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Achievement and Avoidance Games 
for Generating Abelian Groups 

By M. Anderson I and F. Harary 2 

A b s t r a c t :  For any finite group G, the DO GENERATE game is played by two players Alpha and 

Beta as follows. Alpha moves first and chooses x 1 C G. The k-th play consists o f  a choice of  

x g E  G - S k _  1 where S n = ~x 1 . . . . .  X n } .  Let G n = <Sn>. The game ends when G n = G. The player 
who moves x n wins. In the corresponding avoidance game, DON'T GENERATE,  the last player 

to move loses. Of course neither game can end in a draw. For an arbitrary group, it is an unsolved 

problem to determine whether  Alpha or Beta wins either game. However these two quest ions are 
answered here for abelian groups. 

1 Introduct ion  

These are examples of  2-person games with perfect information in which one of  the 
players has a strategy which guarantees victory regardless of  the moves made by his 
opponent. The strategies derived below, dealing with the theory of  groups, constitute 
a class of  combinatorial games involving finite sets and are a part of  discrete mathe- 

matics. Our games, being derived from a theorem, cannot end in a draw. The theorem 
involved here is trivial, but the games are not. Here the "theorem" is simply that a 

group G generates itself. The referee, to whom we are grateful for his helpful com- 
ments, kindly noted that "The games ... of  the paper are new in the game theoretic 
literature". 

In the graph game, DO CONNECT, the two players Ms. Alpha and Mr. Beta 
begin with n isolated vertices and Alpha makes the first move by joining some vertex 
pair by an edge. This has been called [3] a "shrewd move" as the choice of  two ver- 
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rices to join has absolutely no effect on the resulting configuration and hence has no 

impact on the outcome of the game. Beta then joints a different pair of vertices, and 

so on. The player who first forms a connected graph on all n vertices wins. In the 

corresponding avoidance game, DON'T CONNECT, this player loses. The outcome 

of these two games was determined in [4] by specifying the values of n for which 
each player wins with rational moves. 

These games on graphs suggest corresponding games on groups in which the 

object is to generate the group as the analog to connecting the graph. Given a finite 

group G, Alpha picks xl  E G, Beta chooses x2, and so forth. Let set Sn = (xl  . . . . .  xn} 

and let subgroup G n = (S n }. The game ends when G n = G. In the DO GENERATE 

game, the player who moves x n wins; in DON'T GENERATE he or she loses. 
Our object is to determine the winner in each of these two games when G is 

abelian. 

2 Do Gene ra t e  

We first consider the achievement game, DO GENERATE, by handling six separate 

cases. Let 1 be the identity element. We use the well known fact that G is the direct 

sum of cyclic groups Z n of prime power order n. We write G = G' to indicate group 

isomorphism. 

Case 1: G is cyclic. 

Here Alpha obviously wins because she can choose a generator for xl.  

Case 2: G is not cyclic but for all x 4= 1 in G, there exists y :/= x such that (x, y ) = G. 
This means that for each x ~ 1, G/(x> is cyclic, that is, G = Zp + Zp for some 

prime p. Therefore by choosing Xl = 1, clearly Alpha wins. 

Case 3: Neither Case 1 or Case 2 holds and I GI is odd. 

Since Case 1 does not hold, Alpha cannot win on the first move. Since Case 2 
does hold, Alpha has a safe move so G ~ G2. Now IG2[ is odd as it divides [GI, but 
the number of choices already made after the first move by Beta is two which is even. 

So Alpha now wins if she can; otherwise she chooses xa E Gz making it impossible 
for Beta to win on the fourth move, x4. This parity argument applies at every stage 

and hence Alpha wins. 
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Case 4: None of  Cases 1 ,2 ,  3 hold, and for all x of  even order G/(x) is cyclic. 

We prove that  here G = Z 2 + Z2n for n odd. Consider x E G of  order 2. Because 

G/(x) is cyclic, G = Z 2 + Z k. Now if  k is odd then G itself would be the cyclic group 

Z2k contrary to the hypothesis of  this case; thus k = 2n. As Z 2 n has a unique element 

y of  order two, let H = (y) ;  then G/H = Z 2 + Z n. Since this is a cyclic group, n must 

be odd. 

We can now determine the outcome of the achievement game in tkis case. Clear- 

ly the first player to choose an element of  even order loses. Since there are an odd 

number n of  elements of  odd order, including the identi ty,  Alpha must win. 

Case 5: Cases 1 ,2 ,  3, 4 do not hold and there exists x :/: 1 of  odd order such that 

G/(x) is not  cyclic, but  for all b E G of  order 2, G/(b, x)  is cyclic. 

We prove that in this case G = Z2 + Zk + Z r where k, r > 1 are odd. Let r be the 

order of  x and choose any b of  order 2. Then for some y ,  G = (b)  + (x)  + ( y )  since 

G/(b,x)  is cyclic. If y has odd order m, then G/(x)=Z2m,  a cyclic group. Thus y 

has even order 2k, so G/(x, y k ) =  (b)+ Z k. Since this group is cyclic, k must be odd. 

This implies that  G = Z 2 + Z k + Z r since Case 4 does not hold. 

We can now determine the outcome of  this case. Alpha chooses x l  =x .  Clearly 

the first player to choose an element of  even order loses. Since there is an odd number 

kr of elements of  odd order, Alpha wins. 

Case 6: None of  cases 1 - 5  holds. 

There are two possibilities. In the first instance, Alpha chooses an element x l  

of  even order. If  Beta cannot win at this point,  then since x~ is a subgroup of  even 

order, Beta can choose x2 E (x  1 ). This pari ty argument applies at each stage and so 

Beta wins. 

The other alternative is that Alpha chooses an element x l  of  odd order where 

G/(Xl ) is not  cyclic so that Beta cannot win on the next move. Since Case 5 does 

not  hold, Beta can find x2 of  order 2, so that G/(x l, x2 ) is not  cyclic. But now Alpha 

cannot win on the third move, x3, and since each succeeding subgroup G k has even 

order, Beta can always choose some xk c G k_ ~ if he cannot find an x k which wins. 

Thus Beta wins with this possibility also, so Beta wins in Case 6. 

Summary: In the finite abelian group achievement game, Alpha wins if any of  Case 

I - 5  holds and Beta wins otherwise. This is now stated formally. 



324 M. Anderson and F. Harary 

Theorem 1: For the DO GENERATE game played on a finite abelian group G, Alpha 

wins if and only if G is cyclic or [G[ is odd or 

G=Z2 +Z2m+ 1 +Z4k+ 2, for m, k = 0 ,  1,2, ...; 

Beta wins otherwise. 

3 D o n ' t  Gene ra t e  

Perhaps surprisingly the analysis of this game is easier. It can be handled in just four 

cases. 

Case 1: G is the trivial group. 

Alpha must pick xl  = 1 = G and obviously loses. This has been called [1] a "Ban- 
ker's Game" for Beta; clearly it is a game which the polite Banker always wins by say- 
ing, "After you". Beta wins. 

Case 2: G has odd order but is not the trivial group. 

Alpha chooses Xl which does not generate G, picking x I = 1 if necessary. At 

each stage xk,  Beta either generates and loses, or else G k is a subgroup of odd order 

generated by an even number of choices. If every choice outside of Gk (from G -  

Gk) then generates, Alpha has room to choose inside G. If not, Alpha makes any 

choice she pleases which does not generate. To speed ~up the game she will choose 

outside G k if possible. Thus Alpha wins. 

Case 3: G = Z2.k, k odd. 

Alpha chooses some element xl of order k. Then Beta must choose an element 

Xx of order k. Thus Beta must choose an element x2 of (Xl) or he will generate G. 
But this group ( x l ) = Z k  is of odd order so Alpha has the last choice in (xl )  and 

hence Alpha wins. 

Case 4: G is of even order but G CZ2k for k odd. 
If Alpha chooses an element of even order, the same sort of parity argument as 

in Case 3 implies that Beta wins. 
If Alpha picks xl  of  odd order, then Beta can find an element x2 of even order 

so that G2 :/=G because of the hypothesis that G r  for k odd. But then the 
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order of  every succeeding Gn is even, and the same parity argument again implies that 

Beta wins. 

Theorem 2: For the DON'T GENERATE game played on a finite group G, Alpha 

wins if and only if G is of  odd order but is nontrivial, or G =Z2k with k odd; Beta 

wins otherwise. 

4 Unsolved Problems 

A. Determine the outcome of  these achievement and avoidance games for the standard 

families of  nonabelian groups including Dn (the dihedral group), A n (the alternat- 

ing group), and S n (the symmetric group). At present it appears quite hopeless to 

settle these questions for larbitrary finite groups. 

B. There is a well known observation that for any finite group G and for each parti- 

tion G = X  1 U X 2, at least one X i generates G. As mentioned in [2], this sug- 

gests the "2-color" game in which Alpha builds {xl, x3 . . . .  } and Beta gets (x2, 

x4, ...}. Then in this achievement game the first player who generates G wins; in 

the avoidance game he loses. The outcome of these games has not yet been 

determined for any family of  groups. 
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