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Abstract In this paper, I describe and analyze a class of type interaction models. In
these models, an infinite population of agents with discrete types interact in groups
of fixed size and possibly change their types as a function of those interactions.
I then derive conditions for these models to produce multiple equilibria. These
conditions demonstrate a trade off between the number of types and the size of the
interacting groups. For deterministic interaction rules, I derive the rule of six: the
number of agent types plus the group size must be at least six in order to support
multiple equilibria given a spanning assumption.
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1 Introduction

In this paper, I construct a framework to model worlds populated by agents identi-
fied by discrete types that change as a result of interactions with other agents. I call
these type interaction models. Type interaction models capture features inherent in a
variety of social, biological, and physical phenomena including peer effects (Bikh-
chandani, Hirshleifer, and Welch 1992, 1998), sexual reproduction (Holland 1975),
technological choice in the presence of strategic complementarities (Axelrod et al.
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1995; David 1985), information transmission, chemical reactions (Alberts et al.
1994), particle collisions and culture (Axelrod 1997). In each of these settings,
agents or entities have discrete types. These types can denote behaviors, beliefs,
strategies, or even velocities. As a result of interacting with other agents, an agent’s
type can change. These changes capture the influence of other agents. The nature of
that influence depends upon the types of the other agents. Someone who does not
use drugs (an abstaining type) may decide to experiment with drugs (and become
a user type) after interacting with a drug user. Similarly, someone who votes for
the republican party may switch allegiances to the democratic party if enough of
her friends are democrats.

The main contributions of this paper are to define type interaction models, to
show how they can generate multiple equilibria, and to demonstrate a trade off
between the number of types and the size of interacting groups in the generation
of multiple equilibria. This last result hinted at in the title of the paper is that if
the number of types in the population plus the size of the interacting group equals
or exceeds six, then multiple equilibria are possible. If the sum is less than six,
multiple equilibria are not possible. In these models, an equilibrium is defined as
a stable type distribution.

In the models described here, I consider type interactions models with random
mixing of agents. Alternatively, interactions between agents can be determined
by spatial or social location (Glaeser et al. 1996; Watts 1999; Arthur 1994). This
is true of cellular automata models in which agents interact only with neighbors.
(Wolfram 1994, 2002). I also assume an infinite number of agents each of whom
has a type chosen from a finite set. These agents are then bundled into groups
of fixed size simultaneously and their types are updated synchronously. It would
also be possible to construct a model with finite populations, with noise, or with
alternative grouping procedures.1

Given these assumptions, the initial population can be described as a probability
distribution over the type space. Time is discrete. In each period, agents randomly
form groups of some fixed size, possibly as small as two. As a result of a group
interaction, agents choose /are assigned a type according to an interaction rule. As
mentioned above, in the interesting cases, this new type depends on the types of
the other interacting agents. The resulting transition probabilities depend upon the
type distribution creating a non time homogeneous Markov process. This captures
processes in which the distribution of types effects the transference of a trait or a
behavior. For example, the more smokers in a population the more likely that other
types are likely to transition into smokers.

These changes in types can be deterministic: a person’s type could represent
the information that she possesses. If so, when two people meet and share informa-
tion, they may both change their type according to a deterministic rule. These type
changes can also be probabilistic: in a model of sexual reproduction with exactly
two offspring, such as a genetic algorithm model where type represents DNA, an

1 Troy Tassier has performed computational experiments with type interaction models and
found only small differences between his results in the finite case and the infinite case results
that I describe. In the finite population case with noise and asynchronous updating, the popula-
tion spends long periods of time at each equilibrium but eventually bounces between them. This
produces a unique equilibrium distribution with meta stable states at the equilibria of the infinite
population model.
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offspring’s DNA is a random draw that depends upon the parents’ types. Determin-
istic type interaction models are a subclass of probabilistic type interaction models.

The conditions for multiple equilibria in type interaction models reveal a trade
off between the number of types and the size of the interacting group. For determin-
istic type interaction models, binary interaction rules require four types of agents,
interacting groups of size three require three types, and interacting groups of size
four, need only two types to generate multiple equilibria. Combined, these results
imply the rule of six for deterministic type interaction models. If the existence of
multiple equilibria serves as a proxy for the amount of complexity, the rule of six
formalizes the intuition that complexity increases with the number of types and the
size of the groups interacting.

The fact that there is a rule of six is serendipitous. There is no underlying logic
as to why six is sufficient in each case. To understand what drives the result requires
close examination of the Markov transition matrix. The powers of the polynomials
in that transition matrix depend on the size of the interacting group. The number
of variables in those polynomials depends on the number of types. A higher degree
polynomial is more likely to have multiple roots as is a polynomial of fixed degree
with more variables. This explains why increasing group size or the number of
types increases the number of roots.

The potential for multiple equilibria is significant for reasons that hardly need
mention. Initial conditions play a role in determining the outcome as do the current
state. As a result, accurate empirical predictions of outcomes are more difficult
to make (Manski 1993). Further, interventions that shift the state of the process
may exist and be beneficial. Such interventions cannot exist for irreducible Markov
processes which generate unique equilibria. A policy that redistributes income to
shift the income distribution has no long run effect if the process governing income
dynamics is an irreducible Markov process. At most, a redistribution produces only
temporary changes in the state of the system. Long run change requires a change
in the underlying dynamic process, in the transition probabilities. That is not true
of type distribution models. Alterations in the distribution over types can change
the equilibrium of the system.

At first, the rule of six might appear to contradict the evolutionary game theory
literature on coordination games (Kandori et al. 1992; Foster and Young 1990;
Blume 1993). Those models also produce multiple meta stable states, yet they rely
on only two types. However, in those models, the agents do not meet in small
groups of fixed size. They meet the entire population. Therefore, the results are
consistent with the rule of six. In models that do assume the agents play only a few
other agents, the rule for updating the agents’ types (their strategies) often does not
depend solely on the types of the agents with whom they interact (Glaeser et al.
1996). Instead, the updating rule also depends on the types of the agents who inter-
act with the agents with whom they interact. Thus, the results here are consistent
with the extant literature.

Even though type interaction models could be applied far more generally in
what follows. I frame type interaction models in the context of social processes. I
bias the presentation of the results in this way for several reasons. First, the initial
minimal model with multiple equilibria has a clean social science interpretation
as peer effects. Second, the general class of interaction models has many such
social science applications. Durlauf (1997), Picker (1997), Banerjee (1992), and
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others have advanced the argument that the micro level processes that drive many
of our pressing social problems – crime, drug use, and educational performance
include strong interaction and peer effects. Third, even though the main results can
be interpreted the context of biological, physical and ecological processes, those
environments often contain a enormous number of types. The results here focus on
minimal conditions for multiple equilibria, so they may be less relevant in those
contexts, even if the general class of models is germane to those environments.

The remainder of this paper is organized as follows. I begin with a toy example
of a deterministic rule with four types of agents who interact in pairs that generates
three equilibria, two of which are stable and have equal sized basins of attraction. In
Sections 3 and 4, I describe a binary interaction models and interaction models with
more types. In Section 5, I extend the binary type interaction model to allow for
larger groups. In Section 6, I return to the example from Section 2 and discuss the
implications for policy intervention, and in Section 7, I offer tentative conclusions
and directions for future work.

2 An example of a type interaction model

I begin with a toy example of a binary interaction rule that generates two stable
equilibria and one unstable equilibrium. My goal is to provide a clean minimal
example of how type interaction models can produce multiple equilibria rather
than to construct a realistic model of some real world phenomenon. That said, this
example has a natural interpretation in the context of students’ school performance
or as a model with peer effects. The example belongs to the class of what I call
binary type interaction models. In a binary type interaction model, agents interact
in pairs and their types may change as a result of these interactions. In the general
formulation, the groups within which agents interact may be of any fixed size.

The example is highly stylized, but because it allows four types of agents it
will appear much richer than the standard two type models. These four types are
indexed by the letters A, B, C, and D. They can be thought of as motivation levels
of students.

A: Eager
B: Moderately interested
C: Occasionally interested
D: Disruptive
Let upper case letters denote the types and lower case letters denote the proba-

bilities of those types. In this way, a distribution over the four types can be written
as (a, b, c, d) where a + b + c + d = 1. At the beginning of each period, students
are randomly assigned to pairs. As a result of these pairwise interactions, students
change their types according to the deterministic type interaction rule shown in
Table 1 below. Table 1 also gives the probability of each pair arising.

This interaction rule captures three phenomena that can be found in human
interactions: first if two people of different types interact, then they tend to become
more alike: when an A meets a D, the A student tends to become more studious and
the other less so. Second, if two people are identical, they tend to differentiate. If
two B’s meet, then one becomes a C and the other becomes an A, and if two eager
students (type A’s) interact, then one of them becomes a B and the other remains
an A. Third, more extreme people are more persuasive. If an eager student or a
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Table 1 A binary interaction model with four types

Pair Prob Outcome

AA a2 AB
AB 2ab AA
AC 2ac AA
AD 2ad BC

BB b2 AC
BC 2bc BC
BD 2bd DD

CC c2 BD
CD 2cd DD

DD d2 CD

disruptive student meets with a moderately interested or occasionally interested
student, the latter student switches his type to match the former student’s type. For
example, if a type D meets with a type B, both students become D’s.

Notice that if the population begins with all A’s, then in the next period there
will be both A’s and B’s. In two periods, there will be A’s, B’s, and C’s, and in
three periods, all four types will be present in the population. The same phenome-
non occurs if we begin with all agents being of any other single type as well. This
can be thought of as the interaction rule spanning the set of types. Later, I place
a constraint on interaction rules that requires this spanning. Without the spanning
assumption, generating multiple equilibria would be trivial.

2.1 Equilibria

To solve for the equilibria of the system and to understand the dynamics, I con-
struct the set of difference equations that result from this interaction rule. Given a
distribution of agent types (a, b, c, d), let (â, b̂, ĉ, d̂) denote the distribution across
types in the next period. The table above shows that there are four ways that a type
A agent can be created. The first occurs if two type A’s meet (this happens with
probability a2), then one A is created. Similarly, if two type B’s meet (probability
b2), then one A is also created. And finally, if an A and a B (probability 2ab) meet
or if an A and a C meet (probability 2ac), then two type A’s are created. Since
the probabilities of all of the pairwise matchings must sum to one and matching
produces two outputs, converting these raw numbers into the expected number of
type A’s requires dividing the number of type A’s produced by two. This gives the
following difference equation for the type A agents.

â = a2

2
+ b2

2
+ 2ab + 2ac

Similar equations can be derived for each of the other types.

b̂ = a2

2
+ c2

2
+ ad + bc

ĉ = b2

2
+ d2

2
+ ad + bc
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d̂ = c2

2
+ d2

2
+ 2cd + 2bd

This system of equations can then be solved analytically. In the symmetric
equilibrium, a = d and b = c. In this case, the difference equations reduce to the
following:

a = a2

2
+ b2

2
+ 4ab

b = 3a2

2
+ 3b2

2

By symmetry a + b = c + d. Substituting the equality a + b = 1
2 into the

second equation yields.

b∗ = 5 − √
7

12
, a∗ = 1 + √

7

12

This equilibrium turns out not to be stable. In numerical simulations of this
process it never occurred. The system also has two stable asymmetric equilibria,
which for ease of interpretation, I present in numerical form.

a b c d

0.694 0.256 0.047 0.003
0.003 0.047 0.256 0.695

In the first of these equilibria, over 95% of the agents are either type A or
type B. In the subsequent analysis, I refer to this as the good equilibrium and
to the other stable equilibrium as the bad equilibrium. Small perturbations from
the symmetric unstable equilibrium can lead to either of the two stable equilibria.
Thus, this example shows how a small change in initial attitudes created by a new
teacher, a new school, or a new principal could lead to drastic changes in average
performance even though no structural changes occurred in the interaction process.
Since both equilibria are stable, it suggests why once a school has settled into the
bad equilibria, getting out could be difficult.

As we shall see, the reason that this model supports more than one equilibrium
is that the transition probabilities in the induced Markov process written over types
change as a function of the population proportion. Therefore, in the Markov tran-
sition matrix written over the four types, the transition probabilities at the good
equilibrium are different from the transition probabilities at the bad equilibrium.

3 Type interaction models

I now describe a general class of type interaction models. In these models, there
exists an infinite number of agents each assigned a type. The set of possible types
is finite.

The set of agent types N = {1, 2, 3, . . . , n}, where n > 1
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This construction allows the population of agents to be represented as a prob-
ability distribution over the types.

A distribution over types P(N) = {p = (p1, p2, . . . , pn) :
∑n

i=1 pi = 1}
The agents then interact in groups of some fixed size k that are randomly chosen.

A group of size k xk = (x1, x2, . . . , xk) where xi ∈ N ,

It is also useful then to define the set of all groups possible consisting of k
agents.

The set of groups of size Sk Sk = {(x1, x2, . . . , xk) : xi ∈ N}
When the k agents interact, they change their type according to an interaction

rule. A deterministic type interaction rule maps Sk into itself.

A deterministic type interaction rule, T : Sk → Sk .

Note that the interaction rule operates on subsets, so the order of the agents
within the group does not matter. In the more general case, a type interaction rule
maps the group of size k into a probability distribution over the groups of size
k. A type interaction rule, T : Sk → �(Sk), where �(Sk) equals the set of all
probability distribution over the members of Sk .

With these definitions in place, I can formally define a type interaction model.

A type interaction model � = {N, k, T } where N is the number of agent types, k
is the size of groups that interact, and T is an interaction rule

A type interaction equilibrium is a probability distribution that remains un-
changed under an application of the type mapping generated by T , MT

A type interaction equilibrium is a probability distribution p∗ ∈ P(N) such that
p∗ = MT (p∗)

Generating multiple equilibria with a type interaction rule is trivial if some
subset of types remains contained within itself through the interaction mapping.
For example, if k = 2, and if T (i, i) = (i, i) for all i, then the degenerate distri-
bution ei (ei

i = 1 and ei
j = 0 for all j �= i) is an equilibrium for all i. To preclude

this possibility, I assume that the interaction rule spans, i.e. beginning from any
population every possible type must appear in the population with positive prob-
ability in finite time. A similar assumption is required for the unique equilibrium
result in Markov theory. In both the interaction environment and the Markov envi-
ronment, the spanning/irreducibility assumptions are made because they apply to
real world situations – an agent can get to any type from any other type with positive
probability.

To formalize the spanning assumption, it is helpful to introduce two new map-
pings. First, let ρ denote the mapping from Sk into P(N) the probability distribution
over the types. Suppose, for example, that there are three types, A,B, and C. Given
the set (A, A, B) in Sk , ρ(A, A, B) = ( 2

3 , 1
3 , 0). Given ρ, it is possible to consider

an interaction rule as a mapping from the distribution over types P(N) into itself.
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I denote that mapping by MT and refer to it as the type mapping generated by the
interaction rule. Given P(N), this induces a probability distribution over Sk , call
this distribution q. I can then write

MT (p) =
∑

xk∈Sk

q(xk)ρ(T (xk))

Given an initial distribution over types, p0, MT (p0) gives the distribution over
types after the first interaction. Hereafter, I adopt the convention that Ms

T (p) equals
the distribution over types in the population after s applications of the map MT

beginning with the distribution p.

An interaction rule T : Sk → Sk spans if the type mapping generated by the
interaction rule, MT is such that for any p0 ∈ P(N) and j ∈ N ∃ t (p0, j) > 0
s.t. M

t(po,j)

T (p0) places strictly positive probability on type j .

The spanning assumption implies that beginning from any initial distribution,
that for any type i, there exists some number t such that after t applications, t , of
the interaction rule, there will be a positive probability of type i in the distribution.

As the example in the previous section shows, type interaction models can gen-
erate multiple equilibria even though the interaction rule spans. It is possible to
recast a type interaction model as a Markov process. If the population distribution
equals the state of the Markov process, then the interaction rule creates transition
probabilities over the states. However, it requires infinitely many states. The result-
ing process is reducible. The system cannot get from some states to others even in
infinite time. In particular, if a state is in the basin of attraction of one equilibrium,
it is not possible to leap from that state to another equilibrium state.

4 Binary interaction models

I first consider binary interaction models. In these models, the agents meet in groups
of size two. The first claim states that if there are only two types, then there does not
exist a binary interaction rule with multiple equilibria. The mathematical intuition
for why this is the case is not difficult. With only two types that meet in pairs,
the transition probabilities belong to a restricted class of linear functions. These
functions do not permit enough curvature to support multiple equilibria.

Claim 1 There does not exists a two type binary interaction rule that supports
multiple equilibria.

Proof Note that the claim states that this is true for both probabilistic and deter-
ministic binary interaction models. It suffices to show that it holds for probabilistic
rules. Let TIJ :K equal the expected number of K’s that result when an I meets
a J . Let a equal the proportions of A’s in the population and (1 − a) equal the
proportion of B’s. I can then write the transition probabilities as a function the
TIJ :K ’s. For example, the probability that an A remains an A equals the probability
that an A meets an B (which is (1 − a)) times one half the expected number of A’s
produced by such pairings (which is TAB:A

2 ) plus the probability that an A meets an
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A (which is a) times one half the expected number that such meetings produce an
A (which is TAA:A

2 ). Thus, the probability that a type A becomes a type A equals

aTAA:A + (1 − a)TAB:A

2

Using similar logic, the probability that a type B becomes a type A equals

aTAB:A + (1 − a)TBB:A

2

Solving for a fixed point requires setting the sum of these probabilities equal
to a

a(aTAA:A + (1 − a)TAB:A) + (1 − a)((1 − a)TBB:A + aTAB:A)

2
= a

which reduces to

(TAA:A − 2TAB:A + TBB:A)a2 + (2TAB:A − 2TBB:A − 2)a + TBB:A = 0

This is a polynomial of degree two in a. It suffices to show that this polynomial
has a single root in the interval (0, 1). At a = 0, the polynomial has a value of
TBB:A/2 which is strictly greater than zero by the spanning assumption. And, at
a = 1, the polynomial has a value of TAA:A/2 − 1 which is strictly less than one,
again by the spanning assumption. Since the polynomial is of degree two in a single
variable, there can be only one root in the interval [0, 1]. 2

This first claim does not imply that there do not exist two type transition matrices
with state dependent probabilities that can generate multiple equilibria. The fol-
lowing transition matrix has three equilibria a = 0.5, a = 11−√

77
11 , and a = 11+√

77
11 .

Prob → A Prob → B

Type A 9a2

10 + 2ab a2

10 + b2

Type B b2

10 + a2 9b2

10 + 2ab

The claim, however, does imply that the transition probabilities shown in the
matrix above cannot lie within the class of allowable transition probabilities for
binary interaction models. The assumption that the agents meet in pairs and that
the new types depend only on the composition of the pair constrains the set of
possible transition matrices to be a subset of the set of linear functions of p. If
agents meet in larger groups, then the transition probabilities can be higher order
polynomials. With higher order polynomials, multiple equilibria become possible.
In fact, as I show later, these transition probabilities are consistent with a two type
probabilistic ternary interaction model that produces multiple equilibria.

I now turn to binary interaction models with three types. I show that three types
are insufficient to support multiple equilibria for either deterministic or probabi-
listic type interactions.

2 I would like to thank Carl Simon for suggesting a simplification in the last step of this proof.
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Claim 2 Every three type binary interaction rule has a unique equilibrium.

Proof Consider a type interaction with three types A, B, and C where a, b, and
(1−a−b) denote the probabilities of A, B, and C respectively. The proof relies on
the two-simplex for the probabilities a and b. Let the curve ȧ = 0 denote the set of
probabilities (a, b, 1 − a − b) such that the probability of an agent being of type A
is unchanged. Let the curve ḃ = 0 denote the set of probabilities (a, b, 1 − a − b)
such that the probability of an agent being of type B is unchanged. It suffices to
show that these two curves can intersect at most once.

Recall that TIJ :K equals the expected number of Ks produced when an I meets
a J . If when an A and a B meet they become a B and a C with probability two
thirds and a C and an A with probability one third, then TAB:B = 2

3 TAB:C = 1
TAB:A = 1

3 . It is straightforward to show that the curves ȧ = 0 and ḃ = 0 are
quadratic functions of a and b of the following form:

β0 + βaa + βbb + βabab + βa2a2 + βb2b2 = 0

For the ȧ = 0 curve the following are true

β0 = TCC:A/2 ≥ 0
βa = −1 + TAC:A − TCC:A
βb = TBC:A − TCC:A
βa2 = TAA:A/2 − TAC:A + TCC:A/2
βb2 = TBB:A/2 − TBC:A + TCC:A/2
βab = TCC:A + TAB:A − TAC:A − TBC:A

The proof relies on a two dimensional representation of the probabilities a,
and b with a represented on the horizontal axis and b on the vertical axis. The 45◦
degree line corresponds to the set of points where c = 0 and the origin corresponds
to the point c = 1. At the corner a = 1 the value of ȧ equals TAA:A/2 − 1 which
must be negative since all of the T ′s lie in the interval (0, 2). At the corner b = 1
the value of ȧ equals TBB:A/2 which is weakly positive. At the corner c = 1 the
value of ȧ equals TCC:A/2 which is also weakly positive. Further, any point along
the line a = 0 the value of ȧ equals TCC:A(1−b)2/2+TBC:Ab(1−b)+b2TBB:A/2,
which must be strictly positive by the spanning assumption. Similarly, the value
of ḃ must be strictly negative at the corner b = 1, weakly positive at the corners
a = 1 and c = 1 and strictly positive on the line b = 0.

First, it can be shown that these curves cannot intersect at a corner. The proof
is by contradiction. Suppose that they could intersect at a corner. Given the restric-
tions on the curves ȧ and ḃ, the only corner at which the curves can intersect is at
c = 1. This is impossible by the spanning assumption. Either TCC:A or TCC:B must
be strictly positive.

Therefore, without loss of generality, assume that the curve ȧ = 0 does not
intersect at the origin where c = 1. There exists a point (a∗, 0, 1 − a∗) on the
line b = 0 where the curve ȧ = 0. Recall that the curve ȧ = 0 is quadratic, that
below the curve ȧ is negative, and that at the corner b = 1 it is weakly positive.
Therefore, the curve can be written as an arc with either increasing or decreasing
slope that intersects the line c = 0 somewhere to the right of the point a = 1. A
similar argument shows that the curve ḃ = 0 can be written as an arc with either
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increasing or decreasing slope that begins anywhere on the b axis except for the
point b = 1 and intersects the line c = 0 somewhere to the left of the point b = 1.

Given the restriction on slope there are only three possibilities. The curves could
fail to intersect, the curves could intersect once, or they could intersect twice. The
first and third possibilities cannot occur. Suppose first that the the curves fail to
intersect as in Figure 1. Consider the point x that lies between their respective
intersections of the line c = 0.

By construction at x both ȧ > 0 and ḃ > 0. However, since c = 0, ċ ≥ 0,
there exists a contradiction. Similarly, if they intersect twice, there must also exist
a point on the line c = 1 such that ȧ > 0 and ḃ > 0, so here too there exists
a contradiction. Therefore, the only possibility is a single interior equilibrium as
shown in Figure 2 above. 3

5 Type interactions models with larger groups

I now consider type interaction rules models with larger groups. The next claim
states that if there are only two types then there does not exist a deterministic inter-
action rule in which agents meet in groups of size three that generates multiple
equilibria.

Claim 3 There does not exist a deterministic two type ternary interaction rule that
supports multiple equilibria.

3 I would like to thank Jimmy John’s Submarines for supplying the napkin used in this proof.
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Proof See Appendix.
The next claim states that it is possible to generate multiple equilibria if the

interaction rule is probabilistic.

Claim 4 There exist probabilistic two type ternary interaction rules that support
multiple equilibria.

Proof The proof is by the construction of an example.

Triple Outcome

AAA AAA with p = 0.9 and AAB with p = 0.1
AAB AAA
ABB BBB
BBB BBB with p = 0.9 and ABB with p = 0.1

This creates the transition probabilities that were described earlier as an exam-
ple of a two type model that generates multiple equilibria.

Prob → A Prob → B

Type A 9a2

10 + 2ab a2

10 + b2

Type B b2

10 + a2 9b2

10 + 2ab

The three equilibria of this model are a = 0.5, a = 11−√
77

11 , and a = 11+√
77

11 .
The symmetric equilibrium is unstable.

5.1 Three type interactions

The next two claims complete the proof of the rule of six. The first claim states that
there exist interaction rules with three types of agents meeting in groups of three
that support multiple equilibria.

Claim 5 There exists a three type deterministic ternary interaction rule that sup-
ports multiple equilibria.

Proof The proof is by the construction of an example

Pair Outcome

AAA AAB
AAB AAA
ABB AAA
AAC AAA
ABC ABC
ACC CCC
BBC CCC
BCC CCC
CCC BCC
BBB ABC
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Proof The following difference equations define the deterministic dynamical
system:

â = 2a3

3
+ 3a2b + 3ab2 + 3a2c + 2abc + b3

3

b̂ = a3 + b3c3

3
+ 2abc

ĉ = 2c3

3
+ 3c2b + +3cb2 + +3ac2 + +2abc + b3

3

The two stable equilibria of this set of equations are a = 0.81, b = 0.18 and
c = 0.01, and a = 0.01, b = 0.18 and c = 0.81. and the unstable symmetric
equilibria is a = c = 0.45, and b = 0.1.

The next claim states that if agents interact in groups of four (quaternary inter-
actions) then a deterministic rule will suffice to generate multiple equilibria with
only two types of agents.

Claim 6 There exists a two type deterministic quaternary interaction rules that
supports multiple equilibria.

Proof The proof is also by example. Consider the following interaction rule

Group Outcome

AAAA AAAB
AAAB AAAA
AABB AABB
ABBB BBBB
BBBB ABBB

This creates the following transition probabilities:

Prob → A Prob → B

Type A 3a3

4 + 3a2b + 3ab2 a3

4 + b3

Type B b3

4 + a3 3b3

4 + 3ab2 + 3a2b

This system has three fixed points a = 3−√
3

6 , a = 0.5, and a = 3+√
3

6 . The first
and the last are stable.

The rule of six can now be formally stated.

Claim 7 (The rule of six) A deterministic type interaction rule can generate mul-
tiple equilibrium if and only if the number of types plus the group size is greater
than or equal to six.

Proof follows from the previous claims.
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6 Policy interventions

A system that produces multiple equilibria is more easily manipulated by interven-
tions. In the context of a type interaction model, a policy interventions could be
either an alteration of the interaction rule, a change in the choice of equilibrium
state or, a change in the the initial state of the system. The first type of intervention
would require changing of how many types interact or in the transition mapping.
The second could involve having a large percentage of the agents change their
type. Both of these interventions may not be possible. The third type of interven-
tion might only involve a relatively small change in the initial distribution of types.
However, the fact that such an intervention could be successful does not imply that
the intervention is easy to find. If the system exhibits extreme sensitivity to initial
conditions, then it may be difficult to locate the basin of an equilibrium.

In this section, I show that it is possible to characterize large subsets of the
basins of attraction of the two stable equilibria. This exercise proves that type
interaction models do not necessarily exhibit extreme sensitivity to initial condi-
tions for all initial points. In the two claims that follow, I describe the dynamics of
two processes and show how to construct a successful intervention. Even though
a full characterization of the basins of attraction may be difficult to accomplish,
characterizing a large subset of the basin of attraction for a particular equilibrium
need not. To guarantee that equilibrium it is sufficient to move the initial distribu-
tion into a subset of its basin of attraction. First, recall the good equilibrium from
the four type binary interaction example presented in Section 2.

a b c d

0.694 0.256 0.0467 0.003

Construct the following sets: Sa which is the set of probability distributions
where there are more type A’s than type D’s and Sb which is the set of probability
distributions where there are more type B’s than type C’s.

Sa = {(a, b, c, d) : a > d}

Sb = {(a, b, c, d) : b > c}
The next claim states that once the distribution enters the intersection of Sa and

Sb it never fully escapes it.

Claim 8 If the initial distribution over types lies in Sa∩Sb, then in every subsequent
period the type distribution lies in Sa . If the distribution ever leaves Sb then it re-
enters Sb in the subsequent period.

Proof See Appendix.
The previous claim defines a subset of the basin of attraction for the good equi-

librium. In other words, to avoid the bad equilibrium choose the initial distribution
to lie in the intersection of the sets Sa and Sb. The claim implies that the distribu-
tion cannot go to the bad equilibrium, but it does not rule out cycling. Numerical
simulations show that if the initial state of the system is placed in the intersection
of the sets Sa and Sb, then it goes to the “good” equilibrium.
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A similar result exists for the three type ternary interaction model that generates
multiple equilibria.

Claim 9 In the three type ternary interaction rule that generates multiple equi-
librium described in Claim 5, if the distribution over types satisfies a ≥ 2b and
a ≥ 2c, then so do subsequent type distributions.

Proof See Appendix.
These two claims demonstrate the possibility of choosing initial points so as to

guarantee the good equilibrium. That, of course, would also be true for a system
that exhibits extreme sensitivity to initial conditions, but if we assume that the pop-
ulation is finite, or that there is some noise, then we would not be able to manipulate
a chaotic systems, whereas we could manipulate the outcomes in systems such as
those described in this section. In fact, the dynamics are relatively well behaved.
If the first system begins with many more type A agents, the good equilibrium is
realized.

7 Discussion

This paper contributes to a growing literature on models with interaction effects. It
shows how interactions among agents of diverse types produce multiple equilibria
by creating state dependent transition probabilities. The main technical contribu-
tion of this paper is its characterization of minimal conditions that must be satisfied
for a discrete type deterministic interaction model to support multiple equilibria:
group size plus the number of types must sum to at least six. This result builds from
a relatively simple insight: the power of the polynomials in the transition matrix
depends on the group size and the number of variables in the polynomials depends
on the number of types. Therefore, the number of equilibria should vary positively
with each. The rule of six results summarizes this trade off between group size
and the number of types. This result has clear and important implications. If many
types interact in small groups or if a small number of types interacting in large
groups, then the resulting system may not be predictable. That insight is impor-
tant when trying to understand social, physical, and biological processes in which
interactions can change type distributions.

Admittedly, the type interaction model presented in this paper is stark and
unrealistic. Agents do not have sophisticated mental models. They change their
types according to a fixed rule. The groups that form are random. They do not
depend on the geographic location of the agents. Nevertheless, minimal bench-
mark conditions such as those derived in this paper are a valuable part of the
larger enterprise to understand how systems of interacting agents generate com-
plex phenomena. Thus, the results described in this paper should be seen as just a
beginning. They should encourage further exploration of the linkages between the
fineness of type categorizations, the size of group interactions and the multiplicity
of equilibria. These linkages should be important to theorists and empiricists alike.

The preliminary analysis contained in this paper suggests several extensions.
First, there is the important question of how the number of equilibria grows in the
number of types. It seems likely that a type interaction model with N = 2K + 1
types could support at least 2K stable equilibria. But that lower bound is probably
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not binding for large K . It should be possible to create interaction rules that gen-
erate an even larger number of stable equilibria. That said, results on the number
of solutions of systems of polynomials of a given degree from the mathematics
literature should be seen as extremely crude upper bounds because the polyno-
mials of degree k generated by interactions rules are strict subsets of the set of
all polynomials of degree k. Second, if we restrict the interaction rules to those
that may be plausible in an economic, political, chemical, biological, or physical
context, we should further restrict the possibility of multiple equilibria. Thus, It
might be possible to prove that there are analogs of the rule of six for subclasses
of interaction rules. For example, assumptions that the types can be represented by
binary strings and that new types can differ by at most one bit value, or assumptions
that types have an implicit ranking and can rise of fall by at most one rank would
restrict the set of transition rules. Perhaps, a rule of eight or a rule of ten exists for
such models.

Appendix

Claim 5 There does not exist a deterministic two type ternary interaction rule that
supports multiple equilibria.

Proof The set of all possible outcomes for each group of size three with a deter-
ministic interaction rule can be written as follows:

Group Possible outcomes

AAA AAB, ABB, BBB
AAB AAA, AAB, ABB, BBB
ABB AAA, AAB, ABB, BBB
BBB AAA, AAB, ABB

To simplify notation, let Tk equal the expected number of A’s after an interac-
tion with a group of exactly k agents of type A. Using the previous notation this
was written as TAAB:A In the new notation, it is written as T2 = 1 implies that
a group with two agents of type A and one agent of type B creates exactly one
agent of type A. Given that the rule is deterministic and that the rule must span,
the following restrictions can be placed on the Tk’s.

T3 ∈ {0, 1, 2}
T2 ∈ {0, 1, 2, 3}
T1 ∈ {0, 1, 2, 3}
T0 ∈ {1, 2, 3}
This creates 144 possible deterministic interaction rules. Each generates a poly-

nomial of degree three or less which can be written as

f (a) = α3a
3 + α2a

2 + α1a + α0

A fixed point of this equation satisfies f (a) = a. For convenience, define the
function g(a) = f (a) − a. By construction it must be the case that, g(0) > 0,
and g(1) < 0. Therefore, in order for there to be more than one equilibria, two
conditions must be satisfied:
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(1) the roots of g′(a) = 0 must be real valued at lie in the open interval (0, 1)
(2) the value of g(a) at the smaller root must be negative and the value of g(a) at

the larger root must be positive

It is straightforward exercise to show that none of the polynomials belonging to
the set can satisfy these two conditions simultaneously.

Claim 8 If the initial distribution over types lies in Sa∩Sb, then in every subsequent
period the type distribution lies in Sa . If the distribution ever leaves Sb then it re-
enters Sb in the subsequent period.

Proof The first step is to show that in every period the distribution, lies in Sa so long
as that in every other period it lies in Sb. Suppose that (a0, b0, c0, d0) ∈ Sa ∩ Sb.

First, show that (a1, b1, c1, d1) ∈ Sa .

a1 = a2
0

2
+ b2

0

2
+ 2a0b0 + 2a0c0

d1 = c2
0

2
+ d2

0

2
+ 2c0d0 + 2b0d0

The result follows from (a0, b0, c0, d0) ∈ Sa ∩ Sb.
Now there are two cases. If b1 > c1, then a2 > d2 by repeating the argument

for a1 > d1. Suppose instead that b1 ≤ c1.

(a2 − d2) = a2
1

2
+ b2

1

2
+ 2a1b1 + 2a1c1 − c2

1

2
− d2

1

2
− 2c1d1 − 2b1d0

This can be rewritten as

a2
1

2
− d2

1

2
+ (a1 − d1)(b1 + c1) + b2

1

2
− c2

1

2
+ (a1 − d1)(b1 + c1)

which reduces to

a1 − d1

2
(a1 + d1 + 2b1 + 2c1) + b1 + c1

2
(b1 − c1 + 2a1 − 2d1)

which can be reduced to the following

a1 − d1

2
(1 + b1 + c1) + b1 + c1

2
(b1 − c1 + 2a1 − 2d1)

It suffices to show that (b1 − c1 + 2a1 − 2d1) > 0 substituting in the values for
a1, b1, c1 and d1 obtains

b1 − c1 + 2a1 − 2d1 = a2
0

2
+ c2

0

2
− b2

0

2
− d2

0

2
a2

0 + b2
0 − c2

0

−d2
0 + 4(a0 − d0)(b0 + c0)

which reduces to

3a2
0

2
+ b2

0

2
+ c2

0

2
− 3d2

0

2
+ 4(a0 − d0)(b0 + c0)
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which, by assumption is strictly greater than 0. This completes the proof that the
distribution never leaves Sa . It remains to show that if the distribution leaves Sb, i.e.
if b1 < c1 that in the next period it returns to Sb. The difference equations imply
that

b2 = a2
1

2
+ c2

1

2
+ a1d1 + b1c1

c2 = b2
1

2
+ d2

1

2
+ a1d1 + b1c1

Subtracting the second equation from the first gives

b2 − c2 = a2
1 − d2

1

2
+ c2

1 − b2
1

2

which follows by assumption and completes the proof.

Claim 9 In the three type ternary interaction rule that generates multiple equi-
librium described in Claim 5, if the distribution over types satisfies a ≥ 2b and
a ≥ 2c, then so do subsequent type distributions.

Proof It suffices to show â ≥ 2b̂ and a ≥ 2ĉ.

â ≥ 2b̂: suffices to show

a3

3
+ 3a2b + 3ab2 + 3a2c + 2abc + b3

3
≥ 2(a3 + b3)

3
+ 4abc + 2c3

3

which reduces to

3a2b + 3ab2 + 3a2c ≥ b3

3
+ 2abc + 2c3

3

a > 2b and a > 2c implies that 3a2c ≥ 2abc + 8c3. Therefore, it suffices to show

3a2b + 3ab2 ≥ b3

3

Which follows from a > 2b.

a ≥ 2ĉ:

a3

3
+ 3a2b + 3ab2 + 3a2c + 2abc + b3

3

= 4c3

3
+ a3

2
+ 6c2b + 3a2b

2
+ 6cb2 + 6ac2 + 2abc + b3

3

Suffices to show

4c3

3
+ a3

2
+ 6c2b + 3a2b

2
+ 6cb2 + 6ac2 + 2abc + b3

3

≥ 4c3

3
+ 6c2b + +6cb2 + +6ac2 + +4abc + 2b3

3
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which reduces to

a3

2
+ 3a2b

2
≥ +2abc

b3

3

which follows from the assumptions.

References

Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson J.: Molecular biology of the cell
NCBI. New York: Garland Publishing 1994

Arthur, B.: Increasing returns and path dependence in the economy. Ann Arbor: The University
of Michigan Press 1994

Axelrod, R., Mitchell, W., Thomas, R., Bennett, D.S., Bruderer E.: Coalition formation in standard
setting alliances. Manage Sci 41, 1493–1508 (1995)

Axelrod, R.: The dissemination of culture: a model with local convergence and global polariza-
tion. J Conflict Resolut 41, 203–226 (1997)

Bikhchandani, S., Hirshleifer, D., Welch, D.: A theory of fads, fashions, custom, and cultural
change as information cascades. J Polit Econ 100, 992–1026 (1992)

Bikhchandani, S., Hirshleifer, D., Welch, I.: Fads, and informational cascades. J Econ Perspect
12(3), 151–170 (1998)

Banerjee, A.: A simple model of herd behavior. Q J Econ 107, 797–817 (1992)
Blume, L.: The statistical mechanics of strategic interaction. Games and Econ Behav 5, 387–426

(1993)
David, P.: Clio and the economics of QWERTY. Am Econ Rev 75(2), 332–337 (1985)
Durlauf, S.: Statistical mechanics approaches to socioeconomic behavior. In: Arthur, W.B., Dur-

lauf, S., Lane, D (eds.) The economy as an evolving complex system II. Menlo Park, CA:
Addison-Wesley 1997

Foster, D., Young H. P.: Stochastic evolutionary game dynamics. Theor Popul Biol 38, 219–232
(1990)

Glaeser, E., Sacerdotal, B., Scheinkman, J.: Crime and social interactions. Q J Econ CXI, 507–548
(1996).

Holland, J.H.: Adaptation in natural and artificial systems. Ann Arbor: University of Michigan
Press 1975

Kandori, M., Mailath, G., Rob R.: Learning, mutation, and long run equilibria in games. Eco-
nometrica 61, 29–56 (1992)

Manski, C.: Identification problems in the social sciences. Cambridge: Basil Blackwell 1993
Picker, R.: Simple rules in a complex world: A generative approach to the adoption of norms.

Univ Chic Law Rev 64, 1225 (1997)
Watts, D.: Small worlds: The dynamics of networks between order and randomness. Princeton,

NJ: Princeton University Press 1999
Wolfram, S.: Cellular automata and complexity. Addison-Wesley: Reading 1994
Wolfram, S.: A new kind of science. Champaign, IL: Wolfram Media 2002



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


