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A test of the significance of a row or column agent in an 
analysis of variance may be expressed in the form of correlation be- 
tween the agent and the variate.  A test  of the significance of inter- 
action variance may be expressed in the form o f  correlation between 
the agents. These expressions are principally of theoretical interest 
in that  the degree of significance in an F test or the value of a cor- 
relation coefficient may be controlled at  will, or inadvertently, within 
certain limits. 

In a recent article Peters (1) discussed the interpretation of in- 
teraction variance as correlation. There are a number of fur ther  in- 
terrelations to be pointed out and some interesting interpretations to 
be made. Peters' article just  begins the study of the role of correla- 
tion in analysis of variance and does not emphasize some of the char- 
acteristics of both correlation and analysis of variance which are 
pointedly revealed by their  joint study. The significance of this study 
lies not in the practical application of some of the formulas developed 
but rather  in the design of research involving analysis of variance or 
correlational analysis. 

I. Ef/ectiveness of  an Agent  and Intraclass Correlation 
Consider the simple case of an analysis of variance into three 

components. The levels of one agent are designated 1 , 2 ,  . . . ,  i ,  . . . ,  n 
and those of the other agent 1 , 2 ,  . . - ,  j ,  . . . ,  m .  With a single ob- 
servation (or mean of observations) at each joint level i i ,  the obser- 
vations may be represented by a ~table of n rows and m columns. 

We shall proceed first to get an expression for  the product-mo- 
ment correlation between pairs of columns (or rows) [equation (10) 
or (16) and (17).] Let the mean of all observations I~e designated M 
and the score in any cell be designated X~j. 

E E X~j 

M - -  - -  ( 1 )  

n m  

*This study was made possible by the Bureau of Psychological Services, In- 
stitute for Human Adjustment,  Horace H. Rackham School of Graduate Studies, 
Universi ty of Michigan. 
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Designating the mean of any row as M~, then 

X~, 

M~ -- - -  (2) 
m 

The variance of a distribution of a sum of scores is 

~ s  = a  ~" + a ~ , + . . . + a  S + 2 r  ~ 
(X~i+X~l+..,+X~m) X~I X~,n X~A'i... X~l .Y. t2 

(a) 
+ ... + 2 r  a ~ . 

XL,a_IX~,a XLm- I X ~  

Assuming homogeneity of variance from column to column and 
that  the correlations between pairs of columns are equal, then 

= m a h d i 1  + ( m - -  1)r~], (4) 
(X~1÷X~s+,..÷X~ m ) 

where a~ S represents the variance of any column and rs the product- 
moment cor~lati~n.betw.een any pair of columns. 

The wari~.nee of. the  means of rows may be expressed as: 

1 aJ2 [1 + (m 1)ri] ,,~ - - ~  o ~ - -  ~ - -  . ( 5 )  
~, m S (x,~+l,,÷..+I,.} m 

But 

and 

i 
~2 - -  ( 6 )  

I ( X .  - -  Mi)~ 

~j~= (7) 

But assuming homoscedasticity or homogeneity of variance, a better 
estimate of ~fi may be obtained by combining the within columns sums 
of squares and dividing by the total number of cases. Hence, (7) be- 
comes 

E E (X,, - -  Mt)" 

. ?  = (8) 
n m  

Substituting (6) and (8) in (5), 

m ' ~ , ( M i - - M ) * = ~  "E.(X~j - -Mj)2[1 + ( m - -  1)r~]. (9) 

Solving for r , ,  
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o r  

m ~ E(M~ - -  M) ~ - -  E E ( X ~  - -M~)  ~ 

r~ - -  (10) 
( m - -  1 ) E  Z (X~ - -  M~) ~ 

t t 

A single score in this design may  be described al ternat ively as:  

X~ - -  M = (X~ - -  Me) + (M~ - -  M) (11) 

X ~ ¢ - - M =  ( M ~ M )  + (Ms ~ M )  + d ~ .  (12) 

Squaring and summing equation (11) over  the  rows and cohlmas:  

~(X~j  - - M ) 2 = : E y , ( X ~  - - M i )  2 + n ~ ( M ~ - - M ) L  (13) 
j i j J 

Similarly for  equation (12) :  

~, E (X~s --  M)2--~ m ~ (M~--  M) 2 

(14) 
+ nF. (Ms  ~ M )  2 + ~ ~. d~j ~. 

j ~ j 

Subtrac t ing  equation (13) f rom (14) and reaxranging terms:  

E ~ ( X ~ - - M j ) ~ ' - - m F . ( M ~ - - M ) 2 + ~ d ~ j  ~. (15) 
i j ~ ~ j 

Subst i tu t ing (15) in (10) and simplifying:  

m ( m  --  1) F. (M~ - - M )  2 - -  ~. ~ d~s ~ 

r~ = . (16) 
m ( m  --  1)~ (M~ ~ M) ~ + (m - -  1) ~ ~. di~ • 

In a similar manner  the  equation for  the  product-moment  corre- 
lation between rows (r~) may  be obtained and is as follows: 

n ( n - -  1 ) ~  (Mj - - M )  2 - - ~  ~ d~ .~ 
j i j 

r ~ =  (17) 
n ( n  - -  1 ) 2  (Me - -  M) 2 + ( n - -  1) ~ ~ d~¢ 2" 

J - - ' ~  i 

Our next  step will be to express  rj and r~ in a f o r m  which will in- 
dicate their  i d e n t i t y  wi th  Fisher ' s  intraclass correlation [equations 
(24) and (25) ] ,  and then point  out  the  wel l -knownre la t ion  of  F and 
intraclass correlat ion [equations (28) and (29).]  Let  us designate 
b y  V the mean sum of squares in analysis of  variance. Then the mean 
sum of squares for  rows is: 
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Then 

m E (M~ - -  M) 2 

Vi = (18) 
n - - 1  

( n  - -  1)  ( m  - -  1)  V i  : m ( m  - -  1) Z (M~ - -  M )  ~ ( 1 9 )  

Similarly, the mean sum of squares  for  columns is: 

n ~ , ( M  i - - M )  2 
) 

Vs : (20) 
m ~ l  

and 

(m - -  1) (n - -  1) Vi - -  n ( n  - -  1)~] (Mi - - M )  2 , (21) 
J 

and designating the er ror  or  remainder  sum of squares Ve, then 

Z :E dis ~ 
i t 

Ve -~ (22) 
( n -  1) (m - -  1) 

and 
( n - -  1) (m --  1) Ve - -  E E d~J 2. 

Subst i tu t ing (19) and (23) in (16):  

(n - -  1) (m - -  1) V~ - -  (n - -  1) (m--  1) V~ 
r i 

( n - - l )  ( m - -  1)V~ + ( n - - l )  ( m - - l )  2 V~' 

which simplifies to 
V~ - -  V~ 

ri --- _ _  

- -  V i +  ( m - - 1 ) V ~  

Similarly, subst i tu t ing (21) and (23) in (17) 
have: 

Vi - -  V~ 

(23) 

(24) 

and simplifying, we  

These last  two equations will be immediately recognized as the  same 
as the equation for  Fisher ' s  unbiased est imate  of  the intraclass cor- 
relation. 

Solving equations (24) and (25) fo r  V¢, we have, respectively,  

V~ (1 - -  rs) 
V~ --: (26) 

I + (m - -  1 ) r  s' 

r~ ----- . (25) 
Vi + ( n - -  1)Ve 
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Vj(1--r0 
V~ = . ( 2 7 )  

1 + ( n - -  1)r~ 

From (26), rearranging terms 

V~ 1 + ( m - -  1)rj 
- -  - - F ,  (28) 

Ve 1 --  rj 

the F being Snedecor's F for testing the significance of the agent 
which varies from row to row. 

Correspondingly, the test for the significance of the column agent 
is obtained from (27) : 

Vj 

Ve 

Hence, if 

1 + (n--  1)r~ 

1 ~ r i  

- - F .  (29) 

V~ Vi 
F ~ - - -  or 

V~ Ve 

is found to be non-significant, then rs or r~, respectively, does not 
differ significantly from zero. If, on the other hand, the F is found 
to be significant, then it will sometimes be interesting and meaning- 
ful to express the relation as an intraclass correlation coefficient and 
thereby have an indication of the degree of the relationship. 

Negative intraclass correlation will reveal itself in that  V~ (or 
Vs) will be less than Ve. In a two-componen~ analysis of variance 
with only one agent there is merely a VB and a Vw representing, re- 
spectively, the estimate of universe variance with the agent v a r ~ n g  
and an estimate of universe variance with the agent fixed. I f  Vs < Vw, 
then the agent is generating negative intraclass correlation. 

It  should be fur ther  pointed out here that  it is not the interaction 
variance which is being interpreted as correlation, but the effect of 
an agent on the varia.te is being described or measured by means of 
the correlation coefficient. As a matter  of fact, in the three-compo- 
nent analysis discussed here, it is implicitly assumed that  the inter- 
action variance is an estimate of error variance only and, hence, that  
there is no correlation between the two agents. That interaction vari- 
ance is a function of error and correlation between agents is the the- 
sis of section IV of this paper. 

An expression indicating the effect on residual variance of cor- 
relation between columns or correlation between rows may be readily 
obtained as follows: 
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Solving equation (16) for  m ~(M~ - -  M) -~, we have 

m ~ ( M ~ - - M )  2 -  1 +  ( m - - 1 ) r  i 
(m - -  1) (1 - -  ri)  Z, Zs d~' 

and similarly f rom equation (17) 

n N ( M j - - M )  ~ =  l + ( n - - 1 ) r ~  ,~ d 2. 
j (n  - -  1) (1 - -  r , )  X • j 

Subst i tut ing equation (30) and (31) 
terms,  we have 

Z d ~ :  

in (14) 

r l r ~ E  ( X - - M ) 2  

(30) 

(31) 

and rea r rang ing  the 

(32) 

(1--r~) r t +  (1--r j )  ri + ( n - - l )  (1--r~) r~ri+ ( m - - l )  (1--rf)  r~ri+rirs' 

which, in the  simplest case of  two rows and two columns (n = m : 
2),  becomes 

( 1 - - r i )  ( l - - r / )  ~ ( X - - M )  2 
i 1 

X Z d-" : (33) 
t 3 ~ r l  - -  r i  - -  r ~  rj 

I t  is apparent  tha t  if  r~ : rj : 0 ,  then one-third of the total sum of 
squares in a three-component  a--~alysis is residual and none of the F 's  
would be significant. 

II. The t- test  and Intraclass Correlation 

In those instances in which an agent  is given only two values, the  
F test  corresponds to the  conventional application of  the  t - test  to 
the significance of  differences between two means.  

Solving equation (28) for  ri  in t e rms  of F ,  we have:  

F - - 1  
rj - -  . (34) 

F + m - - 1  

I t  has been shown (2) tha t  

F = t 2 (35)  

in the case of two groups, and hence any  t-test may  be converted into 
an intraclass correlation. 
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Substituting (35) in (34), 

t 2 -  1 
rj t 2 + m - l "  (36) 

This formula, however, is not normally to be recommended un- 
less the limitations of the correlation so obtained are very clearly un- 
derstood and interpreted. These limitations are no t  peculiar to this 
correlation but pertain to those secured from formulas (24) and (25) 
or any other correlation including those obtained in the usual man- 
ner rather than via analysis of variance. Analysis of variance mere- 
ly brings it home with more force. The value of the  Correlation be- 
tween two variates is a function of the proportion of the variance of 
either associated with a common agent. The variance which an agent 
contributes to a variate is, of course, a direct function of its own 
variance. But the proport ion of variance contributed by an agent is 
a function not only of the variance it contributes but  a function of 
the variance being contributed by all other agents simultaneously. 
Hence, if the correlation in the universe is significantly non-zero, the 
actual value of the correlation secured on a sample can be manipu- 
lated within certain limits by controlling the variability of the agent 
in relation to the other agents in the universe. 

This  is of considerable significance to the use of correlation as a 
descriptive statistic and to the design of studies involving analysis 
of variance. In the opinion of the writer, in either of the above cases 
the degree of significance or relation of an agent to a variate is best 
tested or described when the agent in question and all other agents 
affecting the variate are permitted full normal variation. 

III. e 2 and Intraclass Correlation 

In Section I the relation between F and intraclass correlation 
was investigated. The relation between e 2 and F is known and given 
by the equation (2) : 

(K --  1) F -  ( g  - -  1) 
~ = ( 3 7 )  

( K - - l )  F + N - - K  

From these two  relations we are able to express the functional rela- 
tion of ~-~ and the intraclass correlation. As a result of agent B we 
have an r~ given by (29). Substituting for F in (37), and rearrang- 
ing terms: 

n ( m  - -  1)r~ 
~ ---- , ( 3 8 )  

(m n - -  1) - -  ( n - -  1)r~ 
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where the K of (37) is the same as m in our notation and the N of 
(37) is given by nm in our notation. 

IV. Application and Interpretabion 
A recent s tudy by Siegel and Stuckey (3) will be used here to 

show the application and interpretation of some of these formulam 
Very briefly, this study consisted of observing the amount of water  
drunk and the amount of food eaten af ter  each of four successive six- 
hour intervals for each of sixteen rats. Analyses of variance were 
made of the water  intake and of the food intake. The results are re- 
produced in Tables I and 2 below. 

TABLE 1 
Water  Intake 

Intraclass 
Source Sum of Squares df  Mean Square F Correlations 

t ime 968.00 3 322.67 76.3* .825 
animals 82.72 15 5.51 1.30 .07 
residual 190.34 45 4.23 
total 1241.06 63 

*Significant at 1% level. 

TABLE 2 
Food Intake 

Intraclass 
Source Sum of Squares df Mean Square F Correlations 

time 490.51 3 163.50 60.1" .787 
animals 13.94 15 0.93 2.92* --.197 
residual 122.40 45 2.72 
total 626.85 63 

*Significant at 1~ level. 

The last column of these tables contains the intraclass correla- 
tion obtained by use of equations (24) and (25). Let us consider the 
interpretation of the correlation .825 for water intake and the agent 
time. Here we have four classes or families, the observations on six- 
teen rats for each of four intervals of time. This high intraclass cor- 
relation signifies that the amount of water  intake for the various mem- 
bers of a family tends to be much more similar than one would expect 
from chance. In other words, "time" is a significant agent in the 
amount of water intake--there are certain periods of the day or night 
when the animals are more inclined to drink .than at  other times.* 

*It  should be made clear that  the interpretations being made here are l i teral  
interpretations of the data and of the results of the formulas applied. That  these 
results might be explained in terms of controls present or absent in the conduct 
of this experiment is not the concern of the present writer.  
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Similarly, if we observe the high intraclass correlation of .787 
for food intake with the agent time we may make a similar interpre,  
tation: that  during certain intervals of the day and night the animals 
will be more or less likely to be eating. 

Some interesting relations are also revealed by the intraclass v's 
for  animals in these two studies. In the case of water  intake, a non- 
significant correlation of +.07 is found for  animals. Here a class or 
family consists of the four successive observations of a single ani- 
mars  water  intake. An intraclass r of zero indicates that  the magni- 
tude of one of the observations in a class has no relation to the mag- 
nitude of the others. 

On the other hand, we find a significant negative intraclass cor- 
relation of --.20 for  the food intake of an animal. This indicates tha t  
the four successive observations of the amount of food eaten are more 
different than would be expected by chance. 

V. Interaction and Correlation Between  Agents  

Let us consider next the description of interaction in terms of 
correlation between the agent~. Let us first consider a three-compo- 
nent analysis with two agents, A and B, with agent A partitioned over 
n rows and agent B partitioned over m columns with no replication. 

A single score may then be represented as comprising the gen- 
eral mean plus a contribution from each of the agents and an error  
increment (8), thus: 

X - - M  + a + b + s .  (39) 

Hence, 
x - - X - - M = a +  b + e.  (40) 

Squaring, summing and dividing by the number of observations, we 
have 

¢2 - -  ¢ j  + oh2 + aJ + 2 ra~ ~a ab, (41) 

assuming the errors to be uncorrelated with the agents A and B and 
letting r~0 be the correlation between agents. 

In a four-component analysis there is replication of the design 
with, say, p observations in each group. Equation (41) is, then, the 
variance of the means of the mn groups. Multiplying (41) through 
by mnp we get the total sum of squares between groups, which may 
be written, in row and column notation, as 

p E Z ( M ~ f - - M ) 2 " - - m  p Z ( M ~ - - M )  2 + n p E ( M s - - M )  2 

(42) 
+ m n p a J  + 2 p r~i [ m n  ~ (M~ - -  M) 2 ~ (Ms - -  M) 2] 1/2. 
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The first two terms on the r ight-hand side of equation (42) when 
divided by the appropriate number of degrees of freedom give, re- 
spectively, the mean sum of squares for  the row agent and the column 
ager~t (V~ and V~). The thi rd  and four th  terms together give the in- 
teraction sum of squares, thus:  

1 
(43) 

+ 2 ~ r .  [m n ~ (M~ - -  M) ~ E (Ms - -  M)  ~] ~/~. 

The fourth  component of the analysis is the independent estimate 
of sampling error  coming from the within group sum of squares. 
Table 3 contains the analytical expressions for  the  various elements 
of a four-component analysis. 

T A B L E  3 

Source  ~2 of  Squa res  df  M Z of  Sq. 

. 4  m p Z ( M i _ _ M ) 2  Rows m p ~ (M i - -  M)  2 n - -  1 V~ 

n - - 1  

n p Z ( M i - - M ) 2  
Cols.  n p E  (Mi ~ M)  2 m ~ l  V I - -  m - - 1  

p X Z d 2  
ixj p ~ d 2 ~ j  (n - -1 ) (m- -1 )  V L 

( n - -  1) ( m - -  1) 

Z Z(Xa~ t - - M ~ i ) 2  
e r r o r  Z Z Z (Xh~ 1 ~ M~t ) ~ n m ( p -  1) V~ 

n m ( p - - 1 )  

Tota l  Z E Z (Xa~ t - -  M )  2 n m p  ~ 1 V t 

The first term on the r ight-hand side of equation (43), mnpaJ, 
is tha t  pa r t  of the  interaction sum of squares which is at t r ibutable 
to sampling error. In V~ we have an independent  estimate of the 
sampling variance of the universe. Hence, dividing mnpaJ by its 
appropr ia te  degrees  of freedom and assuming that these two esti- 
mates are equal, we have 

m n p ae 2 
- -  v , ,  (44) 

( m  - -  1)  ( n - -  1)  - -  

o r  

m n p a J  - -  ( m  - -  1)  ( n - -  1)  V s .  ( 45 )  
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Also, as may be seen from Table 3, 

p Y~ ~ d~j 2 = ( n - -  1) (m --  1) V,, (46) 
i i 

n - - 1  
m Z (M~ --  M) ~ --- V~, (47) 

P 

m - - 1  
n '~ .  ( M ~ - - M )  2 - -  V j .  (48) 
"7- P 

(45), (46), (47), and (48) into equa- Substituting from equations 
tion (43) we have 

E l - -  Y~ 
r~  "= ....... . (49)  

/ Vi Vj 

2 ( n - - 1 ) ( m - - 1 )  

It  is obvious that  if the interaction mean sum of squares is equal to 
the within group sum of squares, the correlation between agents is 
zero. It is apparent here, then, that  the Ve of equation (22) in a three- 
component analysis is an estimate of error  variance only when the 
agents are uncorrelated. 

Dividing equation (49) through by V~ and writing the F tests as 

V, V~ Vj 
Fz- -  --, F ~ - - - -  and Fj 

V~ V~ ' "-- ~ ' 

(49) becomes 
F ~ - - I  

r~j ---- .......... (50) 
......... F~ F~ 

2 
,n'  - -  1) ( m - -  1) 

I t  is apparent also from these equations that  a mean interaction 
sum of squares less than the mean error  sum of squares signifies a 
negative correlation between agents. 

The generalization of these expressions to higher-order inter- 
actions should be pursued. I t  may be that  higher-order interactions 
will require the postulation of a "mutual" correlation as a correlation 
between any number of agents. 
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