PSYCHOMETRIKA~—VOL. 5, NC. 3
SEPTEMBRBER, 1940
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This paper shows how to compute multiple correlation coeffi-
cients, partial correlation coefficients, and regression coefficients
from the factorial matrix. Special emphasis is given to computa-
tion technique and to approximation formulas. The method is ex-
tremely flexible in application since it may be applied to any subset
of the original set of observed variables. It is also extremely useful
when many of these coefficients are desired.

PART 1

MULTIPLE CORRELATION COEFFICIENTS FROM THE FACTORIAL MATRIX

1. Imtroduction. One of the disadvantages of multiple correla-
tion theory is the enormous amount of time needed to compute the
multiple correlations when » is large. Even the Doolittle method,
(1, 2, 3) which is being recognized as an efficient method of comput-
ing multiple correlations, demands a large amount of computation
when n is large. It is shown in this part how multiple correlations
can be obtained from the factorial matrix, and in particular, from a
centroid solution, though any solution which gives communality and
unigueness factors is satisfactory. Though a centroid solution does
take time, the total time necessary to obtain the multiple correlations
is but a small fraction of that demanded by other methods if the num-
ber of variables is large, if the number of factors is small, and if a
number of such coefficients is desired.

2. Notation. (a) From multiple correlation theory. We assume
that there are n standard variables, @, , o, -+, &, «++, &;, -+, T, .

*Editor's Note: The reader will recognize the subject-matter treated in this
article as closely allied to that of an article by Louis Guttman, “Multiple Recti-
linear Prediction and the Resolution into Components,” in the June, 1940 issue
of this journal. Although there is considerable overlapping in the topics consid-
ered in these two articles, it was felt that some readers would be more interested
in one approach, while others would gain more from the other approach and that
still others would find both presentations of value. Guttman’s article is somewhat
more concerned with the theoretical aspects of the problem, while Dwyer's article
emphasizes the technique of computation and approximation. The manuseript
for Dwyer’s article was received while Guttman’s article was in press. At Dwyer’s
request, Guttman made available to him a pre-publication copy of his manuscript
so that Dwyer was able to insert in his manuseript references to the earlier one.
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The variables are recorded for a population of N individuals and the
matrix of the correlations, [+;;], is computed The determinant of
this matrix is indicated by A and the determinant of the matrix
formed by deleting variable x; is denoted by ;. If R; indicates the
multiple correlation of x; with the n — 1 remaining variables, then
by the usual formula (4, p. 301)

A4

R;,; is used to indicate the multiple correlation of x; with all the re-
maining variables except z;. Similarly R; i indicates the multiple
correlation of z; with all the remaining variables except x; and wx .

(b). From multiple factor theory. We assume that the corre-
lation matrix has been subjected to an analysis which results in
r -+ n standard orthogonal variables, » of which are common vari-
ables and n of which are uniqueness variables. More specifically we
assume that every x; can be represented by

Tj = @Yy + QoY - Y o Gl W2, (2)
where ¥, , ., -+, ¥,, 21, 22, +++ , 2, are the orthogonal variables, and
the values a;. are known.

Xi&;
It follows at once, since r;; = =E==7\-7-—’ , that

Ti; = Q0+ Qe + o0 - Qi@jy - -+ Q5,45 i (3)
and
1=a 2+ a2+ a2 4 a2+ w2, 1)
as indicated by Thurstone (5, p. 66). Furthermore we define 2 =
a;,? + aj,% -+ - -+ a;,2 to be the communality of variable j and u;* to
be the “uniqueness.” Then
h4+u?=1 and u; =vV1—h. (5)

We next define the common part of x; to be that part of x; which
is expressible in terms of the common variables y; . Then

;= apY -+ @Y 4 -+ GiYr .

It is to be noted that '; is not a standard variable since its variance
is not unity. However, if every factor loading a; is divided by h; we
get the standard variable

T
x’; = kE A py,
=1
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where 4, = a}:k . The factor loadings are increased by this process
J

and hence we use the term “augmented” (5, p. 158). Furthermore,

we introduce the term “communality augmented” to distinguish these

from the “uniqueness augmented” loadings introduced in this paper.
We let U? = [u;?] indicate the diagonal matrix composed of the

uniqueness loadings. Then (38), (4), and (5) can be combined to give

the fundamental matrix eguation

R=A44"10U=. (6)

3. The value of R;. R; can be expressed in terms of the factor
loadings if 4 and 4; can be so expressed. Now 4; can be so expressed
if 4 can. Hence such an expression for 4 will, essentially, solve our
problem. A general development using matrix terminology is pre-
ceded by a special case, n = 3 and » = 2, in which determinant the-
ory is used. We first express 4 in the form

1 Tiz Tiz Q11 Qg
Tor 1 7oz Gy @y
4= Tss Taz 1 Q3 G (7)
6 0 0 1 0
0 0 0 0 1

and eliminate the correlation coefficients by multiplying column 4 by
—@,;, column 5 by —a,,, and adding to column 1; by multiplying
column 4 by —a,;, column 5 by —a.., and adding to column 2; by
multiplying column 4 by — a., , column 5 by —a;, , and adding to col-
umn 3. We then have

z U ? 0 0 Uy Oy
0 U,? 0 Agy Qo

4= 0 0 U? gy Oy (8)
V —y; —O; —f3; 1 0
— Oy —lyy —la O 1

We now divide the first row and the first column by #,, the second
row and the second column by #., the third row and the third column

a; .

by us , and we get, if we let —@7"1 = Bj , the “uniqueness augmented”
j

loading,
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1 O O BE: Bl-_g
4 = U,*u."us* 0 1 0 B.. B.
0 0 1 B. B.
i (9)
—B,, —B, —FB; 1 0

—B,, —B;, 0 1

This can be further simplified by multiplying the first row by
B, , the second by B,, , the third by B, and adding to the fourth row;
by multiplying the first row by B,,, the second by B.., the third by
B, and adding to the fifth row, so that we have

2 1+28i12 EBisz‘z E
A = u2u2u,? | h. 10
P SBiBi, 1+3B.* | (1)

This can be written as
Mu B:I”l

11
M, M, ()

A = u 2" us?

In the general case we have

s = o[ B4 = [T =[] - avena D

L

I B
=2 {u234[01+38, } = A[w]d[I+BB]. (12)

The determinant, 4[I - BB'], is a determinant of 7 rows and  col-
umns, the elements of which are

k4

S BuBi it kel {

My =4 = (13)
143 BuBy if k=1 [

The matrix [I - BB'] is the equivalent of Guttman’s matrix @ (12,

section 4). We may use the above result to indicate the value of

4; if variable j is deleted. Then (1) becomes

_ AU+ BF]
R;—*\/ 1—u,- W. (145)

where 4,(I 4+ BB’) is a determinant having » rows and » columns
whose elements are given by
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iBikBii‘”“BjkB_il it k#£1
Mayc=41"™" . (15)
14+ 3BuaBu—BuB; if k=1

See also (12, Section 4).

The formula (14) is easy to apply (particularly if r is small) as
each element of 4; can be obtained from the corresponding element
of A by a simple subtraction of a product. The flexibility of the for-
mula is also apparent since the correlation of any variable with any
subset of the original »n variables is easily effected. It is only neces-
sary to complete the values of 4 and 4; from the factor loadings of
the variables included.

4. Ilustration. As a first example we use an illustration of
Thurstone (5, p. 128) in which the six-place residuals are 0. In the
factorial solution the correlation matrix involving 7 variables is re-
placed by a factorial matrix of two factors. The factor loadings, com-
munality, and uniqueness for each variable are given in columns (2),
(8), (4), and (b), while the “uniqueness augmented” loadings are
given in columns (7) and (8).

TABLE 1
Computation of “Unigueness Augmented” Factor Loadings
1) (2) (3) 4) (5) (6) (7) (8)
Variable

J G D h u;® u; B;, B,

1 659828 120945 .450000 .550000 .741620 .889712 .163082
2 830332 2656611 760000 .240000 .489898  1.694908 542176
3 —.541290 637969 700000 .300000 .547723 ' —.988255 1.164766
4 —126124 70774 610000 390000 624500 —.201960  1.234226
5 437356 .590526 .540000 .460000 .678233 .644846 870683
6 637638 ~—.336776 .520000 .480000 .692820 920351 —.486094
7 904489 109084 .830000 .170000 .412311  2.193706 264567

In getting the value R,, we find that
M., = 11.756955, M., = M,, = .358146, M,, = 5.264916,
Miyy: = 10.965868, Mypyy = My, = 213050,
Mz = 5.238320,
so that A[1 + BBl = 61.771112, 4,[I 4 BB'] = 57.394716,

Al + BB']

and

R, = v1— (.560000) (1.076251) = .638797 .
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This multiple correlation coefficient would be tedious to compute
by conventional methods, so, in order to provide a check which the
reader can follow with little computation, I select the case in which
x, is predicted from x, and z.. In this case

M., = 5.640949 , M,, = M,, = —.087051 , M,, = 2.677230,
Mll)l( = 4c849361, M;g)l( — Mgl)l( - —.282147, Mgz)l( - 2-650635,
with A[I 4 BB'] = 15.094540, 4,[I 4 BB'] = 12.799994, and

R, (= R,.;) = v1— (.550000) (1.179261) = .592795 .

Am——r Ais we get
All 13 All »

If we use the formula R, = \/ T2

_ (.568) (.5016) + (.28) (.1176)
9216

The conventional formulas are preferable for the case of three vari-
ables, but the advantage of the new method increases as the number
of variables increases. For example, it was possible to obtain the
seven multiple correlations obtained by estimating each variable from
all the others from the three-place factor loadings in about three-
quarters of an hour. The work is outlined in Table II.

There are n(2™! — =) multiple correlation coefficients. Any one
of these can be obtained from the uniqueness augmented factor load-
ings. Thus in the illustration there are 399 different multiple corre-
lations, any one of which can be obtained in a relatively short time.

5. Approximate factorial solutions. The problem above is one
in which the residuals are 0, to the required degree of approxima-
tion, and the multiple correlations agree to the desired number of
places with the multiple correlations obtained by classical methods.
Of course, if the multiple factor process is stopped before the resi-
duals are actually zero—if the matrix equation R = AA’ -+ U? is only
approximately satisfied—the application of this method will give but
approximations to the actual multiple correlations and the degree of
the approximation will depend upon the smallness of the residuals.

Suppose for example a factor analysis of three variables resulted
in the same factor loadings as those of variables 1, 2, 3, in Table II,
but with second-order residuals 75,, = —.08 ; 7122 = 04 ; 722, = 02.
Then the multiple correlation R, .; , as indicated by this method, would
be .593. The actual value of R,.., as determined by the correlations
P12 = BB, 5 = —.24, 7y; = —.26 is .559 so that the appreximate so-
lution has an error whose absolute value is .084. The actual average
of the absolute values of the residuals is .030. If the residuals had

R, = .592795 .
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been »,,, = —.003, r;;, = .004, and 7,,., = .002, with an average ab-
solute value of .003, the resulting error in R, .. turns out to have an
absolute value of .0084. This subject needs further investigation, but
it appears that there may be some definite relation between the size
of residuals and the size of the error in the coefficient. This question
might well be added to those recently raised by Wilson and Worces-
ter (6, pp. 137-140) on the adequacy of reproduction of correlation
coefficients.

6. The case of a single factor. In the case of a single factor the
formula (14) becomes

!

/ (1"_23;12)
R; = 1 —u;? . S (16)
1+E l?ilz‘—‘le2

As an illustration, we take a one-factor problem involving eight vari-
ables which Thurstone (5, p. 148) reproduced from Holzinger. Thur-
stone gave the factor loadings a;, . These are given in Table I1I, and
the values R; are computed from them.

TABLE III

Multiple Correlations in the Case of a Single Factor

(1) (2) 3) (4) (3) (6) (M (8) 9 (10)
Var.

q «; le2 u;? B;? M ,’[11”11 K].2 B Rj
1o
1 765 .586 414 1.415 6.343 1.223 .506 494 703
2 739 .546 454 1.203 6.555 1.184 538 .462 .680
3 716 512 .488 1.049 6.709 1.156 564 .436 .660
4 672 451 .549 821 6.937 1.118 614 .386 .621
5 .634 402 598 672 7.086 1.095 .655 345 D87
6 597 357 .643 .555 7.203 1.077 .693 307 .54
7 .595 354 .646 .548 7.210 1.076 .695 .305 552
8 576 331 .669 .495 7.263 1.068 .714 .286 .535
7768 = M11

These results are but approximations to the actual multiple correla-
tions, since the first-order residuals (5, p. 148) are not all zero.

The multiple correlation formula may appear in different forms
when there is but a single factor. Using »,2 = 1 — h;? and

B..2= aj12: hjz
e L T
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(16) reduces to

1
Ri=h |l——= , (17)
b 143 Bi*—B;:®
i=1

and it follows at once that R; < k; so that k; serves as an upper bound
for R;. In general, too, as the number of variables increases without
limit the value 1 + B> — B;,® increases without limit so that R;
converges to h; .

This convergence of R; to ; has been surmised by Roff (7, p. 6)
who demonstrated it for the special case in which the r;; are all equal
and the 7, k £ 1, are also all equal. His result can be obtained from

(17) by utilizing the fact that a,, = a5, = --- = @1, aj:> = 7 When
N r;
j 1 ;a,a4, = r; sothat a;; = V7 and ., = \/11_ . We have then
Tix
R, =, n—1 (18)
N T E (=2’

which is the formula given by Roff (7, p. 6) if n is replaced by n + 1.

7. The case of many factors. Approximation method. An ap-
proximation method is desired in case there are many factors, as the
evaluation of the rth-order determinants demands considerable work.
The approximation method is based on the tendency, when the num-
ber of variables is large, for the non-diagonal terms of [I 4 BB’] to
be small in comparison with the diagonal terms. This situation has
been used previously, (8, p. 175) in determining approximate values
of the factor loadings of additional variables and in obtaining ap-
proximations to the roots of the characteristic equation. In the pre-
vious case it was assumed that Sage; = 0, while now it is assumed
that ZB«;;CB” = Mkl =0if k& :;é l.

This condition is approximately satisfied by many problems even
when the number of variables is relatively small. For example, the
entries in column (10) of Table II are small compared with the en-
tries in columns (9) and (11). If these terms are neglected, we get
columns (12), (13), (14), and (15) of Table IV. Column (12) was
obtained by multiplying the entries in columns (9) and (11) of Table
II. Column (16), the correct correlation, is inserted to facilitate com-
parison with column (15), the approximate correlation obtained by
neglecting non-diagonal terms.

The use of such approximation methods simplifies the work
greatly if there are more than three factors. The formula becomes

M, M
R. = 11—z 11 ) 22 ) . ( rr ) .
! \/ * (Mu)j( (Mfzm M., (19)
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TABLE IV
Approximate Solution of First Problem
(12) (13) (14) (15) (16)
Variable Actual
N .
ST KU+BB]

1 57.435 _Lim_ 407 .638 639
2 44.157 1.0416 750 .866 .814
3 42.157 1.4681 560 .748 731
4 £3.838 (1.4118) 449 670 .668
5 51.073 1.2118 443 .666 .666
6 54.852 1.1283 .458 677 673
i 36.055 1.7166 708 841 .841

A=—61.801

In general, as the number of variables increases, (19) gives better

Mll

M5
is V1 — u;f = h;. Also, if periodically there is at least one B; > &,

M;; .
7 prw - 1asn — o sothat B; = h;. See also (12, Section 14).

approximations. Alse > 1 and the largest possible value of R;

In a previous study (9, p. 10), the square root of the communal-
ity was used as an upper bound for the multiple correlation coef-
ficient. It is possible, with the use of (19), to obtain a good estimate
of the correlation itself. In Table V are presented the values h; used
previously and the new values E; obtained with (19).

TABLE V
Values of R; and k; for 19 Variables

Variable 1 2 8 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Rk .86 .91 .92 .94 .98 .92 .93 .95 .78 .93 .93 .90 .71 .90 .58 .89 .78 .79 .91
R, .85 .88 .88 .91 .95 .90 .91 .93 .77 .91 .90 .89 .69 .88 .56 .87 .77 .76 .89

8. Use of mon-uniqueness methods. The development of the
above formulas demands uniqueness factors since u; must be different
from 0. This appears to be a serious restriction at first, and yet it is
not so serious in practice, since observed variables usually have unique
components (5, p. 130). However, it does not appear at first that
methods which assume no uniqueness factor (methods which use
AA' = R as the basic matrix equation) should yield results which are
adaptable to the formulas of this paper. Of course, if the attempt is
made to distribute the variance completely among » common compo-
nents, and the attempt is successful, then the u; are zero and the for-
mulas above are not applicable. However, this attempt is frequently
not entirely successful, particularly if the number of observed vari-
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ables is large, and that is the case where the method is especially val-
uable. In an unsuccessful attempt to distribute the variance among
r factors, the residuals of the diagonal terms are appreciably larger
than the residuals of the non-diagonal terms. Hence, the sums of the
squares of the factor loadings are appreciably less than unity when
the sums of the products of the factor loadings do not differ appreci-
ably from the correlations. In such a case, even though the basic
assumption is that u; = 0, the residuals of the diagonal terms may be
used as the u;* and the multiple correlation coefficients may be com-
puted by the methods of this paper. The case of perfect prediction,
where the u; are actually as well as theoretically zero, has been dis-
cussed by Guttman (12, section 17).

PART II

PARTIAL CORRELATIONS AND REGRESSION COEFFICIENTS
FROM THE FACTORIAL MATRIX

1. Introduction. It has been shown in Part I how the multiple
correlation of an observed variable with other observed variables can
be obtained from the factorial matrix. It is the purpose of this part
to show how partial correlation coeflicients and regression coefficients
can be obtained similarly. The general plan is similar to that of Part
I, though the matrices involved are not so simple. We use the well-
known determinantal formulas

A12
Pi2engeen = —— , 1
12 VAL (1)
AIZ
ﬂ12-34---n = A, ] (2)
A
521-34-"7! = 4221 . (3)
It has been shown, (Part I, Equation 12) that
A = uP Ul oo W W, oo U, 4 [T -+ BB (4)

so that A4, and 4, can be evaluated from the factorial matrix. The
main task then is to evaluate 4,, .

2. The evaluation of A,.. Perhaps the simplest approach is to
carry through an evaluation of 4 in which, for a number of steps, the
value of the minor is not changed. Thus if 4,,[RE] represents the de-

terminant of the correlation matrix with the first row and second col-
umn eliminated, then



222 PSYCHOMETRIKA

salR)=an| g 7| =au [F22% F]=a] L 1]

We now divide the first column of 4., [ __gz }4 by u, , the first row
by ., and the n — 2 following rows and columns by u, , --- , %a, re-
spectively. The result can be written

Aiz = UnUsUs®Uy" - U2 A 0 1 By |,
—B', —By. I

where B, is a single-rowed matrix consisting of %‘ [ Lo Os . Gor

U Ut U

B, is a single-column matrix composed of elements %1— ; By 18 2 ma-

1]

trix of n — 2 rows and ~ columns in which no one of the first sub-
seripts is 1 or 2. B');. is the transpose of B,.,(. It follows then that

0 0 B,
Az = UyoUs? - U A 0 I B
—B'y 0 I4-Byu B
R 0 B2
= 71'1%2?1'32 cee u,ﬁ A [—8,1 I+ 8)12( B’)lz(j}
_ 0 B,
= Unlalh® - Uy A [—3'1 I+ BB'] (5)

See also (12, section 5).
8. The formula for partial correlation. It follows, by substitu-
tion of (4) and (5) in (1) that

UyUoUs® + - U2 A [ 0 B ]

A12 ‘—"B]_ I"‘I“ BB

Ti2:3400en =

Vdid,  VIitug - 4, (I + BE) 1[4 % -+ ® 4, (I BB') ]

Al 0 B
—B; I-+BB

- ) 6
VAl FBE] 4,11+ BBT (6)

The determinant in the numerator has » 4 1 rows and columns, while
the determinants in the denominator have but  rows and columns.
The matrix [I -+ BB'] consists of r rows and + columns having ele-
ments
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My = {

2 Bik Big when k#z aix
t_l—f‘ZBm B;; WhenkZl

Wlth Bik T
U;
The determinants of the denominator are similar to the determinant
of [I 4+ BB’], but the variable x, is omitted in the first case and the
variable z, in the second. The calculation is relatively simple and fol-
lows quickly from results used in getting the multiple correlation.
It is readily established that, more generally

- 0 B;
(___1)z+}+1 a4 , o ’j
[-—Bg- 1+ BB

VAT BBT4I-+BB]

The reader should compare (12, section 7).

4. Ilustration. As an illustration we take the two-factor prob-
lem used as an example in the case of multiple correlation. We take
out the first three variables, for ease in checking by classical meth-
ods, and compute 7.,.; . The factor loadings are augmented to form the
B’s and the values M;; determined. We find, from Table I of Part 1,
B,, = 889712, B, =.163082, B,, = 1.694908, B., = .542176 ,

My = 5.640949, M,, = M, = — 087051, M, = 2.677230,
with

(1)

Vijeigeren =

4,.[1--BB'] = 12.799994, 4,{I 4- BB'] = 5.585452.

0 B. 000000 1.694908 542618
A4 [-—~B-’ I+ BZB' ] :‘——.889712 5.640949 —:087051 == 4.602031
i —-163082 -—.087051 2.677230
so that

Pizs = ———— 4.602031 = .544271 .

V/ (12.799994) (5.585452)

The value 7y,.. as determined by the classical method is
Ass

= = — = 544271 .

Of course, as in the case of multiple correlation, it is better to use
classical methods if as few as three variables are involved. The ad-
vantage of the factorial method increases with the number of vari-
ables involved and particularly so if many partial correlations are
desired. The flexibility, too, should be noted since it is possible to
obtain the partial correlation between two variables against any sub-
set of the original variables.
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5. The case of a single factor. In the case of a single factor,
A[1 BB} =143 B, B;=B;,, —Bi=—B,
4;[1 4 BB'] =1+ 3 B% — B*;,,
4;[I4- BBl =1+ 3 B*%, — B%;, ; so that
B%, B,
\/(1 TSP —Fa AFSFa—Fn O

From the one-factor problem used in Table III we note that Bz, =
1.415, B%;, = 1.203 and, if we consider the first three variables only,
1+ B2,, 4+ B%,, = 3.252,1 - B?%, -+ B?%, = 3.464, and

. . [(1415)(1208) _
1 (3.252) (3.464)

This is in error because the residuals were not exactly 0. The actual
value of 7,..;, as found by conventional methods, is .428. The abso-
lute value of the difference is .089 and is about the same size as the
average absolute value of the size of the three residuals (5, p. 148),
which is .035.

It can be shown in general from (8) that, in the case of one fac-
tor, the partial correlation approaches 0 as the number of variables
increases. The old factor loadings remain the same with each new
addition and if periodically there is added at least one factor loading
as large as ¢, the denominators increase while the numerators re-
main the same.

The ease with which partial correlations of high order are com-
puted, in the case of one factor, is shown in Table I where the values
Of 715, Ti2e3 5 T12e34 » Troeaas s Tizesass » T1ze34567 5 Tizesssers , AYE exhibited.

Pijerzenn = (—1) Hivt

.389 .

TABLE 1
Computation of the partial correlations 7,,.
Variable @y uj2 lez 81128‘212 T2, Mn)x( Mn}z( Mll)l( 7122 712,
13)2¢
586 414 1.415 1.702
.546 .454 1.203 1.702 2.203 2415 5.320 .320 .566
.512 .488 1.049 1.702 .3 3.252 38.464 11.265 .151 .389
451 549 .821 1.702 .34 4.073 4.285 17.453 .0975 .312

402 598 672 1.702 .245 4.745 4.957 23.521 .0724 .269
357 .643 .555 1.702 .3456 5.300 5.512 29.214 .0583 .241
.354 646 .548 1.702 .34567 5.848 6.060 35.439 .0480 .219
331 .669 .495 1.702 345678 6.343 6.555 41.578 .0409 .202

00 ~3 Oy U kO DD

The 1764 different partial correlation coefficients of this prob-
lem can be computed in this way.
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6. Alternate form of the general formula. The numerator of
(7) can be expressed as the sum of two determinants of the rth order
rather than one of the (r - 1)st order. Since

4 [Jg; I3 BE j =AU+ BB+ 4 L—%; Iﬁf BE J
we have
4 [_-%'1 Iljf BB’] =— Al + BB + 4 [_2'1 I -%BB’]
= — A[I+ BB -{—A{ d B. }
0 I+ BB 4+ B,BR,]
= __ A[{I 4 BB] 4 Al + BB 4 B.B] . (9)
For example, in the illustration of section 4,
Al 4 BB} = 15.094540, while

7.148929 395329

A{I 4 BB + B,B] = { .189358 2.765149

} = 19.696570,
and

—B, I+BB

7. Approximation Formulas. The computation can be consid-
erably simplified if we make an approximation by placing the non-
diagonal elements of [I - BB’'] equal to zero. In this case the matrix
[I 4+ BB’] is a diagonal matrix with elements M;;. Then

4 { 0 B }34.602030,35 indicated earlier.

0 B 7.3 M,
A{—B’l I—}—BB’}_;EB"‘B%HM%’ and

2 Blk sz IIMH/Mkh
Prgeggeeen == . (10)
\/H MH)’l( H M“)-g(

As an illustration, we compute an approximation to 7is.:456: fOr
the two-factor problem of section 4. In this case, if we take the fac-
tor loadings to three places we get BB, = 1.506, By;B. = .0885,
M., = 11753, M,, = 5266, M1y = 10963, M,;; = 8.883, My

= 5-239 s M22)2( == 4.971 ’ With

(1.506) (5.266) -- (.0885) (11.7563) — 178
v (10.963) (8.883) (5.239) (4.971) '

A further approximation can be made, if n is large enough so

T12e38587 —
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that M, , M.,  and M,;,, are approximately equal. In this case

” _ 2’: B Bax
12+34sesny — ——
T ey,

It can be shown that ry.50... = 0 a8 2 = o if periodically some
a;; > ¢, since Byx and By remain the same, but My, increases. See also
{12, section 15).

8. Regression coefficients. From (2) and (5) it is apparent
that

(11)

i Ugthgtls® -+ M2 A [_%; z+§2B’J
Prosien = 2 = W LI BB
0 B,
4 {__Bg 1 +BB']
T 2,11 + BB}

In general, similarly

0 B,
w4 [_Bg I—}.BB’:I
Bijnzem = (1) 772 w, LI T BB ° 12)

Approximations can be made as in the last section. See also (12, sec-
tion 7).

PART 111

THE DIFFERENT MULTIPLE CORRELATIONS INVOLVING THE
OBSERVED VARIABLES AND THE COMMON VARIABLES

1. Introduction. In this part a study is made of the multiple
correlation coefficient (1) when an observed variable is estimated
from (a) common variables, (b) common variables and observed vari-
ables, (c¢) observed variables; (2) when a common variable is esti-
mated from (a) common variables, (b) common variables and ob-
served variables, and (c) observed variables.

In this part, we make use of the fact that the correlation between
an observed variable z; and a common variable y; is equal to a;; . This
well-known fact follows at once from [Part I, Equation (1)1 by form-
ing

2T DY
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The matrix of the correlations of the n observed variables and the
r common variables can be written in the form {ﬁ ?}if the observed
variables precede the common variables horizontally to the right and
vertically downward.

2. The multiple correlations of an observed variable. The mul-
tiple correlations of the observed variables have been worked out pre-
viously. Results and references are here stated.

(a) Correlation with the common variables.

The multiple correlation of the observed variable x; with the r
common variables has been shown by various authors (7, p. 2) (10,
p- 164) to be equal to &; .

(b) Correlations with the common variables and the n — 1 ob-

served variables.

It is likewise well-known (7, p. 4) (10, p. 165) that the multiple
correlation of an observed variable with the » common variables and
the n — 1 observed variables is equal to h;.

e}y Correlation with the n— 1 observed variables.

It is shown in Part I that

Al -+ BB’}
R, = \/ 1 — oy e —= T [I+BB] (2)

It is not necessary to use all the n — 1 other variables in apply-
ing this formula.

3. The multiple correlations of the common variable.

(a) With the r — 1 other common variables.

This trivial case results in B; = 0, since 4 = A; = 1 in the for-
mula (4, p. 301).

R§=\l/1-£4 (3)

(b)  With the r — 1 other common variables and. the n observed
variables.

The value of 4 in the determinantal formula (3) is now

R A
A{A, I}:A[Uﬂ

as shown in Part I. The value of 4, is not quite so easily obtained
since it calls for the deletion of row »n -+ i and column = -- ¢ in the
matrix having n 4 r rows and n -+ » columns, Now the order in

which the y’s occur is not material so, for convenience, we assume
that y; is the last variable y,. We then write the factorial matrix ip
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two parts. The first part, which we designate 4,,(, indicates the ma-
trix composed of all the columns of the factorial matrix with the ex-
ception of column . The second part of the matrix, which we desig-
nate by A, , consists of the rth column only. In this notation the ma-
trix of the intercorrelations of the n 4+ » variables becomes

R A, A,
Ay I 0
A, 0 I

while the determinant -1, can be written

R A)r( Ar U': A)T( AT
A ‘E, ;4“‘ —AlAayn T 0 |=4] 0 I 0
L O 0 I —'A,r O I

! B, B I+B.B, B, B,
ff..i[Uﬂ].J[ o I 0 }:A[Uz],_zl[o I 0

—B, 0 I 0 0 1
= A[U?}(1 4+ B%, 4+ B%, -} --- -+ B%;,)
azlr a22r azm
= 2 b .
ALY At b ot ) - (4)
It follows at once, since { may be substituted for r, that

_ a4 1 _ 2 B%;
R=yl=—=3 \/1"'1+EB%7\/‘1+282H' &)
This formula is also given by Guttman (12, 9a). It is clear that
R; < 1 and that B; — 1 as n — « if periodically some B?; is at least
of size ¢.

The formula (5) is adapted to easy computation. It is to be noted
that the quantities B;; are quantities which are used in finding the
multiple correlation of an observed variable with the other observed
variables.

(c) With n observed variables.

We assume again, without loss of generality, that the common
variable is the last common variable, r . We then have

R, = jl—é withA:A{ E A’}and

\ A, —Ay I
A, = A[R] = A[U*]A[I 4- BB'] as shown in Part I. Now

R A, A, U= Ay A,
R A,
A ‘— , fle= A4 ) I 0O = A —A', [ 0
A T ] [ ] { " ]

—A, 0 I 0 0 Il
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I B)H Br
= A[Uﬂz{—-&?’m I 0 |=A[U34All + By, B.J.

0 o I
1t follows that, in general,
_ A[l 4+ B)i B
S N £ Y o

The reader may refer to Guttman (12, Section 10).
Here A[I 4 B, B');] differs from A[l 4 BB'] only in having
row ¢ and column % deleted. As an approximation formula we may set

all non-diagonal elements in row i and column i of I 4 BB’ = 0 and
we get

_ 1

which agrees with the result (5) of the previous case.

4. Illustration. As an illustration we take a problem used by
Thurstone (5, p. 128) and compute the values of the B’s to three sig-
nificant places. These are presented in Table L.

TABLE I
The Computation of the B’s.
(1) (2 (3) 4) (5) (6) N (8)
Var.
Gy g hy? u? %; By, By
660 121 .450 .5b0 742 .889 .163
.830 .266 760 .240 490  1.694 543
—.541 .638 100 300 548 —.987 1.164
—.126 71 610 .390 625 —.202 1.234
437 591 540 460 678 645 872
638 —.337 .520 480 693 921 —.486
904 .109 .830 170 412 2,194 265

It follows at once that

a3 O W

14 3 B2, = 11753,
=1

7
2 B,‘l B,‘Z = .363 y

7
143 B, = 5266,
F=1

so that, if ¥, is correlated with y, and the seven observed variables
we get
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_ 10753 _
Ry,——ql‘”_zsg—.gsf;.

_ 4266 _
2\ 5266

If y, is correlated with the seven observed variables we have

Iy 5.266
R, = | "111.753 3.63
363 5.266|

In a similar fashion

900 .

== 956

and, similarly

fl*'lﬁsfp\w
E,= |77 117753 3.63.
V | .363 5.266
The correlation of each observed variable with the remaining
observed variable has been exhibited in Part I. A general summary
of results is given in Table II.
TABLE 11
Different Multiple Correlations.
Predicting Variables (Excluding predicted Variable)

=900 .

Predicted Common Common Variables Observed

Variable Variables and Observed Vars. Variables
@, 671 871 .639
x, 872 872 814
x, 837 837 731
x, 781 1181 668
@, 735 135 666
x, 721 121 673
x. 911 911 841
Y, 0 956 .956
Y 0 900 900

6. Additional Cases. Cases may arise in which one does not de-
sire to use all the observed variables nor all the common variables, It
is possible, in general, to work these cases by means of matrix devel-
opments similar to those of this paper. The desired matrix is set up
and then built up so that complete correlation and factorial matrices
result. The determinant of this matrix is then reduced to the determi-
nant of a matrix having but » rows and 7 columns.

Frisch (11, p. 15) has used “hollow” determinants in which the
eniries in the diagonals are replaced by 0. These also can be evaluated
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from the factorial matrix, but the loadings are now ‘“‘communality
augmented” rather than “uniqueness augmented” loadings. For

A{R—-I]zA{R'—I A]:A{Uz——l A}::A[MHZ A}

0 1 —A I —A I
(8)
= (—1)" A[H"] 4 {‘; ﬂ — (—1)" A[H?] [ —CC] .
where A[H?} = h*h?, -.- h%, and the elements of C are
_ @y
Cji - -}Z . (9)

7. Conclusion. It has been shown in this paper how the results
of a factorial matrix can be used in obtaining multiple and partial
correlations., The presentation is illustrative rather than exhaustive,
general rather than rigorous, but it does emphasize the actual com-
putation of multiple and partial correlations in problems invelving
many variables. Special attention is given to formulas which, with a
relatively small amount of work, will yield good approximations to
the desired quantities.

From the general theoretical point of view, it seems, there is one
point which should be emphasized and that is that the correlation ma-
trix results from an incomplete preliminary reduction of the data
since the correlation matrix does not permit the isolation of a set of
numbers which accompany one variable only. To be sure the correla-
tion matrix does provide a set of numbers for each variable, but these
numbers are associated with other variables; in fact, there has to be
one of these numbers for each of the other variables. However, if the
correlation matrix is reduced to a factorial matrix, we have each
variable indicated by a set of numbers, numbers which are, in form
at least, independent of the other variables, and from these numbers
we can now construct not only the correlation matrix, but also the
classical partial and multiple correlation coefficients as well. Since
the numbers associated with the observed variable are not associated
with the other observed variables, the method makes feasible the im-
mediate study of any subset of the observed variables. This flexibility
is most important as is the fact that the representation of a variable
by such a set of numbers gives promise of the development of very
objective criteria for the inclusion or exclusion of a variable in pre-
diction (10, 11, 12). It appears then that the computation of a fac-
torial matrix is indicated as a proper step in preliminary reduction of
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the data by the student of multiple correlation as well as by the stu-
dent of multiple factor analysis.
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