X 0.70886))
X {+ (- (xx) (+0.28133 -0.69579)))
(- XXX X)) (+ X 0.70886))
(+X X)) (- X -0.82256)) -0.82256) -0.82256) 0.57377)
[+ (+XX) (- X -0.82256)))
(+X (X (- X -0.82256)
(- X X1)1)) (+ (- (x 0.20529
(- (X (x [x {- XX (- X ix (- xX)
(- (- %% X A-X -8
+X X)) it
(X (XX X)
(+ (- XX
(- X)) X
(+ (= (+ X
(+X X))
(+X X))
- (- %%
(+X X))
Expanded
x? 2x 1.
32 T2 T2 (- X -0.82 -0.27380)) X)
PET R A CEse it A PR ni R N (1= (X (+ (- X -0.82286)
(- X -0.82256))
(- -0.17380
(- -0.89062 X)))
Factored (- ¥
) (- X -0.82256))) -0.82256))))
LLix +1)(x“+2x +1) (+ X
(- 0.23758 -0.27380})) -0.27380))))
Expanded

—0.0952519 x5+ 0.114983 x° +0.992828 x * +2.23666 x>
+3.55788 x2 +3.10117 x +1.00672

Factored
—0.0952519 (x —4.80048) (x +0.82256) (x +0.901983)
(x +1.36493) (x 2 +0.503866 x +2.17407)

Figure 9. Representative examples from Control (no ERCs) and Unity (az = 1). Although one would
anticipate that individuals from Control and Unity to be different, we note that these differences are
reflected in this work’s quantitative results.

WHAT MAKES A PROBLEM GP-HARD? 185

of total number of ERC values in that individual (i.e., 47 ERC values total dis-
tributed among 13 unique values). The next highest number of ERC values (i.e., 4)
represents only a fifth of that number.

The statistical trends of classes (i.e., Figure 8) are also reflected in the individuals
shown in Figure 9. Each individual represents a predominant class: the predominant
approach in Control is Perfect; for Unity, Approximate. Both Control and Unity
feature error-correcting mechanisms of incorporation, elimination, and absorption.
The degree to which these mechanisms exist, however, do differ. For example, we
can examine the degree to which these mechanisms exists by examining (—X X),
a common 3-tuple structure that can be used in conjunction with multiplication or
protected division to create such mechanisms. In Control, this element represents
about 35% of all 3-tuple structures—a ratio that happened to be higher than what
one would expect by chance alone (i.e., 25%). In Unity, that ratio dipped to 3%,
which happened to be lower than one would expect by chance alone (i.e., 6%). In
Control, (—X X) contributed towards an appropriate solution. In Unity, the only
incident of (—X X') was used to absorb significant number of ERC values, several
of which appeared only in this individual’s noc. Note that in Figure 9, the nocs are
highlighted while the structure (—X X) is bolded.

Taken together, Figures 7-9 provide quantitative evidence that suggest meaning is
not a purely syntactical consideration, but is partly the result of emergent processes
in evolving populations. The findings suggest an additional wrinkle to our response
of what makes a problem GP-hard. In particular, part of what makes a problem
GP-hard is an inability of GP to find consistent meaning to its tokens—a failed
“search for meaning.” This finding augments Goldberg and O’Reilly’s study of the
role contextual semantics in GP dynamics [16]. In their work, contextual seman-
tics were studied with a small set of primitives with distinct and precise meanings.
They showed that contextual semantics can dramatically influence size and shape of
individuals. In this work, contextual semantics are extended to a fairly large set of
primitives (several thousand) with various and ambiguous shades of meaning. We
show that contextual semantics can significantly influence the difficulty of a prob-
lem. It is this “search for meaning,” this “evolution of contextual semantics,” that
we believe plays a substantial role in determining whether a problem is GP-hard.

We point out that much of our analysis on context-driven inconsistency did not
depend on the presence or knowledge of a fitness function. In particular, the behav-
iors that were described, starting with Figure 6, would have occurred in the presence
of no selection pressure at all (i.e., no fitness function). Although this does resonate
with the notion of biological epistasis, we note that it resonates in the meaning of
the term that is quite different from the usage of the term in statistical and quan-
titative (population) genetics. In particular, the population sense of the term does
require the notion of an external environment that provides some form of selec-
tion pressure. There is no such pressure that has been presupposed in our analysis
in context-driven dependency. Instead, the behavior that is noted in context-driven
inconsistency is a kind of epistasis, but in the sense of molecular and biochemi-
cal genetics. Furthermore, as in the sense of molecular and biochemical genetics,
epistasis is a phenomena that does not require a fitness landscape. This distinction
is paramount, if only because work in genetic and evolutionary computation has

186 DAIDA ET AL.

employed a population view of epistasis, and has subsequently borrowed the math-
ematics of this view. Our results suggest that perhaps this is not an appropriate
borrowing to describe context-driven inconsistency. It is why we believe that rugged
landscapes may not always be the most appropriate metaphor for what makes a
problem difficult in GP and why Munch’s painting might be, instead.?

4.4. A note on population size

Conventional wisdom suggests that larger population size can compensate for
increasing problem difficulty. Figures 3 and 4 certainly support this wisdom, at
least for the Unity case. Average adjusted fitness went up as population increased:
50 individuals, 0.41 average adjusted fitness, 0.24 standard deviation; 500 individ-
uals, 0.76 average adjusted fitness, 0.11 standard deviation; 5000 individuals, 0.86
average adjusted fitness, 0.05 standard deviation. These results were statistically
significant (Mann—Whitney U test, individual alpha of 0.001, for all permutations
of adjusted fitness for the three populations.) We note, however, that while the
average adjusted fitness did increase, the overall trajectory of individuals in size vs.
adjusted fitness remained fairly consistent. We further note that the large attractor
at the adjusted fitness score of about 0.8 in size vs. adjusted fitness did not move.
Furthermore, in spite of a much larger population, no attractor appeared at the
adjusted fitness score of 1.0, as it did in Control.

The findings suggest that while increasing population size can improve the overall
performance, a ceiling to increased performance can still exist. We do not claim that
such ceilings exists for all problems, or for that matter, all GP configurations using
other crossover or mutation variations. However, in the binomial-3 case for our GP
configuration, this “ceiling” occurred between the two attractors between 0.8 and 1.0
in adjusted fitness. In other words, increased population meant that more individuals
gathered around the 0.8 attractor. It did not result in individuals gathering around
the 1.0 attractor.

4.5. Practical implications

Our findings suggest a few practical implications for real-world applications, given
the following caveat: our recommendations are based on a single, albeit extensive
examination of the binomial-3 problem. Although we believe that the binomial-3
problem is representative of a large class of GP problems that involve data model-
ing, note that we have not considered other data models in this paper.

For applications of GP in data modeling, it may be beneficial in the long run to:

e Pay attention to the composition and possible interactions between functions and
terminal sets. Ambiguities, like large contextual swings in meaning (e.g., the effect
of the token with value “1000” as it passes in and out of a noc), can inadvertently
contribute to making a problem difficult.

WHAT MAKES A PROBLEM GP-HARD? 187

e Cull functions and terminals by trial and error. We have illustrated that there
may be performance ceilings that may be intrinsic to a particular specification of
a problem. For example, a GP with ERCs might be considered a more general
problem solver than a GP without. However, we have shown that even the best
GP performance using ERC:s is only fair in comparison to GP using no ERCs—a
finding that is particular to the binomial-3 problem. In a sense, it could be argued
that we “tuned” the problem specification for enhancing GP performance (i.e.,
by removing ERCs from the function set).

e Consider treating data modeling as a two-stage process for GP. The first stage
would be using GP to discover a select subset of terminals and functions from a
more general set. The second stage would be using GP to determine an appropri-
ate data model. Our findings for the binomial-3 problem is that as capable as GP
is in working with general function and terminal sets, GP seemed to work best
with a function and terminal set that is specific to the problem at hand. Further-
more, the existence of a performance ceiling may preclude the efficacy of relying
solely on a one-stage process.

5. Conclusions

What makes a problem GP-hard? This paper has considered the metaphor of a fit-
ness landscape in describing problem difficulty and has indicated that this metaphor
may not have sufficient explanatory power. In particular, we reinforced the use of
the metaphor of biochemical epistasis, and claim that node-node interactions play a
significant role in determining problem difficulty that is distinct and separate from
that which has been ascribed to a fitness landscape and population epistasis. We
have examined one of the formalisms that have results from that metaphor and
have shown that formalisms derived under GA do adequately account for phenom-
ena observed in GP.

The particular phenomena that we have examined are results from the binomial-3
problem. The binomial-3 is our, albeit simple, test problem that does not have
an antecedent in GA research, but is an instance from a domain that has had
an extensive history of use in GP. We have quantitatively demonstrated that this
problem is tunable while keeping the combinatorial search space invariant. We have
also demonstrated that the tuning characteristics of this problem are well posed and
monotonic with respect to the tuning parameter ag.

Our analysis has shown that both content and context matter in determining prob-
lem difficulty. We have shown that conflicts in meaning can result when the context
of the terminal content is switched. We have made a case that this conflict is an
emergent phenomenon and is a result of GP attempting to ascribe consistent worth
among subtrees. For that reason, we have suggested that the conflict in trying to
ascribe worth is largely internal process, as opposed to an external environmental
that is suggested by the metaphor a fitness landscape. The results provide quantita-
tive evidence that supports conjectures in GP theory that both context and content
are integral factors to consider.

188 DAIDA ET AL.

Our analysis has also indicated that “meaning,” specifically the meaning ascribed
to individual nodes, can be viewed as an emergent phenomena. We have shown
quantitative evidence for error-correcting mechanisms that have appeared, appar-
ently as needed, to address the problem of nodes that turn out to have detrimental
meanings. For this reason, we have suggested that syntax and structure only par-
tially determine problem difficulty. Our findings have augmented work in contextual
semantics in GP. We have shown that contextual semantics can significantly influence
the difficulty of a problem. It is this “search for meaning,” this “evolution of con-
textual semantics,” that we believe plays a substantial role in determining whether
a problem is GP-hard. It is also why we believe that rugged landscapes may not
always be the most appropriate metaphor for what makes a problem difficult in GP
and why Munch’s painting of an internally tortured individual might be instead.

Finally, we have indicated a few practical implications of our work. In particular,
we have indicated that substantial performance gains can occur by relatively minor
modifications in function and terminal set specifications. We have also noted that
“optimal” solutions derived under one set of problem specifications may not neces-
sarily represent the best-possible solution. It is possible, we suggest, that a problem
specification can introduce (inherent) performance ceilings. Larger population sizes
may not be enough to compensate.

For more information and related papers on this subject, please see our website
at www.sprl.umich.edu/acers.

Acknowledgments

We graciously thank W. Banzhaf for his kind invitation and persistent encour-
agement. Our work has benefitted extensively from others: D. Ampy, H. Li,
and M. Ratanasavetavadhana, for experiment protocols; G. Eickhoff, P. Litvak,
and S. Yalcin, for their philosophical analysis; S. Chang, for support software;
D. Zongker and W. Punch for lilgp; S. Luke and P. Andersen for their patches
to lilgp; M. Matsumoto and T. Nishimura for mt19937.c, their C implementation
of the Mersenne Twister; S. Ross. J. McClain, and M. Holczer, for their previ-
ous unpublished work. We thank U.-M. O’Reilly, C. Jacob and the anonymous
reviewers for their constructive comments on an earlier conference draft of paper.
This research was partially supported through grants from U-M CoE, UROP-
OVPR, and SPRL. We thank J. Vesecky and S. Gregerman for their continued
support. The first author thanks I. Kristo and S. Daida.

Notes

1. Even to the extent to which we question, we emphasize that we have not set out to “disprove” the
metaphor of landscapes. Indeed, one does not falsify any metaphor in a way that one falsifies a
scientific hypothesis (see [28]). Likewise, we would also add that at some level, the metaphor of
landscapes may be useful in describing broad classes of difficulty for GP. However, we do question
the capability of current EC landscape theory to account for the phenomena noted in Section 3. We
also question the efficacy of the landscape metaphor itself in accounting for these phenomena, as
well.

WHAT MAKES A PROBLEM GP-HARD? 189

2.

Our findings are also an empirical complement to Altenberg’s theoretical notion of constructional
fitness [50]. See also Koza [1, pp. 619-641] for what he calls as the lens effect, which has some
bearing on our findings. However, we have not discussed the lens effect in our discussion, if only
because Koza’s discussion focuses on automatically defined functions.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

J. R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selec-
tion, The MIT Press: Cambridge, 1992.

U.-M. O’Reilly, “Using a distance metric on genetic programs to understand genetic operators.” in
Proc. 1997 IEEE Int. Conf. Systems, Man, and Cybernet., IEEE Press: Piscataway, 1997, pp. 4092—
4097.

K. Mathias and L. D. Whitley, “Genetic operators, the fitness landscape and the traveling salesman
problem,” in Parallel Problem Solving in Nature, R. Ménner and B. Manderick (eds.), Elsevier
Science Publishers B.V: Amsterdam, 1992, pp. 219-228.

J. Horn, and D. E. Goldberg, “Genetic algorithm difficulty and the modality of fitness landscapes,”
in Foundations of Genetic Algorithms 3, L. D. Whitley and M. D. Vose (eds.), Morgan Kaufmann
Publishers: San Francisco, 1995, pp. 243-269.

T. C. Jones, “Evolutionary algorithms, fitness landscapes and search,” Ph.D. Dissertation, University
of New Mexico, Albuquerque, 1995.

W. B. Langdon and R. Poli, “Why ants are hard,” in Genetic Programming 1998: Proc. Third Ann.
Conf., 22-25 July, 1998, University of Wisconsin, Madison, J. R. Koza, W. Banzhaf, K. Chellapilla,
et al. (eds.), Morgan Kaufmann Publishers: San Francisco, 1994, pp. 193-201.

D. Jefferson, R. Collins, et al., “Evolution as a theme in artificial life: the genesys/tracker system,”
in Artificial Life II, C. Langton, C. Taylor, J. Farmer, and S. Rasmussen (eds.), Addison-Wesley:
Redwood City, 1991, pp. 549-578.

K. A. De Jong, “An analysis of the behavior of a class of genetic adaptive systems.” Ph.D. disserta-
tion, Ann Arbor, The University of Michigan, 1975.

D. H. Ackley, A Connectionist Machine for Genetic Hillclimbing, Kluwer Academic Publishing:
Boston, 1987.

J. R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs, The MIT Press:
Cambridge, 1994.

W. FE. Punch, D. Zongker, et al., “The royal tree problem, a benchmark for single and multiple
population genetic programming,” in Advances in Genetic Programming, P. J. Angeline and K. E.
Kinnear, Jr. (eds.), The MIT Press: Cambridge, 1996, pp. 299-316.

M. Mitchell, S. Forrest, et al., “The royal road for genetic algorithms: fitness landscapes and GA
performance,” in Proc. First Euro. Conf. Artif. Life. Toward a Practice of Autonomous Systems, F.
J. Varela and P. Bourgine (eds.), The MIT Press: Cambridge, 1992, pp. 245-254.

C. Gathercole and P. Ross, “An adverse interaction between crossover and restricted tree depth
in genetic programming,” in Genetic Programming 1996: Proc. First Ann. Conf., 28-31 July 1996,
Stanford University, J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo (eds.), The MIT
Press: Cambridge, 1996, pp. 291-296.

T. Soule, J. A. Foster, and J. Dickinson, “Using genetic programming to approximate maximum
cliques,” in Genetic Programming 1996: Proceedings of the First Annual Conference, 28-31, July,
1996, Stanford University, J. R. Koza, D. E. Goldberg, D. B. Fogel and R. L. Riolo (eds.), The MIT
Press: Cambridge, 1996, pp. 400-405.

U.-M. O'Reilly, “The impact of external dependency in genetic programming primitives,” in Proc.
1998 IEEE Int. Conf. Evol. Comput., IEEE Press: Piscataway, 1998, pp. 306-311.

D. E. Goldberg and U.-M. O’Reilly, “Where does the good stuff go, and why? How contextual
semantics influences program structure in simple genetic programming,” in Proc. First Euro. Conf.
Genetic Program., Paris, France, W. Banzhaf, R. Poli, M. Schoenauer, and T. Fogarty (eds.), Springer
Verlag: Berlin, 1998.

190

17.

18.

19.

20.
21.
22.
23.
24.

25.

26.

27.

28.

29.

30.

31

32.

33.
34.

35.

36.

DAIDA ET AL.

U.-M. O’Reilly and D. E. Goldberg, “How fitness structure affects subsolution acquisition in genetic
programming,” in Genetic Programming 1998: Proc. Third Ann. Conf., 22-25 July, 1998, University
of Wisconsin, Madison, J. R. Koza, W. Banzhaf, K. Chellapilla, et al. (eds.), Morgan Kaufmann
Publishers: San Francisco, 1998, pp. 269-277.

S. Luke and L. Spector, “A revised comparison of crossover and mutation in genetic programming,”
in Genetic Programming 1998: Proc. Third Ann. Conf., 22-25 July, 1998, University of Wisconsin,
Madison, J. R. Koza, W. Banzhaf, K. Chellapilla, et al. (eds.), Morgan Kaufmann Publishers: San
Francisco, 1998, pp. 208-213.

N. E McPhee, N. J. Hooper, et al., “Impact of types on essentially typeless problems in GP” in
Genetic Programming 1998: Proc. Third Ann. Conf., 22-25 July 1998, University of Wisconsin,
Madison, J. R. Koza, W. Banzhaf, K. Chellapilla, et al. (eds.), Morgan Kaufmann Publishers: San
Francisco, 1998, pp. 232-240.

P. J. Angeline, “Subtree crossover: building block engine or macromutation?” in Genetic Program-
ming 1997: Proc. Second Ann. Conf., 13-16 July, 1997, Stanford University, J. R. Koza, K. Deb, M.
Dorigo, et al. (eds.), Morgan Kaufmann Publishers: San Francisco, 1997, pp. 9-17.

S. Wright, “The roles of mutation, inbreeding, crossbreeding and selection in evolution,” in Proc.
Sixth Int. Congr. Genet., 1932, pp. 356-366.

G. G. Simpson, Tempo and Mode in Evolution, Columbia University Press: New York, 1944.

T. Dobzhansky, Genetics and the Origin of the Species, Columbia University Press: New York, 1941.
D. J. Depew and B. H. Weber, Darwinism Evolving: Systems Dynamics and the Genealogy of Natural
Selection, The MIT Press: Cambridge, 1995.

T. Jones and S. Forrest, “Fitness distance correlation as a measure of problem difficulty for genetic
algorithms,” in Proc. Sixth Int. Conf. Genet. Algo., L. J. Eshelman (ed.), Morgan Kaufmann Pub-
lishers: San Francisco, 1995, pp. 184-192.

B. Naudts and L. Kallel, “A comparison of predictive measures of problem difficulty in evolutionary
algorithms,” IEEE Tran. Evol. Comput., vol. 4(1), pp. 1-15, 2000.

O. Chaudhri, J. M. Daida, et al. “Characterizing a tunably difficult problem in genetic programming,”
in GECCO-00: Proc. Genet. Evolut. Comput. Conf., 9-12 July, 2000, Las Vegas, Nevada USA, 2000,
pp. 395-402.

J. M. Daida, S. J. Ross, et al. “Challenges with verification, repeatability, and meaningful compar-
isons in Genetic Programming.” in Genetic Programming 1997: Proc. Second Ann. Conf., 13-16
July, 1997, Stanford University, J. R. Koza, K. Deb, M. Dorigo, et al. (eds.), Morgan Kaufmann
Publishers: San Francisco, 1997, pp. 64-69.

M. J. Wade, “Epistasis,” in Keywords in Evolutionary Biology, E. F. Keller and E. A. Lloyd (eds.),
Harvard University Press: Cambridge, 1996, pp. 8§7-91.

A. S. Fraser, “Simulation of genetic systems by automatic digital computers. I. Introduction,” Aust.
J. Bio. Sci., vol. 10, 1957, pp. 484-491.

R. E. Smith and J. E. Smith, “An examination of tunable, random search landscapes,” in Foundations
of Genetic Algorithms 5, W. Banzhaf and C. Reeves (eds.), Morgan Kaufmann Publishers: San
Francisco, 1999, pp. 165-181.

R. B. Heckendorn, S. Rana, and L. D. Whitley, “Test function generators as embedded landscapes,”
in Foundations of Genetic Algorithms 5, W. Banzhaf and C. Reeves (eds.), Morgan Kaufmann
Publishers: San Francisco, 1999, pp. 183-198.

A. Adams, Sierra Nevada: The John Muir Trail, Archetype Press: Berkeley, 1938.

J. M. Daida, R. B. Bertram, J. A. Polito 2, and S. A. Stanhope, “Analysis of single-node (building)
blocks in genetic programming,” in Advances in Genetic Programming 3, L. Spector, W. B. Langdon,
U.-M. O’Reilly, and P. J. Angeline (eds.), The MIT Press: Cambridge, 1999a, pp. 217-241.

P. J. Angeline, “An investigation into the sensitivity of genetic programming to the frequency of leaf
selection during subtree crossover,” in Genetic Programming 1996: Proc. First Ann. Conf., 28-31
July, 1996, Stanford University, J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo (eds.),
MIT Press: Cambridge, 1996, pp. 21-29.

M. Evett and T. Fernandez, “Numeric mutation improves the discovery of numeric constants in
genetic programming,” in Genetic Programming 1998: Proc. Third Ann. Conf., 22-25 July 1998,
University of Wisconsin, Madison, J. R. Koza, W. Banzhaf, K. Chellapilla, et al. (eds.), Morgan
Kaufmann Publishers: San Francisco, 1998, pp. 66-71.

WHAT MAKES A PROBLEM GP-HARD? 191

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

G. R. Raidl, “A hybrid GP approach for numerically robust symbolic regression,” in Genetic Pro-
gramming 1998: Proc. Third Annu. Conf., 22-25 July, 1998, University of Wisconsin, Madison,
J. R. Koza, W. Banzhaf, K. Chellapilla, et al. (eds.), Morgan Kaufmann Publishers: San Francisco,
1998, pp. 323-328.

D. Zongker and W. Punch, lilgp, Lansing, Michigan State University Genetic Algorithms Research
and Applications Group, 1995, http://garage.cps.msu.edu/software-index.html.

M. Matsumoto and T. Nishimura mt/19937.c. Keio, Department of Mathematics, 1997, Keio Univer-
sity. http://www.math.keio.ac.jp/~matumoto/emt.html.

M. Matsumoto and T. Nishimura, “Mersenne Twister: a 623-dimensionally equidistributed uniform
pseudorandom number generator,” ACM Trans. Model. Comput. Simulation, vol. 8(1), pp. 3-30,
1998.

J. M. Daida, S. P. Yalcin, et al., “Of metaphors and darwinism: deconstructing genetic programming’s
chimera,” in Proc. 1999 Cong. Evol. Comput., 6-9 July, 1999, Mayflower Hotel, Washington DC,
IEEE Press: Piscataway, 1999c, pp. 453-462.

J. M. Daida, D. S. Ampy, et al., “Challenges with verification, repeatability, and meaningful com-
parison in genetic programming: Gibson’s magic,” in Proc. Genet. Evol. Comput. Conf., 13-17 July,
1999, Orlando, FL, W. Banzhaf, J. Daida, A. Eiben, M. Garzon, et al. (eds.), Morgan Kaufmann
Publishers: San Francisco, 1999b, pp. 1851-1858.

M. M. Meysenberg, and J. A. Foster, “Randomness and GA performance revisited,” in Proc. Genetic
Evol. Comput. Conf., 13-17 July 1999, Orlando, Florida, W. Banzhaf, J. Daida, A. Eiben, M. Garzon,
et al. (eds.), Morgan Kaufmann Publishers: San Francisco, 1999, pp. 425-432.

T. Soule and J. A. Foster, “Code size and depth flows in genetic programming,” in Genetic Program-
ming 1997: Proc. Second Ann. Conf., 13-16 July, 1997, Stanford University, J. R. Koza, K. Deb, M.
Dorigo, et al. (eds.), Morgan Kaufmann Publishers: San Francisco, 1997, pp. 313-320.

W. Banzhaf, P. Nordin, et al., Genetic Programming: An Introduction: On the Automatic Evolution
of Computer Programs and Its Applications, Morgan Kaufmann Publishers, Inc.: San Francisco,
1998.

N. E McPhee and J. D. Miller, “Accurate replication in genetic programming,” in Proc. Sixth Int.
Conf. Gen. Algo., L. J. Eselman (eds.), Morgan Kaufmann Publishers: San Francisco, 1995, pp. 303—
309.

L. A. Levin, “Universal sequential search problems,” Problems of Information Transmission,
vol. 9(3), pp. 265-266, 1973.

L. A. Levin, “Randomness conservation inequalities: information and independence in mathematical
theories,” Inform. Cont., vol. 61, pp. 15-37, 1984.

U.-M. O’Reilly and F. Oppacher, “The troubling aspects of a building block hypothesis for genetic
programming,” in Foundations of Genetic Algorithms 3, L. D. Whitley and M. D. Vose (eds.),
Morgan Kaufmann Publishers: San Francisco, 1995, pp. 73-88.

L. Altenberg, “The evolution of evolvability in genetic programming. “In Advances in Genetic Pro-
gramming, K. E. Kinnear, Jr. (ed.), MIT Press: Cambridge, 1994, pp. 47-74.

