RDS-TR-13-82

THE GRAPH LABELING PROBLEM
AND THE
RELAXATION LABELING PROCESSES

M. D. Diamond

October 1982

CENTER FOR ROBOTICS AND INTEGRATED MANUFACTURING
Robot Systems Division

COLLEGE OF ENGINEERING

THE UNIVERS ITY OF MICHIGAN ,T;‘;F PIN Do
S VEESTTY OF pirio
ANN ARBOR, MICHIGAN 48109 ENGINFERING Tirpiny
HVSENEERING LIBRARY

This work was supported in part by the Ultrasonic Imaging Laboratory and the Robot Systems Dlvision
of the Center for Robotics and Integrated Manufacturing (CRIM) at The University of Michigan, Ann Arbor,
Ml. Any opinlons, findings, and conclusions or recommendations expressed in this publication are those of
the author and do not necessarily reflect the views of the funding agencies.



Eﬂ%w‘)
LN,
[2¢77



RSD-TR-13-82 : 1

Abstract

This document presents a survey of the current literature on the graph labeling
problem and the relaxation labeling processes. This survey serves as a base from
which current research into cooperative solutions to the continuous graph
labeling problem can proceed. Our intent is to motivate the reader by presenting
herein the development and overview necessary to introduce the topic, as well as
the the notation and analysis necessary to create the framework in which current

and proposed work can be discussed.
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1. Introduction

The relaxation labeling processes (RLPs) refer to a class of cooperative
algorithms which can be applied to problems expressed in terms of the labeling of a
graph. A graph labeling problem is one in which a unique label, A, from a set, A, of
possible labels must be assigned to each node of the graph. The assignment must be
performed given incomplete local information about the correct labeling at each
vertex, and contextual information about the interaction of labels on adjacent
vertices. Two forms of labeling, discrete and continuous, are distinguished by the
nature of the local information and the representation of the contextual information.
In a discrete labeling problem the local information consists of a subset of labels
associated with each vertex from which the correct label for that vertex must be
chosen. The contextual information is expressed in terms of constraint relations
which make explicit those pairs of labels which can occur simultaneously on adjacent
nodes. In a continuous labeling problem, the local information is composed of likelihood
measures or figures of merit given for each label on each vertex, and the contextual
information is composed of measures of compatibility between pairs of labels on
adjacent vertices. In the latter case, both the figures of merit and the

compatibilities are assumed to be taken from a continuous scale.

Relaxation techniques for discrete labeling problems were discovered first. They
were derived from early work in computer vision, specifically, Waltz's filtering
algorithm [Wal72] for the implementation of the Huffman-Clowes line labeling scheme
[Huf71,Clo71]. Although Waltz described a sequential search, subsequent work
[Mon74,RHZ76] cast Waltz filtering in terms of a set of parallel, iterative equations;
that is, as a cooperative process. The fundamental idea in this technique is to reduce
the ambiguity in a labeling by removing those labels which are not compatible with the
labeling on adjacent vertices. Removing any label at one time step will affect the
removal of labels at adjacent vertices at the next time step, so the effect is seen as

propagating through the extent of the network. Although not all aspects of the
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behavior of discrete relaxation networks are currently understood, it is known that
they will converge to a fixed point which can easily be described in terms of the
constraint relations and the network topology, and thus related directly to the

requirements imposed by a particular problem.

To treat the continuous case, extensions to the form of the iterative equations
for the discrete relaxation processes were made, which incorporate the strength
measures associated with the labels on adjacent vertices and the compatibility
information into an updated strength measure for a given label on a given node
[RHZ76,PEL80,KIR80,FaB81]. This extension has, however, proven to be difficult: the
convergence properties of existing algorithms have generally been poor, and there is
apparently no understanding of the functions they compute. An examination of the
literature points to the fact that there has been no real attempt at a formal analysis
of the problem domain and no global perspective on what the techniques are

designed to accomplish. Thus, the updating algorithms which have emerged so far

have been based almost entirely on heuristics.

Despite the apparent lack of theory, the application of continuous relaxation
labeling techniques to problems in scene analysis and pattern recognition has
generated a large volume of literatufe in recent years [DaR80,Ros79,Ros81]. In fact,
the graph labeling model is quite robust, and suitable for a wide range of problems in
pattern recognition. The parallel nature of the solution algorithm, and the implications
this has for implementation in hardware seems also to have had some effect on its
growth [Wil78]. Finally, evidence that relaxation like mechanisms can be used to
explain certain phenomena in human visual perception [WeM78,MoW79,MaP76] has
further contributed to the popularity of this topic. It seems evident then that the
relaxation labeling techniques will play an important role in the developing fields of
artificial intelligence and pattern recognition. The focus of our work, which is the
achievement of a formal understanding of the capabilities, and limitations of the

relaxation labeling processes, as well as the establishment of a consistent
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methodology for their implementation, is therefore, well motivated.

The rest of this document serves to illustrate and expand in detail the ideas
expressed above. In section.2 we present a formal development of the relaxation
labeling processes. This development includes the introduction of notation, concepts,
and results which will be used throughout this report and in subsequent reports on
this subject. It will also serve as a survey of the current literature. Section 3
contains an overview of the problem domain. Our intent here is to set the stage for
the further work by presenting an analysis of the problem and relating it to problems
in well established areas. In section 4 some results related to the discrete

relaxation labeling processes and constraint networks will be presented.

2. Development of the Relaxation Labeling Processes

The purpose of this section is to present the theory of relaxation labeling as it
currently exist in the literature. We do this by outlining a development of the area,
making note of important ideas as well as illustrating the work from which they have
been derived. Discrete and continuous relaxation are treated separately here. In

subsequent sections issues related to the unification of the two concepts are

discussed.

2.1. Discrete Relaxation

The realization that the labeling of segments of an image is equivalent to
interpreting the scene which generates that image occurred early in the work in
computer vision [Guz68]. A solution to a particular labeling problem, the labeling of
line drawings derived from blocks-world scenes was solved by Huffman [Huf71] and
(independently) Clowes [Clo71] in 197 1. Waltz [Wal72] proposed an algorithm for
the implementation of Huffman-Clowes labeling based on the propagation of
constraint information. This algorithm is described as an example below. Huffman-

Clowes labeling and Waltz's algorithm lead to the development of graph labeling and
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constraint propagating networks, which together form the basis for the relaxation

labeling processes.

Most of the theory of discrete relaxation which has been established to date
appears in a paper by Montanari [Mon74]. Although some further contributions can be
found in the work of Freuder [Fre78], Mackworth [Mac77], Rosenfeld et al. [RHZ76],
Haralick et al. [HDR78], and Haralick and Shapiro [HaS79,HaS80]. Applications of
constraint propagation techniques have been proposed for such areas as game
playing [Chu79], problem solving [Sac79,BaT76], theorem proving [Gas74], search
strategies [HaE79,HaS79,HaS80], database management [Gro76], graph theory
[Mon74,Ull76], syntactic pattern recognition [DaR78], and scene analysis
[Wal72,DaR81]. Further applications can also be found in surveys by Davis and

Rosenfeld [DaR80], and Haralick and Shapiro [HaS79].

2.,1.1. The Huffman-Clowes Line Labeling Scheme

~ Ezample 2.1: We consider the situation in which we are viewing a blocks world
scene, which consists entirely of polyhedral objects on a flat table. We assume that
the necessary processing has been carried out in order to extract a line drawing or
picture graph from the given scene. We restrict ourselves further to situations
where no more than three edges are incident on a particular vertex of this line

drawing. This condition is known as the trihedral vertez criterion.

Huffman-Clowes labeling attempts to place one of three possible labels on each
line of a line drawing, as is shown in figure 2.1 below. A plus (+) is assigned to edges
which separate surfaces forming a convex body, a minus (-) is assigned to edges
which separate surfaces forming a concave body, and an arrow (-) is assigned to
edges in which one of the intersecting surfaces occludes the other. In the latter
case, the arrow is given that direction which imposes a counter-clockwise orientation
on the line, taken with respect to the center of the visible face. There are

constraints imposed on the labels on adjacent lines, which are determined by the

Robot Systems Division Development
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Figure 2.1: Huffman-Clowes labeling of a simple blocks-world scene.

nature of the vertices at which they intersect. To this end the vertices are
separated into four classes, based on the angles formed by the lines incident upon
them. These classes, which are named the L, fork, arrow, and T joints are illustrated

in figure 2.2.

> < T

L joint fork joint arrow joint T joint

Figure 2.2: Four possible vertices under the trihedral vertex critereon.
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Combinatorially, there are 208 ways to label the lines incident on these four
types of vertices. In fact, however, only 16 such labelings will occur in natural
scenes, as are shown in figure 2.3. This is important for the following reason: A line
drawing contains all the information inherent in the blocks world scene from which it
was derived. Yet, it is represented by a simple data structure within the computer

memory. Inspection of any particular element of this data structure reveals nothing
as to the global role it plays:1 this can be done only once the elements have been

given their proper labels. However, this leads to the following paradox: A local

labeling can be achieved only by considering the global context in which each

Yy
T T T
SRS

Figure 2.3: Table of the 16 possible vertex labelings for blocks world scenes.

TThe "role” that is being sought after in Huffman-Clowes labeling is whether a glven line separates
two distinct objects, or two surfaces of the same object. See [Guz68].

Robot Systems Division Development
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element falls, whereas the global interpretation depends on the local labeling.

This paradox can be resolved, at least in part, by using the constraint

information in conjunction with the following procedure:

(1) Start by assigning every possible label to every line incident on each vertex as

determined by the vertex type and the list of legal labelings as shown in figure

2.3,

(2) Propagate the labeling information from each vertex to its adjacent vertices and
remove labels which are inconsistent with the labeling on these vertices. The
removal of a label on a line incident with a given vertex further constrains the
labeling of all lines incident on that vertéx, since it restricts the number of
entries in the labeling table (figure 2.3) for that particular vertex type which

may now be used to describe the current labeling on that vertex.
(8) Repeat step (2) until no more labels can be removed.

The procedure thus described contains the essence of Waltz's implementation of the

Huffman-Clowes labeling scheme.

It is important to note how constraints derived from the problem domain are used
to restrict the possible interpretation of elements in that domain. Although this idea is
relatively simple, its power should not be underestimated. We note, for example, how
in the current work towards achieving vision systems capable of human-like
performance, the use of natural constraint are continually being brought to bear on a

problem that would otherwise be intractable [BaT81,Zuc81].

2,1.2, Labeling, Constraint Networks, and Discrete Relaxation

The intent of this section is to express the ideas inherent in the Huffman-
Clowes line labeling scheme and Waltz's filtering algorithm in a formal manner so that
they may be further developed and applied to other problem areas. To this end, the
concepts of labeling, constraint networks, and discrete relaxation are introduced and

the interrelationships of these ideas discussed. Further aspects of discrete

Development Robot Systems Division
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relaxation and constraint networks will be examined in subsequent sections.

A labeling problem is a general formalism for a wide class of problems in
pattern recognition. The twa.components of a labeling problem are a set, V, often
referred to as units or vertices, and a sef, A, known as the label set, Our objective
is to assign a unique label A € A to each vertex v, € V. In a graph labeling problem
one is furthermore given a graph, G = (V,L), with vertex set IV and edge set L C /xV.
The function c;f the graph is to impose limitations on the amount of context, or global
information, that can be used in a labeling decision at each vertex. In the discrete
labeling problem, which is what is being considered here, this limitation is made
explicit by associating a constraint relation, R;; C AXA with each edge v;v; € L. The
constraint relation specifies which pairs of labels (A\,\') may co-occur on nodes v; and
vj. Although a more general case may be considered, for the sake of this discussion it
is assumed that the constraint relations are symmetric. That is, (\,A") € B;; if and only
if (\',A) € R;j, so that B;; = Rj,. The graph, label set, and constraint relations are
referred to collectively as a constraint metwork. A constraint network, the
specification for which is domain dependent, is a model for how information about the
problem domain related to a labeling problem is organized. It is often referred to as

the world model.

Definition 2. 1: A simple constraint nefwork defined on a label set A is a tuple:

Ca(A) = (V,E)

where,

V= SV1,V2,..., Vn;
is a set of vertices, and,

E = {(e1,R1), (e2,R2), (es,Rs)},

where e; € I/xV/ is an edge, and B; C AxA is a constraint relation associated with e;.

De finition 2.1a: Let C,(A) = (V,E) be a constraint network. The associated coarse

graph is the graph Cy = (Vy,Ey) with Vy =V and E4 = {eq, e3,..., &l.

Robot Systems Division Development
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The associated coarse graph defines the network topology. The term coarse

tapology will also be used, the reference to the associated coarse graph being

understood.

Definition 2.1b: Let Cna(A) = (V,E) be a constraint network with

E={(e1,R1),..., (epRm)}. The associated fine graph is a graph Cp = (Vp,Ep)
where,

Vp = AxV
and,

Ep CVp x Vs, = (AXV) X (AXV)
with (A\,r;) x (N',v;) € E if and only if (1) v;v; € Ep, and (2) (A,N') €R;;.
The associated fine graph has an edge between two vertices (v;,A)x(v;,A') when an
edge exists between the corresponding vertices v; and v; in the coarse graph and
the labels (A,A') are in the constraint relation for the edge v,v;. As such it contains
the same information as the specification for the constraint network as given by
definition 2.1. Fine graphs will, however, be useful both as a model and in illustrating

the explicit relationships between labels on adjacent nodes in the some of the

examples discussed below.?

Note the use of the term 'simpie' in the deﬁnition for a constraint network. In
the sequel, the issue of the amount of ''context’" required to solve a particular
problem will be raised. To this end, we will want to extend the concept of the
constraint network to the case where the coarse topology is represented by an
hypergraph [Ber73], that is, as a graph where a given edge may have an arbitrary

number of vertices.

A constraint network is applied to a specific problem by associating with each

vertex v; a label set A; C A which represents the current labeling of that vertex. In

2lt is suggested that examples 2.1 and 2.2 and figures 2.4 through 2.7 be referred to to illustrate
these definitions.

Development Robot Systems Division



RSD-TR-13-82 - 1

the relaxation algorithm to be described belﬁw, the labeling at each node will change
with time. Thus, the labeling at time t will be denoted by A} and {A}, i = 1,...,n} will
denote the labeling on, or the sfate of the constraint network at time t. An initial
labeling, §A,°; is assumed to have been generated by some process which can
detect the presence of one of several features, but cannot unambiguously determine
which of those features is the correct one for a given node. A labeling, {/;}, is called
ambiguous if |A;| >0 for all /i, and there exists an j such that |A;| > 1. The purpose
of the relaxation algorithm is to refine, or disambiguate, this initial estimate by using
the context of a labeling A; to remove those labels which are not consistent with the

world model.

Definitions 2.2: Given a constraint network C,(A), a labeling A; on vertex v; is called
consistent with the labeling Aj on vertex v; if for all A € A; there exists a label
A' € Aj such that (M) € R;;. Furthermore, A is called consistent with respect to ifs
neighborhood if for all v; adjacent to v;, A is consistent with respect to A;. Finally, a
labeling {/A;} is called consistent if A; is consistent with respect to its neighborhood,

for all /.

" Note that consistency can be defined for the individual labels A € A; in a similar

manner.

A consistent labeling will be denoted as {AF}. Given a world model, and an initial
labeling, our goal is to find the maximum consistent labeling contained therein. That
is, for all i, i = 1,..,n find the largest set AP, such that AF ¢ AP and the labeling §A,9§
is consistent. If AC = ¢ for some /i, then the initial labeling is inconsistent with
respect to the world model. In the case of the Huffman-Clowes model, this would
mean that the line drawing represents an impossible blocks world scene. Note that a
maximum consistent labeling may still be ambiguous. However, this is the best we can
hope to do given the information contained in the world model. In the latter case,

another means, such as a sequential search procedure, would have to be used to

Robot Systems Division Development
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completely disambiguate the labeling.

Definitions 2.3: Let p/(A) be the indicator function for the set A, that is,

pi(\) = 1 ifACSA (2.1)
0 otherwise

Similarly, let r;; be the indicator function of the constraint relation R;;:

1 if(\A) € R/j (2.2)

rlj(xpx') =
O otherwise
We can use the definitions for the membership functions to express the Waltz

filtering algorithm as a set of parallel, iterative equations, which comprise of the
discrete relazation operator [RHZ76] by:

pFY(N) = pf(\) Aoy LY JLPIY ArijMN) 11, A, i=1,.0n. (2.3)
The discrete relaxation is a process which acts upon the initial labeling of a
constraint network in order to solve the underlying labeling problem. Here, A and V
are used to denote logical conjunction and disjunction, respectively, and N(/)
denotes the set of vertices adjacent to v;. In this algorithm, a label X\ will be in the
label set for a vertex v; at time t + 1, A € Af“, if it is in the label set for that vertex
at time t and if for every vertex v; in the neighborhood of v, there exists a label A’
such that the tuble (\,\") is in the constraint relation Ry; for edge v;v;. Thus any label
which is not consistent with its neighborhood at a given time step will be removed at
the next iteration of the process. The network is guaranteed to converge to a fixed
point in at most |A|x|V| — 1 time steps, since labels can only be removed from the

label sets of their respective vertices.

FExample 2. 2: Consider a network the coarse topology shown in figure 2.4. Four
vertices, v,, V2, V3, and v, are connected by edges vqv», vov3, and vzv,;. Constraint

relations R12, R2>3, and R34 are shown associated with these edges.

Assume:

Development Robot Systems Division
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Rz R R34

O O O O

U, Vg Vs Vg

Figure 2.4: topology of constraint network for example .

(1) A= {a, b, ¢} is the label set.

(2) The initial labeling §{A°} is given as:

A? =tac,
A8 ={ac},
A3 = {a,b,ci,
A2 = { b, ci.

(3) The constraint relations are given as:
R12 = E(a,a), (b,b), (th);’
R23 = 2(6,0), (bsb); (C,a);,

R34 = i(asa)) (b’b)’ (b)c): (C’C);:

The associated fine graph shown in figure 2.5 is used to illustrate the behavior
of this network in four successive time steps. The darkened circles denote those
labels which are in the label set for the corresponding vertices, that is, the circle for
vertex (A,v;) has been filled in if and only if A € A;, or equivalently, if p;(A\) = 1. Note

that at time t=3 the network has converged to a fixed point which gives a unique

Robot Systems Division Development
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label to each vertex.

2.1.3. Input-Output Aspects of Constraint Networks

The previous section illustrated some the structural and behavioral aspects of
constraint networks and their application to the graph labeling problem. In this
section some of the functional aspects will be considered. In particular, we will be
interested in viewing constraint networks as a mapping from one set to another

independent of how that mapping is computed.
A (possibly empty) subset, p, of the nt” order Cartesian product of a set A:

PC AXAx -+ -+ xA(n times),

is called an n-ary relation defined on A Let P, denote the set of all n-ary relations
defined on A" (note®). An initial labeling {A$, AS, - -+, A2} can be represented by
the relation

£ = APXAZX -+ XA
the same holding for a consistent labeling

p° = APxAFx -+ xAS

so that the input-output description of a constraint network can be given by a
function which maps from n-ary relations to n-ary relations. The two issues that we
will discuss are (1) to describe the function computed by a given constraint network,
and (2) the design of a constraint network to realize a given function. Both can be

addressed independently of the behavior of the network.

We start with a more basic view towards a constraint network C,{A), which is as

an acceptor of strings of symbols of length n.

Definition 2.4: Let L,(A) be the set of all strings of length n defined on the symbol

set A and let o, € Z,(A) be a string of length n

3There Is an unfortunate conflict In notation here. In this case we intend A to denote the ntf? order
Carteslan product of the set A, instead of the state of a label set at time t=n. it Is hoped that in general
the meaning will be clear from the context.

Development Robot Systems Division
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Figure 2.5: Behavior of constraint network at 4 sequential time intervals.
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On = ANA2°° " Ape

Then a constraint network C,(A) accepts g, if and only if

A = (Aad, Az = [A2)s e A = (RS

is a consistent labeling for C,.

Given a string o, it is not difficult to specify a necessary and sufficient
condition that a given constraint network will accept it. To do so, we will need the

following definition:

Definition 2.5: Denote by [n] the set of integers {1, 2,...,, n}. Let/ be an index set

such that
I =iv,i2, ..., ipl C[n]
with |/| = m < n. Then the string projection function is a mapping
Tr[:zn nd Zm
defined by:

mAA2 = N = NNy =t N e

m
Claim 2. 1: A constraint network C,(A) = (V,E) accepts a string g, if and only if

.,y € Bij, for all viv;<Ey.
The claim is obvious and will be left without proof.
The set of all strings accepted by a constraint network C, is a relation p which
is of central importance because, in pattern recognition applications, it amounts to an
assertion about the set of all possible events. The definitions given above of

acceptance and projection for strings can easily be extended to relations as follows:

Definition 2.6: A constraint network C, accepts a relation p if it accepts every

element of p.

Definition 2.7: Let | be an index set with / C[n] and [/| =m, the relation

projection funclion 7, is a mapping,

Development Robot Systems Division
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ﬁ[:Pn nd Pm
defined by

Tlen) = U milon).

%n€Pn
Claim 2.2: A constraint network C, accepts a relation p, if and only if 7 jj(pn) € Ryj

for all v;v; € Ey.

Assume that a particular application specifies a graph Cy = (Vy,Ey) and a
relation (set of events) p,. A constraint network is to be constructed which accepts

pn- By claim 2.2 it would seem reasonable to set R;; = ﬁilu'}(P) for allvv; € Ey.

Definition 2.8: Let C,(A,Cy) be the set of all constraint networks defined on the
label set A and with coarse graph Cy = (Vy,Ey). The network projection function Hc,.,
is a mapping,
[le,:Pn > CalACH)
defined by
HcH(p,,) = Cp(A), where R;‘j = Ty 4i(p), for all viv;€Ey.

Unfortunately, thé constraint network Cn(A) = Ilc,(pn) is likely to accept strings
other than those contained in p,. Thus, given a coarse graph Cy, there will be some
relations which will not be accepted unigquely (that is, those strings and only those
strings in the given relation will be a;:cepted) by a constraint network with the given

topology. This fact may be of some importance in the research proposed below.

Erxample 2.3: lLet pj = {aab, baa} and Cy = (Vy,Ey) with V4 = {vq, vp,v3} and
Ey = {vqvz, vovzl. The coarse graph G is shown in figure 2.6.% Projecting p3 onto the
two edges in the graph Cy results in a constraint network with Ry, = {aa, baj, and

R,3 = {aa, ab}, as shown in figure 2.7. The set of strings accepted by this network

is, however,

4Note that the coarse topology of most of the constraint networks shown as examples in this docu-
ment are relatively simple, for the most part being linear. This need not be the case In general.

Robot Systems Division Development
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ng RZS

Figure 2.6: coarse graph for constraint network of example 2.3.

U, Vg Vg
O O O a
©) b

Figure 2.7: fine graph for constraint network of example 2.3.

p' = {aaa, aab, baa, babi.

Note that in the examples given above, the tuples in the constraint relations are
represented by strings of length 2. From this standpoint a constraint network can be
seen as accepting all strings whose substrings are represented in every constraint
relation associated with each edge. This being both a necessary and sufficient
condition for acceptance we can characterize those strings accepted by a given

constraint network using the formalism described below:

Development Robot Systems Division
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Definition 2.9: Let o € I, be a string defined on the symbol set Aand/ € [n] be an
index set. The string embedding function 9, is a mapping,

v Yi:lm > Pn
defined by

Yom) = to, | mlon) = 0p)
The string embedding function maps a string o, € &, to the relation p, € P, which is

the preimage of o, under the mapping m;.

Definition 2.10: Let I C [n] be an index set. The relation embedding function ¥, is
a mapping,

V1:Pm > P
defined by

Ylom) = U Yilon)

In€Pm
Definition 2.11: Let C,(A) = (V,E) be a constraint network and Cy, = (Vy4,Ey) the
associated coarse graph. The network reconstruction function ¥ is a mapping,

\PCH:CH(A,CH) - Pn
defined by

‘I’CH(Pm) = N E(RU)'
VivjEEY
The reconstruction function, applied to a given constraint network is the the relation
of all strings accepted by that network. Clearly, for any graph Cy, if p' = \P(HCH(p))

thenp C p'.

Definition 2.12: A relation p* for which \II(HCH(p*)) = p" is called closed with respect

to Cy4. Furthermore, the network HCH(p*) is said to be sufficient for p .

The set of closed relations is important because, given a coarse topology Cy, it
specifies those relations for which a constraint network which uniquely accepts that

relation can be constructed. Note the dependency on Cy. In fact, this dependency is

Robot Systems Division Development
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only poorly understood and is suggested as a research topic.

Define F¢, = ¥¢, OIICH, to be the composition of the network reconstruction
function and the network prejection function. Furthermore, let the set of relations
P,(A), partially ordered by set inclusion be the lattice <P,(A),C>. Then the set
PCCH C P(A) of relations which are closed with respect to FCH is a closure system

[DDT78] and Fc, is a closure operator since,
(1) if pp < p? then FCH(p,J) C FCH(p,?)
(2) Pn < FCH(pn)

(8) Fe,(Fc, on) = Fo,(pn)
Claim 2.3[Mon74]: if p}, p2 € PE(N), then p} N p2 € PE(A).

Thus the set of relations closed with respect to a given coarse topology is a sup

semilattice.

The issue of characterizing those strings which are closed with respect to a
constraint network with coarse graph Cy was addressed above. The dual problem is
to characterize the minimal coarse graphs (in terms of the number of edges) with
respect to which a given relation is closed. Given any relation p and any coarse
graph Cy a constraint network with the specifigd topology can be constructed to
accept p, as C,(A) = HCH(p,,). Although, as noted above, C,(A) may not accept p,
uniquely. Note that adding an edge to the edge set Ey of C, increases the
"discriminating power'’ of the resulting graph C'y. That is, in éeneral a greater number
of relations will be closed with respect to C'y. Therefore, if we wanted to guarantee
that a network will accept a given relation p, uniquel&:, the obvious solution would be
to specify that the coarse graph be the complete graph with n vertices, K,.

Unfortunately, this condition is not sufficient.
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Erample 2.4: Let Cy be the complete graph with three vertices, K3, as shown in

figure 2.8. Let the relation p3 be given by:

p3 = {abb, bab, bbaj}
Then Cn(A) = I, (p3) .with associated fine graph shown in figure 2.9 accepts the

relation

p's = (bbb, abb, bab, bba} # p3
One way to increase the discriminating power of a constraint network is to

increase the order of the edges in the coarse graph Cy.
Definition 2.13: An hypergraph is a tuple G = (V/,£) such that
(1) V={vq,v2 ..., vy} is a set of edges, and

(2) E={eq,e2,..., 5] is a set of hyperedges, where each hyperedge e, is a

subset (of arbitrary order) of I/, ; C V.

Definitions 2.2 through 2.12 above extend directly to the case where the

associated coarse graph Cy is , more generally, an hypergraph. The order of the

v v 3

Figure 2.8: coarse graph [or example 2.4.
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Figure 2.9: fine graph for example 2.4.

largest edge in Cy is considered to be the order of the asscciated constraint
network. Clearly, any relation p, can be uniquely accepted by a constraint (hyper)
network of order n. The smallest order o of a constraint network which uniquely
accepts a given relation p, i‘s important because it can be used as a measure of the
intrinsic globality or complexity of the relation. Determining a for an arbitrary relation
is strongly suspected to be n-p complete, and no reasonable polynomial time bounds
have been published. If we associate a processor with each hyperedge in the
network then the labeling on the set of vertices in an hyperedge forms the contezt
of the associated processor. The context is all the information that is directly

observable for making a labeling decision. All other information must be propagated

through another hyperedge.5

We have at this point covered some of the fundamental issues relevant to

discrete relaxation. The mode! is evidently very powerful and has only begun to be

51t we conslder the Huffman-Clowes line labeling scheme to be applied to the relation consisting of all
legal blocks world scenes, then the context defined by the line drawing is not sufficient to uniquely accept
this relation. That is, there are line drawings for which no real blocks world scene exists, that will nonthe-
less, be Huffman-Clowes labelable.
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understood. We suggest that one could easily dedicate an entire thesis to stating

the research issues which arise in conjunction with this topic.

2.2. Continuous relaxation labeling

Given an n-ary relation, the network projection function described in the
previous section creates a constraint network which implements a necessary
condition, and in some situations a necessary and sufficient condition, for the
recognition of the strings in that relation, given an initial labeling. The process can be
implemented in parallel hardware and applied to real world problems. In the discrete
case it is assumed that the feature detector responsible for the initial labeling can
detect, with certainty, the presence or absence of a feature. It is often more
realistic to assume that the feature detector is limited to assigning some measure of
strength or figure of merit, to each feature for each vertex of the graph. This would
be the case if, for example, the actual labeling was observed in the presence of
noise. To this end a continuous analog of the constraint network formalism has been

proposed [RHZ76] and has subsequently undergone several stages of development.

2.2.1. Extension to the Continuous Labeling Problem

The initial extension of discrete relaxation labeling to the continuous domain
was made by giving the label sets A,, and the constraint relations R;; fuzzy set
interpretations [DDT78]. This is done by letting the membership functions for the
label sets and the constraint relations take on values in the range [0,1], that is,
pi(A\) €[0,1] and r;;(AA) €[0,1] (refer to equations 2.1 and 2.2 above). The
iterative updating equations for the fuzzy set extension is equivalent td those for
the discrete case (eqn. 2.3):

PIETO) = pf 0 A A LY, TRION) AryjAN) 1] (2.4)
except that A{ | and V{ ] are now interpreted as the infimum and supremum,

respectively, of the set { |. These iterative equations must converge to a fixed point
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in no more than (|A|x|V]) x (JA]x|V]| — 1)/ 2 time steps since this is the number

of discrete differences that exist in the network.

The p;(A\) are now to be interpreted as strength measure or figures of merit for
the label A on vertex v;. ''Likelihood estimate’ and "probability estimate” are terms
which appear quite often in the literature, although their use has never been justified
in any formal sense. The r;;(A\,\') are often referred to as compatibility coefficients
and are intended to represent some measure of compatibility or mutual reinforcement

between the label A on vertex v; and A’ on vertex v;.

At the same time the extension to fuzzy sets was made an algebraic updating
rule was proposed [RHZ76]. The basis of this rule is to calculate the strength
measure pf*1(\) as a function of the "support” s;j(X) for the label A on node v; due to
the labeling, A; on node v;. The (linear) support is defined to be the average of the

label strengths on the adjacent node weighted by compatibility coefficients r; ;(A,\'):

sHO) = 2 r;(WN) pEOV), (2.5)
A'e€A
and the iterative updating equations for the algebraic updating rule are given in terms

of the linear support by:

q,-“"()\) = Pf()\)[" + Z S,‘tj()\)], (2.6)
JEN()
and,
t+1
ey = I ) (2.7)
pF*1(N) S PN
AEA

Equation 2.6 is an ad hoc procedure for combining thé supports to produce a new
labeling estimate, qf“. It is based on the heuristic that the more support the
labeling on a neighborhood gives to a particular label, the more likely it is to be the
correct label. Equation 2.7 serves to normalize these estimates so that they sum to

1 for a given node:
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¥ pi(N) =1, forall i, (2.8)
A€A

as would be required if the strength measures were to be interpreted as probability
estimates. The hope is, that the process driven by such equations will converge to a
fixed point where the label with the highest measure of su;)port is a ""good" choice
for the unique label to be assigned to that node. In most applications of algebraic
updating rules, the compatibility coefficients are assumed to take on values in the

range [-1,1].
In order to simplify further discussion we introduce the following notation:
Denote by p;, the vector of labeling values at a particular vertex:

ﬁl = (pl()\1)) pl(AZ)s LRCRCEE p[(hm))) ﬁl S Rm
Furthermore, define the labeling vector, p by:

b= (51,1—32,- ce pn): p € R,
Thus, p contains all the information about the current labeling. If we require equation

2.8 to hold, then p must be an element of the set K of weighted labeling

assignmendts given by:

K={peh™| Y p(N) =1, forall i}.
A€A

Furthermore, we can express the set of unambiguous labelings by

K' ={p<R™ | peKandp(A) € (0,13, for all i,A}.
As in the discrete case, the labeling is unambiguous if for each i, i = 1,...,n, p;(A\) = 1
for exactly one A € A, so that p;(\) =0, \' # \. It is easy to show that K is the
convex hull of K [HuZ80]. Finally, the set of compatibility coefficients can be
extended to allow a ''compatibility” mea;sure between every vertex in the graph by
setting r;;(A\X') = O if v; is not adjacent to v;. The resulting set can be expressed in
terms of an nmxnm compatibility matrix R. Note that given this notation, equation 2.5

can be expressed very easily as

§=Rp (2.9)
where s is defined in a manner similar to p.
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Recently, two additional algebraic updating formulas have been proposed: Let
the support sfj()\) be given, as above, by equation 2.5. In the first approach, due to
Peleg [Pel80a], the updated strength measures are expressed. as:

qf“(A) = PitO\) 2 Sfj()\). (2.9)
jeN(/
In the second, known as the product updatinésruie) [Kir80], they are given as:

TARIONIEN 1(ON) sH(N), (2.10)
JENQ)

In both cases the updated strength measures are normalized as in equation 2.7
above. There was in fact some attempt to justify equations 2.9 and 2.10 on formal
grounds. Both are baséd, at least in part, on the assumption [Pel80] that
Pr(p{,BfINN) = Pr(Bf | N)-Pr(pf | A), (2.11)
where Pr is used to denote the probability density function, and ﬁf denotes the
current labeling (i.e. set of strength measures) considered as an event. It can be
shown, however, that equation 2.11 implies,
Pr(x| B}.B)) = Pr(x| BH. (2.12)
In other words, the probability that the actual label on node v; is A is independent of
the labeling 5} on the adjacent node v;. This, of course, is in contradiction to the

heuristic arguments which justify the incorporation of the support due to the labeling

on the neighborhood.

Once the updating formula has been specified, the function computed by the
relaxation labeling algorithm is completely determined by the matrix of compatibility
coefficients. Thz specification of the compatibility matrix becomes, therefore, an
issue of primary importance. But, sincé there is no formal theory on which the
derivation of either the updating rules or the compatibility coefficients can be base ',

one is left to heuristics or ad hoc rules for extracting the compatibility matrix from

training samples.

The use of heuristics is domain dependent, so that no general principles can be

stated. We note, however, that (consistent with the purpose that they are presumed
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to serve) we would expect that the compatibility coefficients would take values
approaching 1 if it is desirable to have the labels they represent on adjacent ncdes,
and values values approaching -1 (or 0, depending on the particulars of the updating
formula) if the associated labels should never co-occur on adjacent nodes. For an
early example of a set of compatibility coefficients for a continuous relaxation

labeling process based on heuristics, see [ZHR77].

Various methods for deriving compatibility coefficients from training samples

have been proposed. The most common approach is to use the sample correlation

coefficient [PeR?8,Pe180]s. Another approach is to use a statistic derived from the
sample (Shannon) mutual information between given labels [PeR78]. And various

other schemes have been proposed [Yam79].

2.2.2. Structural and Behavioral Aspects of Continuous Relaxation Processes

Unlike the discrete relaxation processes, neither the behavior nor the fixed
points of the algebraic updating rules are well understood. With the exception of a
few concepts which v:/ill be discussed below, the survey of the previous section
covers most of the current theory. The dangers inherent in designing an iterative
process of many variables in an ad hoc manner are apparent from some of the results
that have been reported. Perhaps the most consistent observation has been that the
continuous relaxation processes will produce the best results after three or four
iterations, after which the performance degrades as noise points become dominant
and are propagated [ZHR77]. Furthermore, in some cases the process failed to
converge, showing a wandering or behavior instead. This lead to some research into

stopping criteria [RLS80,Pel80b], an area which was active for a short period of time.

Note that the algebraic updating rules have been derived, more or less, as an

extension of the discrete relaxation operator of equation 2.7. Central to the

-

Bin fact, the use of correlation coefficients can be "derived" or justified, in an informal sense, for the

updating rules of equations 2.9 and 2.10 if one were to accept the assumptions expressed by equation
2.11.
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concept of discrete relaxation is the idea of consistency as given in definition 2.2. A

equivalent idea can be expressed for weighted labeling assignments as follows

[Huz8o]:

Definition 2.14: Let p € K be a weighted labeling assignment, and let the support

s;(\) be given as in equations 2.5, 2.10, and 2.9 above:

si(A) = Z Z f;j(}\,}\') PJ(A')
JEN() NeA

Then p is consistent in K if

(2.13)

ol
(2]

for all v € K.

Since the fixed points of the discrete relaxation operator defined on a
constraint network are the consistent labelings, it would seem reasonable to use
consistency (in the continuous sense) to define the fixed points of a continuous
relaxation operator and then examine those operators and circumstances in which

these fixed points are achieved [ZLM81].

This does not, of course, explain the meaning of 'the fixed points, and in particular,
their dependency upon the compatibility matrix, in terms of the original problem. That
is, there is no clear way to relate the concept of consistency in the continuous case
with the problem that is being solved. This is one of the major draw backs with this

approach.

2.2.3. Other Approaches to the Continuous Labeling Problem

Cther approaches to the continuous labeling problem have begun to appear in
order to circumvent some the problems with the algebraic updating rules described
above. Several workers have suggested increasing the information inherent in the
compatibility coefficients by making them a function of the labeling on several

adjacent vertices [HuZ80] and some resuits on experiments have been reported
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[EKR80O,FER81]. For example, a coefficient such as r;;x(A\;A1,A2) would be a measure
of the compatibility of label A on vertex v; with the label Ay on vertex v; and the
label A, on the vertex vx. However, this runs into problems due to the memory
requirements for the large compatibility matrix and extra computational requirements,

and generally is as unfounded as the approaches suggested above.

Another means which has been explored for controlling the convergence and
fixed points of the algebraic updating rules is to enhance the control structure of the
process. Zucker [Zuc78] has reported on several experiments in which multiple levels
or copies of a relaxation network are run in paraliel, with information flow between
levels for the purpose of controlling the performance of the process at the lower
level. Perhaps the most intriguing scheme for enhancing control is found in the
augmented telazxation labeling and dynamic relaration labeling processes
proposed by Kuschel and Page [KuP81,Kus80]. The essence of this approach is to
incorporate a global broadcésting mechanism by which the labeling at one vertex is
used to bias the compatibility matrix associated with another vertex, possibly at
some distance in the network. The broadcasting/biasing mechanism is model driven,
thus adding an hierarchical component to the process. By biasing the compatibility
coefficients, the network becomes sensitive to patterns whos existence can be
predicted from models and the global state of the network. Since in most current
approaches the networks are relatively insensitive to specific patterns and since the
ability of relaxation networks to 'propagate' information beyond a few vertices
before that information becomes corrupted is open to question [Kus81] it is felt here
that this scheme is worthy of further investigation. We point out thaf a dynamic

programming model would probably be useful in this context.

Another class of approaches is based on optimizing a function of the strength
measures p;(A). Although solution algorithms thus derived are well behaved, it leaves
several issues still to be addressed: In the first place, the function to be optimized

for a given application may difficult, if not impossible to specify. If on the other hand,
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a function is determined on some ad hoc basis, it is usually difficult to relate the

meaning of the fixed points of the process to the original application.

In order to illustrate this latter case, consider the optimization approach of
Faugeras and Berthod [FaB81]: If the compatibility coefficients are viewed as being

conditional probabilities;
rifANN) = p (N N)

and the strength measures p(\) as probabilities, then we may estimate the

probability of the label A on vertex v; from the labeling on vertex v; by:

g\ = Y (W) pIN) (2.14)
NeA

the estimates due to the labeling on all adjacent labels may be averaged to yield an

estimate due to the labeling on the neighborhood as:

) = —— FO) = WA pFOV). (2.15)
@ [N jﬁ%(/) i [N je%:(f) )é/sru P

Let q; be the vector of label strength estimates for a the vertex v;:

qr = (@A), qi(A2)s - . -5 (W)

Then we can define another measure of consistency as being the difference
between the current labeling and the labeling predicted by the neighborhood:
cy =g/ - aill (2.18)
We can, furthermore, specify a measure of ambiguity of the labeling at a vertex by:
Cz = Y pHN) log pH(N). (2.16)
A€A
and then minimize the function given as the linear combination:

f(p) = aCqy + (1 — a)Cs. (2.17)

where « is an arbitrarily specified number in the range [0,1]. Note that as «
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approaches O in equation 2.17 the optimization procedure will tend to ignore the
contextual information as expressed in the compatibility coefficients (refer to
equation 2.12 above). On the other hand as a approaches .1, there will be no explicit
tendency to disambiguate the labeling. Subjective evaluation of results with this
technique have favored values for o« approaching 1. Note, however, there is no way
to relate these results to the original problem. In fact, the nature of the original

problem has never been analyzed.

2.2.4. Applications

A survey of recent applications for continuous relaxation labeling techniques
would require an unreasonable amount of space. We make note of a few applications
here and refer to surveys by Rosenfeld [Ros79,Ros81] and Davis and Rosenfeld
[DaR80] for a more complete review. Resuits relating to this topic appear regularly in
the /EEE Transactions on Fattern Analysis and Machine [ntelligence, the IEEF
Transactions on Systems, Man and Cybernetics, Pattern Recognition (Pergamon,
London), and Computer Graphics and Image Processing (Academic, New York).
Papers on relaxation labeling can be found at conferences relating to areas in
computer vision and pattern recognition: the nfternational Conference on Pattern
Recognition, the J[EEE C(onference on Pattern Recognition and I[mage
Pracessing, the DARPA image understanding workshop, and the /nternational
Joint Conference on Artificial Intelligence, to name a few. Finally, the topic is

addressed in several recent books [Pav77,HaR78].

One of the earliest applications. of relaxation labeling was to curve and line
enhancement [ZHR77]. We describe this appiication as an example below. Marr et al.
[MaP76,MPP77] employs relaxation in the correspondence problem for stereo images.
Ullman [UlI79a,b] applies relaxation techniques to time varying imagery. Other
applications include multispectral pixel classifications [EYR80], template matching

[DaR77], segmentation [HaR78], and shape matching [Dav79]. For areas other than
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computer vision, applications include handwriting recognition [Hay79], the solution to

substitution ciphers [PeR79], and matrix reconstruction [KrN81].

Example 2.5: the application continuous relaxation labeling to curve and line

enhancement:

A computer vision system typically involves a T.V. camera, linked to a computer, which
is observing some scene of interest. We assume that the necessary processing can
be carried out to store a digitized representation of that scene in the computer
memory. This representation is expressed as an nxn (512x512 is a typical value)
matrix in which each element is an intensity value sampled from the original image.
One of the goals of low level in computer vision is to extract a line drawing or
picture graph from the scene, since the closed regions in this description often
represent objects, or object surfaces - which are generally considered to be scene
primitives. The problem of extracting a line drawing is usually approached by first
detecting edges - reing the edges into straight lines, or smooth contours.
Althoughcan be performed sequentially, the relaxation techniques are used to

enhance or smooth out the edges in a parallel, iterative manner over the entire image.

One approach to edge detection is to correlate edge masks, with the intensity
values in a neighborhood of a given pixel. The output of the correlation operation is
the response of an edge detector which is sensitive to edges at a specific
orientation. Masks for edges at eight orientations are shown in figure 2.10. We can
associate labels 2o through \; with these edge masks, as assertions of edges at the
given orientation through the pixel at the center of the neighborhood. The label Ag

will correspond to an assertion that no edge exists in the given neighborhood.

A graph structure is imposed on the image raster by connecting every pixel to
its eight immediate neighbors, as shown in figure 2.11. The specification for the label
set and the graph given above defines a continuous graph labeling problem. The

initial tabeling values, p,o()\), are established by the outputs of the mask correlation
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Figure 2.10: edge masks for the application of example 2.5.

3

/
N

Figure 2.11: neighborhood of a single pixel in the graph defined for
example 2.5.

set and the graph given above defines a continuous graph labeling problem. The
initial labeling values, p,-o()\), are established by the outputs of the mask correlation

operations for each neighborhood of each pixel in the image.
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The contextual information, as represented by the compatibility coefficients, is
derived by considering the objectives of the relaxation process: Because we would
like to enhance edges that lie on a straight or smoothly curving line it would make
sense to give high compatibility values to heighboring edges that are, or are almost,
collinear. For example, for two pixels in an horizontal configuration, as shown in figure
2.12a, we might assign the compatibility coefficients for the two pairs of collinear

edges as:

rijihoho) =1, rij(Aa,\a) = 1.

Whereas for the anti-collinear edges of figure 2.12b we would assign the
compatibility coefficients of:

rijiosg) = =1, rij(g,\g) = -1,
And finally, for edges representing intermediate degrees of curvature we would

assign various other compatibilities as shown in figure 2.12c.

220)

1Ay 3 r(Xg A7)

Figure 2.12: Compatibility coefficients for various configurations of
pixels.
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Then given an initial labeling, the iterative equations of 2.11 through 2.17 could

be applied in attempt to remove noise points and straighten curved lines.
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3. An Overview of the Problem Domain

The previous section discussed the theory of relaxation labeling both to orient
the reader to current approaches and the general philosophy towards its use in the
labeling problem, and to organize the notation and other material which we will expect
to use in the research which we are proposing. By necessity the treatment was
cursory. Our goal was to touch upon some of the major aspects of the topic leaving
the references as a guide to the various extensions that exist in the literature. We
now present an overview of the problem domain, with an emphasis on the continuous
graph labeling problem. Our intent is to use the discussion of the previous section as
a starting point for an analysis of the objectives and assumptions which seem to be
inherent in the current literature. Clearly defined approaches to the labeling problem
will then be discussed, with a view towards research into solution algorithms which

can be justified in a more reasonable way than those which currently exist.

3.1. The Nature of the Problem

By labeling what is meant is the association of a unique label A from a label set A
to each component X; of a random vector X. The assignment of a label A to a
component X; is to be viewed here as being equivalent in every sense to classifying
X; into class A. As such, the problem could be approached from the point of view of
statistical decision theory and need not be addressed further here. It is the
constraint on the solution algorithm imposed by the graph structure - implying the
existence of a processor at each node to make labeling decision for the associated
component, and edges representing data paths between processors - which makes

this problem unique.

Even so, the problem needs to be refined further before it becomes meaningful:
In the first place, as Ullman [UlII79] points out, if each node was represented by a

universal processor, or if each processor was connected to every other processor in
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the network, then any function could be computed by the network, and we would be
left with the general labeling problem of the previous paragraph. Therefore, we will
want to constrain the implementation to Ullman's [UNI79] simple local processes

which are defined in the spirit of (informal) concept of cooperative processes by the

following four criteria:”

(1) Locality: Let r, the "radius of computation,” be the maximum degree of a node in

a network. Then we would like r to be as ""small" as possible.

(2) Simplicity: We would like the function computed at each processor to be
relatively "simple”. No attempt has been made to formally define simplicity, we
add on our own however, that the processor at each node must have a limited

amount of memory.

(8) Uniformity: We would like the topology of network to be as uniform as possible,

and the procedure executed by each processor at each node to be the same.

(4) Efficiency and Convergence: The iterative process should have good

convergence properties.

An example of a uniform network with a small radius of computation is an image raster

where each pixel is considered to be adjacent to its eight neighbors (r = 8).

In the second place, one must specify the context within which the problem is’
defined: what the underlying processes are, what is being estimated and how, what
prior information is available, and so forth. In fact, many different systems may
include a labeling problem. The system shown in figure 3.1 which we will use as our
model is motivated by considering examples of applications of relaxation techniques
which appear in the literature. By comparison, the conventional model for symbol
transmission through a channel is given in figure 3.2. The similarity suggests that
some of the theory and technique from coding and information theory may be applied

to our problem. It also suggests that relaxation labeling techniques may find

—

7In fact Uliman specifies six criteria.
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source channel

source ——m —> —_—
encoder encoder

A2
noise ———> channel

Y

local decis- global enhance- local feature

destination <— j,; brocess <  ment process < strength evaluation

Figure 3.1: the context of the labeling problem.

source channel

source —— > _ 5
encoder encoder

noise ——> channel

- source channel
destination < decoder < decoder

Figure 3.2: standard model for transmission of symbols through a noisy channel.

application to problems in communication.

In this model, the processes up through the local feature strength evaluation

describe how the initial information to the graph labeling problem is generated.
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Consider the application of relaxation labeling to curve and line enhancement. The
source consists of a string of symbols representing the underlying labeling which we
wish to estimate. In the case under consideration, this would be the "ideal line
drawing’' which describes the scene. Source coding entails the implicit relationships
that occur among adjacent symbols. For most applications being considered, it is a
passive process; the "encoding” occurs as a result of constraints imposed by the
problem domain. Note that the underlying code closely resembles a convolutional
code, except that the generating process is a system of productions. Channel
coding involves the encoding of the ideal labeling into an observable signal, in this
case, the (ideal) grey levels in the image. The channel and the incorporation of noise
would correspond to the light reflected from the image, the sensor, digitizer - in fact
everything between the image intensities and the digitized image in memory. Local
feature strength evaluation is used to assign strength measures to each symbol or
label; in this case, the response of local edge detectors. The result comprises the

initial information available to the relaxation labeling algorithm.

It is the global enhancement process to which the relaxation techniques are
being applied. The goal of this process is to incorporate all the information as to the
correct labeling at a particular node, which is available in the initial labeling of the
entire network, into the strength measures on the labels at that node. This being
done, the process of maxima selection (choosing that label with the largest figure
of merit), which is typical of all classification procedures, can be performed on a locai

basis. The result is an estimate of the initial labeling.

3.2. The Integration of Global Information to Make Local Decisions

There are two ways in which the resulting graph labeling problem can be
approached. In the first place we may assume the existence of an underlying
constraint network and a relation to be accepted and attempt to derive a meaningful

extension to the continuous case. This is the approach which was implied by the
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discussion of section 2. Alternatively, we may attempt to solve the labeling problem
independent of the constraints imposed by the graph, and then attempt to implement

the labeling algorithm in terms of a network.

3.2.1. In the case of the latter approach, we must first derive a function, F, which
incorporates all (or perhaps a ''reasonable’” amount) of the labeling information over
the extent of the network into the labeling at each node. To illustrate some of the
issues pertaining to this, consider the vector valued random vector X such that each
component X; takes on values in the labeling vector (Aq, Az, *, Apy). If the
probability distribution is such that the labeling at a component X; is statistically
independent of the labeling on the rest of the network then all the information
concerning the correct labeling at that component is contained within its own labeling
and a local labeling decision can be made. Otherwise we would have to apply some
function F:AXX - AxX such that F(AxX;) is statistically independent of F(\'xX;) for
all j#i. This would be a maximum a posteriori estimation process. For most
applications statistical independence will be too strong a requirement so that
uncorrelatedness may be a reasonable substitution. The function F may be
determined by using the classical restoration/enhancement techniques in conjunction

with system identification procedures.

Once the mapping has been determined, the function would have to implemented
in the spirit of cooperative processes described above. The requirement that each
node have limited memory means that at each iteration the updated label strengths
must be an algebraic combination of the set of label strengths at the previous time
steps only. That is, it would have to be computed by a set of iterative equations,

gyn forallv, eV, €A
where the support® of each function corresponds to only those labels on nodes

adjacent to v;. The problem related to this decomposition can be expressed formally

8For a function of several variables, the support of that function Is defined to be the set of those
varlables upon which it is dependent.
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as follows:

Given: F:R" » R" with F(x) =y

where: X = (x1, X2, ..., Xp) and ¥ = (yq, ¥2, - - ., ¥n),

Derive: G:R" -» R" where,

G =(g1,92, *** , gp) such that
if 70 = X, and )7,“'1 = gl(yt)
MMﬁmf=y=ﬂm

where the components g; are subject to the following constraint: each g,-()‘/t) is

dependent only on a subset, N(i), of the components of Vt

This is a classical problem in numerical analysis which was solved by Kolmogorov

and Arnold in the early 1960's.°

3.2.2. Now consider an extension from the discrete to the continuous relaxation
labeling processes. Assume we are given a discrete relaxation labeling network
Cn(A), that accepts the strings in a relation p,. We may identify the string
On = MA2 * ' * Ay With that point p € K~ (the space of all unambiguous labelings, see

previous section) such that

ifa = A
aehqlo)={1 TETN
. . . 0  otherwise .
Furthermore, we can identify the relation p, with the set of points represented by all

strings o, € p,. A reasonable extension of the discrete labeling problem to the
continuous case could be expressed as follows: given an ambiguous labeling p € X,
select an element o, € p,, with the associated unambiguous labeling § € K*, such

that the "distance” between p and § is minimal. In other words, the underlying

gUnf<>rtunately, the published results have not been translated from Russian into English, making the
reference difficult to locate.
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constraint network specifies, in terms of the set of all consistent labelings, the set
of legal strings, and the aim is to find a labeling that is (1) consistent, and (2) such
that the average of the initial values given to the symbols in that labeling is maximal.
Furthermore, the labeling decision must be made on a local basis at each node, and if
an iterative updating algorithm is used, information can flow only along the edges of

the associated coarse graph.

Optimization techniques may be used to solve this problem. As such the method
appears similar to the optimization approaches suggested by other researchers
above. There is, however, an important difference: the fixed points of the algorithms
will be related directly to a specific set of strings in the underlying discrete
relaxation process, rather than to a set of consistent labelings, as defined in

equation 2.13.

Ezample 3.1: 1t is not difficult to find an updating algorithm which is guaranteed to
make an optimal labeling decision according to the above criterion when the coarse
graph does not contain any cycles. Consider, for example, a constraint network with
a linear topology and assume that the vertices are given labeling values taken from a
continuous scale. The optimal labeling can be derived by making two ""copies’ of the
network and using a Viterbi algorithm to assign labeling values to each vertex in the
associated fine graph. In the first copy of the network the Viterbi algorithm is
initiated at the left most node and moves to the right, and in the second copy of the
network the algorithm moves to the left from the right most node. The algorithm is

described formally as follows:

Let the vertices in the coarse graph be labeled as v, v, ..., v, with vy on the left
and v, on the right and with v; being adjacent to v;_; and v;,4. Let L}(\) represent
the labeling values for label A at vertex /i at time t corresponding to the algorithm
running from the left and similarly, let R,-t()\) represent the labeling values for label A

at vertex /i at time t corresponding to the algorithm running from the right. Let r,jO\,}\’)
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be the indicator function for the constraint relations of the underlying constraint

network. Then the iterative procedure described by:

RP(A) = LP(N) = pP(N), for all i, A, (3.1a)
RFFTN=pP(N) + max {r1y -1 (MY RLA (N, (3.1b)
LY (D)=pP(N) + max tri—1 i OMN)LE-1 (WD, (3.1¢)

pIHTON=RIFT(N) + Li(N) — pPON), (3.1d)

will converge after no more than n time steps. The r;j(A\,A") in equations 3.1a and
3.1b refer to indicator functions for the associated constraint network. The labeling
values, p,t(A) for t = n will reflect the sum of the initial labeling values for the optimum
consistent labeling which has the label A\ at vertex i. Thus, one can select, at each
vertex, that label with a maximum labeling value and be guaranteed to be making an

optimum decision.
Note that this algorithm can only be applied if the the set of legal strings is

closed with respect to the coarse topology.
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4, Summary

This report has given an overview and development of the relaxation labeling
processes and the graph labeling problem. The material discussed here represents
the initial stages of a research project aimed at establishing a formal basis for the
relaxation labeling processes, or cooperative approaches to the continuous graph

labeling problem.

Several important issues were covered. These issues include the development
of the discrete relaxation labeling processes with respect to applications in computer -
vision. The development of the continuous graph labeling processes as a direct
extension of the discrete relaxation operator, and some of the problems inherent in
the method by which this extension was made were also discussed. An argument for
the redefinition of the problem was made. This redefinition specified the way that the
mapping from the original input feature vector to the output labeling is specified
explicitly at the outset of the problem definition. Given the definition of this mapping,
the problem of implementing the computation of that function in terms of an iterative,

parallel scheme was treated only as a secondary consideration.

Finally, several suggested approaches to the problem definition and the
associated solution were discussed. Our current research is towards further

investigation of these suggested approaches.
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