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Abstract This paper provides, through both numerical
analyses and physical tests, a validation of the optimality
of structural designs obtained from a topology optimiza-
tion process. Issues related to the manufacturability of the
topology-optimized design are first addressed in order to
develop structural specimens suitable for experimental val-
idation. Multidomain and multistep topology optimization
techniques are introduced that, by embedding the designer’s
intuition and experience into the design process, allow for
the simplification of the design layout and thus for a better
manufacturability of the design. A boundary identification
method is also proposed that is applied to produce a smooth
boundary for the design. An STL (STereo Lithography) file
is then generated and used as input to a rapid prototyp-
ing machine, and physical specimens are fabricated for the
experiments. Finally, the experimental measurements are
compared with the theoretical and numerical predictions.
Results agree extremely well for the example problems con-
sidered, and thus the optimum designs pass both virtual and
physical tests. It is also shown that the optimum design ob-
tained from topology optimization can be independent of the
material used and the dimensions assumed for the structural
design problem. This important feature extends the appli-
cability of a single optimum design to a range of different
designs of various sizes, and it simplifies the prototyping and
experimental validation since small, inexpensive prototypes
can be utilized. This could result in significant cost savings
when carrying out proof-of-concept in the product develop-
ment process.
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Introduction

Topology optimization has received extensive attention
since the groundbreaking paper of Bendsøe and Kikuchi
(1988). To date significant progress has been made using
a variety of approaches, as evidenced by the number of com-
mercial codes that have been developed and the variety of
applications that have been treated (see Rozvany et al. 1994;
Bendsøe 1995, 2003; Hassani and Hinton 1999). However,
despite the great promise held by topology optimization,
there is still a gap between the theory and real engineer-
ing design applications. Specifically, laying out an optimum
design with the effectiveness and efficiency required of an
engineering product remains a considerable challenge. In
an effort to fill this gap, we address in this paper some
fundamental issues related to the manufacturability and
proof-of-concept of new structural designs generated by top-
ology optimization.

A critical issue in the applicability of topology opti-
mization to a practical engineering design problem is the
manufacturability of the design. The optimum design ob-
tained from a standard topology optimization process tends
to be too complicated and without a smooth boundary; it
is therefore quite difficult to manufacture. Ambrosio and
Buttazzo (1993) first introduced a scheme to simplify the
structural shape using a perimeter control, which was further
implemented by Haber et al. (1996) with a finite element
method. This technique allows the designer to control the
number of holes in the optimal design and to establish their
characteristic length scale. Sigmund and Petersson (1998)
provided a survey of procedures dealing with issues such as
checkerboards, mesh dependencies, and local minima occur-
ring in the topology optimization processes. The checker-
board problem refers to the formation of regions of alternat-
ing solid and void elements ordered in a checkerboardlike
fashion. The mesh-dependence problem refers to obtaining



Z.-D. Ma et al.

qualitatively different solutions for different mesh sizes or
discretizations. Local minima refers to the problem of ob-
taining different solutions to the same discretized problem
when choosing different algorithmic parameters. Petersson
and Sigmund (1998) further proposed a slope-constrained
topology optimization method in which the design set is re-
stricted by enforcing pointwise bounds on the density slope.
Using this method, the checkerboard patterns and other
numerical anomalies can be minimized. Belytschko et al.
(2003) and Guest et al. (2004) studied topology optimization
methods with projection functions and regularizations and
with the use of nodal design variables to achieve the mini-
mum length scale. Xu and Ananthasuresh (2003) developed
a freeform skeletal shape optimization method using Bezier
curves after conducting a topology optimization process for
the compliant mechanism design. Wang et al. (2004) in-
troduced the so-called nonlinear diffusion methods to the
regularization of topology optimization problems, which
have a close relationship with the diffusion methods used
in the fields of materials and digital image processing. It
was shown that a nonlinear or anisotropic diffusion process
not only leads to a suitable problem regularization but also
exhibits strong “edge”-preserving characteristics. While the
aforementioned methods have been effectively developed, in
this paper we introduce a multidomain, multistep topology
optimization process (MMTO), which can be combined with
these existing methods to further improve the manufactura-
bility of the final design.

The multidomain topology optimization technique
(MDTO) enables the effective design of a complex engineer-
ing structure by allowing the designer to control the material
distribution among subdomains during the optimal design
process and to follow a desired pattern or tendency for the
material distribution. The multistep topology optimization
technique (MSTO) allows the designer to lay out a design
from a coarser mesh and then refine it repeatedly until the
desired finer design is obtained. Also, various filters can
be applied in between the refinements, for example, to re-
move unwanted structural details or submembers and thus
further improve the manufacturability of the final design.
Other filters may include those to adjust the material distri-
bution in a desired way, to smooth the structural boundaries,
to control the member size, etc. These filters can be real-
ized through a computational algorithm or by hand through
a well-developed graphic user interface. A major feature of
the combined MDTO and MSTO approach (MMTO) is that
the designer has more control over the structural forming
process such that intuition and experience can be effectively
utilized.

Another issue affecting fabrication is that the design lay-
out produced by the topology optimization process usually
features nonsmooth, steplike boundaries. Here we propose
to utilize a simple scheme to achieve piecewise smooth
boundaries for the structure. These identified structural
boundaries can then be used to generate a finite element
model for virtual prototyping or an STL file for physical
fabrication. For example, in this study, prototypes were fab-
ricated with a rapid prototyping machine using the STL
output directly obtained from the topology optimization pro-

cess. It is also shown in this paper that reduced-size ABS
(acrylonitrile butadiene styrene) plastic prototypes can be
used for proof-of-concept because the optimum design (in-
cluding topology, shape, and size) obtained from the design
process is independent of the material used and the size of
the actual structure, provided a proper scaling factor is ap-
plied. The influences of dimension and material type are
discussed in order to relate the simplified prototypes to the
full-size structure. The ultimate goal of this research is to
develop a systematic verification tool that can be used to
assess the optimality of a structural design in a general,
efficient, and cost-effective manner. The aforementioned im-
portant feature of material and size independence of the
design is proven in the general case through a theoret-
ical analysis. This important result extends the applicability
of the optimum design and simplifies the prototyping and
test process, thus alleviating the need for building full-size
prototypes and performing expensive tests at the proof-of-
concept stage.

The remainder of this paper is organized as follows. The
multidomain topology optimization (MDTO) and multistep
topology optimization (MSTO) methods are described first.
Then, the fabrication process of truly optimum structures is
introduced, including the postprocessing of the optimization
results and the rapid prototyping. This is followed by a de-
scription of experimental investigation for the prototypes,
including the validation of the test results using numerical
simulations. Finally, the influences of dimension and mate-
rial type on the optimum design are discussed.

Multidomain topology optimization

In the standard topology optimization method, a structure
is optimized within a single structural domain, subject to
a given amount of material for the entire structure, and the
material is automatically distributed throughout the struc-
ture without any interaction with the designer. This process,
however, leaves little flexibility to the designer for control-
ling the material distribution in a way he/she may desire.
For example, a designer may want to distribute more mate-
rial in a certain subdomain of the structure and less material
in another. To address this issue, a multidomain topology
optimization (MDTO) technique has been developed in Ma
et al. (2002) based on a generalized sequential approxi-

Fig. 1 A multidomain topology optimization problem
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mate optimization (GSAO) algorithm introduced by Ma and
Kikuchi (1995).

In contrast to single domain topology optimization, in
which a given amount of the material is assigned to the en-
tire design domain, MDTO allows the designer to assign dif-
ferent amounts of the material, or even different materials,
to the different subdomains of the structure. For example,
Fig. 1 shows a structural domain divided into several subdo-
mains, where a certain amount of material A is distributed
into subdomain 1, and a different amount of material B is
distributed into subdomain 2. Furthermore, subdomain 3 is
considered as a nondesign domain, where the material distri-
bution is not allowed to change at the current design stage.

In the general case, the MDTO problem can be formu-
lated as

Minimize f(X) ,

Subject to: hj(X) ≤ 0 ( j = 1, 2, . . . , m) ,

xi ≤ xi ≤ xi (i = 1, 2, . . . , n)

(and state equations) ,

(1)

where f = f (X) denotes the objective function; hj = hj(X)
denotes the jth constraint function for the volume (or
weight) of the jth substructure in the jth subdomain (where
j = 1, 2, . . . , m); m is the total number of the subdomains;
X = {x1, x2, . . . , xn}T denotes the vector of the design
variables, where n is the total number of design variables;
and xi and xi are the lower and upper bounds of design vari-
able xi , respectively. Note that f (X) in (1) also needs to
satisfy the state equations for the structural problem at hand.

The optimization problem, (1), usually involves a very
large number of design variables, and thus it requires
a highly efficient optimization algorithm. Because tradi-
tional mathematical programming methods are not practical
for dealing with so many design variables, optimality crite-
ria (OC) methods (e.g., those used in Bendsøe and Kikuchi
1988 and Ma et al. 1995) and sequential approximate op-
timization (SAO) methods, such as SLP (sequential linear
programming), SQP (sequential quadratic programming),
CONLIN (convex linearization; Fleury and Braibant 1986),
and MMA (method of moving asymptotes; Svanberg 1987)
were employed for solving the problem. Ma and Kikuchi
(1995) developed a generalized SAO (GSAO) method that
can be considered an enhancement and generalization of
the previous OC and SAO algorithms and that includes
the aforementioned algorithms as special cases. A selected
GSAO algorithm is introduced in this paper that can be con-
sidered an extension of the CONLIN and OC algorithms.
More details regarding the other GSAO algorithms can be
found in Ma and Kikuchi (1995).

Using the SAO approach, the original optimization prob-
lem (1) can be transformed into a series of approximate
optimization problems (AOP). By properly choosing the pa-
rameters in the GSAO method, the AOP can always be made
convex and therefore be solved by using a dual method. The
dual problem of an AOP can be written as

maximize
λ

Lk(X∗(λ), λ)

subject to λj > 0 ( j = 1, 2, . . . , m) ,
(2)

where λ = {λ1, λ2, . . . , λm}T denotes the vector of the dual
variables, and one has

Lk(X∗(λ),λ) = f k
0 +
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(4)

where xk
i (i = 1, 2, . . . , n; k = 1, 2, . . . ) are the design vari-

ables obtained at the previous, or (k−1)th, iteration (for
k = 1, x1

i (i = 1, 2, . . . , n) are the initial design variables),
and

f k
,xi

= ∂ f

∂xi

∣∣∣∣
X=Xk

and hk
j,xi

= ∂hj

∂xi
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.

ξi and ζi in (3) and (4) are determined by the parameters ξ+
i

and ξ−
i and by the sign of the derivatives of the objective

function and constraint functions, namely

ξi =
⎧
⎨

⎩

ξ+
i if f k

,xi
> 0

ξ−
i if f k

,xi
< 0

, ζi =
⎧
⎨

⎩
ξ+

i if hk
j,xi

> 0

ξ−
i if hk

j,xi
< 0

, (5)

where ξ+
i and ξ−

i are the parameters introduced by the
GSAO method. To simplify the problem, in this paper we
can have

ξ+
i = ξ+ and ξ−

i = ξ− (for i = 1, 2, . . . , n) , (6)

where ξ+ and ξ− are two given parameters (the selections
of their values will be discussed later). In (2), X∗(λ) =
{x∗

1(λ), x∗
2(λ), . . . , x∗

n(λ)}T is a function of the dual vari-
ables and can be obtained by using the following suggested
GSAO updating rule:

x∗
i =

⎧
⎪⎪⎨

⎪⎪⎩

xk
i if wi xk

i ≤ xk
i ,

wi xk
i if xk

i < wi xk
i < x̄k

i ,

x̄k
i if wi xk

i ≥ x̄k
i ,

(7)

where xk
i = max{(1−µ)xk

i , xi} and x̄k
i = min{(1+µ)xk

i , x̄i}
are so-called moving limits, while µ (0 < µ < 1) is a given
parameter, and one has
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wi =
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where
∑
+

represents the summation over the terms that sat-

isfy hk
j,xi

> 0 and
∑
−

is the summation over the other terms.

Note that the CONLIN algorithm developed by Fleury
and Braibant (1986) is a special case of (8) when ξ+ = 1 and
ξ− = −1, and that the OC algorithm (e.g., the one used in
Bendsøe and Kikuchi 1988) can be obtained by assuming
m = 1 and ξ+ = 1 and that f k

,xi
< 0 and hk

j,xi
> 0 are satisfied

for all design variables. In the general case, for the topology
optimization problem defined in this paper, we can fix the
parameter ξ+ as ξ+ = 1 and vary the parameter ξ− between
−1 and −9. The power parameter ηi in (8), which is deter-
mined by ξ+ and ξ− using the last equation in (9), has the
same effect on the optimization process as the power param-
eter used in the traditional OC algorithm (e.g., see Berke and
Khot 1987), namely, a large value of ηi increases the conver-
gence speed, but a smaller value of ηi improves the smooth-
ness of the convergence of the optimization process. For
some typical problems, other values of ξ+ and ξ− can also
be used, which can be selected through numerical experi-
ments. Furthermore, different values of ξ+ and ξ− can be
used for different design variables or determined using sec-
ondary derivative information. Discussions related to these
advanced uses are, however, omitted from this paper.

Fig. 2 Comparison of MDTO and
SDTO

Figure 2 illustrates an example engineering application
of the MDTO approach to the redesign of a truck chassis
frame. In this problem, it is assumed that the rails and the
bumper cannot be changed at the design stage; these are
shown as the blue areas in Fig. 2. The objective function is
a combination of two design goals: (1) minimize the mean
in-plane compliance of the frame and (2) maximize the first
five eigenfrequencies of the in-plane modes of the frame.
Figure 2 depicts the optimum structures obtained from (a)
a single-domain topology optimization and (b) a multido-
main topology optimization for the same objective function
and the same total amount of material used to build the
frame. As a first try, a single-domain topology optimiza-
tion was conducted in which the connectors were allowed
to be placed anywhere in the design domain between the
two rails (Fig. 2a), with a constraint on the total material
density (20%) for the connectors. Figure 2a shows the result
from this optimization process. It is seen that the resulting
design may not be satisfactory because too much material
is assigned to the front part of the frame, which may be
difficult to fabricate. Also, this design provides insufficient
support in the middle part of the frame for a real vehicle.
This undesirable design may be due to the lack of several
considerations in the design process, for example, the out-
of-plane loads and more accurate boundary conditions and
loading conditions. However, it is difficult to account for all
such factors in the numerical process because these are de-
pendent on the wide variety of operating conditions of the
vehicle.

As a second try, a multidomain topology optimization
was conducted in which the material was required to be
evenly distributed among the four subdomains (Fig. 2b). As
shown in Fig. 2b, the multidomain topology optimization
results in a structure that has better (i.e., much more rea-
sonable) material distribution and that can be manufactured
more easily. Figure 3 further illustrates the entire design pro-
cess from initial design to final prototype. A small-scale
prototype was actually fabricated using a rapid prototyp-
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Fig. 3 From initial design to
final prototype

ing machine and a composite material (DuraForm GF) of
polyamide and glass bead.

Multistep topology optimization

By iterating the optimization process from a rough design
to a refined design, the MultiStep Topology Optimization
(MSTO) approach can simplify the architecture of the struc-
ture and thus significantly improve the manufacturability of
the design. Figure 4 illustrates an MSTO process for an
example design problem of a (simplified) truck frame. As
shown in Fig. 4, the design process begins with defining the
design problem (step 1). This is followed by a first topology

Fig. 4 Multistep topology
optimization

optimization, which employs a coarse mesh for the purpose
of laying out a simple sketch of the structure (step 2). In
step 3, the design domain is refined with a finer mesh, and
a filtering process is also applied to eliminate the unwanted
details from the initial design. Note that various filters can be
utilized in this step. The simplest consists of filtering out the
material under a given threshold or to fill the material in full
when the material density is above a given threshold. Other
filters may include those to smooth the structural bound-
aries, to control the member size, to artificially adjust the
material distribution using a numerical rule, etc. These fil-
tering processes can be automated through a computational
algorithm, or they can rely on the engineer’s intuition along
with a well-developed graphic user interface. Detailed dis-
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cussions regarding these various filter designs are beyond
the scope of this paper and warrant a separate publication.

The second topology optimization is then applied to ob-
tain a satisfactory refined outline of the structure (step 4).
Note that this step is essential to ensure the optimality after
step 3. Steps 3 and 4 may be repeated until a desired result
is obtained. Finally, after finalizing the structure (step 5),
a shape-identification process is applied and an STL (STereo
Lithography) file is generated for the manufacturing process.
As can be observed in Fig. 4, this MDTO process results
in a simplified geometry for the structure, which can sig-
nificantly improve manufacturability and reduce fabrication
costs. Note that for this example the objective was to maxi-
mize the first in-plane bending eigenfrequency of the frame
structure subject to the given material density of 40%. More
details about this design problem can be found in Ma et al.
(2003). Also note that a smoothing algorithm was used in
step 5 to identify the geometric shape of the final design.
This is described in the next section.

Automatic postprocessing for shape identification

To identify the final shape of the optimal design result-
ing from topology optimization for manufacturing or fur-
ther shape optimization, an automatic postprocessor was de-
veloped. This postprocessing also provides the capability of
automatic finite element mesh generation for virtual pro-
totyping. To identify the final structural geometry, first the
material density of each element from the topology opti-
mization is normalized by a filtering algorithm. Then, the
material density is calculated at each node using an aver-
aging method such as that used for calculating the nodal
stress in a standard finite element postprocessor. In this pro-
cess, the elements with material are assigned a value of 1
and other elements a value of 0. The nodal densities of the
material are therefore in the range [0, 1]. The boundaries be-
tween the structural portions with and without material are
then identified as contour lines at a value of 0.5. As a re-
sult, piecewise smooth boundaries can be identified for the
structure. This boundary identification process is illustrated
in Fig. 5. First the nodal material densities are calculated
(blue). Then the 0.5-value points are determined (red). The

Fig. 5 Boundary identification

piecewise smooth boundaries are then obtained by connect-
ing these middle points. It can be seen that with this al-
gorithm the total amount of material is almost unchanged.
More advanced algorithms, such as B-spline fitting, could be
employed to further improve the smoothness of the bound-
aries. Also, manufacturing constraints can be considered
based on the fabrication requirements of the actual structure.

Figure 6 illustrates an example design problem consid-
ered in this paper, which will be used for experimental
validation. As depicted in Fig. 6, a beamlike structure is de-
signed with the design domain colored green and the nonde-
sign domains in blue. The solid material on the left and right
sides of the structure represents the fixtures needed for con-
ducting the experiment. The objective of the design problem
is to minimize the dynamic response (dynamic compliance;
see Ma et al. 1993) under a low-frequency sinusoidal exci-
tation, as shown in Fig. 7a. This objective is equivalent to
maximizing the fundamental eigenfrequency of the struc-
ture (Ma et al. 1995c). The constraint function for the de-
sign problem is the overall material density, which equals
43%. This design problem is first modeled by a 92×20
mesh with a total number of 1953 nodes, 1840 four-node
plane stress finite elements, and 5520 design variables (in-
cluding 1840 angular variables) as an initial design step in

Fig. 6 Defination of design problem

Fig. 7 Post-processing for physical prototyping
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the MMTO. This finite element mesh is then refined in the
second step to be 184 ×40, which has a total number of
7585 nodes, 7360 elements, and 22,080 design variables.

Fig. 8 Experiment setup

Fig. 9 Physical prototypes

Figure 7b depicts the optimum structure obtained through
this MMTO process. Figure 7c shows the result obtained
from the postprocessing tool described in this section, and it
demonstrates its effectiveness. The output from this postpro-
cess is an STL file, which is then sent to a rapid prototyping
machine for fabrication. Figure 7d shows the physical pro-
totype of the design fabricated from an ABS (acrylonitrile
butadiene styrene) material using the rapid prototyping ma-
chine. In the next section, the experimental validation of the
specimen developed is discussed.

Experimental verification

(a) Method and setup
The in-plane natural frequencies of the specimen shown
in Fig. 7d were measured using a dynamic testing facility
(Fig. 8). The excitation was provided by a shaker (Bruel and
Kjaer Type 4809), which was positioned behind the angle
plate to which the test specimen was attached. Harmonic sig-
nals generated by a Hewlett-Packard 8904A Multifunction
Synthesizer were used to drive the shake over a range of fre-
quencies. A single-point laser vibrometry (SPLV) system,
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consisting of a Polytec OFV2602 Vibrometer Controller
with a Polytec OFV353 Sensor Head, was used to measure
the vibration amplitude. The SPLV was mounted on a linear
traverse, which allowed it to be moved so as to measure the
response at various locations.

A frequency sweep was performed with the SPLV, and
the response at the beam tip was measured. At each res-
onant frequency identified by this sweep, a scan was then
performed along the length of the beam by programming the
traverse to move in 5-mm increments and measuring the re-
sponse at each position. Both the vibration amplitude and
the phase relative to the excitation were measured.

(b) Specimens
The specimen attached to the fixture is shown in Fig. 9a,
where the blocks at the left end provide a sufficient con-
straint to achieve a fixed boundary condition. Four holes
were drilled in the blocks in order to bolt them to the plate
in front of the shaker (Fig. 9b). For purposes of comparison,
another beam was fabricated, which represented the nominal
design and had the same dimensions as the optimum speci-
men.

(c) Results
The three lowest free vibration natural frequencies of the op-
timum and the nominal specimens were identified with the
frequency sweep process. For the optimum beam they are
322 Hz, 1150 Hz, and 2308 Hz. For the nominal beam one
obtains 305 Hz, 1602 Hz, and 3538 Hz. Note that the opti-
mum design, while featuring a 57% weight saving, is still
better than the nominal design in terms of the fundamen-
tal frequency. The mode shapes obtained for the optimum
design are discussed in the next section.

Fig. 10 Virtual prototypes developed for numerical
simulation

Comparison of virtual prototyping and physical
prototyping

In order to compare experimental measurements with nu-
merical results, virtual prototypes of the nominal and op-
timum designs were developed (Fig. 10). The commercial
finite element code MSC/NASTRAN was used in the calcu-
lations. The material was again ABS (acrylonitrile butadiene
styrene), which has a Young’s modulus of 2480 MPa and
a specific gravity of 1.05 g/cc. Table 1 shows the excellent
agreement between the predicted and the measured values of
the three lowest eigenfrequencies. The corresponding mode
shapes obtained from the finite element model are shown in
Fig. 11, along with the experimental measurements on the
top surfaces of the specimens for each frequency. The results
in Table 1 also confirm the experimental finding that with
a 57% weight saving, the optimum design obtained from the
MMTO process has a better performance than the nominal
design in terms of the first eigenfrequency.

The deformation shapes of the first three modes pre-
dicted from the virtual prototyping are plotted in Fig. 11
with the experimental measurements on the top of the beam.

Table 1 Comparison of numerical results and experimental measure-
ments (Hz)

Mode #
Nominal Design Optimum Design

Numerical Experimental Numerical Experimental

1 283 305 323 322
2 1438 1602 1127 1150
3 3324 3538 2265 2308
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Fig. 11 Comparison of mode shapes for virtual and physical proto-
types

It is seen that excellent agreements have also been obtained
between the numerical predictions and experimental meas-
urements.

Effects of material property and structural dimensions
on the optimum design

The dimensions of the specimen shown in Fig. 7d are 140×
40 ×20 mm, and it is made of ABS material. It is shown
here, however, that the final design shown in Fig. 7c is in-
dependent of the material and dimensions assumed. In fact,
the performance measure for a different material or a dif-
ferent dimension can be obtained simply by multiplying by
a scaling factor. For example, for the eigenfrequencies listed
in Table 1, the scaling factor is 3.4 if aluminum is used and
3.3 if steel is used. This is an important feature of the design
process as it allows for the application of the same design
to structures with different materials and different dimen-
sions.

Even though the state equation in (1) depends on the
material and dimensions adopted for the design problem,
if the structure is considered to be linear, then the optimal
topology (and shape) obtained as the solution of the op-
timization problem (1) is independent of the material and
dimensions used. Thus representative material and dimen-
sions can be used for the design problem. This is proved in
what follows for a general structural dynamics problem.

Suppose we obtain the optimal design of a structural
system for a certain material (E0, ρ0) and dimension (L0).
Using the finite element method, the state equation govern-
ing the vibration response can be written as

M0ü0 +K0u0 = f0 , (10)

where u0 and f0 denote the displacement and force vectors,
respectively, and M0 and K0 are the mass and stiffness ma-
trices, respectively. For the given material and dimension,
we have

M0 =
∫

Ω0

ρ0NTNdx0 dy0 dz0 , (11)

K0 =
∫

Ω0

BT
0 D0B0 dx0 dy0 dz0 , (12)

where ρ0, N0, B0, and D0 are the mass density, shape func-
tion, strain matrix, and elasticity matrix, respectively, and
Ω0 is the domain of the structure. Note that for the sake of
simplicity, damping is ignored.

Now consider another design problem with a different
material and dimensions. By scaling the Young’s modulus,
mass density, and length variables with those for the previ-
ous optimum design, dimensionless variables can be defined
as

Ê = E

E0
, ρ̂ = ρ

ρ0
, L̂ = L

L0
, (13)
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where E, ρ, L are, respectively, Young’s modulus, mass
density, and characteristic length for the current design. The
state equation for the current problem can be written as

Mü+Ku = f0 , (14)

where, using (13),

M =
∫

Ω

ρNTNdx dy dz = ρ̂L̂3
∫

Ω0

ρ0NTNdx0 dy0 dz0 = ρ̂ L̂3M0

(15)

K =
∫

Ω

BTDBdx dy dz = Ê L̂
∫

Ω0

BT
0 D0B0 dx0 dy0 dz0 = Ê L̂K0

(16)

Note that loading and boundary conditions are assumed to
be consistent with those in (10).

Substituting (15) and (16) into (14) yields

ρ̂ L̂3M0ü+ Ê L̂K0u = f0 . (17)

Comparing (17) with (10), it is seen that a performance
measure for the current system (17) can be obtained from the
performance measure for the previous system (10) simply by
multiplying by a scaling factor. For example, if natural fre-
quency is the objective function in the optimization problem
(10), the scaling factor is

κ =
√

Eρ0L2
0

E0ρL2 . (18)

Since multiplying the objective function or constraint
functions in (10) by a scalar factor will not affect the so-
lution of the optimization problem, the optimal topology
and shape obtained from the design process is independent
of the material and dimensions used. Note that the loading
and boundary conditions must be consistent for the design
problems and that the dimensions must be scaled with the
same ratio in all directions. Also note that Poisson’s ratio ν

may affect the above conclusion. However, materials usu-
ally have very close values of ν, so the influence of Poisson’s
ratio can be ignored in the general case.

Note that in the general case, the scaling factor will be
different depending on the objective function defined in the
optimization problem. For the strain energy (SE) and mutual
strain energy (MSE) of a linear system, the scaling factor is
simply

κ = EL

E0 L0
. (19)

Furthermore, if f = −MSE/SE is used as the objective
function for a compliant mechanism optimization problem,
the scaling factor becomes κ = 1.

Also, note that for a nonlinear problem, the influence
of material properties and dimensions may become prob-
lem dependent. It is expected, though, that in many cases the
above conclusion will still hold, but further investigation on
this issue is needed.

Conclusions

This research concerns the processes of optimal design and
analysis for a 2D structure. The theoretical foundation of the
work is the topology optimization method. Algorithms and
programs were developed to transfer the output from top-
ology optimization to CAD files in the STL format. Speci-
mens were manufactured using a rapid prototyping machine,
and their free vibration natural frequencies and individual
mode shapes were measured. An automatic meshing scheme
was developed to produce finite element models of the vir-
tual prototypes, and MSC/NASTRAN was used to deter-
mine the natural frequencies and modes shapes. The numer-
ical results agreed with the experimental measurements very
well.

The optimality of the designs obtained from topology
optimization was verified through experimental and numer-
ical investigations. The efficiency of the proposed design-
and-analysis process was demonstrated, suggesting that in
the future virtual prototyping can replace part of the experi-
mental investigation.

It was also shown that for a linear elastic problem, the
topology of the optimal design is independent of the mate-
rial properties and geometric dimensions. Once a design is
obtained for a given material and dimensions, a simple scal-
ing factor can be applied to recover a design with different
dimensions and/or a different material. This is an important
feature since a single design may be used for many differ-
ent applications and a full-scale design may be replaced with
a small-scale prototype design, thus reducing significantly
design and validation costs.
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