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The standard tobit or censored regression model is typically utilized for regression analysis 
when the dependent variable is censored. This model is generalized by developing a conditional 
mixture, maximum likelihood method for latent class censored regression. The proposed 
method simultaneously estimates separate regression functions and subject membership in K 
latent classes or groups given a censored dependent variable for a cross-section of subjects. 
Maximum likelihood estimates are obtained using an EM algorithm. The proposed method is 
illustrated via a consumer psychology application. 
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1. Introduction 

Tobit models are part of  a general class of  models for analyzing truncated and 
censored data where the range of  the dependent variable is constrained (see Amemiya,  
1984, for a survey). A typical case of  censoring occurs when the dependent variable has 
a number of  its values concentrated at a limiting value, say zero. For  instance, in a 
large-scale study of  the number of  hours worked by married women (Greene & 
Quester, 1982), about 66% of the over 10,000 wives surveyed reported zero hours. This 
makes the use of the classical regression model inappropriate, as to be discussed below. 

The standard tobit or censored regression model (Tobin, 1958) in which the de- 
pendent variable is censored (at zero, without loss of  generality) can be expressed as 

y *  = x [ [ $  + u i ,  i = 1 ,  . . . , I subjects,  (1) 

where the random variable y* may be viewed as an index or a partially latent variable 
whose observed value, Y i ,  is concentrated at zero when it is nonpositive. Hence,  
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Y0* if y* > 0, 
yi = if y* _< 0, 

where Yi is the value of the observed censored dependent variable for subject i. In (1), 
x~ is the i-th row vector of x = ((xij)) containing the values of J explanatory variables 
( j  = 1 . . . . .  J)  for subject i. The regression coefficients for these explanatory variables 
are contained in 13 = {/3j}, a J  x 1 column vector, and the error terms {ui} are assumed 
to be iid drawings from a normal distribution, N(0, tr2). Note that Yi and xi are known 
for each of the I subjects (i = 1, . . . ,  I), but y* is unobserved if it is nonpositive (i.e., 
Yi = 0) and is therefore partially latent. 

The expected value of Yi = E(Yi)  = Prob (y* > 0 ) - E ( y i [ y *  > 0), and the 
conditional expectation is given by (see Amemiya, 1985, p. 367) 

E(YilY* > O) = x~[I + E(uilui  > -x~13) 

where ~ .  ) and q~( • ) are the density and distribution functions, respectively, of a 
standard normal variable. Note that (2) implies that the classical regression estimator ~ 
is biased and inconsistent regardless of whether one uses all the observations or just the 
positive observations. Thus, the classicN regression model is inappropriate when the 
dependent variable is censored. 

Numerous applications of standard tobit models for censored data have appeared 
in the social science literature, in part due to the increasing availability of  computa- 
tional resources as well as micro-level survey and panel data. These include, inter alia, 
psychological, economic, and social research studies concerning family relations and 
attachment behavior (Fisher & Tesler, 1986), number of extramarital affairs (Fair, 
1978), job absenteeism (Baba, 1990), personal wealth transfers (Adams, 1980), ratio of 
unemployed hours to employed hours (Ashenfelter & Ham, 1979), household purchases 
of durable goods (Tobin, 1958), number of credit card accounts possessed by consum- 
ers (Kinsey, 1981), number of criminal arrests (Witte, 1980), performance on achieve- 
ment tests (Gross, 1980), and household purchases of grocery products (Elrod & Winer, 
1982; Tellis, 1988). 

In most of these applications, a single set of coefficients 13 is estimated from the 
censored data. While this may be justified if one is only interested in aggregate-level 
estimates, it may be inadequate and potentially misleading if there is considerable 
heterogeneity in subjects' responses. Consider the study of the number of hours 
worked by married women (Greene & Quester, 1982) that investigates the impact of 
explanatory variables such as second marriage, divorce probability, presence of  small 
kids, as well as education and wage differences between husband and wife. Aspects of 
these tobit analyses are reproduced in Table 1 (see Greene, 1990, pp. 728-729). 

Separate tobit estimates are reported for black versus white wives. The coefficients 
in Table 1 suggest differences in the impact of the explanatory variables on the average 
number of hours worked. For instance, second marriage has a much larger positive 
impact for white wives than black wives, while education difference has a positive 
effect for black wives and a negative effect for white wives. Hence, if differences in 
responses exist across subjects, disaggregate analyses are necessary to reveal such 
differential effects. However, a priori bases for performing such disaggregate analyses 
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TABLE 1 

Tobit Coefficients For Labor Study of Number of Hours Worked 
(Adapted from Greene, 1990) 

White Wives Black Wives 

377 

Second marriage 175.85 25.33 

(3.47) (0.41) 

Mean divorce probability 

Education difference 

417.39 481.02 

(6.52) (5.28) 

-48.08 22.59 

(-4.77) (1.96) 

Relative wage 312.07 286.39 

(5.71) (3.32) 

High divorce probability 

Small kids 

670.22 578.66 

(8.40) (5.33) 

-1324.84 -824.19 

(-19.78) (-10.14) 

Intercept -1803.13 -2753.87 

(-8.64) (-9.68) 

A 
o 1559.00 1511.00 

Sample size 7459.00 2798.00 

% reporting zero hours 71% 54% 

Note: values in parent~ses are asymptotic t-statistics of the respective coefficients. 

may not always be obvious or known to the researcher,  and even if these are known,  
the relevant  data may be unavailable. Further,  typically collected background data such 
as demographics may not usefully describe such response differences in o ther  instances 
(see Moore,  1980). 

This paper presents the development  of  a maximum likelihood method for con- 
ducting disaggregate tobit analyses that does not require a priori bases to be prespec- 
ified. Alternative approaches for modeling structural heterogeneity such as switching 
regression models (see Maddala, 1983, for a review) often entail the specification of  a 
switching mechanism and/or require exogenous sample separation information. In ad- 
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dition, the "latent" switching regression models (see Quandt & Ramsey, 1978) typi- 
cally assume that subjects switch among different regimes in a discrete manner, and 
more importantly, do not accommodate censored data. Our proposed method allows 
for probabilistic membership of subjects into K latent classes, given a censored depen- 
dent variable, y, and explanatory variables, x, for a sample of I subjects. The latent 
class membership probabilities for the I subjects and the class-specific regression pa- 
rameters are estimated simultaneously. 

The next section presents the technical structure of the model. We assume that the 
latent random variable y* is distributed as a mixture of univariate conditional normal 
densities with the observations being censored if y* -< 0 (i.e., the observed value of the 
dependent variable, Yi, is zero if y* - 0). An estimation algorithm based on an EM 
framework (Dempster, Laird, & Rubin, 1977) is devised for estimating the model's 
parameters in a maximum likelihood fashion. (We note by way of background that the 
classical regression latent class model proposed by DeSarbo & Cron, 1988, is a special 
case of the proposed method when the dependent variable is uncensored for all sub- 
jects). To illustrate the proposed method, we provide a consumer psychology applica- 
tion with censored data concerning yogurt consumption. 

2. Method 

The Model 

We assume that the probability density function for the latent random variable, y* ,  
is distributed as a finite mixture of conditional univariate normal densities, f( • ): 

r r 1 (y ._x [ l~k .  t 
Y * -  E Xkf(Y~Ixi, o,~,, l~k)= ~ Xk --4~ , (3) 

k = ! k = ~ o-k o-k / 

where 

4~') 

k = 1 , . . . ,  K latent classes; 
13 k = the vector of regression coefficients {fljk} for J explanatory variables ( j  = 

1 . . . .  , J) for latent class k; 
o -2 = the variance parameter for latent class k; 

k = (A 1 , A2, . . .  , AK), a vector of the K - 1 independent mixing proportions 
of the finite mixture such that At, > 0 and Xff=l Ak = I; 

= the standard normal density. 

The distribution of the censored dependent variable Yi is (see Maddala, 1983, p. 
152, for the aggregate K = 1 case) 

[/ I ' I h(yilB, X, X ) =  ~ Ak I - q b  . . . .  , 
k=l \ o-k / / j  ~kk 4' ~k /J 

(4) 

where 

1 i f f  Yi > 0 ,  

wi = i f f  Yi = 0 ,  ( 5 )  

• ( .  ) is the distribution function of the standard normal, B = ((/3jk)), and X = 
(o-i x . . . . .  O-KX). Hence, assuming a sample y = (Yl, Y2 . . . . .  Yl) drawn from a 
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mixture of censored conditional normal densities, h(YilB, ~, k), the likelihood func- 
tion, is given by 

I 

L = ~ h(YilB, Z, k). (6) 
i = 1  

We estimate B, Z, and k given observed x and y and a prespecified value of K by 
maximizing L or In L in (6), given the constraints imposed on k above and all elements 
of the vector X > 0. The latter condition is necessary since the likelihood function is 
unbounded when any tr 2 = 0, and maximum likelihood estimators are not guaranteed 
to be consistent in this case. 

Given maximum likelihood parameter estimates, I~ k, &k, and '~k, one can then 
estimate the posterior probabilities of membership, Pik,  of each subject i into each of 
the K latent classes using Bayes' rule: 

h(yill~, ~ ,  ~) 
, ( 7 )  

such that Xkr=l Pik = 1. These posterior probabilities provide a probabilistic clustering 
of the subjects into the K derived latent classes and may be utilized to form discrete 
partitions by assigning each subject i to the latent class whose Pik is highest. 

The E M  Algori thm 

We introduce nonobserved indicator variables to allow for the formulation of an 
EM algorithm for parameter estimation (see De Soete & DeSarbo, 1990, for a similar 
basic framework with respect to a latent class probit model for "pick any/N" binary 
data). Let 

[1  iff subjec t /be longs  to latent class k, 
Z i k  = ~0 otherwise. (8) 

We assume that, for a particular subject i, the nonobserved data, zi = ( z i l ,  zi2, • • • ,  
ZiK)', are iid multinomially distributed with probabilities k, 

K 

(z/IM ~ 1-I xz,k • " k • 
k = l  

The distribution of y* given zi is therefore 

(9) 

K 

(y*Izl) = H 
k = l  

[ f ( y * l x i ,  o ' ~ ,  l~k ) ]  z'*. (io) 

The complete data In likelihood function to be maximized is given by 

1 K I K 

In Lc(B ,  If,, 2kly*, z, x) = ~ ~ zik In f(y*ll3k, (r~, xi) + ~ 
i = l  k = l  i = l  k = l  

Zik I n  (A,k) 
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1 1 /c 1 t r 
= - ~ - . ~ ]  Z zik In ( 2 w ) -  ~ .=~ ? =  Zik ln(o. 2) 

t = l  k = l  ) 1 1 

1 1 K 1 K 
Zik t 

2 ~ ~ o .2 (y* xil~k)2 d- ~ 
i = 1  k = l  i = 1  k = l  

Zik In (Ak). 

( l l )  

With z = ((zik)) considered as missing data and y* considered as a vector with unob- 
servable values, we formulate a nested pair of EM procedures for maximum likelihood 
estimation---a "major" E-step (expectation step), and a "major" M-step (maximization 
step) with a "minor" EM part nested within. In the major E-step, we compute the 
expected value of z i given provisional estimates for B, ~, k and the latent part of y*.  
In the major M-step, we use a minor EM algorithm for estimating the nonpositive 
values of y*, B, and ~, conditional upon the newly estimated values of z; subsequently, 
we update the latent class proportions k which completes the major M-step. These E- 
and M-steps are successively applied until no further improvement of the likelihood 
function in (11) is possible. We now discuss these steps in detail and then provide a 
summary of the estimation scheme. 

The "Major" E-Step 
Using Bayes' rule, the conditional distribution of zi is 

K 

(zilY*, B, ~, X ) -  I~ 
k = l  

This implies that 

E(zaly'~, B, ~, ~.)= 

A k  f(Y*ll~k, 0 "2, Xi! ]z,k. 

1 At f(Y*IXi, 13k, O.2)J 

(12) 

Ak f(y*lxi, I~k, O.2) 
(13) 

K 

xk f( * YilXi, Ilk, o .2 ) 
k = l  

Given y* and provisional estimates B Cs) , ~(s), k(S) of the parameters B, ~, k, respec- 
tively, the expectation of In Lc (ignoring the constant term without loss of generality) 
at the s-th major iteration is 

Ez[ln L~Iy*, B ('), ~('), k (')] -= QI(B ('), ~(~), k (s), z(')ly) 

I I K 
= - ~  ~ ~ z~ )In(o'2 (~)) 

z = l  k = l  

i = 1  k = l  

I K 

+ ~ ~ z!~ ) In (A~s)), (14) 
i = 1  k = l  
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where zi~ ) is approximated by the conditional expected value in (13) evaluated at B (s), 
Z(s), and k(s). In computing the expected value of Zik, the unobservable part of y* is 
replaced by its conditional expectation when Yi = 0. These estimates are obtained via 
a minor EM algorithm nested within the major M-step, discussed next. 

The "Major" M-Step 
In the E-step of the minor EM algorithm (nested within the major M-step), the 

expectation of (14) is evaluated over the conditional distribution of the partially nonob- 
served variable y*, given the observed data y and provisional estimates B (s) , ~(s), k(s), 
and z (s) of the parameters B, 2 ,  k ,  and z, respectively. This expectation is 

1 I K 

Err[ez(In Lcly*, B ('), ~('), ~(s))lY] = -~ .~ X z!~ ) In 
t = l  k = l  

Ii K z!s) I K 1 -~,~ X ~k (s)'K (yi-x~l~(S') 2+ X X 
"= k = l  i = l  k = l  

z!~ ) In (A (~)) 

I K Z~fc) 

1 ~ ~ cr2(S) E((y* - . , t / ( s )x21. (s)  B(S), X(s) ,  X(s), = 0), - - -  - -  "~ilJk ! I~i , Y i  
2 i=I1  +1 k = l  

(15) 

where we assume, without loss of generality, that the data are arranged in a manner 
such that the first 11 subjects correspond to those having Yi > O. 

From (10), the conditional distribution of y* is 

r ~b(y*---crkx~13k) 
(Y*IYi = 0, z i ) -  ~ Zik 

k= l O'k 1 -  ~(x~f~k ) 
\ O ' k  ] 

This implies 

(16) 

E ( y * l y i  = O, z i )  = X Zik Xtil~k 
k=l  1 _ dp(X~l~k// 

X trk /J 

(17) 

and 

K 

Var (Y*IYi = O, Zl) = ~ Zik  
k = l  ( 

X ~rk / /  ~ X O'k / /  J 

(18) 

Using (17) and (18), evaluated with estimates B (s) , ~(s), and z (s) , it can be shown that 
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Ey*, [Ez(ln Lcly*, B (s), X (s), X(~))ly] ~ Q2(B, Xly, z (s), x(')) 

1 I K 
= - ~  E E z:~ )ln(°'~ ('))- 

~ = 1  k = l  

II K Z::c) 

,El'= k=lE Or2(s ) (Yi -  X~k(S)) 2 

I K z!S)tg 1 
2 ~ ~ ~ [E(y*IYi = O, z} s)) - x~13~')] 2 

i=l~ +I =I 

I I K Z~) I K 

2i=~-~+1~1 --T~s) V a r ( y * l z ) s ) ' y i = O ) + l *  k t ' k =  i=1 ~ k=l  ~ z!:c) ln(A(~))" (19) 

In the M-phase of the minor EM algorithm, (19) is maximized with respect to B and 
X. This maximization problem can be converted into K optimization problems of the 
form 

max = - ~ z}~) I ,~i..___~k 13,, ~ 2 • In (tr 2(r)) - ~ i= 10"k2(r) (Yi - -  X~(r) )  2 
i=1 

1 t z~) 
~.'-~. Or2(r)[E(y*IYi = O, z}')) - X~(kr'] 2 

i = l l  + 1 

l _ ~ f ,  z'~ ) (s))} (20) 
• ~ +1 °-2 <r----'-S Var (Y*lYi = O, z , 

where r denotes the minor iteration index. This is a weighted least-squares maximiza- 
tion problem whose [$k and o'~ estimators are 

13(k r) = (x 'D(z}~))X)-lx 'O(z~))~r*,  (21) 

I~ I 
~r~ (r) = ~ z~ ) (Yi - x~l~(kr)) 2 + ~ Z)~ ) (E(y*ly, = 0, zi) - X~l~k(r)) 2 

i=1 i = l l  +1 

+ 

1 

E 
i = l t  + 1 

z)~ ) Var  (y*[z) s) , Yi = O) 

I 

E z)1? 
i=1 

, (22) 
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where D(z/~ )) denotes the I x I diagonal matrix with i-th diagonal element z i~ ) , and 
~* is the original y vector whose Yi = 0 elements are replaced by the expected values 
from (17). 

These new estimaters i~ (r) and ~(r) become the new provisional estimates for the 
next E-step of the minor EM algorithm to compute new estimates for the unobserved 
values of y*. The latter are then used in the subsequent M-step of the minor EM to 
arrive at new estimates of B and ~. We continue this iterative process until no further 
improvement in the function in (19) is possible. Thus, the minor EM algorithm amounts 
to predicting all the unobservable values of y* based on their conditional expectations. 
To complete the major M-step, (14) must be maximized with respect to k, subject to the 
constraints Y.K= 1 Ak = 1 and Ak --> 0, to obtain updated estimates for the latent class 
proportions, ~(s). To achieve this, it sutfices to maximize the augmented function 

~___~ z}~ ) l n ( A k ) - ~  A k -  1 , (23) 
i = 1  k = l  =1 

where/z denotes a Lagrange multiplier. It can be easily shown that (23) is maximized 
when 

1 I 

~(kS ) i = l  i = l  

I I 
(24) 

Hence, upon completion of the major M-step, we obtain new provisional estimates for 
B, X, and k, which are used in the next major E-step to compute new estimates for z. 
We continue alternating between the major E- and M-steps until no further improve- 
ment in the likelihood function in (14) is possible. Convergence to at least a local 
optimum solution can be established using Jensen's inequality and/or a limiting sums 
argument. 

E s t i m a t i o n  S c h e m e  

Schematically, the EM algorithm utilized for parameter estimation can be de- 
scribed as follows: 

1. Initialize the "major"  iteration index s: s ~ 0. 
Generate initial estimates B O), X C°), and k ~°), of B, ~,  and k, respectively. 

2. Compute initial estimates of z (°) using (13). 
3. a. Set the minor iteration index r: r <-- 0 and initialize B tr) = B (s) , x(r) = X(s)  

b. Compute ~* using (17) for Yi = O. 
c. For each latent class k = 1 . . . . .  K, obtain estimates 13~ r+l) and o -2(r+l) 

using (21) and (22). 
d. Minor convergence test: 

if QE(B (r+l), ?E(r+l)ly , z (s), k (s)) - QE(B (r), ~(r)[y, z(S), k(s)) 
is smaller than some user-specified positive constant (e), set B <s+l) = 
B(r+l), ~(s+l) = ~(r+l), and go to Step 4. 

e. Increment r: r <--- r + 1. Return to Step 3b. 
4. Compute a new estimate k (s+l) of X using (24). 
5. Major convergence test: 

if QI(B(S+I), ~(s+l), k(s+1), z(S)[y) _ Qj(B(S), ]~(s), k(s), z(S)ly ) 
is smaller than some user-specified positive constant (e), stop. 
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6. Increment s: s *-- s + I and go back to step 2. 

Thus, each minor iteration conditionally maximizes the maximum likelihood func- 
tion given provisional estimates of the latent class subject memberships into the K 
classes. The major iteration updates the class memberships. Upon convergence of the 
proposed EM algorithm, we obtain estimates of B, ~, k, and z. The final estimates of 
z are expectations of the nonobserved membership indicator vector, and are equivalent 
to the posterior probabilities ((P/k)). Hence, the proposed method simultaneously 
estimates K tobit-like regression functions with parameters B, ~,  the mixing propor- 
tions k, and posterior probabilities of membership ((Pik)) of each subject i into each of 
the K latent classes. 

Note that the parameters of finite mixture of univariate normal densities are iden- 
tified (see Teicher, 1961, 1963; Yakowitz, 1970; Yakowitz & Spragins, 1968), although 
there exist no sufficient estimators for such parameters (Dynkin, 1961). Maximum 
likelihood estimation is probably the most commonly utilized method for estimating the 
standard tobit model parameters (see Olsen, 1978, and Amemiya, 1984, for a discussion 
of different estimation methods). Iterative procedures such as the Newton-Raphson or 
the EM algorithm seem to converge somewhat rapidly in the standard tobit model as 
revealed from the simulation study performed by Schmee and Hahn (1979). We com- 
pute the asymptotic variance-covariance matrix of the regression parameters using the 
asymptotic efficiency property of maximum likelihood estimators. The vafiance-cova- 
fiance matrix, F, of the regression coefficients is estimated analytically as (Berndt, Hall, 
& Hausman, 1974) 

where L i = In h(YilB, ~,  ~), 0 is a vector stacking all the free parameters, and 
contains maximum likelihood sample estimates at the optimum. 

Tests for K 

As mentioned earlier, the number of latent classes K must be specified when 
analyzing data by the proposed method. However, in most applications, K is unknown 
and therefore needs to be inferred from the data. Since the regularity conditions nec- 
essary for the traditional likelihood ratio test for K do not hold in the case of our model, 
we use alternative heuristic measures typically utilized for most problems involving 
mixture distributions (see McLachlan & Basford, 1988) to identify the appropriate 
number of classes. Sclove (1977, 1983) and Bozdogan and Sclove (1984) have proposed 
the use of Akaike's (I974) information criterion, 

AICK --- - 2  In L x  + 2 N x ,  (26) 

where N K is the effective number of parameters estimated in a K-class solution, 

NK = JK + 2 K -  1. (27) 

According to this criterion, the optimal number of latent classes is the K that produces 
minimum AICK. An alternative measure to the AIC is the consistent AIC (CAIC) 
heuristic that corrects for the overestimation bias of the AIC by penalizing overparam- 
eterization (see Bozdogan, 1987). This measure is defined as 

CAICx = - 2  In LK + NK[ln I + I]. (28) 
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Bozdogan (1987) recommends using the CAIC rather than the AIC in the case of large 
samples. Because of its correction for overspecification difficulties associated with the 
use of the AIC, the CAIC is our measure of choice here. However, it is important to 
note that both AIC and CAIC rely on the same regularity conditions needed for the 
validity of the likelihood ratio test (see Bozdogan, 1983; Sclove, 1987; Titterington, 
Smith, & Makov, 1985), and hence we regard these criteria as hueristics. Further, to 
assess the separation of the latent classes, we utilize an entropy-based measure, E K, 
using the posterior probabilities (analogous to measures of population diversity sug- 
gested by Teachman, 1980), 

~ - Pik In Pik 
i k 

E r  = 1 - (29) 
l i n K  

E K is a relative measure of "fuzziness" of the derived latent classes. It takes a mini- 
mum value of 0 when all the posterior probabilities are equal for each subject and a 
maximum value of 1 when the K classes are discrete partitions. Therefore, a value of 
E K close to zero is cause for concern as it implies that the centroids of the K latent 
classes are not sufficiently separated. Note, this measure should be used in conjunction 
with one of the aforementioned tests for K to choose an appropriate solution. 

3. An Application in Consumer Psychology 

Understanding the behavior of consumers is an active area of research in consumer 
psychology and the social sciences. Very often, researchers are faced with situations in 
which observations on a dependent variable of interest are censored. For instance, in 
modeling household purchases of products during an observational period as a function 
of certain explanatory variables (e.g., price), a significant proportion of households may 
have zero purchases. Censored regression models are typically utilized (see Elrod & 
Winer, 1982; Tellis, 1988) since the use of a classical regression model is inappropriate 
as discussed in the introductory section. However, if households vary in their respon- 
siveness to these explanatory variables, estimating a single, aggregate censored regres- 
sion model may be inadequate. 

We investigate this issue with respect to purchases of yogurt which is an inexpen- 
sive frequently-bought consumer product. Purchase records were obtained for a panel 
of households maintained by a major consumer research firm in a city in the central 
United States. This city is a small insulated market that has been determined by this 
firm to be nationally representative of the U.S. in demographic composition and con- 
sumption patterns. All the major supermarkets in this city are equipped with electronic 
scanning equipment to record purchase transactions. Actual purchase records indicat- 
ing the brand and quantity bought are available at the household level since each 
panelist presents an identification card during checkout. In addition, information on 
potential explanatory variables characterizing the transaction and the purchasing en- 
vironment such as price, use of coupons, and store advertising are available for each 
household. 

Prior research investigating consumer purchase behavior (e.g., Elrod &Winer ,  
1982; Narasimhan, 1984; Tellis, 1988) suggests that consumers evaluate and choose 
brands based on inferences made using information inherent in "cues"  such as price, 
advertising, and sales promotional devices such as cents-off coupons. However,  such 
purveyors of information may have a differential impact upon consumers' purchase 
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behavior depending upon their sensitivities to these cues. We therefore utilize our 
proposed method to analyze such heterogeneity in consumer sensitivities. 

The differential impact of explanatory variables on consumers' purchase behavior 
is assessed by deriving different sets of parameter estimates for different groups of 
consumers corresponding to K latent classes. Here, we evaluate the impact of three 
explanatory variables on the purchase behavior for each household (see Blattberg & 
Neslin, 1990): price (xl ) ,  coupon use (x2), and store advertising (X3). The price 
variable is measured in mean cents per ounce paid over the observational time period, 
coupon use is the proportion of household transactions made with a coupon, and store 
advertising is the proportion of household transactions made when the brand bought 
was featured in store advertising flyers. In addition to these three explanatory vari- 
ables, we include an intercept term in the model specification. 

We analyze the impact of these explanatory variables on households' total pur- 
chases of the leading brand of yogurt in the market (denoted as Brand L). The obser- 
vations span the time period September 1986 to August 1987. Of the 2097 households 
in the sample that purchased one or more brands of yogurt in this observational period, 
1013 had nonzero purchases for Brand L. For these households, the dependent variable 
(y) is the log of the total quantity (ounces) of yogurt (Brand L) purchased by each 
household (see Narasimhan, 1984). The remaining 1084 households made zero pur- 
chases of Brand L, although each of these households did purchase other brands of 
yogurt. Hence, for these households, the dependent variable is censored at zero since 
they did not purchase Brand L. Consistent with the estimation procedure described in 
the previous section, the observations for the entire sample of 2097 households are 
arranged in a manner such that the first I 1 = 1013 households correspond to those 
having nonzero purchases (i.e., Yi > 0),  while the remaining households correspond to 
those for whom the dependent variable is censored at zero. The mean value of the 
dependent variable is 32.83 ounces across all households in the sample, and 67.97 
ounces among purchasers of Brand L. 

For the 1013 households reporting nonzero purchases of Brand L, the explanatory 
variables reflect the price, coupon use, and advertising information pertaining to occa- 
sions when Brand L is purchased during the observational period. For the remaining 
1084 households reporting zero purchases of Brand L, values of the explanatory vari- 
ables are obtained based on their "purchase opportunities" for Brand L during the 
observational period (see Bucklin & Lattin, 1991). We define "purchase opportunities" 
as purchase occasions wherein these households bought some brand of yogurt other 
than Brand L. To obtain the values of the explanatory variables for a household re- 
porting zero purchases of Brand L, we first identified its purchase opportunities and the 
corresponding calendar weeks, and then computed the mean values of price, coupon, 
and advertising variables across those households that purchased Brand L in these 
weeks. Hence, while the dependent variable is zero for households reporting zero 
purchases of Brand L, the values of the respective explanatory variables are known, 
based on purchase opportunities for these households when Brand L could have been 
bought instead. 

Analyses and Results 
We first compare the results of classical (OLS) regression and aggregate tobit (K = 

1) analyses, wherein a single set of regression coefficients 13 is estimated. We then 
compare the aggregate tobit model with the disaggregate results obtained using our 
proposed method. The inadequacy of aggregate censored regression models in captur- 
ing heterogeneous response to explanatory variables is discussed subsequently. 

The aggregate classical (OLS) regression and aggregate tobit results are shown in 
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TABLE 2 

Aggregate Regression Coefficients 
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Variable OLS Tobit (K= 1) 

~v ¢~' ) -0.171 -0,278 
Price 

1 (0.037) (0.025) 

Coupons (~2) 0.290* 0.553* 
(0.027) (0.027) 

(~3) I. 159* 2.326* Advertising 
(0.266) (0.233) 

Intercept 3.084 2.499 
(0.386) (0.257) 

Note: denotes the ratio of the parameter estimate / standard error is greater than 2; the value in parentheses is the 

standard error of the parameter estimate. 

Table 2. From this table, note that all the coefficients for the OLS and tobit analyses are 
significant at the 0.01 level. The tobit estimates indicate that households are sensitive 
to price (/~1 = -0.278), as well as promotional activities, such as coupons (/32 = 0.553) 
and advertising (/~3 = 2.326). Households increase their consumption when prices are 
lower, when yogurt is featured in store advertising, and when cents-off coupons are 
available to obtain price discounts. However, note that the OLS regression model 
under-estimates the impact of the explanatory variables. While similar in sign, the 
coefficients for the price, coupon, and advertising variables are lower in absolute mag- 
nitude than the aggregate tobit estimates. This is because of the inherent assumptions 
of the classical regression model which, as discussed in the introduction section, do not 
accommodate zero (censored) values of the dependent variable explicitly. 

However, the aggregate tobit estimates in Table 2 may mask any underlying het- 
erogeneity in household response to price, coupons, and advertising. To investigate this 
further, we use our proposed method to analyze the data for a varying number of latent 
classes K. The values of the In likelihood (ln L), number of major iterations required 
for convergence (IT), number of estimated parameters (NK), the entropy-based mea- 
sures (EK), and information criterion values (CAICK) are shown in Table 3 as K varies 
from 1 to 4. Note that the In likelihood increases considerably from the aggregate case 
(In L = -3407.09) to the two-class case (ln L = -2914.12),  indicating the presence 
of considerable heterogeneity in the data. As K increases further however, the In 
likelihood still increases as expected due to the increased number of parameters, al- 
though the amount of increase is much lower beyond K = 2 classes. The CAIC values 
have a minimum at K = 2, and hence, we choose the two-class solution. The entropy 
measure E K is 0.91 for the two-class solution indicating that the latent class centroids 
are well-separated for K = 2. 

Table 4 presents the parameter estimates for each of the two latent classes. From 
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TABLE 3 

Model Selection 

Mlrlllll IIIIIIIIIII 

K IT K L . L  F x 

I 28 5 -3407.09 0.00 6857.41 

2 34 11 -2914.12 0.91 5923.37* 

3 25 17 -2904.45 0.65 5955,92 

4 17 23 -2884.51 0.59 5967.94 

Note: denotes minimum CAIC value. 

this table, note that there are significant differences between the two latent classes with 
respect to the magnitudes of the regression coefficients I~ for the explanatory variables. 
Further, the regression coefficients for the aggregate case (K = 1) in Table 2 are in a 
middle range and do not distinguish between the differential responsiveness of con- 
sumers to the explanatory variables. The estimate of 6 -2 in the K = 1 case (6-2 = 3.337) 
is higher than either of the within-class estimates (6-2 = 1.131, 6-2 = 1.325) indicating 
that the error variance is higher for the aggregate (K = 1) solution. From Table 4, Class 
1 consists of 44.9% of consumers who are not sensitive to coupons and advertising, and 
with a very low sensitivity to price. In contrast, Class 2 consists of 55.1% of consumers 
who are very sensitive to price, coupons, and advertising. Hence, these findings sug- 
gest the existence of two types of  demand functions for Brand L, corresponding to two 
groups of consumers with one group (class 2) having larger absolute magnitudes of 
sensitivities than the other. (We also inspected the K = 3 class solution for additional 
potential insights into the structure of the data. In the K = 3 class solution, the 
coefficients for the third class closely resembled those of  the second class. In addition, 
the size of  the third latent class was much too small to be managerially useful.) 

Prior consumer research suggests the potential existence of two types of shoppers: 
those who do not respond to information-based cues, and those who respond to store 
advertising and promotional signals (Bucklin & Lattin 1991; Cobb & Hoyer  1986; 
Hoyer  1984; Inman, McAlister, & Hoyer  1990; Park, Iyer, & Smith 1989). These two 
types of shoppers are seemingly reflected in the results in Table 4. Latent Class I seems 
to consist of  "habitual" consumers who may plan their purchases and are not influ- 
enced by coupons and advertising. Given that yogurt is a relatively inexpensive, fre- 
quently-bought perishable item, these consumers may have built loyalty towards the 
leading brand and make their purchases in a habitual manner (Hoyer, 1984). Hence, 
consumers in Class 1 are perhaps more loyal to Brand L. Latent class 2 seems to consist 
of "opportunistic" consumers who are more sensitive to price and promotion, and may 
be inclined to purchase lesser-priced brands. They may be less loyal to Brand L and are 
perhaps heavy coupon users who are more prone to purchasing products featured in 
store advertising, given their high sensitivity to information-based cues. The next sec- 
tion explores these hypotheses in more depth. 
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TABLE 4 

Parameter Estimates For The Two-Class Solution 
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Variable Latent class 1 Latent class 2 

Class size (~k) 0.449 0.551 

, It 

Price (~lk) -0.067 - 1.872 
(0.029) (0.255) 

Coupons (~2k) -0.036 2.643* 
(0.030) (0.302) 

(~3k) 0.049 4.559* Advertising 
(0.285) (0.824) 

Intercept 4.191 11.786" 
(0.302) (1.655) 

^ 2 1.131" 1.325" 

(0.028) (0.216) 

Note: denotes the ratio of the parameter estimate / standard error is greater than 2; the value in parentheses is the 

standard error of the parameter estimate. 

Latent Class Diagnosis 
To assess the impact of loyalty, coupon usage, and advertising proneness upon 

class membership, we conduct a posterior regression analysis. We regress the log odds 
of a household belonging to Class 2 versus Class 1 (i.e., In (Pi2/Pil)) against six 
descriptor variables. In addition to the three consumer behavior characteristics (i.e., 
loyalty, overall coupon usage, and advertising proneness), we include three other vari- 
ables capturing total household (yogurt) category consumption, income, and family size 
that potentially relate to differences in consumer sensitivities (Blattberg & Neslin, 1990) 
as evinced for the two derived classes. (Of these six descriptor variables, income and 
family size are demographic variables obtained via a household survey, while the 
remaining variables are based on purchases made from January 1986 to August 1986, 



390 PSYCHOMETRIKA 

TABLE 5 

Analysis of Posterior Probabilities 

""""'"' i,,1111111,1,1,1 i 

Variable Impact Coefficient 

Loyalty 

Coupon usage 

Advertising proneness 

Category consumption 

I n c o m e  

-0.375 

(0.011) 

0.486 

(0.220) 

0.368 

(0.074) 

-0.020 

(0.OO2) 

-0.613 

(0.124) 

Family Size O. 185 
(0.252) 

Intercept 5.758 

F-statistic 252.123 

R 2 0.420 

N o t e :  d e n o t e s  the ratio o f  the parameter  eslimate / standard error is greater than 2; the value in parentheses is the 

standard en~r of the paraaeter estimate. 

prior to the time frame utilized for deriving the two clusters). These descriptor variables 
are measured as follows: loyalty is measured as the proportion of purchases made 
towards the leading Brand L, coupon usage is the proportion of purchases made with 
a coupon, advertising proneness is the proportion of  purchases made when yogurt was 
featured in store advertisements, income is a fourteen-point scale with "1"  denoting 
less than $5000 and "14"  denoting $100,000 or more, and household size is the number 
of members in the household including children. The results of the posterior regression 
analysis are displayed in Table 5. 
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TABLE 6 

Ten K=2 Class Solutions Using Different 
Random Starts for the Yogurt Data 

Run Number," 

I 2* ;~ 4 ~ ~* 7 ~ P 10 
A 

I~01 4.292 4,227 4.315 4.292 4.297 4.257 4,271 4.289 4.288 4,283 
A 

~11 -0.076 -0.071 -0.078 -0.076 -0.076 -0.073 -0.074 -0.076 -0.076 -0.075 
A 

1321 -0.037 -0.044 -0.036 -0.037 -0.039 -0.044 -0.035 -0.037 -0.1138 -0.036 
A 

~31 -0.002 -0.181 -0.012 -0.006 -0.035 -0.159 0.038 0.002 -0.004 0.016 
A 

1302 11.932 ,t11.96,1. 10.797 12.097 13.396 29.054 10.834 11.848 t2.198 11.397 
A 

1312 -1.826 -7.798 -1.687 -1.852 -2.068 -4.922 -1.643 -1.810 -1.865 -1.736 
A 

1322 2.465 I 1.488 2.270 2.501 2,793 6.735 2.225 2.446 2.524 2.347 
^ 

1332 3.964 18.687 3.865 3.998 4.324 9.782 3.701 3.935 4.009 3.830 
^ 2  
a l  1.135 1.121 1.136 1.134 1.133 1.124 1.135 1.135 1.134 1.135 
^ 2  
~'2 1.840 6.915 2.012 1.852 2.052 4.563 1.600 1.801 1.828 1.722 
^ 

kl 0.441 0.469 0.438 0.441 0.443 0.460 0.441 0.441 0.442 0.441 
^ 

~2 0.559 0.531 0.561 0.559 0,557 0.540 0.559 0.559 0.558 0.559 

IT 32 19 28 44 31 21 39 36 29 41 

I.,nL -2912.17 -2966.51 -2914.43 -2912.35 -2914.98 -2949.09 -2910.11 -2911.82 -2912.22 -2911.05 

Note:  * denotes  a severe local optimum solution. 

From Table 5, the regression analysis is significant overall (F = 252.123) with 
about 42% of the variation in the log-odds of posterior class membership being ex- 
plained by the chosen predictor variables. Of the six variables, loyalty, advertising 
proneness, category consumption, and income are significant at the 0.01 level, while 
coupon usage is significant at the 0.05 level. The family size variable has a positive 
impact coefficient, albeit insignificant. Hence, as expected, consumers in latent Class 1 
are more brand loyal, while consumers in latent Class 2 are heavy coupon users and are 
very prone to advertised store specials. Interestingly, latent class 1 consists of house- 
holds who consume relatively more yogurt. It might be that these habitual consumers 
buy on a somewhat regular basis given the perishable nature of yogurt. In contrast, 
consumers in latent class 2 may be more occasional users who are influenced by 
information-based cues and take advantage of promotional opportunities; moreover, 
they seem to have relatively lower income consistent with their high price sensitivity. 
Future research could explore such issues further to provide a better understanding of 
consumer behavior. 
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Inves t i ga t i on  o f  L o c a l  Op t ima  

As mentioned earlier, the proposed EM estimation procedure converges to at least 
a local optimum solution. To examine the severity of the potential problem of local 
optimality, we recomputed the K = 2 solution some ten times using different random 
starts for each of these analyses. In each case, the convergence tolerance e was set to 
0.001. Table 6 presents the parameter estimates, iterations required for convergence, 
and In likelihood values for each of the ten analyses. As shown in the table, two of the 
ten analyses (#2 and #6) result in rather noticeable local optimal solutions. Otherwise, 
the estimates are quite stable, especially those concerning the mixing proportions and 
significant coefficients. Note, all ten analyses converged within 50 major iterations 
indicating somewhat rapid convergence. (CPU time was not available for these analy- 
ses). 

4. Conclusion 

We have presented a conditional mixture, maximum likelihood method for latent 
class regression involving a censored dependent variable. This method models sample 
heterogeneity by simultaneously estimating separate regression functions and subject 
membership in K latent classes or clusters, Maximum likelihood estimates are obtained 
using an EM algorithm. We illustrate the proposed method via a consumer psychology 
application concerning the consumption of an inexpensive, frequently-bought perish- 
able item. Overall, our proposed method renders meaningful results by separating 
"habitual" consumers from "opportunistic" consumers via the derived latent classes. 
These two types of consumers possess different demand functions and exhibit varying 
patterns of responsiveness to information-based cues. Estimating a single set of aggre- 
gate tobit estimates masks this heterogeneity in consumers' response patterns. The 
posterior regression analysis provides further insights into the derived latent classes 
and corroborates the interpretation of the class-specific results. 

Given the increasing use of tobit models for censored data, our proposed method 
can be especially useful to researchers conducting psychological and social studies 
where sound theoretical bases and/or relevant descriptors are not available to form a 
priori groups of subjects. Some directions for future research include accommodating 
prior information and/or subject-specific variables on the mixing parameters (see Aitkin 
& Rubin, 1985; Dayton & MacReady, I988) and investigating issues such as the iden- 
tification of outliers (see Aitkin & Wilson, 1980) and other stochastic model selection 
criteria (see Bozdogan, 1991; Rissanen 1989; Windham & Cutler 1991). 
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