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THEORETICAL ANALYSIS OF COPLANAR
WAVEGUIDE OPEN CIRCUIT
DISCONTINUITY

N. Dib, P. Katehi

Radiation Laboratory, University of Michigan, Ann Arbor, MI

Abstract

The theoretical analysis of a coplanar waveguide open circuit dis-
continuity inside a rectangular cavity is presented. First, the dyadic
Green’s function of a y- and z- directed dirac delta magnetic currents
inside a cavity will be derived. Then the method of moments will be
used to solve the integral equation for the unknown magnetic current
distribution in the slots. The scattering parameters of such discontinu-
ity could be determined from the knowledge of the magnetic current
distribution.



1 Introduction

The widespread use of microwave integrated circuits (MIC’s) in re-
cent years has caused rapid progress in its theory and technology. The
first transmission line used in MIC’s was, indeed, microstrip laid on
dielectric substrate, and then other transmission lines such as slot lines,
coplanar lines, finlines, and so on, were introduced and improved. Ini-
tially the analysis for this class of transmission lines was invariably a
quasi-TEM approximation which can yield satisfactory results at low
frequencies. However, at high frequencies its weakness becomes ap-
parent. To feature the frequency dependence of these lines, a full wave
analysis must be employed.

Recently, new uniplanar circuit configurations for monolithic MIC’s
were proposed [1]. The fundamental components in these uniplanar
MIC’s are the coplanar waveguides (CPW), slot lines and air bridges
(Fig. 1).

Coplanar waveguides (CPW) offer several advantages over conven-
tional microstrip line: there is no need for via holes which simplifies

.mounting of active and passive devices and they have low radiation
loss. These as well as other advantages make CPW ideally suited for
MIC’s [2].

This report presents a full wave analysis of one type of coplanar
discontinuity, namely the CPW open circuit. The ultimate goal of
this study is to characterize various coplanar discontinuities up to the
terahertz region. This is intended to be a step towards characterizing
the coplanar air bridge discontinuity and other discontinuities.



conductor

dielectric substrate

Fig.1 A bridged coplanar waveguide



2 Analysis

2.1 Introduction

A CPW open circuit is shown in Fig. 2. The CPW lies inside a
rectangular cavity with a multidielectric structure. The main steps in
the formulation of the problem are as follows:

1. Derive the fields in the two regions directly above and below the
conductor strip.

2. Formulate the integral equation.

3. Solve this equation using the method of moments.

In the formulation, a few simplifying assumptions are made to re-
duce the complexity of the problem:

1. The width of the slots is small compared to the coplanar line
wavelength Ag. This will facilitate the assumption of undirectional
magnetic currents in the slots with negligible loss in accuracy.

2. The dielectric layers are lossless and the conductors are perfect.
However, the analysis can be easily extended to take losses into
consideration.

3. The time dependence is of the form e/t which will be suppressed
throughout the analysis.

4. The input is a travelling wave with variation e7#* where 3 is the
propagation constant of an infinite coplanar line [3].

2.2 Derivation of Green’s Functions

In this section, the tensor Green’s function [G] will be derived for the
fields in regions (1) and (2) (see Fig. 2). The transmission line theory
will be used to transform the surrounding layers into an impedance
boundary. Throughout the analysis, LSE(TE—z)and LSM(TM —z)
modes are used to derive the Green’s function.

The dyadic Green’s function denotes the fields of a point source.
Hence, the electric field can be computed from



Fig.2 A cutview of a coplanar waveguide open ci reuit discontinuity

inside a cavity.



E:/.If.é;dS'Jr/‘,M-é';ds' (1)

where the integration is done over the surface of the source. In rect-
angular coordinates [G]%, for example, becomes

Gy = Gouéd + Goydf + G,,is
Gye§2 + Gy + Gy:12
+ G2t + Goyif + G352 )

- *‘

where G;; is the jth component of the electric field due to a unit i-
directed electric current element. In the same manner, the magnetic
field can be derived as

B _.—-e ' —.=m ’
H_/S,J G5ds +/S'M Grds 3)

In our problem, the two slots are assumed to have magnetic currents.
In order to obtain the scattering parameters, the distribution of this
‘magnetic current must be determined. Using the equivalence principle,
our original problem is divided into four subproblems, Fig. 3. We
have to solve for the Green’s functions in both regions due to magnetic
currents in the y and z directions. After that has been accomplished
the continuity of the tangential fields at the interface will be used to
arrive at the integral equation.

2.2.1 Green’s function in region (1) for a z-directed magnetic current

The fields due to an infinitesimal z-directed magnetic current inside a
cavity will be derived. Fig. 4 shows the structure with the magnetic
current alleviated from the ground of the cavity. The magnetic current
is assumed to be

M =a,b(z—2')6(y—y')é(z - 2") (4)
Notice that at the end of the analysis ' will be substituted by zero.
As mentioned before, a hybrid mode analysis (LSE and LSM) will
be considered [4].
The following vector magnetic potential A and electric vector po-
tential F' for the LSM and LSE modes respectively are assumed
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Fig.3 Four subproblems to be solved. Other than the impedance boundary
side , the sides are assumed to be perfect conductors (cavity walls) .



A=ay , F=a,¢ (5)

Through the manipulation of Maxwell’s equations

vV x E=—juwpH (6)
T x H = jweE ()
along with
_ 1 - -
H = =yx4 @®)
7
E = —lﬁxF )]

one can obtain the field components in terms of (5) as

1 . 0% 8%

E. = jwp,e[_ By 022 (10)
2

B, = jzjyeai;by—%g;f (1D
2

B = jjpeaigz+igz (12)

TN

2
B, = %%-Fjwlueaigy (14
A A (15)

p Oy  jwupeOzdz

Both vector potentials should satisfy the homogeneous wave equa-
tion (away from the source)

Ve + k¢=0 (16)
Vi + k=0 17



where k? = wlpe, -

As shown in Fig. 4, it is assumed that the current source divides the
cavity into two regions I and II. Applying the method of separation of
variables to solve (16) and (17) with the following boundary conditions

E,i,y =0 at z=0,1

Ei,z =0 at z=0,a

E;Iz =0 at =0
one can obtain

¢I = I B [Amnsin(kz(z — dy))

n=o—m=o

+ Bncos(ko(w — dy))]cos(—y)cos(T-2)
¢" = Efm}?::ocmnsin(kﬂ)cos(:n;ty)cos(zl{-z)

U = B2 B2 [Kmasin(ke(z — dy))

n=o—m=o

nrt

+ Npacos(ky(z — dy))sin(—y)sin( )

)

gl = 3y yo Dmncos(k,m)sin(my)sin(?—z{-z)
a

n=o—m=o

In the above equation, the following ;quation is satisfied

K24k + k2 = K

where

™ ™
kyz—a—-,k,:—l— and kf = wzuel

To simplify the notation, one can consider

$(2,y,2) = ZpZpnd(z)cos(kyy)cos(k,z)
P(2,y,2). = EZn(e)sin(kyy)sin(k,z)

(18)
(19
20)

@n
(22)

23)
@4

25)
(26)
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Fig.4 The magnetic source raised to apply the boundary conditions .
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where

4 l pa

de) = — [ [ #(@,,2)c0s(kyy)cos(kuz)dydz @)
4 { pa

o) = = [ [ dla,y,21sin(ky)sin(kic)dyds @28)

q?(:c) and 1/;(3;) can be considered as the coefficients of the double
Fourier series of ¢ and 9. In other words, one can consider them as ¢
and v in the Fourier domain.

Substituting (25) and (26) in (10) - (15) one can obtain the fields in
the Fourier domain as

B, = ——[F -k 29)
Jw ey

-1 1, 09

E, = elkz ]wpelkyaa: 30)

) 1, - 1 . 8

Bo= ~Lrir k¥ G1)
€ Jwue; Oz

Ao = ——[k - K3 (32)
JWpEy

- 1 ¢ 1. -

H, = —m'~ky5;+;kz¢ (33)

) A— k,‘?i'f-lkyz; (34)
Jwpe; 0z p

where

E, = Z.3.E,sin(k,y)sin(k,z) 35)

E, EmEnE'ycos( kyy)sin(k,z) (36)

E, = ZnI.E,sin(k,y)cos(k,z) 37

H, Emﬁnffwcos(kyy)cos(k,z) (38)

H, E,,,E,J-{ yin(kyy)cos(k,z) (39)

H, = Emznﬂ,cos(kyy)sin(k,z) (40)

11



Expressions for q§ and J) are obtained from (21) - (24) as

¢ = Appsin(ky(z — dy)) + Buncos(ks(z — dy))  (41)
M = Cpnsin(kyz) 42)
¥ = Kppsin(ky(z — d1)) + Npncos(ks(z — dy))  (43)
" = Dpncos(k,z) (44)

Up to this point, one has to solve for the constants 4, B,C, D, K and
N, where the subscript mn will be suppressed for simplicity.

The following six boundary conditions will be employed to solve
for the six unknowns,

EI=ET ot z=2 45)
HI—HH at z=2a (46)
HI H” at ¢ =12 47)

E! |
(}I—’;)LSE =Z7%F at =4 (48)

EIz

(}I'—%)LSM =ZFM gt z=4d, “9)
E;I-E;:*-(?(a:—w')&(y—y')ﬁ(z—-Z') (50)

In equation (48) and (49), Z[5F and ZESM are the LSE and LSM
impedances looking up at £ = d;. These can be computed using
transmission line theory. That is, each layer is simply considered a
transmission line with a characteristic impedance (ZXSF or ZLSM)
and an eigenvalue ki where

12



kf + kz +k = vl
(ZEsE)i = DR gnd (ZESMy = L
k;: . wE;
Equations (48) and (49) should be satisfied for each LSE and LSM
mode, respectively.
Equation (50) signifies the discontinuity in the y-component of the
electric field due to the magnetic source. In the transform domain, the

boundary conditions (45) - (50) become

BI= BT ot o= G
Bl =H' ot =4 (52)
ILI:ILH at =12 (53)

4
(}{:%)LSE =7 ot z=4d, 4

B
(T%)LSM =75M gt z=4d, (55)

- ~ 2
(EIf — BY) = =epsin(k,2')cos(kyy')§(z — ') (56)
al .
where
€mn = 1 m = 0

Equation (56) can be obtained by substituting (36) in (50) and using
the orthogonality properties of the sin’s and cos’s.

If (30) and (34) are substituted in (54) and (55), the following can
be obtained

k=
B = jEﬁZf'SEA (57)

and

13



K = - j%szMN (58)
This will reduce the problem to solving 4 equations for 4 unknowns.
Taking into consideration the other 4 boundary conditions (51) - (53)

and (56) and after simplification, one can obtain

C = ¢cA (59)
Jwpk, ad
D = ———A4 60
Kk, b ©0
K = wheziM 61
= wue; Ek_z; (61)
k, a
= ) ) ~ 2
N s bA (62)
where
2 €1 kz . ’ /
A = sin(k,z")cos(kyy') (63)

ad™ k- k2

where a zero was substituted for =’ and

i@ = jﬁ-ZfSEcos(kzdl)—sin(kmdl) (64)
wh ‘~
b= sin(kmdl)—jf;c’fszMcos(kmdl) 65)

In this manner, expressions for the six unknowns have been derived.
Substituting (57) - (65) in (41) and (43), one can obtain complete
expressions for ¢! and 4! from which ¢(z,y, z) and ¢(z,y, z) can be
derived. Using (29) - (40), the Green’s functions (the fields due to a
unit magnetic current element in the z-direction) for this subproblem
are as follows

2¢m 1 1 k

EM\1  _ _om - .-

(G=7) = 2":; jwp al bk
« [sin(ka(s - dy)| = 25

14



+ Jwpcos(ky(z — dy))]
*  sin(k,2')cos(kyy')sin(kyy)sin(k,z) (66)

where (GEM)! is E, in region 1 due to M,.

k.

2€m
(Gf';,'M)l = ZZ '—'__ﬁ
sz
[(k,—i%)-ell-sm(kz(m—dl))
Jkak: 155 TWky L pspd _
+ m— " Z; ) - cos(ky(z — dy))]
*  sin(k, 2" )cos(kyy )sin(k,z)cos(kyy) (67)
2em € k
EM\1  _ =m 1 z
(G ’;m al a k2-—k?
LSM», 2 2y, 7LSEj
(Bl aw e T REETE) k(- dy))
Jwue kb '
- (f—-“ 2 sinlka(o  du))]
. _
sin(k,z')cos(kyy' )sz'zz( kyy)cos(k,z) (68)
-2, k 1
HM\1 _ “€m Ky
(G.7) = ;; al a jwp

[sinlk(z — dy)) + 25 225B con k(o — dy )]
wp

sin(k,z')cos(k,y')sin(k,y)cos(k,z) (69)
2€m k,
HM )1 “€m €
LA
jwkya  kgky

[cos(ka(z — dy)) - (

ke b Jwpe

15



kﬁky ZILSE + wzfl{cy&Z{,SM)]

+ sin(ks(z —di)) -

wiple k2b
sin(k,2')cos(kyy')sin(k,y)cos(k.z) (70)
2€, € k
HM\1 _ ~tm M1 z
oy - Trie s b
: —k k., jwkﬁ&
[cos(kz(z —dl)).(jwuel ~ ok 3
. kik: sk wzflkyza LSM
+ Szn(kz(w_dl))'(wzﬂzelzl - kgk; ;“;Zl )]
sin(k,2')cos(kyy')sin(k,z)cos(k,y) 71)

2.2.2 Green’s function in region (1) for a y-directed magnetic current

Fig. 5 shows the structure under consideration with the magnetic cur-
rent alleviated from the ground of the cavity. The magnetic current is
-assumed to be

M =a,6(z —2')6(y —y')6(z - 2') (72)

The same method used in 2.2.1 will be applied here. Equations
(18) - (44) are applicable also to the structure of Fig. 3. Moreover, the
boundary conditions (51) - (55) still hold in addition to

(Ef - E') = §(z — 2')8(y — y')6(z - 2') (73)
which can be written as
EI —ET = jencos(k,z')sin( k,y' )o(z — ') (74)

where

€, = 1 n=0

=2 n#0

Simplifying the boundary conditions equations, the following expres-
sions are derived

16
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Fig.5 The magnetic current source raised to apply boundary conditions .
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2 €1 ky . / !
A = aen._gkz_kzsm(kyy Jeos(k.z')
o 1
ke
B = j—=27°"4
wh
C = ¢A
ad k
D = —3 = : A
Jwp b ok,
kz a LSM
K = —wzﬂekgky 'TZ1 A
k, a
N = —; 2 24
quka:kyb

where a and b are given by (64) and (65) and

~

¢ ‘= cos(kydy) +j—IE?—ZfSEsin(k,d1)
. wy
d = cos(kydy) + j%—eZ{’SM.sin( ked,)

Finally, the dyadic Green’s function is

| 2
(GRM) = LY =

[—Sin( kw(m - dl)) . ‘TZ—EI-ZILSM

k
ks

S| =

+ cos(ks(z —dy))]

sin(kyy')cos(k,2')sin(kyy)sin(k,z)

18

(75)

(76)
W
(78)

79

®0)

@1

(82)

83)



wk,

+ cos(ky(z —dy))- (] .

2 ¢ k
(sz,M)l — Zz—en—:l- . kz jk%

—~—al " a
— 2 .
[sin(k,(m—dl))'(-—kl-l- b, a

€1 k'yél b

)
2 ~
+ cos(ky(z —dy))- (——j—’&-k—y-Zf’SE + jw-—kL . gZILSM)]
] WUE kok,
sin(kyy')cos(k,2')sin(kyy)cos(k,z) (85)

-2 k, 1
HM\1 _ e A
(G ;; ad ™a jup

[sin(ky(z — dy)) +"jw’“—; Z55E cos(ky(z — dy )]

sin(kyy')cos(k,z')cos(k,y)cos(k,z) (86)

2¢, € k
(G!II:;,M)I — Z .__]_- . Y

a 2 2
nm al a km - kl

2 2 2 ~
[sin(kw(m—dl)).(__’?akv_ LSE_E_E_IL"_z_g LSM )

wiyley klky b !

koky  Jwkla

+ COS(’C,_.((B _dl))'(]wﬂel kzky E)]
sin(kyy')cos(k,z')sin(kyy)cos(k,z) 87)

19



2¢, € k
HM\1 _ L ]
(G=") = ;; al a4 k2-Fk
2
fsin(kale — dy)) - (oo Z{‘S”"+-w—e§—k—aZ“M)
w?ple k2
k.k, ,wk a
+ Cos(km(m—dl)) (]wﬂ'fl k ';;]
sin(kyy')cos(k,z')sin(k,z)cos(k, (88)

Up to this point, the dyadic Green’s function

+
+(GEM) z4) + (GEM) 25 (89)

Qi
e
Q
o
=
<@
[
=
=
<
+
(D)
=
=
>y

T
+ (GEM)'se+(GRM 29+ (GEM)'22 (90)

have been obtained.

2.2.3 Green’s function in region (2)

The fields in region (2) (see Fig. 3) due to unit magnetic currents in
the ¢ and z direction are to be derived.  Fig. 6 shows both structures to
be solved. The scalar potentials in the Fourier domain can be written
as

¢! = Asin(ky(z —dy)) + Beos(ky(z — dy)) 91)

¢! = Csin(k,z) 92)
¥7 = Ksin(ky(z —dy)) + Neos(ky(z — dp))]  (93)
1/3” = Dcos(kzz) (94)

The boundary conditions that apply for both structures in Fig. 6 are

20
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Fig.6a Fig.6b

Fig.6 Structures to be solved to obtain Green's function in region (2).
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EI=FE"T gt =2 95)

I;I; = I;T;I at z=2a' (96)
H =H" at z=2¢ 97
(EFI-)LSE =-ZF gt z=d ' 98)
g’ " -
‘EII
(H’;I) = —ZBM gt ¢ =d, 99)

where ZLSF and ZL5F are the impedances at ¢ = d, looking in the
negative x-direction.
- For Fig. 6a, a discontinuity in Ey exists such that

- - 2
E; - Ef = ——iemsin( k.2')cos(kyy')6(z — =) (100)
a

While a discontinuity in E, exists for Fig. 6b

~ -~ 92
EMT _EI = -—lencos(k,z')sin( k,y')o(z — ') (101)
a

One can notice the similarity between (91) - (94) and (41) - (44). In
addition, the boundary conditions (95) - (101) are the same as the ones

applied in 2.2.1 and 2.2.2 except that Zst E(LsM) replaces ZILSE(LSM)’

d, replaces d;, (—e,,) replaces (€,) and (—e¢,) replaces €,. So, in
general, the Green’s function in region (2) are similar to those in region
(1) with the following changes

Z{:SE Z;.'/SE
Z{zSM ZZLSM
dy — dy

€, — —€,

22



€m — —€m

€ — €

In summary, the Green’s function for the open circuit coplanar line
discontinuity (inside a cavity) has been determined in this section. This
was accomplished by working with Maxwell’s equations and by rep-
resentation of our source as dirac delta functions. Then, boundary
conditions were applied to solve for the fields

2.3 Application of Method of Moments

In order to obtain the fields inside the cavity, one should integrate over
the source coordinates (i.e. the slots).

B o= /8'M~C=¥S)ds' (102)
B o= - / /aIM-ég’ds' (103)
= / /ﬂM-é‘;’ds' (104)
B = - / /‘,M-ég’ds' (105)

The choice of the same magnetic current M to compute the fields
in both regions reflects the continuity of the tangential electric field in
the slot region. The negative sign that appears in (103) and (105) is
due to the fact that the assumption

MY =FEW xa =M (106)
leads to ‘

M® = E®) x (-g,) = -M (104

The remaining boundary condition to be used in order to arrive at
the integral equation is the continuity of the tangential magnetic field

23



B, =HD, (108)

in the slots regions. Equation (108) may be written as

HY = HO® (109)
HY = HO (110)

If the magnetic current is assumed to be

M = a,M, + a,M, (111)

the following equations for the magnetic field in both regions can be
obtained

B = [ [[MGEM) + M(GEM s (12)
HY = /f My(GEM) 4 M,(GEM)'|ds (113)
HY = //[M GEMP 4 M(GEMP|ds'  (114)
H® = //[M GEMY 4 M(GEMP|ds'  (115)

where (GE:M)* is the H,, component due to M,, component in the ith
region. Substituting in (109) and (110), one can obtain the following
integral equations

//M (G +GP) 4+ M(GH + GP)ds' = 0 (116)
/ / M,GW + G+ MGV +GP)ds' = 0 (117)

where the superscript H, M is suppressed for simplicity. The integral
equations (116) and (117) are to be solved for the unknown magnetic
current distribution using the method of moments.

The method of moments is a numerical technique used for solving
functional equation for which closed form solutions cannot be obtained
[5]. By reducing the functional relation to a matrix equation, known

24



methods can be used to solve for the unknown current distribution.
The general steps involved in the moment method for the computation
of surface currents can be summarized as follows:

1. The integral equation for the electric or magnetic field in terms
of the unknown surface electric and/or magnetic currents is for-
mulated. The resulting integral equation can be put in the form

Loii,) =3(%) (118)
where L, is an integral operator on J, andfor M,, and § is a
vector function of either £ and/or H.

2. The unknown currents are expanded in terms of known, basis

functions as
Jo = ) aidi (119)
=1
M, = ij¢j (120)
Jj=1

where the a;s and b}s are complex coefficients and N; and N,
are the number of basis functions for J, and M, respectively.

3. A suitable inner product is defined and a set of test (or weighting)
functions W is chosen. If (119) and (120) are substituted in (118)
and the inner products with the weighting functions are performed,
the results may be expressed as

N _ _ N, _ -
Za; < Wq,Lop(¢i) > +ij < Wq,Lop(wj) >=< ang >

i=1 j=1
(121)
where the inner product is defined as
<&,5>i//&-5ds (122)

In Galerkin’s procedure, which will be adopted here, the test func-
tions are chosen to be the same with the basis functions.

25



4. A matrix equation is formed after the integrals (122) are computed.
The unknowns in the matrix equation are the current amplitudes
a; and b; which can be solved for by matrix inversion. One
can notice that the method is computationally intensive, but with
the advent of faster computers the moment method has become
feasible.

In our problem, equations (116) and (117) represent the general
integral equation (118). Now, applying step (2), the y-component of
the magnetic current will be expanded as

M
My =) bydp(y, 2) (123)
=1

The 2— component of the magnetic current will be assumed to be
composed of 5 components, incident and reflected travelling waves in
eachslot (y; <y <y + Wi,y + Wi +s<y <y + Wi + Wy +s)
up to some point z = z; and the sum of basis functions for z > 2, (see
Fig. 7). That is .

M, = [(A4&% + Bie® ) (u(y —y1) —u(y —y — W1))

+ (A8 4 Bzej""(U('y —yp1—Wi—38)—uly—yr — Wy — s —Wp))]
*

(uw(z) —u(z — 21))

N
+ 1D anfaly, 2)u(z — 21)
n=1
where {3 is the propagation constant in the coplanar waveguide and u(-)

is the unit step function. Substituting (123) and (124) in the integral
equation (116) and (117). The following expressions can be obtained

- [ [aeiey o
- / /A &b G(l +G(2))d

_ / / By (G + G))ds' + / / By (GY) + G)ds'
81 Sa
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Fig. 7 Geometry for use in basis function expansion of magnetic current . .
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M
b b [ [ 422G + GG

+ Zan/ [ £ataf 268 + 6@’
(125)

and

- //A &0 (G + G ds'

- / / A, (G + G2))ds'

= B¢ (G + ¢G®ds' + By (GY) + G?))ds
I/ Iyl
+ Zb//d:py, (G + G2))ds'

+ Zan / / a2 NG + GP)ds’ (126)

where s; denotes the area for which y; <y < y; + W) and o < z < 2,
and s, denotes the area for which y, + W +s <y <y + W+ s+ W,
and 0 < z < 2z;. Sp and S, are the area over which ¢, and f, are
defined respectively. Galerkin’s procédure will be applied where the
test function are the same as the basis functions.

The inner product of (125) with ¢.(y,2),k = 1,- - -m, is performed
which will result in M equations, each one of the following form

- / Aye7 (G 1 GP)gy(y, 2)ds'ds
Sk VS

- / 4,55 (G + G2 uly, 2)ds'ds
Sk VS, . .

= / Blejﬂ‘/(Gg)+G£§))¢k(y,z)ds’ds
Sk /S5

+ / Bzejﬁ'/(G Y+ Gzy )br(y, 2)ds'ds
S, IS
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M
+ pr/s /; d’p(y’,z,)(Gw+G§?)¢k(y,z)ds'ds
p=1 k “op

N
+ Y f [ 068 + Gty 21dsds 127

In the same manner, performing the inner product of (126) with
fely,z), k=1,--- N, N equations are obtained as

~ [ 4 (G0 + G fuly, 2)ds'ds
Sk V51

— [ [ e (G + G fuly, 2)do'de
Sk Sa

- / B, (G + GO)fily, z)ds'ds
S /S

T / B, (G + GP) fily, z)ds'ds
Sy V52

iy

p=1 75k

/S boly' 2 (G + GD) fi(y, 2)ds'ds
r

N N
b L, 2)(GY) +GY) ds'ds (12
+ le P/;),’c \/.;,. fn(y XA )(Gu +Gzz )fk(yaz) 8 as ( 8)

where S, in (127) is the area over which ¢(y, z) is defined, while
in (128) denotes the area over which fi(y, z) is defined. Notice that
the Green’s functions are in terms of the source coordinates (y’ and z')
and the observation point coordinates (y and z). The Green’s functions
are obtained from (69) - (71) and (86) - (88).

Finally, the inner product equations (127) and (128) are solved to
form the matrix equation. The matrix equation obtained will be of the
following form
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[Y] = [I] (129)

L AN |

where [Y]is an (M + N +2) x (M + N + 2) matrix and []] is a vector
of (M + N + 2) elements where

I; = /S A A, e (G(l) + G(2) )$i(y, 2)ds'ds

- /5,. SzA'Jﬁ’(G%’JrGzy')‘z’du(y,z)ds'da (130)

for1 <j <M and

I; = /S s,A eaﬂz(G(l) + GO fi_m(y,2)ds'ds
- / A, (GW + GO fi_yly, 2)ds'ds  (131)
5 s,

for M+ 1< j <M+ N. The elements of [Y] are obtained from
(127) and (128) giving the following expressions. For 1 <i < M

Y(i,1) = /S /s &G + GO )i(y, 2)ds'ds
v(i,2) = [ [ (60 +Ciy,)dsds  (132)

For3<j<M+2

3= [ [ #5-ad, )G + Gy, 2)ds'ds (133

ForM+3§1§M+N+2
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Y // fi-m=2(¥',2')(GY) + G&))i(y, 2)ds'ds  (134)

For M+1<i:<M+N

Y(i,1) = / /S & (GU) 1 GO fi_pyly, z)ds'ds  (135)
Y(i,2) = /S /S ¢ (GW + GP)fi_ply, z)ds'ds  (136)
2

For3<j<M+?2

Y(s,7) / Pi-al (1)+G2 )fi-m(y,2z)ds'ds  (137)

For M+3<j<M+N+2

Y(i,5) = /S . fi-m-2(y', 2 NG + GO fi_mly, 2)ds'ds (138)

It can be observed that two more equations are needed to solve for
the (M + N 4+ 2) unknowns. The basis functions are chosen to be
piecewise sinusoidal functions as shown in Fig. 7 such that

sin(k™(y — yp))

sin(k*(Ypt1 — Yp))
sin(k*(Yp+2 — ¥)) :
; <y<

sin(k*(Yps2 — Yps1)) Yot1 =¥ = Ypt2

=0 elsewhere (139)

ly) = Yp <Y < Ypt1

where kx = w, /i€.s; and €.y is the effective permitivity of the copla-
nar waveguide defined as

€eff = (go')z (140)

where (3, is the free space propagation constant. The z— variation of
¢, is assumed to be unity over the slot.

31



The basis functions for M, are

_ sin(k*(z3 — z))
filz) = sin(k*(zy — 21 )) 21 S2< 2z

sin(k*(2p41 — 2))
= < z<
folz) sin(k*(sz Y Zp S 2 X Zpy1

‘ sin(k*(z — zpt1))
= <z< 141
sin(k*(zp — 2p-1)) AR (141)

for2<p<Zandy <y<wy +W

3in(k*(zp+3 - Z))
sin(k*(2p43 — Zp12))
sin(k™(z. = 2p11))
= — Zpi <2< 2 (142)

sin(k*(zpr2 — 2p11) T P2

for F+1<p<N-landy+ Wi+s<y<yp+Wi+s+W,

fp(z) =

Zp3 S 2 < Zpya

sin(k*(z — 2n41))

frn(z) =

 sink* (242 — ZN+41))
So, the other two equations needed can be obtained by imposing the
continuity condition of the magnetic current M, such that

ZN+2 <z< ZN+1 (143)

Aje”Pn 4 g, P2 = g, (144)
and

Aze™P5 | Bt = gy (145)

So, one can write
Y(M+N+1,1) = —¢?n (146)
Y(IM+N+1,M+3) = P2 (147)
Y(M+N+2,2) = —ei?n (148)
Y(IM+N+2,M+N+2) = P (149)
IM+N+1) = 4 (150)
IM+N+2) = 4, (151)
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Finally, the integrals involved in the elements of [Y] and [I] can be
performed analytically. In fact, one can find that seven integrals only
have to be performed to get the elements of the matrices. Appendix
A shows the derivation of these integrals. Once the element of Y]
and [I] are determined, (129) can be solved for the unknown current
_amplitudes by inverting [Y].

‘ Using the derived current distribution in the slots, one can deter-
mine the scattering parameters characterizing the open and coplanar
waveguide discontinuity.

3 Summary

The open circuit CPW discontinuity has been analyzed theoretically in
this report. The dyadic Green’s functions for y and z directed dirac
delta magnetic currents, placed in a rectangular cavity, were obtained.
The fields were assumed to be a superposition of LSE and LSM
modes. Then, the continuity of the tangential electric and magnetic
fields in the slot region was used to arrive at the integral equation.
Finally, the integral equation was solved using the method of moments
to obtain the unknown magnetic current distribution from which the
scattering parameters can be evaluated.

This study is intended to be a step towards characterizing various
CPW discontinuities including the CPW air bridge. A computer pro-
gram, that solves the CPW open circuit discontinuity, is in the process
of writing. '
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Appendix A

yu+Wy
, = / cos(kyy)dy
y

1

1. . .
= —[sin(ky(y, + W1) — sin(k,y )] _ ky # 0

ky
- W] ky = O
n+Wi+S+W,
/ cos(kyy)dy
n+Wi+S

1, . :
7 lsin(ky(y1 +wr + 5+ ws)) - sin(ky(y1 + wy + 3))]
Y

W, k=0

= /21 eP*sin(k,z)dz

1 : . .
= m_g g (k. — k,e?P* cos(k,z,) + jBeP sin(k,z,)]
z1+Hatg ‘
=. / cos(k,z)dz
z1+la

= Lleinku(ss +la-+9)) —sinlhula + L)) b £0

= g k,=0
[ sin(k,z)sin(k (21— 2))d
preerp——y sin(k,z)sin(k*(z; z z
1 1

P [—k"sin(k,22)

sin(k*(z3 — 21)) . 2
k*sin(k,z, )cos(k*(2; — 2)) + k,cos(k,z1)sin(k*(2; — 21))]
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+ +

1 ZNt1 )
- / sin(k,z)sin(k™(z — zy41))dz
sin(k*(2ny2 — ZN41)) VZny4s
1 1
. [—k*sin(k,
sin(E(znre —znm)) B (ko)

k*sin(k,zy2)cos(k™(zny2 — 2N42))
k.cos(k,zny2)8tn(k™ (2N 41 — 2N42))]

Vit sin(k*(y — vi))
= k d
/m T —Y
Yita sin(k*(Yiyz — y))
+ n - d
/yi+1 sl y )Sm(,k*(yin —Yin )) v
k* 1

kz _ k2 sin(k* (Yip1 — yi))s'm(k (Yir2 — Yis1))

[—sin(kyyir,)sin(k™(yiy2 — yi))
—  sin(kyy:)sin(k*(Yit2 — Yit1))
+  sin(kyyip1)sin(k (yiy2 — vi))]
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