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This paper shows how to compute multiple correlation coeffi- 
cients, partial  correlation coefficients, and regression coefficients 
from the factorial matrix. Special emphasis is given to computa- 
tion technique and to approximation formulas. The method is ex- 
treznely flexible in application since it may be applied to any subset 
of the original set of observed variables. I t  is also extremely useful 
when many of these coefficients are desired. 

P A R T  I 

MULTIPLE CORRELATION COEFFICIENTS FROM THE FACTORIAL MATRIX 
1. Introduction. One of the disadvantages of multiple correla- 

tion theo~:v is the enormous amount  of  t ime needed to compute the 
multiple correlations when n is large. Even the Doolittle method, 
(1, 2, 3) which is being recognized as an efficient method of comput- 
ing multiple correlations, demands a large amount  of computation 
when n is large. I t  is shown in this pa r t  how multiple correlations 
can be obtained from the factorial matrix,  and i.n particular,  f rom a 
centroid solution, though any solution which gives communali ty and 
uniqueness factors  is sat isfactory.  Though a centroid solution does 
take time, the total t ime necessary to obtain the multiple correlations 
is bu t  a small f ract ion of  tha t  demanded by other  methods if  the num- 
ber  of variables is large, if  the  number  of factors  is small, and if  a 
number  of such coefficients is desired. 

2. Notation. (a) From multiple correlation theory. We assume 
that  there  are n s tandard  variables, x l ,  x~, ... , x~, ... , x~, . . . ,  x , .  

*Editor's Note: The reader will recognize the subject-matter treated in this 
article as closely allied to that  of an article by L~uis Guttman, "Multiple Recti- 
linear Prediction and the Resolution into Components," in the June, 1940 issue 
of this journal. Although there is considerable overlapping in the topics consid- 
ered in these two articles, it was felt that some readers would be more interested 
in one approach, while others would gain more from the other approach and that 
still others would find both 13resentations of value. Guttman's  article is somewhat 
more concerned with the theoretical aspects of the problem, while Dwyer's article 
emphasizes the technique of computation and approximation. The manuscript 
for Dwyer's article was received while Guttman's article was in press. At  Dwyer's 
request, Guttman made available to him a pre-publication copy of his manuscript  
so that  Dwyer was able to insert  in his manuscript  references to the earlier one. 
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The variables are recorded for a population of N individuals and tile 
matr ix  of the correlations, [r~],  is computed The determinant  of 
this matr ix  is indicated by A and the de terminant  of the matr ix  
formed by deleting variable xj is denoted by Aj. I f  Rj indicates the 
multiple correlation of x~ with the n - -  1 remaining variables, then 
by the usual formula (1, p. 301) 

Ri = 1 - -  -~-~. (1) 

R j ~  is used to indicate the multiple correlation of x~ with all the re- 
maining variables except x~. Similarly R~)~k( indicates the multiple 
correlation of xj with all the remaining variables except x~ and x~. 

(b). F r o m  m u l t i p l e  f a c t o r  t he ory .  We assume tha t  the corre- 
lation matr ix  has been subjected to an analysis which results in 
r-~- n s tandard orthogonal variables, ~" of which are common vari- 
ables and n of which are uniqueness variables. More specifically we 
assume that  every x~ ean be represented by 

xs = as~y~ -p- as2Y2 -~- . . .  -~- ajkyk -[- . . . .  -f- a~,.y,.-I- ujz~ , (2) 

where y , ,  y~_, . . . ,  y,., Zl, z~, . . - ,  z,~ are the orthogonal variables, and 
the values ask are known. 

~XiXj 
It  follows at  once, since r~j -- N , tha t  

r~s = a~,as~ -~ ai~a~ + . . .  + aika~l: ~- . . . .  ~- ai~ai,. , i ~ ] (3) 
and  

1 = a~, 2 + aj~: + - . .  + ajk z -[- --. -~- a j J  + u~'-, (4) 

as indicated by Thurstone (5, p. 66). Fur thermore  we define hj -~= 
an~ + ai~ ~ -+- .-- ~- a j -  to be the communali ty of variable 3" and ui ~ to 
be the "uniqueness." Then 

h~ -~-t-u~ 2 = 1  and u j =  \ / 1 - - h ~  ~-. (5) 

We next define the common par t  of x~ to be tha t  par t  of x~ which 
is expressible in terms of the common variables y~. Then 

X') : ajlY~ -~ a~y~ -~ . . .  -~- a~y~ -~- . . .  + a~y~ . 

I t  is to be noted that  x'j is not a s tandard  variable since its variance 
is not unity. However, if every factor  loading a~ is divided by h~ we 
get the s tandard variable 

X"s -= ~ As~Y~, 
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aj~ 
where Aj~ -- ~ . The factor  loadings are increased by this process 

and hence we use the term "augmented"  (5, p. 158). Fur thermore ,  
we introduce the term "communali ty  augmented" to distinguish these 
f rom the "uniqueness augmented" loadings introduced in this paper. 

We let U ~ = [u~ ~] indicate the diagonal matr ix  composed of the 
uniqueness loadings. Then (3), (4), and (5) can be combined to give 
the fundamental  mat r ix  equation 

R = A A ' +  U ~. (6) 

3. The value of Rj .  Rj can be expressed in terms of the factor  
loadings if  LI and A~ can be so expressed. Now As can be so expressed 
if  zt can. Hence such an expression for  A will, essentially, solve our 
problem. A general development using mat r ix  terminology is pre- 
ceded by a special case, n = 3 and 
pry is used. We first express A in 

X 'r12 

A = rsi r~2 

0 0 

0 0 

r = 2 ,  in which determinant  the- 
the form 

r13 ~1  

r2~ a~l 

1 a~ 

0 1 

0 0 

a12 

az2 

a3~ (7) 

0 

1 

and eliminate the correlation coefficients by mult iplying column 4 by 
- : - a , ,  column 5 by - - a ~ ,  and adding to column 1; by mult iplying 
column 4 by - -a~l ,  column 5 by - - a ~ ,  and adding to column 2; by 
mult iplying column 4 by - -  a~l, column 5 by --a.~2, and adding to col- 
umn 3. We then have 

~a 2 

0 

A-=- 0 

- -a~x 

~ a 1 2  

0 0 a~l a12 

u22 0 a~l a-22 

0 u32 a~l a32 

---a=l --a~l 1 0 

---a~ ---4h~ 0 1 

(8) 

We now divide the first row and the first column by u~, the second 
row and the second column by u2, the th i rd  row and the th i rd  column 

by u3 , and we get ,  if we let aj~ = Bik , the "uniqueness augmented"  
ui 

loading, 
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A : ~ 1 2 ~ 2 2 l t 3 2  

1 0 0 B~: B,~ 

0 1 0 B~: B~. 

0 0 1 B:, B~: 
(9) 

This can be fu r ther  simplified by mult iplying the first row by 
B n ,  the second by  B2~, the third by B3~ and adding to the four th  row;  
by  mult iplying the first row by B~2, the second by  B~_:, the third by  
B~.. and adding to the fifth row, so tha t  we have 

I 1 ~ ~Bi~ ~- ~Bi tB~.  i 

A = u~:u2~u~21 Z B ~ B ~  1 ~ ZB~..~ ~ (10) 

This can be wr i t ten  as 

A = U12~eU~ 2 

' M1.; M.2 ,., 
(ii) 

n 

Mkz = i=1 (13) 
1 - ~ - ~ B i ~ B .  if  k = l  

i=1 

The mat r ix  [I ~ BB']  is the equivalent of Gut tman 's  matr ix  Q (12, 
section 4).  We may  use the above result  to indicate the value of 
zlj if var iable  j is deleted. Then (1) becomes 

•j A[I + BB'] (14)  
Rj = 1 - -  ui ~ Aj [I.-~ BB']  " 

where  A i ( I  -Jr- BB ' )  is a determinant  having r rows and r columns 
whose elements are given by 

In the general case we have 

A [ R ]  : A 
o x  - - A '  i. - - _ ' _  

2 [I B 1 
= A [u ]A[O I-~- BB '  t = A [u ~-] A [I--~ B B ' ] .  (12) 

The determinant,  A [I -~ BB'] ,  is a determinant  of r rows and r col- 
umns, the elements of which are 
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BikB~ ~ Bi~Bi~ if  k =~ l 
M ~ ( =  ~=~ . (15) 

1 - + ~ B ~ k B ~ B ~ k B i ~  i f  k = l  
i=] 

See also (12, Section 4) .  
The formula  (14) is easy to apply (par t icular ly  if r is small) as 

each element of Aj can be obtained f rom the corresponding element 
of A by a simple subtract ion of a product.  The flexibility of the for-  
mula is also apparen t  since the correlat ion of any variable with any 
subset of the original n variables is easily effected. I t  is only neees- 
sa ry  to complete the values of A and A~ f rom the fac tor  loadings of 
the variables included. 

4. Illustration. As a first example we use an i l lustration of 
Thurs tone  (5, p. 128) in which the six-place residuals are  0 .  In the 
factorial  solution the correlat ion ma t r ix  involving 7 variables is re- 
placed by a factorial  mat r ix  of two factors.  The fac tor  loadings, com- 
munali ty ,  and uniqueness for  each variable a re  given in columns (2) ,  
(3) ,  (4) ,  and (5) ,  while the "uniqueness augmented"  loadings are  
given in columns (7) and (8) .  

TABLE I 
Computation of "Uniqueness Augmented" Factor Loadings 

(2) (3) (4) (5) (6) (7) (8) (1) 
Va~able 

ajl a)2 hj ~ u~ 2 u~ Bi~ Bi~ 
1 .659828 .120945 .450000 .550000 .741620 .889712 .168082 
2 .839332 .265611 .760090 .240000 .489898 1.694908 .542176 
3 --.541290 .637969 .700000 .300000 .547723 "--.988255 1.164766 
4 --.126124 .770774 .610000 .390000 .624500 --.201960 1.234226 
5 .437356 .590526 .540000 .460000 .678233 .644846 .870683 
6 .637638 --.336776 .520000 .480000 .692820 .920351 --.486094 
7 .904489 .109084 .830000 .170000 .412311 2.193706 .264567 

In get t ing the value R~, we find t ha t  

Mll = 11.756955, MI2 = M21 = .358146, M2~ = 5.264916, 

M1~1( = 10.965368, MI~)~( = M~I)~ = .213050, 

M~..)I( = 5.238320, 

so tha t  A [1-{- BB'] = 61.771112, AI[I -[- BB'] = 57.394716, 

A [I + BB'] 
A, [I -~- BB'] = 1.076251, 

and 

R1 = V ] - - -  (-~55b-0-00~ ( 1.076251 ) = .638797. 
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This multiple correlation coel~cient would be tedious to compute 
by conventional methods, so, in order to provide a check which the 
reader  can follow with little computation, I select the case in which 
xl is predicted from x~ and x~. In this case 

M11 = 5.640949 , MI~ = M~ ---- --.087051 , M~ = 2.677230, 
Mm~ ( = 4.549361, M1~)1( ---- M21)1~ = --.232147, M2~,~ = 2.650635, 

with A [I + BB'] = 15.094540, AI [I + BB'] = 12.799994, and 

R~(=  R1.~3) = \ /1  ~ (.550000)(1.179261) = .592795. 

If  we use the formula R1 = r~2 ~ r~  ~ - ,  we ~et 

= / (.58) (.5016) + (.28) (.1176) = .592795. R~ 
.9216 

The conventional formulas  are preferable for  the case of three vari- 
ables, but the advantage of the new method increases as the number  
of variables increases. For  example, it  was possible to obtain the 
seven multiple correlations obtained by est imat ing each variable f rom 
all the others f rom the three-place factor  loadings in about three- 
quar ters  of an hour. The work is outlined in Table II. 

There are n (2  ~-~ - -  n) multiple correlation coefficients. Any one 
of these can be obtained f rom the uniqueness augmented factor  load- 
ings. Thus in the il lustration there are 399 different multiple corre- 
lations, any one of which can be obtained in a relatively short  time. 

5. Approximate factorial solutions. The problem above is one 
in which the residuals are 0 ,  to the required degree of approxima- 
tion, and the multiple correlations agree to the desired number  of 
places wi th  the multiple correlations obtained by classical methods. 
Of course, if the multiple factor  process is stopped before the resi- 
duals are actually ze ro- - i f  the matr ix  equation R = AA' + U 2 is only 
approximately sa t i s f i ed~the  application of this method will give but 
approximations to the actual multiple correlations and the degree of 
the approximation will depend upon the smallness of the residuals. 

Suppose for  example a factor  analysis of three variables resulted 
in the same factor  toadings as those of variables 1, 2, 3, in Table II, 
but wi th  second-order residuals ~'~.~ = -- .03 ; r~.~,_ = .04 ; r2~.~ = .02. 
Then the multiple correlation R ~ ,  as indicated by this method, would 
be .593. The actual value of R ~ ,  as determined by the correlations 
r~2 ~ -  . 5 5 ,  r l ~  - ~  -- .24,  r2.~ = -- .26 is .559 so tha t  the appreximate so- 
lution has an error  whose absolute value is .034. The actual average 
of the absolute values of the residuals is .030. I f  the residuals had 
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been ' r ,~  = - - . 003 ,  r,3~ = .004, and 'r2:~ _~ = .002, wi th  an a v e ra g e  ab- 
solute value of  .003, the r e su l t ing  e r r o r  in R~.~:.. t u r n s  out  to have  an  
absolute  value  of  .0034. Th is  sub jec t  needs f u r t h e r  inves t iga t ion ,  bu t  
i t  app ea r s  t ha t  t he r e  m a y  be some defini te  r e l a t ion  be tween  the  size 
of  res idua ls  and the  size of  the  e r r o r  in the  coefficient. Th i s  ques t ion  
m igh t  well be added to those recen t ly  ra ised  by  Wilson and  Worces-  
t e r  (6, pp. 137-140) on the adequacy  of  r e p r o d u c t i o n  of co r r e l a t ion  
coefficients. 

6. The case of a single factor. In the case of  a s ingle f a c t o r  the  
f o r m u l a  (14) becomes 

l n 
/ (1 -~- Z B,1 ~) 

R~ = / 1 - - u ~  ~ '~:~ (16) 

1 + ~ B ,  ~ ~ Bi, :  

As an  i l lus t ra t ion ,  we take  a one - fac to r  p rob lem involving  e igh t  var i -  
ables which T h u r s t o n e  (5, p. 148) r ep rod u c e d  f r o m  Holz inger .  T h u r -  
s tone  gave  the f a c t o r  loadings  ail • These  a re  g iven  in Table  I I I ,  and  
the  values  Rj a re  computed  f r o m  them.  

T A B L E  III  

Mult iple  Corre la t ions  in the Case of a Single Fa c t o r  

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
Var .  

~/il ] aJl h-i2 ~tJ2 BJ12 ~Im))( ~i~,,j( KJ2 Rj2 R] 

1 .765 .586 .414 1.415 6.343 1.223 .506 .494 .703 
2 .739 .546 .454 1.203 6.555 1.184 .538 .462 .680 
3 .716 .512 .488 1.049 6.709 1.156 .564 .436 .660 
4 .672 .451 .549 .821 6.937 1.118 .614 .386 .621 
5 .634 .402 .598 .672 7.086 1.095 .655 .345 .587 
6 .597 .357 .643 .555 7.203 1.077 .693 .307 .554 
7 .595 .354 .646 .548 7.210 1.076 .695 .305 .552 
8 .576 .331 .669 .495 7.263 1.068 .714 .286 .535 

7 .758~*Ml l  

These  resul ts  a re  bu t  a p p r o x i m a t i o n s  to the  ac tua l  mul t ip le  cor re la -  
t ions,  since the  f i r s t -o rde r  res iduals  (5, p. 148) a re  no t  all zero. 

The  mul t ip le  co r r e l a t ion  f o r m u l a  m a y  a p p e a r  in d i f f e ren t  f o r m s  
wh en  t he r e  is bu t  a single fac tor .  Us ing  u~ ~ = 1 - -  h; ~ and 

Bjl~ ajl 2 --  hff  
~rj2 ' 
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(16) reduces to 

Ri = hi ~ / 1 - -  1 (17) 
1 + ~ B i l  2 - -  B ] I  °- ' 

i=1 

and it follows a t  once tha t  Ri < hi so tha t  hj serves as an upper bound 
for  R ; .  In general, too, as the number of variables increases without  
limit the value 1 + ~B~I ~ - -  B;1 ~ increases without  limit so tha t  Ri 
converges to h i . 

This convergence of R~ to kj has been surmised by Roff (7, p. 6) 
who demonstrated it for  the special case in which the rj~ are all equal 
and the rj~, k :/: 1,  are also all equal. His result can be obtained f rom 
(17) by utilizing the fact  tha t  ~1 = a~ . . . . .  an~, ai~ ~ = rn~ when 

g" :/: I ; a~laj~ = rj~ so tha t  ai~ = x/rik and a~l -- __ . We have then 
~ / r i k  

R1 = rj~ 1 -[- ( n - -  2)~j~ ' (18) 

which is the formula  given by Roff (7, p. 6) if n is replaced by n -{- 1.  
7. The case of many factors. Approximation method. An ap- 

proximation method is desired in case there are many factors, as the 
evaluation of the ~th-order determinants  demands considerable work. 
The approximation method is based on the tendency, when the num- 
ber of variables is large, for  the non-diagonal terms of [I -4- BB'] to 
be small in comparison with the diagonal terms. This situation has 
been used previously, (8, p. 175) in determining approximate values 
of the factor  loadings of additional variables arid in obtaining ap- 
proximations to the roots of the characterist ic equation. In the pre- 
vious case it was assumed tha t  Y~a~a~t = 0 ,  while now it is assumed 
tha t  Y, Bi~B~ = M~ = 0 if  k :/: I. 

This condition is approximately satisfied by many problems even 
when the number of variables is relatively small. For  example, the 
entries in column (10) of Table II  are small compared with the en- 
tries in columns (9) and (11). I f  these terms are neglected, we get 
columns (12), (13), (14), and (15) of Table IV. Column (12) was 
obtained by mult iplying the entries in columns (9) and (11) of Table 
II. Column (16), the correct correlation, is inserted to facili tate com- 
parison with column (15), the approximate correlation obtained by 
neglecting non-diagonal terms. 

The use of such approximation methods simplifies the work 
greatly if there are more than three factors. The formula becomes 

! 
" " , " (19) 
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T A B L E  IV 
Approxixnate  Solution of F i r s t  P rob lem 

(12) (13) (14) (15) (16) 
Va r i ab l e  A c t u a l  

A [ I + B B ' ]  
h i [ I  + B B ' ]  R j  2 R i R i 

1 57.435 .407 .638 .639 
2 44.157 1.0416 .750 .866 .814 
3 42.157 1.4681 .560 .748 .731 
4 $3.838 (1.4118) .449 .670 .668 
5 51.073 1.2118 .443 .666 .666 
6 54.852 1.1283 .458 .677 .673 
7 36.055 1.7166 .708 .841 .841 

~ 61.891 

In general, as the number  of variables increases, (19) gives be t te r  
Mll 

approximations.  Also ~ > 1 and the largest  possible value of R~ 

is V 1 - -  u; ~ = hi • Also, if periodically there is at  least  one Bj > ~, 
M~ -~ 1 as n -~ oo so that  Rj -~ h~. See also (12, Section 14).  

In a previous s tudy (9, p. 10), the square root  of  the communal° 
i ty was u~sed as an upper  bound for  the multiple correlation coef- 
ficient. I t  is possible, with the use of (19),  to obtain a good est imate 
of the correlation itself. In Table V are presented the values hj used 
previously and the new values Rj obtained with (19).  

T A B L E  V 

Va lues  of  R i and  h i fo r  19 Va r i ab l e s  

V a r i a b l e  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
h i .86 .91 .92 .94 .98 .92 .93 .95 .78 .93 .93 .90 .71 .90 .58 .89 .78 .79 .91 
R i .85 .88 .88 .91 .95 ,90 .91 .93 .77 .91 .90 .89 .69 .88 .56 .87 .77 .76 .89 

8. Use of non-uniqueness methods. The development  of the  
above formulas  demands uniqueness fac tors  since uj must  be  different 
f rom 0 .  This appears  to be a serious restr ict ion at  first, and yet  it is 
not  so serious in practice, since observed variables usually have unique 
components  (5, p. 130). However,  it does not  appear  a t  first tha t  
methods which assume no uniqueness fac tor  (methods which use 
AA'  = R as the basic mat r ix  equation) should yield results which are 
adaptable  to the formulas  of this paper. Of course, if the a t tempt  is 
made to dis t r ibute  the variance completely among r common compo- 
nents,  and the attemp~ is successful, then the u~ are  zero and the for- 
mulas above are not applicable. However,  this a t t empt  is f requent ly  
not  entirely successful, part icularly if  the number  of observed vari- 
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ables is large, and that  is the case where the method is especially val- 
uable. In an unsuccessful a t tempt  to distribute the variance among 
r factors, the residuals of the diagonal terms are appreciably larger  
than  the residuals of the non-diagonal terms. Hence, the sums of the 
squares of the factor  loadings are appreciably less than uni ty when 
the sums of the products of the factor  loadings do not differ appreci- 
ably f rom the correlations. In such a case, even though the basic 
assumption is tha t  u~. --- 0 ,  the residuals of the diagonal terms may be 
used as the ui ~ and the multiple correlation coefficients may be com- 
puted by the methods of this paper. The case of perfect prediction, 
where the uj are actually as well as theoretically zero, has been dis- 
cussed by Guttman (12, section 17). 

PART II 

PARTIAL CORRELATIONS AND REGRESSION COEFFICIENTS 
FROM THE FACTORIAL MATRIX 

1. Introduction. I t  has been shown in P a r t  I how the multiple 
correlation of an observed variable with other observed variables can 
be obtained f rom the factorial  matrix.  I t  is the purpose of this  pa r t  
to show how part ial  correlation coefficients and regression coefficients 
can be obtained similarly. The general plan is similar to tha t  of P a r t  
I, though the matrices involved are not so simple. We use the well- 
known determinantal  formulas 

A12 
r12.34 .... -- - -  , (1) 

V}I1A., 

A12 
/3,2.34 . . . .  = A ,  ' (2) 

/3~1"34 ..... - -  A 2 "  ( 3 )  

I t  has been shown, (Pa r t  I, Equation 12) tha t  

A~; = U21 U22 "''U2{-1 U2;+1 "'" U2. Z~i[[ ~-  BB'] (4)  

so tha t  A~ and As can be evaluated from the factorial matrix.  The 
main task then is to evaluate A12. 

2. The evaluation of A12. Perhaps the simplest approach is to 
carry  through an evaluation of A in which, for  a number of steps, the 
value of the minor  is not changed. Thus if AI~[R] represents the de- 
t e rminant  of the correlation matr ix  with the first row and second col- 

umn eliminated, then 
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0 I = A~ - -A '  I = A~: - -A '  I " 

We now divide the first column of A~ .---A' I by ~ ,  the first row 

by N ,  and the n ~ 2 following rows and columns by ~ ,  . . . ,  u,,, re- 
spectively. The result  can be wr i t ten  

A~2 = u~u-2u3~uJ "'' u~ ~ A 0 I B.2(  , 
B" I ----B'I  - -  ).12( 

where B2 is a single-rowed mat r ix  consisting of o,21 eh~ ehs . a~, , ~ , ~ , " "  ,~ ;  

B~ is a single-column mat r ix  composed of elements aat ; B)~( is a ma- 

t r ix  of n - -  2 rows and r columns in which no one of the first sub- 
scripts is 1 or 2. B'.~c is the transpose of B)~..(. I t  follows then tha t  

I 0 0 B2 
A12 -~ ulu~u3 2"'" u~ 2 A O, I B)~( 

- -B1  0 I + B),~( B'.2( 

] = ~ h ~ u 2 . . . ~ 2 A  - -B1  I + B , 2 (  B')12( 

See also (12, section 5).  

1 
(5) 

A12 

r~2.34....- ~/A~Ao 

3. The formula  for  partial correlation. I t  follows, by substitu- 
tion of (4) and (5) in (1) tha t  

u ~ u ~ u ~ . . . u ~ A  [ A ,  B~ 
I + B B ' ]  

= ~/[u~2u3 ¢.-- u ,  ~ A~ (I-}- B-B') ] [u~2u32"'' u~ ~ A2 (I  -{- BB')  ] 

] A --el '  I + B B '  
_ - -  (6) 

V At [I + BB'~] A2 [I + BB'] 

The determinant in the numerator has r -{- 1 rows and columns, while 
the determinants in the denominator have but r rows and columns. 
The matrix [I-}-BB'] consists of r rows and r columns having ele- 

ments 
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I ~" B~ B~ when k =~ l 1 a~ 
M k t =  t l @ ~ B ~ k  B~ w h e n k  lJ  withB~k--  -~-  U ~  

The determinants  of the denominator are similar to the determinant  
of [I @ BB'], but the variable x~ is omitted in the first case and the 
variable x2 in the second. The calculation is relatively simple and fol- 
lows quickly f rom results used in gett ing the multiple correlation. 

I t  is readily established that. more generally 

L 
r~i.~...~ = (7) 

V~[~i-f BB'] 4j [I ÷ BB'] 

The reader should compare (12, section 7). 
4. Illustration. As an il lustration we take the two-factor prob- 

lem used as an example in the case of multiple correlation. We take 
out the first three variables, for ease in checking by classical meth- 
ods, and compute r~2.~. The factor  loadings are augmented to form the 
B's and the values Mkz determined. We find, f rom Table I of P a r t  I, 
Bll = .889712, BI~ = .163082, B21 = 1.694908, B2~ = .542176 , 

MI~ = 5.640949 , M~3 = M.~I = ~ .087051 ,  M~ = 2.677230, 
with 

AI[I-~ BB'] = 12.799994, 

B2 

so tha t  

A2[I -p BB'] = 5.585452. 

.000000 
-- - - .889712 

--.163082 

1.694908 .542618 / 
5.640949 --:087051 =4.602031 

--.087051 2.677230 

4.602031 
r ~ . 3 =  = .544271. 

~/(12.799994) (5.585452) 

The value rl~.~ as determined by the classical method is 

Alo .5016 
r1_~.3 -- - -- .544271 . 

~IA1A~_ .9216 

Of course, as ill the case of multiple correlation, it is better to use 
classical methods if  as few as three variables are involved. The ad- 
vantage of the factorial  method increases with the number of vari- 
ables involved and part icularly so i f  many partial  correlations are 
desired. The flexibility, too, should be noted since it is possible to 
obtain the partial correlation between two variables against  any  sub- 
set of the original variables. 
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5. The case of a single factor. In the case of a single factor,  

A [I -~- BB']  = 1 -~- ~ B2i~, B i = B i l ,  --B'~ = ---B~a, 

A~ [I @ BB']  = 1 @ ~ B2k~ ~ B~i~ , 

Aj [I-~- BB']  = 1 + Y~ B2k~ - -  B~jl ; so t ha t  

B_2~ B2jl - -  
r~j.~ .... = ( - -1)  ~+~+1 ( I @ E B b , ~ B 2 ~ ) ( I . _ ~ Z B b , ~ _ _ B , , j ~ ) .  (8) 

From the one-factor problem used in Table I I I  we note tha t  B~, ---- 
1.415, B2i1 ---- 1.203 and, if  we consider the first three variables only, 

B o 1 -~- B%1 + -3~ = 3.252,1 q- B2~ q- B%~ = 3.464, and 

~/(1 .415)  .389. (1.203) 
r~2.3 = (3.252) (3.464) -- -- 

This is in error  because the residuals were not exactly 0. The actual 
value of r~2.3, as found by conventional methods, is .428. The abso- 
lute value of the difference is .039 and is about the same size as the 
average absolute value of the size of the three residuals (5, p. 148), 
which is .035. 

I t  can be shown in general f rom (8) that ,  in the case of one fac- 
tor, the part ial  correlation approaches 0 as the number  of variables 
increases. The old fac tor  loadings remain the same with each new 
addit ion and if  periodically there is added at  least one factor  loading 
as large as e ,  the denominators increase while the numera tors  re- 
main the same. 

The ease with which part ial  correlations of high order  are com- 
puted, in the case of one factor,  is shown in Table I where the values 
of r ~ ,  r~.~, r~2.3,, r~.3~,  r~2.~4~6, r~.~4~67, r12.~,5~s, are exhibited. 

T A B L E  I 

C o m p u t a t i o n  of  the  p a r t i a l  co r re l a t ions  r~2. 

V a r i a b l e  a~j12 uj~ Bj12 BaleB,2a 2 rlz" MI1)1 ( Mll)2 ( Mll)a ( rlz. ~ r12. 

1 .586 .414 1.415 1.702 
2 .546 .454 1.203 1.702 2.203 2.415 5.320 .320 .566 
3 .512 .488 1.049 1.702 .3 3.252 3.464 11.265 .151 .389 
4 .451 .549 .821 1.702 .34 4.073 4.285 17.453 .09ff5 .312 
5 .402 .598 .672 1.702 .345 4.745 4.957 23.521 .0724 .269 
6 .357 .643 .555 1.702 .3456 5.300 5.512 29.214 .0583 .241 
7 .354 .646 .548 1.702 .34567 5.848 6.060 35.439 .0480 .219 
8 .331 .669 .495 1.702 .345678 6.343 6.555 41.578 .0409 .202 

The 1764 different part ial  correlation coefficients of this prob- 
lem can be computed in this way. 
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6. Alternate form of the general formula. The numerator  of 
(7) can be expressed as the sum of two determinants  of the vth order  
r a the r  than one of the ( r  + 1)s t  order. Since 

A --B'~I I +B'~ BB' =- A [I + BB'] -4- A --B'~ I -~ BB' 

we have 

[0 ] [, 
A - - B x  I + B B '  = ~ A [ I - } - B B ' ] + A - - B ' ~  I-~BB'  

[, ] -- A [I + BB'] -Jr A 0 I -~- BB' -~- B~B'~] 

- A [I + BB'] + A [I + BB' ~- B.~B'I]. (9) 

For  example, in the illustration of section 4, 

A [I -~- BB'] -= 15.094540, while 

[ 7 - 1 4 8 9 2 9 - 3 9 5 3 2 9 ] = 1 9 . 6 9 6 5 7 0  
A [I -~- BB' -}- BzB'I] = .189358 2.765149 

and 

[ 0, B~ ] = 4.602030, as indicated earlier. A --B1 I-~-BB' 

7. Approximation Formulc~s. The computation can be consid- 
erably simplified if we make an approximation by placing the non- 
diagonal elements of [I @ BB'] equal to zero. In this ease the mat r ix  
[I -~- BB'] is a diagonal mat r ix  with elements M ~ .  Then 

A [  0 B~ ] and 
k=l ~ ' 

rl~.~ .... = (10) 

As an illustration, we compute an approximation to r ~ . ~  for  
the two-factor  problem of section 4. In this ease, if we take the fae- 
tor  loadings to three places we get B~B~ = 1.506, B~B2: -= .0885, 
M~ = 11.753, M~. = 5.266, MI~:~ =: 10.963, M ~ (  = 8.883, M ~ (  

= 5.239, Mz:)2( = 4.971 , with 

(1.506) (5.266) ~- (.0885) (11.753) 
~'~2.3456~ - -  =- .178. 

"4 (10.963) (8.883) (5.239) (4.971) 

A fu r the r  approximation can be made, if n is large enough so 
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t ha t  M~;, M~)I( and M,)2~ are approximately equal. In this case 

r12.s4...n = 
Blk B~ 

k_~ M:,k (11) 

I t  can be shown tha t  r~z.~ .... -~ 0 as n --> co if  periodically some 
a~s > e ,  since BI;, and B2~ remain  the same, but  Mkk increases. See also 
(12, section 15). 

8. Regress ion  coefficients.  From (2) and (5) it is apparent  
tha t  

[o ] B2 
u~u~u~ 2 .. .  n J  A ~ B ' ~  I-+- B B '  

A12 

In general, similarly 

0 Bo ] 

= u2 A~"[I + BB']  

Bj 

fl~i-lz .... = (--1)i÷i+l (12) 
uj A i [I -~- BB ']  

Approximations can be made as in the last section. See also (12, sec- 
t-ion 7). 

PART II I  

THE DIFFERENT MULTIPLE CORRELATIONS ][NVOLVING THE 
OBSERVED VARIABLES AND THE COMMON VARIABLES 

1. In t roduc t ion .  In this part  a s tudy is made of the multiple 
correlation coefficient (1) when an observed variable is est imated 
f rom (a) common variables, (b) common variables and observed vari- 
ables, (c) observed variables;  (2) when a common variable is esti- 
mated f rom (a) common variables, (b) common variables and ob- 
served variables, and (c) observed variables. 

In this part,  we make use of the fact  tha t  the correlation between 
an observed variable x~ and a common variable y~ is equal to ~j~. This 
well-known fact  follows a t  once from [Pa r t  I, Equation (1)]  by form- 
ing 

xj Yi _ ~,, aj~ yi ~ 
N N = ai~. (1) 
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The matr ix  of the correlations of the n observed variables aud the 

r common variables can be wri t ten  in the form [A, ; ] i f  the observed 

variables precede the common variables horizontally to the r ight  and 
vertically downward.  

2. The mul t ip le  correlation, s of  an observed variable.  The mul- 
tiple correlations of the observed variables have been worked out pre- 
viously. Results and references are here stated. 

(a) Correlat ion w i t h  the c o m m o n  variables.  
The multiple correlation of the observed variable  x~ wi th  the  r 

common variables has been shown by various authors  (7, p. 2) (10, 
p. 164) to be equal to h j .  

(b) Correlat ions w i t h  the c o m m o n  variables  and the n ~ 1 ob- 
served  variables.  

I t  is likewise well-known (7, p. 4) (10, p. 165) that  the multiple 
correlation of an observed variable with the r common variables and 
the n - -  1 observed variables is equal to hr. 

c) Correlat ion w i t h  the n - -  1 observed  variables.  
I t  is shown in P a r t  I tha t  

X/ ,~ [Z + BB'] R~ = 1 ~ ui ~, zlj [I -~BB']  " (2) 

I t  is not necessary to use all the n - -  1 other  variables in apply- 
ing this formula. 

3. The  mul t ip le  correlat ions of the c o m m o n  variable. 
(a) W i t h  the r - -  1 other  c o m m o n  variablei .  
This trivial case results in R~ = 0 ,  since A = A~ = 1 in the for- 

mula  (4, p. 301).  

4 R~ = 1 A~ " (3) 

(b) W i t h  the r ~ 1 o ther  common  variables and  the n observed 
variables.  

The value of A in the determinantal  formula (3) is now 

.4' I = A [U 2] 

as  shown in P a r t  I. The value of  A~ is not  quite so easily obtained 
since it  calls for  the deletion of  row n ~ i and column n + i in the 
mat r ix  having n -~- r rows and n - ~  r columns. Now the order in 
which the y's occur is not material  so, for  convenience, we assume 
that  y~ is the last var iable  y~. We then wri te  the factorial  matr ix  iv 
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two parts.  The first part,  which we designate A),~, indicates the ma- 
tr ix composed of all the columns of the factorial  mat r ix  with the ex- 
ception of column r .  The second p a r t  of the matrix,  which we desig- 
nate by A , ,  consists of the r th column only. In this notation the ma- 
t r ix  of the intercorrelat ions of the n -}- 'r variables becomes 

while the de terminant  A,. can be wr i t ten  

A .... A )~, I :=- A 0 ,  I 
0 ~A, 0 

=: .:1 [U ~] A I 0 == A [U"] A I 
--B',  0 I 0 

:- A[U-'] ( 1 J r - B " I , . +  B%_,- ~- . . . - { -B%~)  

a % t )  . (4) _ a2,~ 4_ a~___Z_ 4_ - -  A [ U  ~] ( 1 + ~ . _  ~t2z 

It  follows at  once, since i may  be subst i tuted fo r  r ,  tha t  

A, -- 1~_ Z B2s~ ~/ 1~_ Z B2j, . (5) 

This formula is also given by Guttman (12, 9a) .  I t  is clear tha t  
R, _~ 1 and that  R~ -~ 1 as n -~ c¢ if  periodically some B~i~ is a t  least  
of size e .  

The formula (5) is adapted to easy computation. I t  is to be noted 
that  the quantities Bj~ are quantit ies which are used in finding the 
multiple correlation of an observed variable with the other observed 
variables. 

(c) W i t h  n observed variables.  
We assume again, wi thout  loss of generality,  that  the common 

variable is the last common variable, r .  We then have 

R , . = , [ i  A,.A w i t h A = A [  R, 1 ~ ] a n d  

A,. = A [ R ]  = A[U'- ']A[I -~- BB']  as shown in P a r t  I. Now 

! ] [o ,o][-o i R A ,. A)r(  A.r U 2 A)r(  
A ~ A ' ,  I = A  I "=A ',~( I 

L _- -A '~  0 _ 0 
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= A[U2]A ~B')r(  I = A[UZ]A[ I :f- B)~, B ' )~] .  
0 0 

I t  follows that,  in general, 

Ri = ~ 1  
A[I  ~- B ) ,  B') ,]  

- -  A [ I - ~  BB'] (6) 

The reader  may  refer  to Guttman (12, Section 10). 
Here  A[I  -~- B)i( B' ) , ]  differs f rom A[I  + BB'] only in having 

row i and column i deleted. As an approximation formula we may set 
all non-diagonal elements in row i and column i of I --~ BB' -= 0 and 
we get  

• j  1 (7) 
Ri = 1 1 ~ ~ B2~i 

which agrees with the result  (5) of the previous case. 
4. Illustration. As an illustration we take a problem used by 

Thurs tone (5, p. 128) and compute the values of the B's  to three sig- 
nificant places. These are  presented in Table I. 

TABLE I 
The Computation of the B's. 

(1) (2) (3) (4) (5) (6) (7) (8) 
Va~ 

J %, %2 hi2 ~j2 u i Bs~ B j~ 
1 .660 .121 .450 .550 .742 .889 .163 
2 .830 .266 .760 .240 .490 1.694 .543 
3 --.541 .638 .700 .300 .548 --.987 1.164 
4 --.126 .771 .610 .390 .625 --.202 1.234 
5 .437 .591 .540 .460 .678 .6~5 .872 
6 .638 --.337 .520 .480 .693 .921 M.486 
7 .904 .109 .830 .170 .412 2.194 .265 

I t  follows a t  once that  

7 

1 -~ ~ B2j~ = 11.753 , 

~B j~  Bj~ = .363 , 
j = l  

? 

1 -t- Y~ B~2 = 5.266 , 
j=t 

so that ,  if yl is correlated with Y2 and the seven observed variables 
we get  
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In a s imi lar  fash ion  

Rv' = ~[ 1110"753--.753 -- .956 . 

: 4.266 
R~ = ~/ --.900 . 

5.266 

I f  y, is correla ted wi th  the seven observed var iables  we have 

and,  s imi la r ly  

RYl 
1 5.266 

~; 111.753 3.63 
.363 5.266 

: :  .956 

/ 11.753 
/1 = .900 

Ru;---- ~ !11.753 3.63 " 
I .363 5.266 

The corre la t ion of  each observed var iable  w i th  the r e m a i n i n g  
observed var iable  has  been exhibi ted in P a r t  I. A general  summa~5 r 
of  resul ts  is given in Table II .  

T A B L E  I I  

Dif ferent  Mul t ip le  Cor re la t ions .  

P r e d i c t i n g  Var i ab le s  ( E x c l u d i n g  p red ic ted  Va r i ab l e )  

P red ic ted  Common Common V a r i a b l e s  Observed  
Var i ab l e  Va r i ab l e s  a n d  Observed  Var s .  Va r i ab l e s  

x I .671 .671 .639 
xe .872 .872 .814 
x~ .837 .837 .731 
x 4 .781 .781 .668 
x~ .735 .735 .666 
x,; .721 .721 .673 
x~ .911 .911 .841 
y, 0 .956 .956 
Y2 0 .900 .900 

6. Additional Cases. Cases m a y  ar ise in which one does not  de- 
s i re  to use all the  observed var iables  nor  all the  common variables.  I t  
is possible, in general ,  to work  these  cases by means  of  m a t r i x  devel- 
opments  s imi lar  to those of  th is  paper .  The  desired m a t r i x  is set  up 
and  then  bui l t  up so t h a t  complete corre la t ion  and  fac tor ia l  ma t r i ces  
result .  The  d e t e r m i n a n t  of th is  m a t r i x  is then  reduced to the  de te rmi-  
n a n t  of a m a t r i x  hav ing  bu t  r rows and  r columns.  

F r i sch  (11, p. 15) has  used "hol low"  d e t e r m i n a n t s  in which the  
ent r ies  in the  d iagonals  are  replaced by 0. These also can be eva lua ted  
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f rom the factorial matrix,  but  the loadings are now "communali ty 
augmented" ra ther  than "uniqueness augmented" loadings. For  

: (__I),A[H~]A[1, C]I 

where A [H ~] = h~lh~.., h~-,, and 

(8) 

7. Conclusion. It  has been shown in this paper  how the results 
of a factorial  mat r ix  can be used in obtaining multiple and part ial  
correlations. The presentat ion is i l lustrative ra ther  than exhaustive, 
general ra ther  than rigorous, bu t  it does emphasize the actual com- 
putat ion of multiple and part ia l  correlations in problems involving 
many variables. Special at tention is given to formulas  which, wi th  a 
relatively small amount  of work,  will yield good approximations to 
the  desired quantities.  

F rom the general theoretical point  of view, it seems, there is one 
point which should be emphasized and that is tha t  the correlation ma- 
tr ix results f rom an incomplete prel iminary reduction of the data  
since the correlation mat r ix  does not permit  the isolation of a set of 
numbers  which accompany one variable only. To be sure the correla- 
tion matr ix  does provide a set of numbers  for  each variable, but  these 
numbers  are associated with other  variables;  in fact, there has to be 
one of these numbers  for  each of the other variables. However,  i f  the 
correlation mat r ix  is reduced to a factorial  matrix,  we have each 
variable indicated by a set of numbers,  numbers  which are, in form 
a t  least, independent of  the other  variables, and f rom these numbers  
we can now construct  not only the correlation matrix,  but  also the 
classical partial  and multiple correlation coefficients as well. Since 
the numbers  associated wi th  the observed variable are  not associated 
wi th  the other  observed variables, the method makes feasible the im- 
mediate  s tudy of any subset  of the observed variables. This flexibility 
is most  impor tant  as is the fac t  that  the representat ion of a variable 
by  such a set of numbers  gives promise of the development of very  
objective cri teria for  the inclusion or exclusion of a variable in pre- 
diction (10, 1L 12). I t  appears  then that  the computation of a fac- 
torial matr ix  is indicated as a proper  step in prel iminary reduction of 

= ( - - 1 ) "  A[H ~] A[I--CC'].  

the elements of C are 

aj~ (9) C .  = ~ .  
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the data by the student of multiple correlation as well as by the stu- 
dent of multiple factor analysis. 

REFERENCES 
1. Kurtz, A. K. The use of the Doolittle method in obtaining related multiple 

correlation coefficients. Pschometrika, 1936, 1, 45-51. 
2. Dwyer, P. S. The simultaneous computation of groups of regression equa- 

tions and associated multiple correlation coefficients. Annals Math. Star., 
1937, 8, 224-231. 

3. Tolley, H. R. and Ezekial, Mordecai. The Doolittle method for solving mul- 
tiple correlation equations versus the Kelley-Salisbury iteration method. 
J. Am. Stat. Ass., 1927, 22, 497-500. 

4. Kelley, T. L. Statistical method. New York: Macmillan, 1923. 
5. Thurstone, L. L. The vectors of mind. Chicago: Univ. Chicago Press, 1935. 
6. Wilson, E. B. and Worcester, Jane. Note on factor analysis. Psychometrika, 

1939, 4, 133-148. 
7. Roff, M. Some properties of the comanunality in multiple factor theory. 

Psychomet~ika, 1935, 1, 1-6. 
8. Dwyer, P. S. The determination of the factor loadings of a given test from 

the known factor loadings of other tests. Psychometrika, 1937, 2, 173-178. 
9. Dwyer, P. S. An analysis of 19 occupational scores, etc. J. Appl. Psychol, 

1938, 22, 8-16. 
10. Dwyer, P. S. The contribution of an orthogonal multiple factor solution to 

multiple correlation. Psychometrika, 1939, 4, 163-171. 
11. Frisch, R. Statistical confluence analysis by means of complete regression 

systems. Oslo, 1934. 
12. Guttman, Louis. Multiple rectilinear prediction and the resolution into com- 

ponents. Psychometrika, 1940, 5, 75-99. 


