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Abstract In Escherichia coli and other bacteria, the
ribosome-associated CgtA GTP-binding protein plays a
critical role in many basic cellular processes, including
the control of DNA replication and/or segregation.
However, the mechanism of this control is largely un-
known. Here we report that ectopic expression of the
dnaA gene partially restored both early growth in liquid
medium and DNA synthesis defects of the cgrA(ts)
mutant. Amounts of DnaA protein in the ¢gzA(ts) mu-
tant incubated at elevated (42°C) temperature were sig-
nificantly lower relative to wild-type bacteria. Both level
of dnaA mRNA and transcriptional activity of the dnaA4
promoter-lacZ fusion were decreased in the CgtA-defi-
cient cells. The effects of ectopic expression of dnad were
specific as analogous expression of another gene coding
for a replication regulator, seq4, had no significant
changes in growth and DNA synthesis in the cgz4 mu-
tant. Thus, it appears that the DNA replication defect in
this mutant is a consequence of reduced DnaA levels.
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Introduction

GTP-binding proteins have been found in all living
organisms examined thus far, and play crucial roles in
the regulation of fundamental cellular processes. One
subfamily of the evolutionarily conserved GTP-binding
proteins consists of the bacterial Obg proteins (for
reviews see Caldon et al. 2001; Caldon and March
2003; Czyz and Wegrzyn 2005). This subfamily, to-
gether with four other subfamilies (DRG, YyaF/YchF,
Ygr210 and NOGI1) forms the OBG family, which
includes archeal-, bacterial- and ecukaryotic-GTP-
binding proteins (Leipe et al. 2002). The essential
nature of Obg proteins in Bacillus subtilis (Trach and
Hoch 1989), Streptomyces griseus (Okamoto et al.
1997), Streptomyces coelicolor (Okamoto and Ochi
1998), Caulobacter crescentus (Maddock et al. 1997),
Escherichia coli (Arigoni et al. 1998; Kobayashi et al.
2001), and yeast ortholog Noglp (Park et al. 2001),
assumed to be due to their requirement for ribosomal
functions and DNA transactions, confirms the impor-
tance of the role of OBG family.

Trach and Hoch (1989) discovered a gene coding for
a member of the Obg/GTP1 subfamily in B. subtilis. Its
name is ‘Spo0B-associated GTP-binding protein’, since
the obg gene is located immediately downstream of and
co-transcribed with spo0B, and Obg protein was found
to be involved in the control of sporulation. It was
proposed that Obg can function by sensing intracellular
GTP level (Kok et al. 1994), and may be required to
stimulate the activity of the phosphorelay system (Vid-
wans et al. 1995). More recent evidence points to a role
of Obg in ribosome function. In B. subtilis cells, the Obg
protein exists as a large cytoplasmic complex, co-elutes
with ribosomal subunits and specifically interacts with
the 50S ribosomal subunit protein L13 (Scott et al.
2000). Similar to the Obg protein of B. subtilis, the CgtA
proteins (homologues of B. subtilis obg gene product) of
C. crescentus (Lin et al. 2004) and E. coli are associated
with 50S ribosomal subunit and interact with some other



proteins, for example, SpoT and DnaK (Sato et al. 2005;
Wout et al. 2004). However, perhaps unexpectedly, re-
cent studies on conditional C. crescentus cgtA mutants
revealed that the lethal phenotype of ¢gt4 dysfunction is
not due to impaired ribosome function (Datta et al.
2004).

As mentioned, the Obg-like proteins are involved in
many crucial physiological processes, and are found to
be essential proteins in many bacteria. However, despite
determination of X-ray structures of N-terminal 342
amino acids of Obg from B. subtilis (Buglino et al. 2002)
and its full-length homolog from Thermus thermophilus
(Kukimoto-Niino et al. 2004), their exact cellular func-
tions are still largely unknown. Moreover, different
conclusions about the involvement of Obg-like proteins
in crucial processes were published. Perhaps the most
intriguing example is the putative influence of obg/cgrA
gene functions on DNA replication. Kok et al. (1994)
suggested that Obg may be involved in the control of
DNA replication in B. subtilis, but the proposed
hypothesis was highly speculative. On the other hand,
Kobayashi et al. (2001), on the basis of flow cytometry
analysis, concluded that the dysfunction of cgrd does
not impair DNA synthesis in E. coli. They suggested that
CgtA (ObgE) directly or indirectly participates in chro-
mosome partitioning. Contrary to the conclusion pre-
sented by Kobayashi et al. (2001), Datta et al. (2004)
proposed that CgtA is necessary for DNA replication,
progression through the cell cycle and in 50S ribosomal
subunit biogenesis in C. crescentus. Since the biochemi-
cal properties of CgtA proteins from C. crescentus and
E. coli are very similar (Wout et al. 2004), the two
hypotheses presented here are contradictory. Moreover,
it was also demonstrated that replication of some, but
not all, plasmid replicons is affected in E. coli cgtA
mutant cells (Ulanowska et al. 2003). Very recently, Foti
et al. (2005) proposed that CgtA is involved in the
promotion of bacterial cell survival when replication
forks are arrested. They have isolated an E. coli mutant
in the cgtA gene (called obgE by them), which was very
sensitive to various DNA-replication inhibitors. Genetic
analysis suggested that chromosome breaks and re-
gressed replication forks may accumulate in this mutant.
Nevertheless, on the basis of results reported by Foti
et al. (2005), one could not exclude that DNA replica-
tion initiation is affected in the absence of CgtA function
(as noted by those authors and discussed by Michel
2005).

Because of contradictory conclusions about the po-
tential role of CgtA in DNA replication, presented by
different authors and mentioned previously, we aimed to
investigate this problem and to answer the question
whether c¢gtA4 gene function is involved in the regulation
of DNA replication initiation in E. coli. In our studies,
we used strains employed previously by Kobayashi et al.
(2001), to avoid any possible confusion due to various
phenotypes of different mutants. Our results indicate
that CgtA influences DNA replication by regulating
dnaA gene expression.

Materials and methods
Bacterial strains, plasmids and growth conditions

A pair of otherwise isogenic E. coli MG1655 AcgtA::kan
mutants harboring ppap::icgtd or ppap::cgtA(ts) on
pSC101-derived plasmids (GN5002 and GN5003,
respectively) (Kobayashi et al. 2001), hereafter referred
to as wild type and cgtA(ts) strains, were used
throughout this study. DNA sequencing confirmed the
presence of the mutated gene, whose product is a CgtA
(ObgE) protein carrying both GS80OE and D85N substi-
tutions (data not shown). Complementation of the cgr4
mutant phenotype by expression of the wild-type allele
from a plasmid is observed (Kobayashi et al. 2001; and
data not shown). Bacterial cells were grown at 30°C in
Luria-Bertani liquid medium (LB: Sambrook et al. 1989)
with shaking or on LB agar plates (LB with 1.5% bacto-
agar), unless otherwise indicated. The medium was
supplemented with kanamycin (30 pg ml™') and chl-
oramphenicol (20 pg ml™'), and arabinose was added to
final concentrations of 0.001% for GN5002 or 0.1% for
GN5003 to achieve protein levels in these strains that
were approximately equivalent to that seen in MG1655
(data not shown). Ampicillin (50 pg ml~') was added
when strains harbored the pdnaA116 plasmid (see next).
For all experiments described in this report, overnight
cultures were diluted 1:100, cultivated to an ODggg of
0.05 at 30°C, then divided and grown at either 30 or
42°C.

pdnaAl16 is a ColEl-like replicon bearing the pj,.-
dnaA transcription fusion and /lacl? and bla genes
(Krause et al. 1997). Plasmid pMAK?7, containing the
seqA gene under the control of the pj,. promoter, has
been described earlier (von Freiesleben et al. 2000).

For construction of fusions of dnaAd and seqA pro-
moter regions with lacZ, plasmid pHG86 (Giladi et al.
1992) was used as a vector. The dnad promoter region
(positions —489 to +47) was obtained by PCR using
primers pdnaABam (5-ATT CAG GAT CCT TGA
CGT ACG TCG) and pdnaAEco (5-CAC TCC GGA
GTG AAT TCT CTT TCC). The seqA promoter region
(positions —240 to +4) was obtained by PCR using
primers pseqABam (5-CAA TCG TTT TCA TCT
GGA TCC AGT GC) and pseqAEco (5-ATG GGA
GAA TTC TTG TGC TGG TTT TG). The resultant
PCR fragments, containing either the dnaAd or the seqA
promoter region, were digested with EcoRI and BamHI,
and inserted into the corresponding sites of the pHG86
vector.

Measurement of DNA and RNA synthesis

For the measurement of intracellular DNA or RNA
synthesis, cells were grown at either 30 or 42°C until the
cultures reached an ODgq of 0.2 prior to the addition of
either [*H]thymidine or [’H]uridine (MP Biomedicals) to



a final concentration of 10 or 2 uCi ml~!, respectively.
To induce the stringent response, DL-serine hydroxamate
was added to 1 mg ml~'. Aliquots (50 ul each) were
withdrawn at indicated times, placed onto Whatmann 3
paper filters (2 cm diameter) and then transferred
immediately to ice-cold 10% trichloracetic acid (TCA).
Following sequential washes (5% TCA, 1% TCA and
twice in 96% ethanol), the filters were air-dried and
radioactivity was measured in a scintillation counter
(Beckman LS3133P).

Estimation of DnaA protein level in cells

Cells were grown, as described previously, and an
equivalent cell masses were pelleted by centrifugation,
lysed in sodium dodecyl sulfate (SDS) buffer and sepa-
rated by SDS-polyacrylamide gel electrophoresis (12%)
(Sambrook et al. 1989). After electrophoretic separation
and transfer to Protran membrane (Schleicher and
Schuel, following manufacturer’s recommendations), 1/
500 anti-DnaA antibodies (kindly provided by Dr. Igor
Konieczny, Intercollegiate Faculty of Biotechnology,
University of Gdansk and Medical University of
Gdansk) and 1/10,000 anti horseradish peroxidase-con-
jugated anti-rabbit antibodies were used for immuno-
blotting (Sambrook et al. 1989). The signal was detected
by fluorography with ECL (Amersham Pharmacia Bio-
tech). Purified DnaA protein, used as a standard, was
kindly provided by Dr. Agnieszka Szalewska-Palasz
(Department of Molecular Biology, University of
Gdansk).

RNA dot-blot hybridization

Total RNA was isolated from bacterial cell mass equal
to two OD units using Total RNA Prep Plus kit (A&A
Biotechnology). Genomic DNA was removed by incu-
bation with DNase (RNase-free, Roche). RNA was
spotted onto Zeta Probe Blotting Membranes (BioRad),
using Bio-DotApparatus (BioRad). Following baking
for 2 h at 80°C in a hybridization oven (OV3, Biometra),
membranes were washed for 2 min in 2 x SSC (0.3 M
NaCl, 0.03 M sodium citrate). The prehybridization was
performed for 2 h at 65°C in a hybridization buffer
[0.75 M NaCl, 0.075 M sodium citrate, 0.05 M phos-
phate-buffer, pH 6.5, 0.5% Blocking reagent (NEN)]
supplemented with 100 pg ml~' of herring sperm DNA
(Sigma). Dot blot hybridization was performed over-
night at 65°C in a hybridization buffer supplemented
with fluorescein-labeled probes designed for each specific
transcript (for dnaA, dnaAl: 5-AT CTT CTT TGA
TAT CGT GGC TCT CTT CAC G,; for seqA, seqAl,
5-CGA TAT GCT TAG TGT GGC TGG CAA TAT
AGC). After hybridization, membranes were washed
twice for 15 min in a buffer composed of 15 mM NaCl,
1.5 mM sodium citrate, and 0.1% SDS, then 2 min in
buffer A (100-mM Tris—HCI, 600 mM NaCl) and addi-

tional 30 min in buffer A supplemented with 0.5%
Blocking reagent (NEN). Then, the membranes were
incubated in buffer A supplemented with 0.5% BSA and
Antifluorescein—AP conjugated antibodies (Perkin El-
mer Life Science). Detection of reaction products was
performed using CDP-Star Chemiluminescent Reagent
(Perkin Elmer Life Science).

Measurement of f-galactosidase activity in cells

The p-galactosidase activities were determined in E. coli
strain cgtA(ts) carrying panaa-lacZ or pseqa-lacZ fusions
according to Miller (1972).

Since multicopy gene fusions were used in these
experiments, f-galactosidase activity was calculated per
plasmid copy number. Plasmid copy number was esti-
mated by the isolation of plasmid DNA (using DNA
isolation kit, A&A Biotechnology), EcoRI digestion,
separation in 1% agarose gel during electrophoresis, and
staining with ethidium bromide (0.5 pg ml™"). The rel-
ative amount of DNA in each band was estimated by
densitometry, using Quantity One software (BioRad).

Results

Ectopic expression of dnaA partially suppresses
the growth defect of the cgtA(ts) mutant

Previous studies demonstrated that the E. coli cgtA(ts)
mutant strain GN5003 is deficient in the replication of
some, but not all, types of plasmid replicons (Ulanowska
et al. 2003). Furthermore, in preliminary experiments, it
was indicated that in the cgzA(ts) mutant the levels of the
DNA initiator protein, DnaA, were decreased (Ula-
nowska et al. 2003). DnaA, in addition to playing a role
as an initiation-specific protein (Fuller et al. 1984), also
functions as a transcriptional activator or a repressor of
a number of genes (Messer and Weigel 2003). One
possible explanation of those results, therefore, is that
the DNA replication and cell division phenotype of the
cgtA(ts) mutant is a consequence of a lower level of
DnaA protein in the cell. To test this hypothesis, we
examined the consequences of expressing dnaA, from a
plasmid (pdnaA116) in the cgzA(ts) mutant.

We tested whether the introduction of additional
copies of dnaA on plasmid pdnaAll6 improved the
growth defect of the cgrA(ts) mutant. Cultures of wild
type or cgtA(ts) cells alone, or harboring pdnaAll6,
were monitored for growth at either 30 or 42°C
(Fig. 1a). As expected, wild-type cells, irrespective of the
presence of pdnaAl16, grew at the same rate, although
the growth of both wild-type strains was faster at 42°C
than at 30°C (Fig. 1a). For the cgtA(ts) mutant grown at
either 30 or 42°C, we observed similar slow growth rates
during the first 3 h. Continued incubation at 42°C,
however, resulted in a dramatic reduction in the growth
of cells relative to those grown at 30°C (Fig. 1a), and a
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Fig. 1 Partial suppression of growth (a) and DNA replication (b)
of the cgrA(ts) mutant harboring a plasmid-expressing dnaAd. a
Growth of wild-type and mutant cells harboring plasmid
pdnaAl16 (bearing the dnaA gene; + dnaA). The cell density of
cultures of the indicated strains was monitored, over time, as
indicated. Results obtained with wild-type cells (wf) with (dia-
monds) or without (squares) pdnaAll16 and cgtA(ts) mutants (zs)
with (circles) and without (triangles) pdnaA116 are shown. Cells

significant number of elongated cells (Fig. 2), consistent
with a previous report (Kobayashi et al. 2001). The
addition of pdnaA116 to cgtA(ts) had no effect on mu-
tant-cell growth at 30°C, whereas growth at 42°C was
improved, although not restored to the same levels seen
in wild-type cells (Fig. la). Vast overproduction of
DnaA, achieved by the induction of dnaA gene expres-
sion from pdnaAl116 by 1-mM IPTG, did not improve
the growth of the cgrA(ts) mutant at 42°C, but this was
apparently caused by a deleterious effect of a highly
increased DnaA level on bacterial growth, observed in
both cgtA ™" and cgtA(ts) strains and at both 30 and 42°C
(data not shown).

Contrary to the partial suppression of the growth
defect of cgtA(ts) bacteria by pdnaA116, the morphol-
ogy of these cells, was identical to that of the cgrA(ts)
mutant cells grown at 42°C in the absence of the plasmid
bearing the wild-type dnaA allele (Fig. 2). Moreover, the
cells were unable to form colonies on plates at the non-
permissive temperature (data not shown), indicating that
long-term growth was not sustained. Thus, the ectopic
expression of dnaA partially suppressed the growth de-
fect of the cgtA(ts) mutant during early incubation times
at the non-permissive temperature. When a culture of
the cgtA(ts) mutant was incubated at 42°C for 6 h,
subsequent plating at 30°C revealed about tenfold de-
crease in the number of colony-forming units, relative to
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grown at 30°C are indicated by open symbols and cells shifted to
42°C are indicated by closed symbols. b Measurement of [*H]thy-
midine incorporation into DNA. Cells were grown as described in
Materials and methods upon reaching an ODgqo of 0.2 (labeled as
0 min) before the addition of the radioactive DNA synthesis
precursor. Shown are the results from three experiments £+ SD.
Strain symbols are as in a

the same mutant but incubated in a liquid culture for 6 h
at 30°C. This mutant phenotype was completely restored
(to the positive control level of the efficiency of plating)
by the presence of pdnaA116 (data not shown).

Experiments analogous to those described in this
subsection were performed with a plasmid expressing
seqA, a gene coding for another regulator of DNA
replication initiation. We found no significant effects of
SeqA overproduction on the cgrA(ts) mutant growth
(data not shown), indicating that the influence of ectopic
expression of dnaA was specific.

DNA synthesis in ¢gz4 mutant cells expressing dnaA
from a plasmid

To examine whether the rate of DNA synthesis was also
suppressed in mutant strains harboring pdnaAll6, we
measured the incorporation of [*H]thymidine into cel-
lular DNA (Fig. 1b). As expected, in the wild-type cells
grown at either temperature, there was an initial increase
in DNA synthesis followed by a reduction that mim-
icked the cell growth: cells in exponential growth
incorporated more [*H]thymidine than cells entering
stationary phase (Fig. 1b vs. a). This trend is also true
for the cgtA(ts) mutant. At 30°C, DNA synthesis con-
tinues to increase over the 2-h experiment, albeit at a
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Fig. 2 Ectopic expression of dnaA does not suppress the cell
division defect of cgrA(ts) mutants. Shown are gray-scale reverse
images of DAPI-stained cgrA(ts) mutant cells alone or harboring
the pdnaA116 (cgtA(ts) + dnaA) plasmid at either 30°C or after a
6-h shift to 42°C, as indicated

level much reduced, as compared with the wild-type
cells. At 42°C, however, DNA synthesis is significantly
impaired. The addition of pdnaAll6 to cgzA(ts) cells
resulted in an increase in DNA synthesis at 42°C
(Fig. 1b). The rate of DNA synthesis, although signifi-
cantly higher than that seen in the cgzA(ts) mutant
alone, was still lower than that of the wild-type cells.
Therefore, addition of pdnaAl16 partially suppressed
the DNA synthesis defect of the ¢grA(ts) mutant. Again,
ectopic expression of seqgA had no significant effects on
DNA synthesis in the cgzA(ts) mutant (data not shown).

DnaA protein levels in cells expressing the dnaA
gene from a plasmid

To examine whether the observed partial suppression
was due to the restoration or an increase in the DnaA
levels, we performed immunoblot analysis on wild-type
and cgtA(ts) cells harboring pdnaA116 using anti-DnaA
antibodies. As reported earlier (Ulanowska et al. 2003),
in c¢gtA(ts) bacteria grown at the non-permissive tem-
perature, the levels of DnaA were dramatically reduced
(Fig. 3a), whereas growth at 42°C did not affect the level
of DnaA in wild-type cells (Fig. 3b). Interestingly, a
significant reduction in the level of DnaA in the cgrA(ts)
mutant occurred only after 2 h at the non-permissive
temperature. The c¢gtrA(ts) mutant cells harboring
pdnaA116 possess equivalent levels of DnaA at either
the permissive or non-permissive temperature (Fig. 3c).
Thus, ectopic expression of dnaA restored the levels of
DnaA protein in the cgzA(ts) mutant.

Impairment of dnaA gene transcription
in the cgrA(ts) mutant

To identify the step of dnaA gene expression, which is
affected in the cgzA(ts) mutant, we have constructed a
gene fusion bearing the /acZ reporter gene under the
control of the promoter region of dnaA. Analogous fu-
sion, but containing a promoter of the segA gene, was
also constructed. We found that CgtA inactivation re-
sulted in the impairment of activity of the fusion bearing
the dnaA promoter region, but not that of the seqgA4
promoter region (Fig. 4). Impaired expression of the
dnaA gene in CgtA-deficient cells was also demonstrated
at the level of mRNA (Fig. 5).

The stringent response occurs, albeit at a reduced
level, in the cgtA(ts) mutant

All the results presented indicate that the expression of
the dnaA gene is impaired in the cgr4 mutant, and a
resultant deficiency in DnaA protein activity causes
inhibition of chromosomal DNA replication initiation.
Since CgtA protein was found to be able to interact with
ppGpp (Buglino et al. 2002) and the SpoT protein
(Wout et al. 2004), one might assume that the observed
effects of CgtA on DnaA could be indirect, due to any
changes in the stringent control in ¢gzA(ts) mutants. In
fact, E. coli chromosome replication is impaired under
conditions of the stringent response (Guzman et al.
1988; Herman and Wegrzyn 1995), and expression of the
dnaA gene is inhibited by ppGpp (Chiaramello and
Zyskind 1990). Therefore, we examined whether the
cgtA(ts) mutant is capable of demonstrating the strin-
gent response.
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Fig. 3 The DnaA protein levels are restored in cgtA(ts)-harboring
pdnaAl16. Cells were grown as described in Materials and
methods and equivalent cell numbers, as judged by ODyggg, Were
removed prior to a temperature shift (labeled 0) or after
temperature shift, as indicated (2, 4 or 6 h). The level of DnaA,
as assayed by immunoblot analysis, is shown for c¢gtA(ts) (a), wild-
type (b) and cgzA(ts)-harboring pdnaA116 (c) cells. Purified DnaA
protein (labeled DnaA) was used as a standard
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grown at 30°C to ODgyp=0.05. Then, a half of each culture was
transferred to 42°C (closed columns) and the rest remained at 30°C
(open columns). Culture samples were withdrawn after 2 and 6 h
and f-galactosidase activities (in Miller units) were measured

We measured the level of total RNA synthesis based
on the incorporation of [*H]uridine into TCA precipi-
table material. As noted earlier (Tosa and Pizer 1971),
the addition of bDL-serine hydroxamate induces the
stringent response and results in a significant reduction
in the level of stable RNA (i.e., TRNA and tRNA)
synthesis (which corresponds to about 98% of tran-
scriptional activity in bacterial cells; Fig. 6). In the
cgtA(ts) mutant, stable RNA synthesis occurs at low
level at the nonpermissive temperature. However, the
addition of pL-serine hydroxamate results in a further
diminution of incorporation of radioactive uridine in
cgtA(ts). Therefore, we conclude that E. coli cgtA mu-
tants are capable of undergoing the stringent response.
This phenotype could not be improved by the presence
of pdnaAll6.

A 30°C 42 °C
0 2h Bh 2h Bh
e o »
B 30°C 42 °C

0 2h Bh 2h Bh
o ® ® 5 »

Fig. 5 Abundance of dnaA (a) and seqA (b) mRNAs in cgrA(ts)
cells. Bacterial cultures were grown at 30°C to ODgo=0.05
(labeled 0 on the figure). Then, a half of each culture was
transferred to 42°C and the rest remained at 30°C. Culture samples
of the same bacterial mass (2 OD units) were withdrawn 2 and 6 h
later and levels of mRNAs were estimated by hybridization with
specific labeled probes
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Fig. 6 Measurement of [*H]uridine incorporation under conditions
resembling amino-acid starvation. Cells were grown as described in
Materials and methods, except that, upon reaching an ODggg of
0.05 all cells were shifted to 42°C. Upon reaching an ODg of 0.2
(labeled as 0 min), [*H]Juridine was added. At the indicated time
(arrow), pL-serine hydroxamate (SH; 1 mg ml™') was added to
induce the stringent response. Wild-type (squares) and cgtA(ts)
mutant (triangles) with (open symbols) or without (closed symbols)
the addition of pL-serine hydroxamate are shown

Discussion

Although cgrA gene product, the common GTP-binding
protein (see Dutkiewicz et al. 2002 for discussion on the
nomenclature), is an evolutionarily conserved protein
and essential in E. coli (Arigoni et al. 1998), the crucial
function(s) played by CgtA, which are necessary to
support cellular growth, remains unclear. Since CgtA
homologs in various bacterial species (B. subtilis, C.
crescentus, E. coli) were shown to be associated with 50S
ribosomal subunit and interacted with GTP (Scott et al.
2000; Lin et al. 2004; Wout et al. 2004; Sato et al. 2005),
one could assume that the lethal phenotype of cgtA4
dysfunction might be due to impaired ribosome func-
tion(s). However, studies on conditional C. crescentus
cgtA GS8OE mutant, performed by Datta et al. (2004)
revealed that this is not the case, and perhaps another
process, crucial for cell viability, must be severely im-
paired when CgtA function is absent.

Here, we demonstrate that DNA replication is im-
paired in E. coli in the absence of CgtA function, indeed.
It appears that CgtA regulates the expression of dnad, a
gene coding for the replication-initiator protein. Since
ectopic expression of this gene results in partial resto-
ration of both DNA synthesis and bacterial growth in
the cgt4A mutant, one might speculate that the lethal
effect of cgtA dysfunction can be, at least partially, due
to the depletion of DnaA. We could not, however, ob-
serve colonies of the cgrA(ts) mutant at 42°C even in the



presence of a plasmid-bearing dnaAd, and cell morphol-
ogy was also not improved under these conditions.

Interestingly, in our experiments, we have used exactly
the same strains as Kobayashi et al. (2001), who con-
cluded that CgtA is not involved in DNA synthesis.
However, they have performed flow cytometry analysis
relatively shortly after the transfer of cells from permis-
sive to nonpermissive temperature. As demonstrated by
us in this report, significant effects on dnaA-expression
level could be observed a few or several hours after such a
transfer. Nevertheless, it should be noted that the
cgtA(ts) mutant phenotype, which we observed is some-
what different from that reported previously for this
strain (Kobayashi et al. 2001). For example, the growth
defect was only apparent after 3 h at the nonpermissive
temperature (Fig. la), as compared with 1 h reported
earlier (Kobayashi et al. 2001). Since the strains are
identical (which was confirmed by DNA sequencing), it is
likely that these differences are due to various experi-
mental approaches. In the earlier study, 0.1% arabinose
was used for the induction of ¢gzA4 in both strains (Ko-
bayashi et al. 2001). We have found, however, that this
results in a vast overproduction of CgtA in GNS5002
(data not shown), and therefore chose to induce each
culture such that the level of CgtA was similar (data not
shown). Also, cells in the earlier study were grown to
stationary phase and then shifted directly to the non-
permissive temperature, whereas here we diluted over-
night cultures and grew them at the permissive temper-
ature for some time prior to a shift to the non-permissive
temperature. The levels of CgtA are dramatically re-
duced in stationary-phase cells relative to exponentially
growing cells (Sato et al. 2005), and therefore, the phe-
notypic differences could be due to a combination of the
different levels of CgtA and the physiological state of the
cells prior to the temperature shift.

The molecular mechanism of CgtA-mediated regula-
tion of dnaA gene expression remains to be elucidated; in
fact, serious effects of cgrA dysfunction on the expression
of another important gene, recA, have been reported re-
cently (Zielke et al. 2003). The effects of cgzA4 function on
gene expression appear specific, as in control experiments
we found that the ectopic expression of another gene
coding for a replication-regulator protein (SeqA) was not
affected in the ¢gz4 mutant. In the light of these results, a
possibility that the CgtA dysfunction results in global
inhibition of mRNA synthesis seems rather unlikely, de-
spite the fact that we observed a marked reduction in
stable RNA (rRNA and tRNA) synthesis (Fig. 6). We
assume that this might be caused by impaired DNA rep-
lication and resultant inhibition of cell growth, which
significantly influence stable RNA synthesis, rather than
be a primary effect of cgz4 mutation (note that bacterial
cultures were incubated at the elevated temperature for a
relatively long period before the onset of the measurement
of RNA synthesis; see Materials and methods).

Kinetics of depletion of dna4 mRNA and DnaA
protein after switching off the CgtA function may sug-
gest that the regulation is on the levels of both tran-

scription and translation. This latter hypothesis may be
intriguing as the multiple roles of CgtA, for example, the
regulation of DNA replication and translation remains
an unsolved question. One might speculate that if CgtA
senses the physiological state of the cell by responding to
the GTP/GDP ratio, as a ribosome-associated protein, it
may control the efficiency of ribosome biogenesis and
translation of crucial regulatory genes, including dnaA.
This control mechanism, enhanced by the regulation of
dnaA transcription, might couple DNA replication to
ribosome biogenesis and translation. Interestingly, it
was proposed recently that yeast protein Yphlp might
link cell proliferation control, DNA replication and
ribosome biogenesis (Du and Stillman 2002). Finally,
although we have demonstrated that the stringent re-
sponse is normal in the cgt4 mutant, one cannot exclude
a possibility that interactions between CgtA and SpoT,
demonstrated by Wout et al. (2004), influence the
intracellular levels of ppGpp, thus affecting the expres-
sion of the dnaAd gene, which was demonstrated earlier
to be negatively regulated under conditions of the
stringent response (Chiaramello and Zyskind 1990).
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