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An algorithm is presented for constructing from the adjacency matrix
of a digraph the matrix of its simple n-sequences. In this matrix, the 7, j entry,
% # j, gives the number of paths of length # from a point v; to a point v;; the
diagonal entry 4, 7 gives the number of cycles of length n containing »; . The
method is then generalized to networks—that is, digraphs in which some value
is assigned to each line. With this generalized algorithm it is possible, for a
variety of value systems, to calculate the values of the paths and cycles of
length n in a network and to construct its value matrix of simple n-sequences.
The procedures for obtaining the two algorithms make use of properties of a
line digraph—that is, a derived digraph whose points and lines represent the
lines and adjacency of lines of the given digraph.

In research on such topics as cognition, learning, verbal behavior,
communication, sociometry, and social interaction, empirical structures
are often represented by digraphs (directed graphs) in which each point
corresponds to an empirical entity and each directed line corresponds to
an empirical relationship. A problem frequently encountered in working
with digraphs is to find the number of ways one can go from one point to
another, using a given number of lines, without passing through any point
more than once. Thus, for example, in the context of communication research,
one may want to know how many ways a message can go from one person
to another through a network in exactly n steps while satisfying the require-
ment that no person hear the message more than once. Stated in the
terminology of digraph theory, the problem is to find the number of paths
of length n from one point to another. In solving this problem, it is necessary
to deal also with (directed) cycles. We say that a point lies on a cycle of
length n if it is possible to leave a point and then return to it in exactly n
steps without passing through any other point more than once.

It is well known that if a digraph D contains no cycles, the number of
paths of length n from a point v, to a point v; is given by the ¢, j entry of A",
where A is the adjacency matrix of D. But if D has any cycles, the number
of paths of length n cannot be ascertained directly from A”. There have
been several attempts to overcome this limitation. Luce and Perry [4] showed
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how to find the paths of length 3 in any digraph. Ross and Harary [6] extended
the solution to lengths 4, 5, and 6 and presented an algorithm by which
any formula for longer paths could eventually be obtained. However, the
formula for length 6 is quite formidable and there seems to be little likelihood
that a general solution is practicable by their method. Parthasarathy [5]
has offered a solution in principle but its usefulness is limited by the great
amount of calculation required.

In this paper we again raise the problem and present a method for
finding both the number of paths and cycles of any given length through
a series of reasonably simple matrix operations. The crux of the solution
lies in exploiting the properties of line digraphs as developed by Harary
and Norman [1]. We begin with a discussion of line digraphs and their
relevance to the problem, then present a matrix method which capitalizes
on the properties of line digraphs, and conclude by generalizing the method
to networks in which each line has an assigned value. (For a systematic
treatment of digraph theory, see Harary, Norman, and Cartwright [2].)

Digraphs and Line Digraphs

A directed graph (or digraph) is a non-empty set V of points and
a prescribed subset of the set of all ordered pairs of the members of V. Each
of these ordered pairs (v; , v,) is called a line, which we denote by vw; or
by z;; . The first member of the pair is called the first point of the line and
the second member is called the second point. For any digraph we require
that there are no lines whose first and second points are the same and every
pair of points v; and v; has at most one line v,v; .

A (point-line) sequence in a digraph is an alternating sequence of points
and lines which begins and ends with a point and has the property that
each line is preceded by its first point and followed by its second point.
If Lisasequence v; , T;i , Vi, Zit Uk y *** 5 Um 5 Lmn , Un , We may denote L
simply by indicating the order of occurrence of its points: L = v, v;, 0, - -+,
Um s Un = Lijjpevmn - A sequence is a path if all of its points are distinct. A
cycle consists of a path from a point % to a point v together with the line vu.
We say that a sequence is simple if it is either a path or a cycle; all other
sequences are redundant. The length of a sequence is the number of occurrences
of lines in it. An n-sequence is a sequence of length n. We take a point to
be a 0-path and a line to be a 1-path.

The line digraph £(D) of a digraph D is a digraph whose points correspond
to the lines of D and whose lines are given by the rule: If z,; and z,,, are
lines of D, then a line is drawn in £(D) from (the point corresponding to)
Zi; 10 L if in D the second point of z,; is the same as the first point of z..,
(that is, v; = v.,.). Since £(D) is itself a digraph, we may also form its line
digraph £(&(D)). We let £(£(D)) = £°(D), and in general £ (D)) =
£"(D).
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Let L be a k-sequence of D. From the definition of £(D) we see that L
vields a (¢ — 1)-sequence in £(D), a (k — 2)-sequence in £°(D), and in
general, a (k — n)-sequence in £°(D), for n < k. In particular, each k-sequence
of D yields a line in £7(D) and a point in £°(D). These observations are
illustrated by the digraphs shown in Fig. 1. The 2-path Lss of D yields
in £(D) the line from z;, to 2. and in £7(D) the point yss . The 3-cycle
Lyss1 of D yields in £(D) the 2-path—a.5 , %55 , Zs—and in £°(D) the line
from %455 10 Y55 . And the redundant 3-sequence L5, of D yields in £(D)
the 2-path—=2;; , 15 , Ts;—and in £7(D) the line from ys 5 t0 Y152 -

Vi
Vs Vo

Vg V3

£ (D)ecs A * Lo(D)e—e . A —»

X43 Xsq Oxns Xgo X3~ Xgq3 Xsq Xj5 X5z Xp3

Y521 Y521

200 /\\ @ /\

«—< L2(D):e v v;
Y543 Vi54 Y215 4 Yis2 Y523 Y543 Yisa Yas  Yis2  Ys23
\)

Y515

Figure 1

Since there is a one-to-one correspondence between k-sequences of D
and lines in £°7'(D), it is possible to ascertain the number of k-sequences
from £(D). It is important to note that if D has no cycles, then every
k-sequence of D is a k-path. In this case, the k-paths of D correspond uniquely
to the lines of £"7'(D). But if D has any cycles of length less than k, some
of the lines in £°7*(D) will correspond to redundant sequences. Since we
are here interested only in simple sequences, we want a method for obtaining
a modified digraph, analogous to £°7'(D), in which each line corresponds
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to a simple k-sequence of D, and we want to be able to distinguish between
paths and cycles. We now deseribe such a method, leaving until later a
detailed proof of its general applicability.

It is evident that every 2-sequence of a digraph is either a 2-path or a
2-cycle. Let Z be a 2-cycle of D, as for example, the one in Figure 1 containing
v, and v; . Now there is a 2-sequence beginning and ending at each of these
points, each of which is a 2-cycle said to be roofed at the indicated point.
The one, L5 , is rooted at v; and yields in £(D) the line from z; to z,5 .
The other, L,;, , is rooted at », and yields the line from ;5 to x5 . Note
that these two lines form a 2-cycle in £(D). On the other hand, a 2-path in
D yields one line in £(D) that does not lie on a 2-cycle. We see, then, that
each line in £(D) corresponds to a simple 2-sequence of D; it represents
a 2-cycle of D if it lies on a 2-cycle, and it represents a 2-path otherwise.

We want next to construct from £(D) a modified digraph, analogous
to £2(D), whose lines correspond only to simple 3-sequences of D. Since
a 3-sequence is simple if and only if it does not contain a 2-cycle, we may
remove from £(D) all lines representing 2-cycles of D, namely, those lying
on a 2-cycle (without, however, removing the first and second points of
these lines). We denote the resulting digraph by £:(D). Clearly, every line
in £,(D) uniquely corresponds to a 2-path. Let us now form the line digraph
of £,(D) and denote it by £ (D). Each line in £5”(D) corresponds to two
lines in £,(D) that have a point in common, which occurs if and only if the
lines in £,(D) represent two 2-paths of D having a line in common. Two
such paths, taken together, form a 3-path if and only if the first point of
one is different from the last point of the other. Otherwise, they form a
3-cycle. Thus, every line in £{(D) represents a simple 3-sequence of D.

We saw above that rooted 2-cycles of D correspond to lines that lie
on a 2-cycle in £(D). We now show that, in a similar way, each rooted 3-cycle
of D yields a line in £{®(D) that lies on a 3-cycle. Let Z be a 3-cycle of D
containing the points »; , v; , and v, . Clearly, there are three 2-paths of D
of the form: L;;x , Ljx: , and Ly;; - Now, L and Ly, , taken together, form
a 3-cycle rooted at v; . They have the line ,; in common and yield in £ (D)
a line from y.;; to Y . Similarly, L;;, and Ly,; form a 3-cycle rooted at v;
and yield a line from y,;; t0 y.:; . Finally, Ly.; and L,;, form a 3-cycle rooted
at v, and yield a line from y,:; to y:;x . It is clear, then, that each 3-cycle
of D yields three lines in £5” (D) which form a 3-cycle and each line of this
3-cycle represents a rooted 3-cycle of D. Thus, the lines in £5” (D) provide
the desired information concerning the simple 3-sequences of D; each line
lying on a 3-cycle represents a rooted 3-cycle of D and every other line
corresponds to a 3-path.

These observations are illustrated in Fig. 1. Clearly, there is a one-to-one
correspondence between the 2-paths of D and the lines in £,(D). There is,
furthermore, a one-to-one correspondence between the simple 3-sequences
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of D and the lines in £ (D). Finally, we note that in £{” (D) each line not
lying on a 3-cycle corresponds to a 3-path of D whereas each line lying on
a 3-cycle represents a rooted 3-cycle.

The procedure just described can easily be generalized. We take as
the inductive hypothesis that there is a one-to-one correspondence between
the simple n-sequences of D and the lines of £{"(D). Let £ V(D) be
the subgraph of £";" (D) obtained by removing the lines of all its n-cycles.
Then each line in £ (D) corresponds to an n-path of D. Let

£7(D) = &(£."7"(D)).

Now each line in £ (D) corresponds to two n-paths of D having n — 1
lines in common. Clearly, these two paths together form a simple (n + 1)-
sequence of D. If the first point of one of these paths is the same as the
last point of the other, they combine o form an (n + 1)-cycle Z; and Z
contains n + 1 rooted (n + 1)-cycles, each of which yields a line lying on
an (n -+ 1)-cycle in £ (D). Any line in £ (D) not lying on an (n + 1)-cycle
must, therefore, correspond to an (n 4 1)-path of D.

We conclude, then, that the lines of £*;"”(D) provide the desired
information concerning simple k-sequences of D. That is, each line lying
on a k-cycle uniquely corresponds to a rooted k-cycle of D, and every other
line uniquely corresponds to a k-path of D. In the remainder of this paper
we show how this information may be obtained by matrix methods.

Maltriz Operations

Let D be a digraph whose points are labeled v, , v, , - - - , v, . The adjacency
matriz of D, A = A(D), is a p X p matrix whose entries are a,; = 1 if there
is a line v, in D and a;; = 0 otherwise. The mairiz of stmple n-sequences
of D, 8, = 8.(D), is also a p X p matrix whose entry s{? is the number of
distinet n-paths from v; to »; when ¢ # j, and whose entry s!7’ is the number
of n-cycles rooted at v; . Clearly, S, = A. Given A, our problem is to find
a series of matrix operations which will result in S,,2 < n < p.

In order to solve this problem we introduce the notion of the adjacency
of two sequences of a digraph. If L is a sequence of I, then the first point
of L will be denoted a(L), and the last point will be denoted w(L). Let L;
and L; be two sequences of D. We say that L, is n-adjacent to L; if there is
an n-path L, which is a subpath of both L; and L; and which satisfies the
conditions: w(L,) = w(l,) and a(L,) = a(L;). Now if L, is a simple n-sequence,
then clearly L; = L, and L, is a subpath of L; containing its first n lines.
Similarly, if L; is a simple n-sequence, then L; = L, and L; is a subpath
of L; consisting of its last n lines. We saw above that there is a line from
L; to L; in £ (D) if and only if L; and L; are n-paths of D having n — 1
lines in common. In the present terminology, this means that each line
from L, to L; in £ (D) corresponds to two n-paths L; and L; of D such that
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L; is (n — 1)-adjacent to L; . In the following discussion, we are concerned
with the adjacency of the simple sequences of a digraph D.

Let @ be a square matrix whose rows and columns correspond to the
simple n-sequences in D, foralln = 0, 1, - - - , p. We assume an ordering 6 of
all simple sequences, and hence of the rows and columns of @, which is
subject only to the restriction that every n-sequence precedes every
(n 4+ 1)-sequence. By 6, we shall mean 6 restricted to the simple n-sequences.
We denote by A,. the submatrix of @ whose rows correspond to simple
m-sequences and whose columns correspond to simple n-sequences. Clearly,
@ can be expressed in terms of its submatrices as follows:

_Aoo A01 e AOn e A Op—l

AIO All Aln Alp
a = AmO Aml e Amn et Amp )
—Az)(] Apl Azm AW_

mn)
i

The entries a7 of A,., are given by the rules

m < n and L; is m-adjacent to L; ,
m > n and L, is n-adjacent to L; ,
=lif<m =mn,n > 0, and L, and L, are n-paths such that
L; is (n — 1)-adjacent to L; ,
m = n = 0 and the line v,9; is in D;

(mn)
i

a

otherwise, a{™ = 0.

Note that for a given ordering 6, the submatrix Ay, is the adjacency
matrix of D, and the entire matrix @ is well defined. We now show how the
matrix S, can be obtained from certain submatrices of @, leaving until
later the actual construction of @ itself.

Consider the submatrix A,, for n > 0. Its ¢th row corresponds to the
point »; in D, its kth column corresponds to the simple n-sequence L, , and
the entry afy” = 1 if and only if »; = «(L:). Likewise in the submatrix
A, al?® = 1if and only if w(L,) = v; . Thus, in the product 4,,4, the
term

afal = 1
if and only if L, is a simple n-sequence from »; to v; . If v; = v, , L, is an
n-cycle rooted at v; ; otherwise L; is an n-path. Since the matrix @ is defined
so that all the simple n-sequences in D are represented in the columns of 4,
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and the rows of 4., , we see immediately that
T afal® = m
k

if and only if there are m simple n-sequences from v, to v; (i.e., s
This essentially proves our first theorem.

TaeorEM 1. For all n > 0, the matriz of stmple n-sequences is given
by S, = Aol -

{n)
iq

= m).

v1 000014 i000000 11100000 111000 0
v2 10100 0110000 00010000 0001410 1

: 0 : s : :

V3 AOO 0000 A010000000 AOZOOOOOOOO A03000000 A040
v4 6000 0001000 00000000 000000 0
A 11010 0000111 000014144 0000014 0
L15 00001 0000111 11100000 111000 0
L21 10000 1000000 00010000 0004110 i
L23 00100 0000000 00000000 000000 0
L43 A10:00100 Aii:OOOOOOO A12:00000000 A13:000000 A14:0
L51 10000 1000000 00001000 000000 0
L52 01000 0110000 00000110 000001 0
L54 00010 0001000 00000001 000000 [
L151 10000 0000100 000000060 000000 0
L152 01000 0000010 00000110 itooo00 0
a = L154 00010 00000014 00000001 0010060 0
L215 006001 1000000 01100000 000110 i
L515 AZO:OOOOI A21:1000000 AZZ:OOOOOOOO A23:000000 A24:0
L521 io0o000 0ioo0000 00010000 000001 0
L523 004100 00100060 000000060 0000090 0
L543 00100 00010600 000060000 000000 0
L1521 10000 0100000 00000100 000000 0
L1523 00100 0010000 00000010 000000 0
L1543 004100 0001000 00000001 000000 0
L2152 A30:01000 A31:0000010 A32:01000000 A33:000000 A34:0
1,2154 00010 0000001 00100000 00i000 1
L5215 00001 1000000 00010000 000000 0
B : H 00600 : 0010 H

L21543 A40.00100 AM.OOOiOOO A42000 1 A430 10060 A440

Ficure 2
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Fig. 2 gives the matrix @ for the digraph D of Fig. 1. For convenience,
each row is labeled so as to identify the corresponding simple sequence
and, of course, the kth row and the kth column correspond to the same
simple sequence. Thus, for example, the entry af}” = 1 indicates that v, is
the first point of L,,s and the entry a{2” = 1 means that v; is the last point
of Ly .

Upon multiplying the appropriate submatrices of Fig. 2, we obtain the
following matrices which give the number of n-paths and n-cycles, for each n,
in the digraph of Fig. 1.

11010
0000 1
Apdy =8, =10 0 0 0 0},
00000
10 2 0 1]
1 0 2 0 0]
01010
ApsAz = 853=10 0 0 0 0,
00000
6 0 0 0 1]
0 0 0 0 0]
00100
ApAy =8, =10 0 0 0 O
0000 O
00 0 0 0]

The only nonzero entries on the main diagonal of S, are 87 = s{2 = 1.

This tells us that D has only one 2-cycle and that it contains v, and v, .
The entry s’ = 2 means that there are two 2-paths from v; to v; , and
mspection of D shows these to be L and Ly . In S: the entries on the
main diagonal indicate that D has one 3-cycle containing v, , v, , and vs .
The remaining nonzero entries give the number of 3-paths from v; to v; .
Finally, 8, reveals that D has only one 4-path and that it goes from v, to v, .

We have seen that the matrix S, can be obtained from the submatrices
Ay, and 4, of @. Before describing how the entire matrix @ can be constructed
from the adjacency matrix 4, , we need to establish a number of structural
relations among the submatrices of G.
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We begin by considering A,, and 4, .., . The next theorem, concerning
the adjacency of simple sequences in a digraph, shows that the unit entries
of these two submatrices are related in a particular way.

TuroreM 2. In any digraph, the number of ordered pairs of n-paths
such that the first is (n — 1)-adjacent to the second is equal to the number of
ordered pairs consisting of a simple n-sequence followed by a simple (n + 1)-
sequence such that the first is n-adjacent o the second.

Proor. Let L; and L; be any two n-paths such that L, is (n — 1)-
adjacent to L; . Clearly, there is an (n -+ 1)-sequence, L, , which begins
at a{L;) and eontains the line from «(L;) to (L, and the path L; . Since
all points of L; and of L; are distinet, L, is simple. Moreover, there is just
one {n + 1)-sequence that contains both L; and L; . Now since a(L;) = a(L,)
and L, contains L, , it follows that L, is n-adjacent to L, . Thus, for each
ordered pair, L; and L, , there is a unique ordered pair, L; and L, , such
that L, is n-adjacent to L, .

Now assume that there exists an n-path L; which is n-adjacent to the
simple (n + 1)-sequence L, . Let L, be the first line of L, and let L; be the
subsequence of L, from (L) to w(L,). Since the points of L, , with the
possible exeeption of «{L,) and «{L,), are distinct, L; is an n-path. Moreover,
L; and L; have a common (n — 1-path L, . Since af(l,) = oa(L;)
and w(L,) = w(L;), it follows that L, is (n — 1)-adjacent to L; . There can
be only one such pair, L; and L; , since any simple (» + 1)-sequence contains
exactly one pair of n-paths. O

Recall that (by definition) the entry a!{” = 1 indicates that the n-path
L; is (n — 1)-adjacent to the n-path L, , and the entry a{7"*" = 1 indicates
that the simple n-sequence L, is n-adjacent to the simple (n -+ 1)-sequence L; .
The following result thus follows immediately from Theorem 2.

CoroLLARY 2a. The number of unit eniries in A,, equals the number
of unit entries in A, .41 .

It is readily apparent that for each simple (n + 1)-sequence in D there
18 exactly one n-path that is n-adjacent to it. In other words, each column
in A, ... contains exactly one unit entry, and we may conclude that the
number of columns in A4, ..; equals the number of unit entries in 4., . We
see, then, that there is a one-to-one correspondence between the unit entries
in A,. and the simple (n + 1)-sequences of D. Hence any ordering, 6., ,
of one of these induces an ordering of the other.

Let us assume now that the r X r matrix A4,, is known, for some n.
By this assumption, there is an ordering 8, of the simple n-sequences of D
and hence of the corresponding rows and columns of @. Let us arbitrarily
order the unit entries of 4,, by 6,.; . The submatrix 4, .., can then be
obtained from 4., in the following way.

Construction 1. If the kth unit entry, relative to 8,.., , of 4., occurs
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in its ¢th row, then 4, ., is obtained by letting its kth column be the » X 1
vector which has 1 in its ith place and 0’s elsewhere.

Clearly this construction satisfies the definition of A, .., , for its rows
and columns are ordered by 4, and 6., respectively and there is a 1 in the
1, k entry of the constructed matrix if and only if the n-path L, is n-adjacent
to the simple (n + 1)-sequence L, .

The matrix 4.,,. can be constructed from A4,, in a similar way. By
an argument analogous to that in the proof of Theorem 2 it can be shown
that the number of unit entries in A4,, is the same as the number of unit
entries in 4,,,,, and there is exactly one unit entry in each row of 4, ., .
We may, then, employ the same ordering 4,.; as above and construct 4,,; ,
from A4,, .

Construction 2. If the kth unit entry, relative to 6,., , of A,, occurs in
its jth column, then 4,., , is obtained by letting its kth row be the 1 X r
vector which has 1 in its jth place and 0’s elsewhere.

By this construction, there is a 1 in the k, j entry of the obtained matrix
if and only if the simple (n + 1)-sequence L, is n-adjacent to the n-path L, .
Thus, the definition of A,., ., is satisfied.

(The submatrices under consideration contain information relevant
to our earlier discussion of line digraphs. The submatrix A4,, contains the
adjacency matrix of £{” (D), as can be seen by comparing Figs. 1 and 2.
And if the transpose of a matrix M is denoted M’, then A,, 4+ 4, is obtained
from the incidence matrix of D by replacing every nonzero entry by -+1.
Likewise, A, » + Al ... contains the incidence matrix of £8(D) as a
submatrix.)

These two constructions may be illustrated by Fig. 2. The unif entry
as2” indicates that L,s, is I-adjacent to L, . We let 8, be the ordering of
the unit entries of A4,, obtained in the following way. Start with the first
row and read from left to right, noting the order of occurrence of unit entries;
go to the second row and read from left to right, and continue to note the
order of occurrence of unit entries; continue this procedure through the
last row. We see that al3® is the first unit entry. Thus, the first column
of Ay has a 1 in its second place and zeros elsewhere. Similarly, the first
row of A,, has a 1 in its sixth place and zeros elsewhere. The unit entry
a¥® means that L,;, is 2-adjacent to a simple 3-sequence, namely, Ls., .
And the entry a{s” means that L,;,, is 2-adjacent to a 2-path, namely, L, .

We next consider how the matrix 4., is related to 4, ,_, and 4,_,.. .
By definition, the rows and columns of A4,, correspond to the simple
n-sequences in D, and a7 = 1 if and only if L, and L; are n-paths and L,
is (n — 1)-adjacent to L; . In the product 4, .1 4.1 . , the rows and eolumns
also correspond to the simple n-sequences in D, and each 4, j entry is given by

(n,n—=1) _(n—1,n)
2 alm Ve,
e
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{n,n~1)

Now, a{7"Va;™*™ = 1if and only if L, is an (n — 1)-path such that L;
is (n — 1)-adjacent to L, and L, is (n — 1)-adjacent to L; , or equivalently
L; is (n — 1)-adjacent to L; . Since for any pair, L, and L, , there can be
only one L, which satisfies the above conditions, every entry in A, a—ydn-1 .
is either 0 or 1. Thus the only difference between A, ,.-14.-1.. and 4., is
that unit entries in the former represent the (n — 1)-adjacency of two simple
n-sequences whereas in the latter they represent the (n — 1)-adjacency of
two n-paths. Hence if in 4, ,., and 4,_, » we change to 0 all the unit entries
involving n-cycles and denote the resulting matrices by B, .- and Ba_y . ,
then 4., is obtained by forming the product B, .—1Bz-; » - These observations
constitute a proof of the next theorem. (Since the unit entries in B, .-,
and B,_,,. represent only n-paths, use of these matrices has the effect of
removing n-cyeles from £7;7(D).)
THEOREM 3. For all n 2> 1, the mailriz A, is the product

Aﬂﬂ = Bﬂ.n—lBﬂ.«l K3

The next theorem shows that B, .., and B,_;, can be obtained by
matrix operations which identify the unit entries involving n-cycles in A, a1
and 4,-,,. . We rely on two matrix operations not previously used: (a) the
transpose of M, denoted M’, and (b) the element-wise product M X N,
where both M and N have r rows and ¢ columns and the 7, jentry of M X N
is given by m,; - n; .

Since our definition of a digraph precludes 1-cycles, it is immediate
that 4,0 = Bioand 4, = By, .

THEOREM 4. For all n > 2, the malrices B, ,_, and B,_,, are given
by the equations

Bn,n-l = An,n-l - [An,n~l X (An—l.OAOn)']:
and

Bn-—l,n = An-'l‘n - {An—l,n X (AnOAO,n—-l)’]‘

Proor. Counsider first the matrix (4, ;.d0.)’, whose entries are

given by
(E a;:—l.ﬂ)aig.n) /.

Now, a{*™® = 1 if and only if the simple (n — 1)-sequence L; is 0-adjacent
to the O-sequence L, , that is w(L;) = L, . And a{I"™ = 1 if and only if L,
is 0-adjacent to the simple n-sequence L; , that is, a(l;) = L, . Clearly,
there can be at most one point L, satisfying both these conditions. Hence,
every entry in (A,—, 0Ac.)’ is either 0 or 1, and each unit entry, 1, j, indicates
that a(L;) = wo(L;). By definition, ¢{;™” = 1 if and only if L. is
(n — 1)-adjacent to L, , that is, o(L;) = w(l;). Since the transpose
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of (4,-1.04,,) has the same number of rows and columns as 4,-, . , we may
form the element-wise product of these matrices to obtain the matrix given
by the bracketed term in the first equation of the theorem. Now, the ¢, j
entry of this matrix is 1 if and only if o(L;) = w(l;) and w(l.) = (L))
or, equivalently, a(L;) = o(L,). Since L; is a simple n-sequence, it follows
that L; is an n-cycle. Thus, each ¢, j unit entry in this matrix corresponds
to an n-cycle L; that is (n — 1)-adjacent to an (n — 1)-sequence L; . Upon
subtracting this matrix from A4, .-, , we obtain a matrix satisfying the
definition of B, ., .

A similar argument establishes the second equation of the theorem. O

Up to this point we have considered how the submatrices 4,, , which
lie on the main diagonal of @, are related to submatrices immediately adjacent
to the main diagonal. We now show that any submatrix 4,.. , m = n, is
related in a particular way to certain other submatrices of @. The next
two lemmas concerning the adjacency of sequences in a digraph provide a
basis for establishing these relationships.

Lemma Y. Let Lo, Ly, -+ , L, be a series of sequences such that L, is
an (m -+ e)-sequence, for all e = 0, 1, --- | r. If L, is (m <+ e)-adjacent to
L,sy,foralle =0,1, ---,r — 1, then L, is m-adjacent to L, .

Proor. If L, is m-adjacent to L, and L, is (m + 1)-adjacent to L, ,
then L; must be an (m -+ 1)-path containing L, . But since L, is contained
in L, and a(Ly) = a(L,) = a(l,), we see that L, is m-adjacent to L, . Now,
if L, is m-adjacent to L,_; and L,_, is (m + r — 1)-adjacent to L, , then L,_,
must be an (m + r — 1)-path contained in L. Since

a(Ly) = a(L,_l) = a(L,),

it follows that L, is m-adjacent to L, . O

The next lemma is in the nature of a converse to Lemma 1.

LemMa 2. Let L, be an m-path and L, o stmple n-sequence. If Ly is
m-adjacent to L, , then there exists a unigue series of sequences Lo , Ly , -+« , L,
such that L, is (m + e)-adjacent to L., , foralle = 0,1, -+ ,r — 1,

Proor. Foranye=0,1, .-+ ,rlet L,., be the (m -+ ¢)-subpath of L,
for which «(L,) = a(L,). Since L, is contained in L,,, and o(L,) = a(L,.,),
L, is (m + e)-adjacent to L,,, . Thus the paths L, form a series Ly, L, , - - -,
L, . That this series is unique follows from the fact that L, is the
only (m -+ e)-subpath of L, for which a(L,) = a(L,). 1

TrEOREM 5. For any m < n,

(1) Amu = Am,m+lAm+l‘m+2 M An+l,nx
(2) Anm = An‘n—-lAn—l.n—Z M Am+1.m'

Proor. The entries of the matrix A, ..idmirmee - 4.y, are
composed of products of the form a{f ™ Vaj;*t™*® ... g™ | Clearly
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this product must be 0 or 1. If it equals 1, then there is an n-sequence L,
in D such that L, is m-adjacent to the (m 4 1)-sequence L, . Likewise,
L, is (m 4 1)-adjacent to the (m -+ 2)-sequence in L, . This series continues
until we come to the (n — 1)-sequence L, which is (m + n — 1)-adjacent
to the simple n-sequence L; . By Lemma 1, L; is m-adjacent to L; . By
Lemma, 2, the series described in the above product is unique. Thus the ¢, j
entry of A, mirAmss mez =+ * Ansr niseither O or 1, and if it is 1, then a{f™ = 1.

If al7™ = 1, then L, is m-adjacent to L; . By Lemma 2 we may construct
aseriesL, ,L, ,L,,---,L,, -+, L;such that L, is (m 4 e)-adjacent to
L.y, . Thus a{7'™* Pzt ... glr"t'™ = 1 and since this series is unique
the 7, jentry of A, mi1Amet mea = Aucimis 1.

This establishes the validity of statement (1) of the theorem. A similar
argument holds for statement (2). OO

It will be recalled that Theorem 1 shows that the matrix S, can be
obtained from the submatrices 4., and 4,, . The following corollary of
Theorem 5 therefore provides information useful in finding S, .

COROLLARY 5a. Foranyn = 2,3, -+, p,

(1) AOn = AO.n—lAn—l,ny
(2) A, = An.n—iAn—l.m
Proof. By Theorem 5,
AOn = AOIAIZ e An—2.n—1An~l,n'
But
Aphy, - An—-2,n—l = Ao,n-1-
This establishes (1), and a similar argument establishes (2). O
We summarize the above material and the constructions involved by
the following algorithm.
Algorithm 1. Let D be a digraph and 6, be an arbitrary ordering of

the simple n-sequences of D, Then the matrix S, of simple n-sequences of
D, for n > 0, can be obtained by the following procedure.

1. Order the points of D by 6, and construet A .
2. Order the unit entries of 4., by 6, and construct 4, and 44, .
3. Construct A,; by the formula

4, = A10A01-

Steps 4-7 give a recursive procedure for finding 4..,n = 2,3, --- , p.
4. Order the unit entries of 4, ., by 6, and construct 4,_, ,and 4, ., .
5. Construct 4,, and A,, by the formulas

AOn = AO.n-—lAn—l,ny
Ay = An,n-lAn—l,o-
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6. Construct B,_, , and B, ,_, by the formulas
Boin = Apyn — [Auern X (Auodon-)'],
B = A,y — [Anasr X (Aaer0den)].
7. Construct 4,, by the formula
A = By p-rBai.n

8. If A,, = [0] or n = p, terminate the procedure. Otherwise, return
to step 4.
9. Construct S, from the results of step 5 by the formula

Sn = AOnAnO

Clearly, Step 1 of this algorithm is simply the customary way of
constructing the adjacency matrix of a digraph. Steps 2 and 4 are justified
by Corollary 2a, together with Constructions 1 and 2. Steps 3 and 7 make
use of Theorem 3. Step 5 is justified by Corollary 5a. Step 6 results from
Theorem 4. And, finally, Step 9 is given by Theorem 1.

As noted above, the matrix @ of Figure 2 is obtained from the digraph
of Fig. 1. In constructing @, we have used a standard procedure for the
ordering 6,., of the unit entries of 4,, , for all n > 0, as follows. Start with
the first row and read from left to right, noting the order of occurrences of
unit entries; go to the second row and read from left to right and continue
to note the order of occurrence of unit entries; continue similarly through
the last row. For completeness, we have presented all submatrices of @,
but not all of these are required for finding the matrix S, of simple n-sequences
of D. In fact, the algorithm yields only submatrices of @ lying on the first
row (that is, 4o.), the first column (4,,), the main diagonal (4..), and the
diagonals adjacent to the main diagonal (4, .«; and 4,1 ).

In using the algorithm to obtain 8, for even moderately large digraphs,
Step 6 involves considerable calculation. Our final theorem shows that
under certain conditions this step may be eliminated.

TueoreM 6. If the number of nonzero rows in Ao, ts less than n, then

Ann = An,n—lAn—l.n'

Proor. The entries of A,, indicate which points in D are the first
points of the simple n-sequences corresponding to the columns of A4,, . If
there is a k-cycle in D for k > n, then there must be at least n points which
are the first points of simple n-sequences. Thus if the number of nonzero
rows is less than =, there can be no k-cycles in D for all £ > =n.
Hence, B, .1 = Aq.-1and B, . = A, ., and the equation of the theorem
follows from Theorem 3. [J



DORWIN CARTWRIGHT AND TERRY C. GLEASON 193

Some Related Matrices

Once the matrix S, of simple n-sequences of a digraph is obtained for
each n, it is relatively easy to construct other useful matrices. We now briefly
discuss some of these.

The matriz of simple sequences of a digraph D, S(D), is a p X p matrix
whose entry s,; is the number of distinct paths (of any length) in D from
v; to v; when 7 # 5, and whose entry s,; is the number of cycles containing v; .
Clearly, then, we have

p—1

2= 8. = 8(D).
n=}

The distance from v, to v; , denoted d,; , is the length of a shortest path
from v; to v; . If there is no path from »; to v; , we let d;; = «. The distance
matriz of D, denoted N (D), is a p X p matrix whose entries are the distances
d;; . The following statements are readily established.

1. Every diagonal entry d;; of N(D) is 0.

(n}

2. d; = o ifthereisnoentry siY #0in 8,,forn <p — 1L
3. Otherwise, d;; is the smallest value of n such that s{? = 0.

To construct the distance matrix N (D) for the digraph of Fig. 1, we
begin by entering 0’s on the main diagonal. Next, we transfer the unit entries
in Ao to N(D). Then we enter 2’s in all empty locations of N(D) whenever
there is a nonzero entry in S, . The next step is to enter 3’s in all empty
locations whenever there is a nonzero entry in S; . Since each nondiagonal
entry in 8, is 0, we complete N(D) by entering « in the remaining empty
locations. The resulting matrix is

0 2 3 2 1
1 0 1 3 2
ND)=|o @ 0 o ol
@ o 1 0 e
11 1 2 1 0]

A detour from v, to v; is a path of maximum length from »; to v; . The
detour matriz of D is a p X p matrix E(D) = [e;;], where ¢;; = o« if there
is no path from »; to »; and otherwise e;; is the length of a detour from v, to v, .
To construct E(D) we use the following immediate observations.

1. Every diagonal entry e, is 0.

2. €;; = o if thereisnoentry s = 0in S,,forn <p — L.

3. Otherwise, ¢;; is the maximum integer n such that s = 0.
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A Generalization of the Method

An (irreflexive) network N is a digraph together with an assignment
of some value to each of its lines. Such a value, for example, may be
a probability, an integer, or a positive or negative sign. Thus, the value of
a line may represent the probability of going directly from one state
to another, the cost of traveling directly from one place to another, or the
signed quality of affection of one person for another. (For a discussion of
various interpretations of networks, see Harary, Norman, and Cartwright
([2], ch. 12 and 13).) Given a network with a particular value system for
its lines, the question arises as to how to assign values to its sequences.

If, for example, the values assigned to the lines of a network are
probabilities, it is customary to define the value of a sequence from v, to v;
as the product of the values of its lines, which if the values are independent
is the probability of going from »; to v; via this sequence. And if there are
several sequences from v; to v; , we add the values of these sequences to
obtain the probability of going from v; to v; by any of them.

Or, if the values of a network represent costs, the value of a sequence
would be obtained by summing the values of its lines to give the cost of
traveling along the entire sequence. Now, if there were several sequences
from v; to v; and one wanted to know the minimum cost of traveling from
v; to v; , one would find the minimum value of all these sequences.

In this section, we present a generalization of Theorem 1 which, for
a variety of value systems, allows one to determine some function of the
values of all simple n-sequences in a network.

We begin by presenting a generalized arithmetic, whose specific meaning
will depend upon the value system of the network in question. For any
network there must be a rule of combination whereby the lines of a sequence
are used to form the value of a sequence. We call this generalized multipli-
catzon and denote it by ©. Thus, if ¢ and ¢’ are the values on the lines of
a 2-sequence, {©O! would be the value of the sequence itself. Likewise, if
there are several sequences between two points, there must be some way
of assigning a value which represents the set of all such sequences. Such
an assignment is called generalized addition and is denoted by . Thus,
if ¢t and ¢’ are the values of two sequences from v; to v; , their generalized
sum is ¢ P ¢/,

We assume that these operations satisfy the following conditions.
First, they are associative and commutative. Second, there is an identity
element 1, with respect to generalized multiplication, which follows the
rule

) tol=1

Third, there is an identity element 0, with respect to generalized addition,
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which follows the rule

@ 10 =t
Finally, we have the condition
) t©0=0.

In using this arithmetic, we shall make use of the generalized product of
two matrices A ©B. By A ©B we shall mean the matrix whose 7, j entry is
given by the expression

(4) (auObu) (‘D (an@sz) @ o0 @ (airebri) = E::; aikebki-

The value matriz of a network N is the matrix, M(N) = M, whose
entry m,; is the value of the line from v; to v; if such a line is in N and 0
otherwise. We illustrate the use of our generalized arithmetic for two rather
different value systems. Consider first a network whose values are costs.
In this case, the entry m;; of the value matrix is the cost of traveling directly
from »; to »; if this is possible. If this is not possible, m;; = . Suppose
that we want to find the minimum cost of traveling from v, to v; in n steps.
Using a procedure introduced by Hasse [3], we use the operation of ordinary
addition for generalized multiplication, and we use the procedure of taking
the minimum value of a set of values for generalized addition. Thus, in this
specification of our generalized arithmetic, the identity element ( is
and 1 is 0. Now if we form the product M © M = M'®, we get

mi = (mi; © M) D (M2 © M) D -+ - D (my, O myy)
= min (m“ + Mmy; , Mie + Maj , ", My + mvi)y

which gives the minimum cost of traveling from v; to »; in 2 steps, and in
general M'™ gives the minimum costs for n steps. As a second example,
consider a network whose values are probabilities. Now we use ordinary
multiplication for ©, ordinary addition for &, and we use 0 and 1 for the
identity elements 0 and 1, respectively. With these operations mi? gives
the probability of going from »; to v; by any sequence of length n. It is clear
that various specifications of our generalized arithmetic may be employed,
depending upon the nature of the value system of a network.

We continue to develop our generalization by introducing three new
matrices. First, we have the value matriz of simple n-sequences M(S,) whose , §
entries are the generalized sums of the values of all the simple n-sequences
from v; tov; in N. Second F, , 1 < n < p, is a square matrix whose diagonal
entries {3 are the values of the simple n-sequences L , relative to the ordering
8. , and whose off-diagonal entries /{7’ are 0. Finally, G, , 1 < n < p, is a
square matrix whose diagonal entries g7 are the values of the last line of
the simple n-sequences L, , relative to the ordering 6, , and whose entries

giP are 0.
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If we are given the value matrix M for a network N, we can readily
obtain the adjacency matrix A(N) by changing every 0 to 0 and letting
all other values equal 1. We can then construct the matrix @ for the underlying
digraph of the network N. In the following discussion, we need to-modify @
as follows: Let A,, be the matrix obtained from A,, by replacing each
oceurrence of 0 by 0 and each occurrence of 1 by 1. The importance of this
modification will soon be apparent.

Now suppose that F, and G, are known and let

(5) Hﬂ = Atﬂn O Gﬂ A
By the definition of ® we have
(6) h('rg) _ Z a(nn) (n)-

But by the definition of G, there is only one value of k such that ¢{ > 0.
Hence

(7) hf;t) — a(nn) ® g(")-

If ¢33V = 1, then A = ¢{» . Consequently the last line of the (n + 1)-
sequence formed by the n-paths L; and L, has the value g,;; . Clearly if
@ = 0, then L, is not (n — 1)-adjacent to L; , and the entry A = (
reflects this fact.

Now let
® T..=F,0H,.
Again applying the definition of ® we have
(9) t:'?”) — Z (n) 10 k(”).
13

By definition of F, there is only one value of k such that ¥ = . Hence
by (9) and (7) we get,
1 = % © A

— (n) o a('nn) O g(n).
We have seen before that g7’ is the value of the last line of the n-path L;
and hence the value of the last line of the simple (n 4 1)-sequence formed
by L; and L; . Likewise, f{3 is the value of the n-path of L, and hence the
value of the first n lines of the larger sequence. Thus the value of the simple
(n + 1)-sequence corresponding to ¢{}” = 1 is the product
(n) O af;m) O g(n) — (n) @ 1 @ g(n)

— f(n) {n)

(10)

11)

Consequently we see that T, is a kind of generalization of 4,, .
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These results give us a means of constructing the matrices F,.: and
G,y from T, and H, . Assume that F, , G, , and A4,, are known. From these
matrices we can calculate T,, and H, according to (5) and (8). Once these
matrices are obtained, we then order their non-0 entries by 8,.; . Then F,,,
may be constructed from T,, in the following way.

Construction 3. If the kth non-0 entry of T,, , relative to .., , is ¢,
then F,,, is obtained by letting its kth row have the value ¢ in its kth place
and 0 elsewhere.

The matrix G,,, may be constructed from H, by a similar procedure,
as follows.

Construction 4. If the kth non-0 entry of H, , relative to .. , is ¢,
then G,., is obtained by letting its kth row have the value { in its &th place
and 0 elsewhere.

We are now able to state our generalization of Theorem 1.

TaeoreMm 7. For any n > 2, the value mairix of simple n-sequences is
given by

M(S,) = A0 O F, O 4, -
Proor. By definition, the 4, j entry of Ao, © F, is
(On) {n)
; oK.

Since f{ = 0 for all k = j, the above expression becomes simply

(On) O f(”)~
Thus, 4o, © F, © A, has as its 4, j entry

Z a(On) (ﬂ) O a(n())’

which may be rewritten

Zf(n) (On) @ a(nl))

Clearly,

i 0 a” = i
if and only if there is a simple n-sequence from v; to »; in N (Theorem 1).
Hence, the 7, § entry of

AOnOFnoAnD

is the generalized sum of the values of the simple n-sequences from v, to v,
inN. O
In conclusion, we present an algorithm for finding the value matrix
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of simple n-sequences of a network. This algorithm is stated in terms of our
generalized arithmetic. In specific applications one must, of course, choose
appropriate interpretations for the operations of © and @ and for the
identity elements O and 1. This algorithm makes use of certain steps of
Algorithm 1 and employs both binary matrices and value matrices.

Algorithm 2. Let N be a network and 6, be an arbitrary ordering of
the simple n-sequences of N. Then the value matrix M(S,) of simple
n-sequences of N, for n > 0, can be obtained by the following procedure.

1. Order the points of N by 6, and construct A, and M.

2. Use step 2 of Algorithm 1.

2a. Order the non-0 entries of M by 6, and construct F, using

Construction 3. Note that F, = G, .

3. Use step 3 of Algorithm 1.

Steps 3a~7 give a recursive procedure for finding 4,,,7 = 2,3, ---, p.

3a. Convert 4,y ooy 30 Apy ey ©

3b. Construct H,., by the formula

Hn—l = An-l,n—-l @ Gn*l .
3e. Construct T, »-. by the formula
Tn—-l.n—l == Fn—l O} Hn«l .

4. Use step 4 of Algorithm 1.

4a. Order the non-0 entries of T\_; ._; by 6, and construct F, using
Construction 3.

4b. Order the non-{ entries of H,_, by 6, and construet G, using
Construction 4.

5. Use step 5 of Algorithm 1.

5a. Convert 4o, and 4, to Ao, and A,, .

6. Use step 6 of Algorithm 1.

7. Use step 7 of Algorithm 1.

8. If A,. = [0] or n = p, terminate the procedure. Otherwise, return
to step 3a.

9. Construct M (8,) from the results of steps 5a and 4a by the formula

M@S,) = 40, OF, © A, .

Discussion

The algorithms presented here are useful in obtaining information
about a variety of structural properties that are based on nonredundant
sequences. The matrix 8, of simple n-sequences of D, which is obtained
by Algorithm 1, gives the number of n-paths from v; to v; and the number
of n-cycles containing v; . Of special interest are the matrices S,-; and S, ,
where p is the number of points in D, for one can ascertain from these matrices
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respectively the number of complete paths and the number of complete
cycles in D. From the matrices S, , for n < p, one can construct the matrix S
of simple sequences which gives the number of paths and cycles of any
length in D, the distance matrix which gives the length of a shortest path
from »; to »; , and the detour matrix which gives the length of a longest
path from »; to v; . One can also ascertain the length of a shortest cycle
and of a longest cycle in D.

Algorithm 2 is applicable when values are associated with the lines of
a digraph. If these values are probabilities, the matrix M (S,), when obtained
by use of the appropriate arithmetic, gives the probability of going from
v; to v; along a path of length n. And if n is the distance from v, to v; , the
i, j entry is the probability of going from v; to v; in the smallest possible
number of steps. When the values of lines are costs, one can obtain a matrix
M(8,) whose 7, j entry gives the cost of a cheapest simple sequence of length
n from v, to »; . From the matrices M (8,), for n < p, it is possible to ascertain
the least cost of any path from »; to »; and of any cycle containing », . With
suitable modifications, similar information can be obtained eoncerning
paths and cyeles of maximal cost. Finally, we note that Algorithm 2 can be
used when positive or negative signs are assigned to lines. In this case, the
i, j entry of M(S,) indicates the number of positive and of negative paths
of length n from v; to »; . Such information is useful in the study of the path
balance of a structure as developed by Harary, Norman, and Cartwright [2].

The major practical limitation of these algorithms lies in the fact that
the rows and columns of the generated matrices correspond to simple
sequences of D. Hence, if D has a great many simple sequences of given
length, the resulting matrix is large. We have prepared computer programs
which can quickly process digraphs containing up to 5,000 simple sequences
of a given length. However, the task remains to develop procedures for
larger numbers of simple sequences.
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