
International Journal of Game Theory (1989) 18:327-338 

Geodetic Contraction Games on Graphs 

By A.  S. Fraenkel  1 and  F. H a r a r y  2 

Abstract. Let G = (V, E) be a finite graph. The set L of labeled vertices is initially empty. Two play- 
ers A and B move alternately (A first), by choosing an unlabled vertex u C V \  L; then u itself and 
all vertices on shortest paths between u and any vertex of L are adjoined to L. When L = V, the 
game is over. In normalplay, the first player unable to move loses and his opponent wins. The out- 
come is reversed for misbreplay. We resolve the game by determining its winning strategies for the 
following cases: trees in normal play; cycles in normal and misbre play; and complete graphs K m 
with rays all of length n, in normal play. 

1 Introduction 

Our  p u r p o s e  is to  investigate geodet ic  con t rac t ion  games,  or  geodet ic  games  for  
short ,  as def ined  in the  abst ract ,  on  a number  o f  graphs.  

These  games,  whether  p layed in n o r m a l  or  mis6re form,  are impar t ia l ,  in the  
sense tha t  f rom any pos i t i on  exactly the same moves are legal for bo th  players.  We 
fol low Ber lekamp,  Conway  and  G u y  [1] in def in ing a P - p o s i t i o n  as any pos i t i on  u 
f rom which the Previous  p layer  (B) can force a win,  tha t  is, the player  who responds  
to  the  move m a d e  f rom u. A n  N - p o s i t i o n  is any pos i t ion  v f rom which the Next  player  
(A) can  force a win, tha t  is, the  p layer  who moves f rom v. The  set o f  all P -pos i t ions  
is deno ted  by ~,Q and  the set o f  all N-pos i t ions  by ~. .  In  general ,  knowing tha t  a posi-  
t ion  is in ~ in n o r m a l  p lay  does no t  tell us whether  it is in ~ or  in JU in  mis~re play. 

In  Sect ion 2 we present  a p o l y n o m i a l  s t rategy for  geodet ic  games on  trees in nor-  
real  play. I t  leans heavi ly  on  l .) lehla 's  s t ra tegy for  H a c k e n d o t  [3] (see also "Bushen -  
h a c k "  in [1]). In  Sect ion 3 we de te rmine  the P and N pos i t ions  for  a cycle C n with 
n vertices for  n o r m a l  play, and  in Sect ion 4 we do the same for misbre play. Let K m 

o R n denote  the  comple te  g raph  on  m vertices with a ray o f  length n imping ing  on 
each o f  its m vertices. In  the  f inal  Sect ion 5 we prove the somewhat  surpr is ing  result  
t ha t  in n o r m a l  p l a y K  m o R n E ~ for  all m _ 2 and  n _> 2. 
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2 Trees  

To analyze a geodetic game on a tree in normal play, we resort to von Neumann's 
Hackendot, played on a rooted tree T, directed away from the root r. Player A selects 
any vertex a. There is a unique (directed) path from r to a. All vertices on this path 
are deleted, leaving a forest T a. If  T a is nonempty, B selects a vertex b in it and dele- 
tes all vertices on the path joining it to a root. Provided that the resulting forest T ab 
is nonempty, A selects a further vertex e and forms T abe, etc. l]lehla [3] gave a poly- 
nomial strategy for this game in normal play. Using this fact we easily obtain the 
first observation. 

Theorem 1: Let T be an undirected finite tree on which a geodetic game is played. 
Let u be the node labeled in the first move. Let T '  be a directed tree derived from 
T, namely the tree T with root u, oriented away from u, that is, for any node v :~ 
u, direct the path (u, v) from u to v. Then normal play of  the geodetic game on T 
after the first node u has been labeled, denoted by T u, is equivalent to the Hacken- 
dot game T' u (the Hackendot game on T', after the first move of removing the root 
u). 

Proof" If  1,1 and 1" 2 are two games, their sum 1, = (F 1, 1,2) is the game played as 
follows: A player at his turn selects a move from either F 1 or r 2. To show that F 1 
and 1' 2 are equivalent, that is, that they have the same outcome (in fact, the same 
Sprague-Grundy function-values), it suffices to show that (1'1, 1"2) E ~ (see [1]). 
For any move T uv by A, the labeled vertices are the same as the removed ones in 
T 'uv and conversely. Therefore B can make a last move, hence (T u, T 'u) E ~.. �9 

Corollary 1: A geodetic game on a finite undirected tree Tin normal play has a poly- 
nomial decision procedure. 

Proof" The procedure is to label some node u 1 of the tree Tand orient the tree away 
from Ul, resulting in a directed tree T'. If  the first player can win Hackendot by 
picking u 1 as the first move in T', then the first player can also win in the geodetic 
game. Otherwise we try the same procedure with the first player picking some u 2 

u 1 in T, and so on. If  the first player loses in Hackendot whenever he picks the 
root for all possible T'  induced by T, then the second player can win in the geodetic 
game. �9 

Questions: (i) Is there a more efficient strategy? (ii) Do geodetic games on forests 
have a polynomial strategy? On directed acyclic graphs with all roots initially labe- 
led? 

Corollary 2: If  Twith at least two vertices is an undirected finite tree on which a geo- 
detic game is played, a first winning move cannot be to label a vertex u with degree 
d(u) = 1. 
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Proof" The corresponding move in T '  leaves another directed tree which is a Hacken- 
dot N-position, since every directed tree is. �9 

3 Cycles - Normal  Play 

Let C n be the cycle of  length n, and write V(Cn) = {0,1 ..... n - 1  }. Without loss of  ge- 
nerality, A always chooses vertex 0 on her first move. In this section we consider nor- 
mal  play. When n is even, the game is quite trivial as B selects n / 2  and he wins at 
once since now L = V. So n is odd in the rest o f  this section. 

After A chooses point 0, the result can be regarded as a rooted cycle, denoted 
by C*. Before stating and proving the theorem solving the game for normal  play 
on a cycle, we illustrate for small odd n. 

In [2], a shrewd move  is (jokingly) defined as a move which always results in 
a unique configuration, up to isomorphism, and hence cannot affect the outcome 
of  the game. When n = 3, all moves are shrewd? After A picks 0 forming C~, B 
chooses either of  the two remaining vertices so A moves last and wins. 

When n = 5, after A has moved to C~, B has two possibilities: he can pick 
either of  the vertices 1 or 2. I f  he picks 1, he effectively forms C ]  and loses. So he 
picks vertex 2 forming C~ and wins as we just saw. 

Figure 1 illustrates n = 7. After A makes C~ on her first move, Figure l(a), B 
can form any one of  C~, C~ or C ]  on his first move by picking point 1,2, or 3 as 
in Figure l(b,c or d). The only one of  these which does not lose immediately for B 
is C~. But then a moves C~ -- C~ and wins, as we saw above. So A wins C 7. 

Theorem 2." For normal  play, C n E ~4# if and only if n = 2 k - 1 for some k _> 1. 

C7 C6 C5 C4 

O~ OI ~ 012 ~ 0123 

4- -3 4 

(o) (b) (c) (d) 

Fig. 1. A geodetic game on the 7-cycle (normal play) 
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P r o o f "  We have a l ready  seen how this game goes for smal l  n. For  a rb i t ra ry  odd  n 
ge 

= 2m + 1, af ter  A moves to C * ,  B can fo rm any one o f  C * _  1, C n _  2 ... . .  C n _  m.  

There  are two possibi l i t ies .  I f  n is no t  o f  the  fo rm 2 k - 1, then  exactly one o f  the 
numbers  in the  c losed integral  interval  In - m, n - 1] = {n - 1, n - 2, . . . ,n - m} 
is one o f  tha t  fo rm and  B moves to tha t  one. I f  n = 2 k - 1, then  no  number  in tha t  
interval  has  this form.  Thus  no ma t t e r  wha t  first move B makes,  A can get the smal-  
ler roo ted  cycle o f  length  2 k-1 - 1 on  her second move, and  reduce it eventual ly to 
the  small  cycles above, thus winning  the game. �9 

4 Cycles - Mis~re Play 

This game is even easier to analyze  and  was first  set t led by Freder ick  Teague, a stu- 
dent  o f  the  second author .  

T h e o r e m  3: For  mis6re play, C n E A / i f  and  only  if  n = 2 k for some k _> 1. 

Proo f"  A g a i n  using induct ion ,  when n = 2 or  3, all moves are shrewd and  A wins 
the  fo rmer  and  loses the  latter. W h e n  n = 4, af ter  A makes  C~,  B loses on the very 
next move unless he makes  C~ which also loses for  B so A wins. For  a rb i t r a ry  n = 
2 k, A shrewdly moves to C *  and  after  any first move by B, the second move by A 
forms C~k_ 1, and  so for th ,  resul t ing in v ic tory  by A.  

W h e n  n :/: 2 k, A mus t  still open  with C* but  now B can always move to roo ted  
cycles whose  length is a power  o f  2, so B wins. �9 

5 Complete Graphs With Rays 

In this sect ion we investigate the  geodet ic  game on K m o R n in n o r m a l  play, where 
K m is the  comple te  g raph  on m vertices and  R n is a ray o f  n vertices (a ray o f  l eng th  

n), imping ing  on each o f  the m vertices o f K  m. The vertices o f  the rays are numbered  
f rom 1 on K m to n at  the far end o f  the  ray. We will ident i fy  vertices on  any given 
ray with their  serial  numbers .  A few graphs  o f  the fo rm K m o R n are d isplayed in 
Figure  2. 
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6 

5 

4 

3 

2 

I 

' /  K 3 o R 6 

(o) (b) (c) 

Fig. 2. Several instances of K m o R n 

The main result of this section can now be stated. 

Theorem 4: For normal play, K m o R n E ~ for all m _> 2 and n _> 2. 

Proof"  The assertion is clearly true when m is even, since then the graph has central 
symmetry - but without a central vertex! - and so B can play symmetrically with 
respect to the center (see e.g. Figure 2b). So henceforth m will be odd. 

We shall distinguish between two phases of play: Phase I, where all previous mo- 
ves, if any, were made on a single ray only, and not all of it has been labeled yet; and 
Phase II, where vertices on more than one ray have been labeled, or one ray has been 
labeled entirely. 

In Phase II the graph is easily shown to be equivalent to a star whose center is 
the collection of labeled vertices, coalesced into a single labeled vertex. Any move 
in this phase in effect shortens precisely one of the rays by any desired amount. In 
other words, we have an m-pile or (m - 1)-pile Nim game, and the player making 
the Nim-sum 0 is the winner (see e.g. [1]). A star with Nim-sum 0 will be called O-star. 

Otherwise the star is a nonzero  star. If, for example, A labeled 4 in K 5 o R 5 (Figure 
3a), which is a move in Phase I, B can pass to Phase II by labeling 1 on another ray 
(denoted 1'), which produces the 0-star of  Figure 3b. (The three dotted edges in 
Figure 3b do not influence the outcome of the game.) 
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5 

(Q) (b) 

Fig. 3. Passing from Phase I to Phase II 

We may assume that  a player will pass f rom Phase I to Phase II if and only if 
he can do so by means o f  a move which will t ransform the graph into a 0-star. Becau- 
se if he passes to Phase lI  with a nonzero star, then his opponent  can make a 0-star 
and win. Note that  also when a player has no choice but  to pass f rom Phase I to 
Phase II,  he can do so by making the graph a 0-star. 

Note  that  in Phase I a player who first labels one o f  the end vertices, 1 or  n, is 
in a losing posit ion, as his opponen t  can pass to Phase II  with a 0-star by labeling 
the other  end vertex. 

To complete the p roo f  o f  Theorem 4, we use three definitions and eight proposi-  
tions. 

Definitions 

. 

. 

A n  extreme vertex is the largest labeled vertex on a ray. Thus if vertex n - i has 
been labeled on a ray but  n - i+  1 ..... n are unlabeled, then vertex n - i is extreme. 
A labeled vertex which is not  extreme is called nonextreme. 
A n  effective ray is the unlabeled far end part  o f  a ray, that  is, the ray consisting 
o f  the end vertices not  yet labeled. Thus after the first move of  A in the example 
o f  Figure 3, we have one effective ray o f  length 1 and four effective rays o f  length 
5. After  the response o f  B we have one effective ray o f  length 1, one effective 
ray o f  length 4, one effective ray o f  length 5 (which together already form a 
0-star) and two addit ional  effective rays o f  length 5 (which preserve the 0-star). 
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. Let ~ be the class o f  moves in Phase I such that  the nex t  move cannot  produce 
a 0-star. Note  that  if M is a move in ~,, then both  1 and n are still unlabeled 
after the move M. For example, a first move of  A of  labeling 5 on K 3 o R 6 (Fi- 
gure 2c) is in ~ ,  since there is no  next move yielding a 0-star. 

R e m a r k :  A good  response to A's move in the last example is to label vertex 2, which 
preserves the effective ray o f  length 1, and is thus a move in ~.  Note, however, that  
labeling 2 as a f i r s t  move is not  a move in ~,  since it can be countered by transfor-  
ming one o f  the as yet unlabeled rays into an effective ray o f  length 2, thus producing 
a 0-star. This shows that  ~ is move-dependent .  

It should be clear that  player A's  only chance to win is to make moves in ~. We 
shall show, however, tha t  for every move of  A in ~ ,  B can respond with another  move 
in ~ ,  so A will eventually have to make a move in Phase I such that  the next move 
- to be made  by B! - can t ransform the graph into a 0-star. 

We denote by a * b the Nim-sum o f  a and b. 

Propos i t i on  k A move M i n  Phase I leaving an effective ray o f  length f is in ~ if and 
only if n * f > n except for the case n = 2 s (s _> 1) and e = n - 1, for which n 
f > n but  the move is not  in ~.  

Proof :  Suppose first n �9 e > n. 
At  the end o f  move M w e  have three effective rays o f  lengths n, n and e. In  addit ion 
there is an even number  o f  effective rays o f  lengths n (whose Nim-sum is 0). H o w  
can a single move t ransform this posit ion into a O-star? 

Case  I." Transform the effective ray o f  length e into one o f  length 0. This can be done 
only if the move M c o n s i s t e d  o f  labeling 1, that  is, g = n - 1. Then n �9 g > n if 
and only if n = 2 s (s >_ 1). This move M i s  not  in ~,, since the next move o f  labeling 
n results in a 0-star. 

Case  II: Transform an effective ray o f  length n into one o f  length i < n such that  
n �9 f * i  = 0. But then i = n �9 e > n, a contradict ion.  Thus M E ~.  

Now suppose n �9 e _< n. 
I f  n * e = n, then Mcons i s t ed  o f  labeling n, so 1 can be labeled in reply, resul- 

ting in a 0-star. I f  n * e < n, then t ransforming one o f  the as yet unlabeled rays into 
an effective ray o f  length n * f results in a 0-star. �9 

Let lg denote log to the base 2. As usual, [a, b], (a, b] and [a, b) denotes a closed 
interval, an interval open  on the left and closed on the right, and an interval closed 
on the left and open on the right, respectively. We also denote by n b the binary enco- 
ding of  n. The trivial p roo f  o f  the next statement is omitted. 

Propos i t i on  2." Suppose n b - with least significant bit in posit ion 0 and leading 1-bit 
in posit ion [lg n] - has O-bits precisely in the positions Jl ..... Jk  satisfying 

0 -<J l  < J 2  < "" < J k  < [lg n]. 
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Then an effective ray of  length f satisfies 1~ . n > n if and only if. ~ E 
[2 j i ,  2Ji+l), that is, if and only if the extreme vertex is in (n - 2 J i+l ,  n - 2 Ji] for 
any i E [1, k]. �9 

Here now is the winning strategy of  player B. 
W i n n i n g  S t r a t e g y  W o f  B (moves restricted to single ray). 
For any fixed i E [1, k], if A labels some unlabeled vertex a i = a ( t  i) = n - 2 j i  

- ti, .then B responds by labeling b i = b( t i )  = 2 j l  + . . . + 2  j i - l + 2 + . t  i for any t i E 

[0, 2Jr). Conversely, if after the first move A labels b i = 2 j l  +. . .  + 2 Ji-1 + 2 + t i, then 
B responds by labeling a i = n - 2 j i  - t i for every t i E [0, 2Ji).  

The validity of  W as a winning strategy for B will be established by means of 
the next few propositions, which show: (i) B's response is always possible; (ii) it is 
in ~whenever  A's move is in ~, (iii) A has no moves in ~ other than those specified 
by W. By Propositions 1 and 2, the moves of A as given in Ware in ~ except when 
n = 2 s (s _> l) and A labels vertex n or 1 as an extreme vertex. (In these two exceptio- 
nal cases Wcalls on B to label 1 or n, which are winning moves, since they transform 
the graph into a 0-star.) 

It may be helpful to follow the arguments below by means of  an example, such 
as K 3 o R21 shown in Figure 4, for which 21 b = 10101, so k = 2, j !  = 1, J2 = 3. 
The serial numbers of  the vertices are to the left of  the vertical ray. The numbering 
to the right of  the ray indicates the potential moves specified by 144 An odd number 
2 r -  1 indicates a move of A which is in ~, and its successor 2r indicates B's response 
which is also in ~ (1 _< r _< 10). For example, if A labels 5, then B labels 6; if A 
labels 3, then B labels 4, etc. 

P r o p o s i t i o n  3: The vertex b i or a i which Wprescribes as B's response to A's move, 
is always different from a i or b i labeled by A in the preceding move. 

P r o o f "  Suppose a i = b i. Then 

n = 2 j l  + . . . +  2 j i  + 2 + 2 t  i. 

I f  n is even t hen j l  = 0, so the right-hand side is odd, a contradiction. If  n is 
odd then Jl > 0, so the right-hand side is even, again a contradiction. �9 

Let ~ denote the 2's complement  of  n. Note that ~b is gotten from n b by inter- 
changing all 1-bits of  n b with 0-bits and conversely, and adding a least significant 
1-bit. Thus 21 b -- 1011. We have the following result. 



21 
2O 

9 I 
8 3 
T 
6 
5 
4 
5 5 
2 7 
I 9 , 2 0  
0 II  , 18 
9 131 16 
8 1 4 ,  15 
7 12~ 17 
6 I 0 ,  19 
5 8 
4 6 
5 4 

2 2 

d "o 

Geodetic Contraction Games on Graphs 335 

Fig. 4. K 3 o R21 

Proposi t ion 4" (i) n + fi = 2 [lg n] +1; (ii) n - fi = 2(n - 2[lg n]); (iii) fi _< n (with 
equality if and only if n = 2 s (s _> 0)). 

Proof" (i) is the definit ion o f  the 2's complement  o f  n. Adding n to bo th  sides gives 
(ii). By (i), 

= 2[lg n]+l _ n _< 2 n -  n = n, 

since the mos t  significant bit o f  n b is in posi t ion [lg n]. �9 

Proposi t ion 5: (i) For n 4= 2 s (s _> 1), the smallest extreme vertex in class ~ is n - 
2 jk+ l  + 1. (ii) The response o f  B specified by W t o  this move of  A is to label fi, 
which is the largest vertex o f  the fo rm b i labeled by B. (iii) There exists i such that  
a i < b i if and only if [lg n] = Jk + 1, that  is, if and only if n b has a leading 10. (iv) 
The set o f  all moves o f  the fo rm b i is the interval [2,fi]. (v) The set o f  all moves 
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o f  the . fo rm a i is a col lec t ion o f  intervals,  the longest  o f  which is I L = (n  - 2 j k  + I, 
n - 2 J k - q ] ,  where the  run  o f  the  le f tmos t  0-bits o f  n b occupies  pos i t ions  Jx ,  J k  - 

1 . . . .  , J k  --  q (but  p o s i t i o n j k  -- q -- 1 conta ins  a 1-bit for some q E [0,Jk) if  n :~ 2 s 
(s _> 1); or  q = J k  i f  n = 2 s (s _ 1)). (vi) The  largest  a i sat isfying a i < bi,  i f  it exists, 
is a i = 2 Jk E I L .  

P r g o f "  The smal les t  extreme vertex labe led  by A as given by W is a = n - 2 jk - 
(2 Jk - 1) = n - 2 j k + l  + 1. This  move is in ~ b y  P ropos i t i on  1 except when n = 
2 s (s _ 1). The  response  specif ied by W is to label  

b = 2 j l  + . . . + 2  jk-1 + 2 + (2 j k -  1) = ~,  

which is the  largest  vertex labe led  by B in response to  an extreme vertex o f  the fo rm 
a i labeled by  A.  This  proves (i) and  (ii). 

(iii) I f  [lg n] _> J k + 2 ,  tha t  is, n b has a leading 11, then  n > 2 jk+2 .  Now a i < 

b i impl ies  n - 2 jk + 1 + 1 < ~ by (i) and  (ii), so n < z k =  1 2 j i  + 2 j k  + 1 <_ 2Jk + 2 _ 1, 

a con t rad ic t ion .  I f  n b has a leading 10, then  n _< 2 jk + 1 + 2Jk _ 1. Also  ~ >/2 jk + 1. 
Hence  n - 2 j k + l  +1 _ 2 j k  < -~. 

(iv) Since b i with t i = 2 j i  - 1 is b i+  1 - 1 with t i+ 1 = 0, we see tha t  the intervals  
o f  all moves o f  the  fo rm b i and  b i+  1 are direct ly  ad jacen t .  The  upper  b o u n d  ~ o f  
the interval  was es tabl ished in (ii). 

(v) The  largest  vertex in I L is n - 2 j k - q  by the def in i t ion  o f  q, and  the smallest  
is n - 2 j k  + 1 + 1 by (i). 

(vi) The  largest  a i less t han  b i satisfies a i = b i - 1 i f  a i, b i E I L .  Then  

n -  2 j i  - t  i = 2 j l  + . . . +  2 j i -1  + 1 + t i 

for  sui table  t i E [0,2Jt). Thus  

n = 2 j l  + . . . +  2 j i  + 2 t  i + 1 _ 2 j l  + . . . +  2 j i + l  - 1. 

S u p p o s e i <  k. T h e n j i  + 1 <_ Jk ,  SO n <_ 2 j l  + . . . +  2 j k  - I = ~ - 2 < n b y  

Propos i t i on  4(iii), a cont rad ic t ion .  Thus  i = k, and  

n -  2 j k -  t i = 2 j l  + . . . +  2 j k - 1  + 1 + t i. 

By P ropos i t i on  4(ii), 

2 t  i =  n - ( 2  j l  + . . . +  2 j k  + 1) = n - ~  = 2 ( n - 2 [ l g n ] ) .  

Therefore  t i = n - 2 [lg n]. By (iii), [lg n] = J k  + 1, so 

a i = n - - 2  j k - t  i = 2 j k .  

It  is s t ra igh t forward  to see tha t  2Jk and  2 jk + 1 are in I L .  �9 

P r o p o s i t i o n  6." The set o f  b i sat isfying b i > a i i s  a subinterval  o f  I L except tha t  b i = 

n i s n o t i n I  L w h e n n  = 2 s ( s _ >  1). 
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Proof" This is certainly true if there is no b i > a i. I f  there is b i > ai, then [ lg n] = 
Jk  + 1 (Proposition 5(iii)). I f  n :~ 2 s, the two most significant 1-bits of n b are in po- 
s i t ionsJk+l  andJk  - q - 1, where q is as defined in Proposition 5(v). Hence n _> 

2 jk+l  +2 jk-q-1 .  Therefore by Proposition 4(ii), n - ~ = 2(n - 2 jk+l)  ~ 2 j k - q ,  or 
fi <_ n -- 2 jk -q ,  which proves the assertion by Proposition 5(iv),(v),(vi). The excep- 
tional case is clear. �9 

Propos i t ion  7: The move of  B specified by Walways exists, that is, the vertex prescri- 
bed by W for B to label, is still unlabeled prior to B's move. 

Proof" The very first move of  A consists of  labeling some a h E ~.. Then B responds 
by labeling b h. This move is possible by Proposition 3. After this move, all and only 
all vertices between a h and b h are labeled. 

Suppose, inductively, that when A labels ap or bp, then B can respond by labe- 
ling bp or ap as specified by W, that ap and bp are on opposite sides of  the interval 
of  previously labeled vertices with ap > bp, so all and only all vertices in [bp,ap] are 
now labeled. 

Suppose A now labels an extreme vertex (always on the same ray), which is in 
~.. By Proposit ion 6, any extreme vertex of the form b i with b i > a i (b i < n) is itself 

of  the form a r. We may thus assume that A labels a vertex of  the form ar. = n - 2 Jr 
- t r. The response of B consistent with Wis to label b r = 2 jl +. . .  + 2 Jr-1 + 2 + 

t r, even if a r = b i. This latter statement follows from Proposition 5(vi): the pairs 
(ai, bi) with bi. > a i are symmetrically located with respect to the midpoint between 
the vertices 2 jk and 2 jk + 1. That  is, for any pair (ai,bi) with a i E I L and b i > ai, 

we have b i = a r, a i = b r for suitable r. 
Since a r is extreme, we have 

a r = n - 2 J r - t r >  n - 2 J P - t p  = ap. 

Thus either r = p and t r < tp, or r < p. In either case, 

b r = 2 jl + . . . + 2  jr-1 + 2 + t r < 2 jl + . . . +  2 jp-1 + 2 + tp = bp. 

In particular, b r is as yet unlabeled. Moreover, b r < bp < ap < a r, so b r and 
a r are on opposite sides of  the set of  previously labeled vertices, and all vertices in 
[b r, ar] are now labeled. 

I f  A labeled a nonextreme yertex, that is, a vertex less than bp, then this vertex 
has the form b r = 2 J1 +. . .  + 2 Jr-l + 2 + t r for some t r E [0, 2Jr), since the moves 
of  the form b i constitute the interval [2, fi] (Proposition 5(iv)). As above we then 
have a r > ap, where a r is the response of  B prescribed by W. So again all vertices 
in [a r, b r] are labeled. �9 

Propos i t ion  8." Every response of  B as specified by Wis in ~ except the response of 
labeling n when n = 2 s (s _ 1). 
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Proo f "  This follows from Propositions 1 and 2 if W calls for labeling b i or a i with 
b i < a i , as a response to A's labeling of a i or b i. For the case where B's response 
is to label b i with b i > ai, Proposit ion 6 shows that b i E I L (with the usual excep- 
tion), hence this move is also in ~. �9 

We now resume and complete the proof  of  Theorem 4. Propositions 3 and 7 
show that B's response specified by Wis always possible. Proposition 8 shows that 
it is always in ~ (with the usual exception, in which B wins anyway); and Proposition 
1 implies that the moves in W exhaust ~. Thus player A must eventually make a 
move in Phase I such that the next move of B can transform the graph into a 0-star, 
and so B wins. �9 
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