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Abstract Due to the pivotal role that dendritic cells (DC)
play in eliciting and maintaining functional anti-tumor T
cell responses, these APC have been exploited against
tumors. DC express several receptors for the Fc portion
of IgG (Fcy receptors) that mediate the internalization
of antigen-IgG complexes and promote efficient MHC
class I and II restricted antigen presentation. In this
study, the efficacy of vaccination with DC pulsed with
apoptotic B16 melanoma cells opsonized with an anti-
CD44 1gG (B16-CD44) was explored. Immature bone
marrow derived DC grown in vitro with IL-4 and GM-
CSF were pulsed with B16-CD44. After 48 h of pulsing,
maturation of DC was demonstrated by production of
IL-12 and upregulation of CD80 and CD40 expression.
To test the efficacy of vaccination with DC+ B16-CD44,
mice were vaccinated subcutaneously Lymphocytes
from mice vaccinated with DC+ B16-CD44 produced
IFN-y in response to B16 melanoma lysates as well as an
MHC class I restricted B16 melanoma-associated pep-
tide, indicating B16 specific CD8 T cell activation. Upon
challenge with viable B16 cells, all mice vaccinated with
DC alone developed tumor compared to 40% of mice
vaccinated with DC + B16-CD44; 60% of the latter mice
remained tumor free for at least 8 months. In addition,
established lung tumors and distant metastases were
significantly reduced in mice treated with DC+ B16-
CD44. Lastly, delayed growth of established subcuta-
neous tumors was induced by combination therapy with
anti-CD44 antibodies followed by DC injection.
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This study demonstrates the efficacy of targeting tumor
antigens to DC via Fcy receptors.

Introduction

The frequency of precursor T cells with anti-tumor
activity is low in patients with advanced cancers. It is
therefore important to activate and expand tumor
reactive T-cells as an effective means of immunity.
Dendritic cells (DC) are known as the most potent
antigen-presenting cells, capable of initiating both pri-
mary and memory T cell immune responses and have
become an integral player in immunotherapeutic ap-
proaches for the treatment of cancer [1-3].

DC loaded with tumor antigens induce T cell re-
sponses capable of overcoming active suppression and
innate tolerance in murine tumor models [4, 5]. Tra-
ditional methods of loading DC with tumor-associated
antigens include pulsing with peptides, whole lysates,
or apoptotic cells. We, and others, have documented
the capacity of tumor lysate- or apoptotic tumor-
pulsed DC to elicit potent antitumor T cell responses
in mice that result in both protection against tumor
challenge and regression of established tumors [4-8].
While initial clinical trials utilizing peptide- or tumor
cell- pulsed DC in cancer patients have shown prom-
ising immunologic results, clinical responses against
established tumors have been rarely seen. It has been
suggested that the latter may be related to a lack of
induction of robust and long-lasting T cell responses.
In an effort to improve DC-based vaccines for immu-
notherapy, approaches that increase the capacity of
DC to stimulate tumor-specific T cells are being ex-
plored. These include methods to induce DC matura-
tion and optimization of antigen processing and
presentation pathways.

In order for effective anti-tumor immunity to be in-
duced, immature DC must efficiently uptake and process



tumor antigens for presentation to both CD4+ and
CD8+ T cells. To enhance the uptake of tumor antigens
and hence the T cell priming capacity, targeting of DC
cell surface receptors, such as DEC205, mannose, and
Fc gamma (Fcy) receptors, has been examined [9-11].
Targeting antigens to these surface receptors leads to
receptor mediated endocytosis and efficient CD4+ T
cell priming [12, 13]. In particular, there is strong evi-
dence to support that antibody coating of antigen and
targeting Fcy receptors on DC enhances presentation of
antigens by DC resulting in superior T cell activation
[14, 15]. In addition to improving CD4+ T cell priming,
targeting antigens to DC via Fcy receptors induces
effective cross-presentation of antigen on MHC class 1
for activation of CD8+ T cells [16-20]. It has been
shown that targeting antigen containing liposomes to
Fcy receptors on DC leads to a 1,000-10,000-fold
enhancement in MHC class I presentation [21].

Most efficient T cell priming occurs when DC are in
the mature state, expressing co-stimulatory molecules
such as CD80, CD86, and CD40 as well as producing
pro-inflammatory cytokines, such as IL-12 [2, 22]. Ad-
juvants such as LPS and CpG that target toll-like
receptors on the surface of DC are strong inducers of
maturation. In both murine and human DC, targeting
FcyR on the cell surface also results in the maturation and
increased T cell stimulatory properties of DC [14, 16, 23].

To enhance the vaccination efficacy of DC pulsed
with whole apoptotic tumor cells, we opsonized B16
melanoma cells with an anti-CD44 antibody for FcyR
targeting. CD44 is expressed at low levels on normal
tissues and is overexpressed on many tumors, including
melanoma, lymphoma, breast, and lung tumor cells [24—
26]. Overexpression of CD44 on the surface of tumor
cells has been implicated as important in both prolifer-
ation and metastases [27-31]. Using a highly aggressive
and metastatic model of murine melanoma, we exam-
ined the protective and therapeutic efficacy of DC pulsed
with anti-CD44 IgG opsonized melanoma cells as well as
combination therapy with in vivo monoclonal antibody
treatment followed by DC-based immunotherapy.

Materials and methods
Animals

Six to 8-week-old female C57BL/6 mice were purchased
from Harlan Laboratories (Indianapolis, IN, USA).
Mice were housed at the Animal Research Facility of
the H. Lee Moffitt Cancer Center and Research
Institute.

Tumor cell lines and medium

Complete medium (CM) was prepared as described
previously [32]. The Bl6 melanoma is a tumor of

spontaneous origin that expresses a low level of MHC
class I molecules and no detectable MHC class II mol-
ecules [33]. A highly metastatic B16 subclone, B16-M,
was cultured in our laboratory. Tumor cells were
maintained by serial in vitro passage.

Generation of DC

BM cells were harvested from flushed marrow cavities of
femurs and tibiae of mice under aseptic conditions and
were cultured in CM supplemented with 20 ng/ml GM-
CSF and 20 ng/ml IL-4 at 1x10° cells/ml (R&D Sys-
tems, Minneapolis, MN, USA). DC were harvested from
day 5 cultures and enriched by OPTI-prep density gra-
dient separation (Sigma Aldrich, St. Louis, MO, USA).
The low-density interface was collected.

Preparation of tumor cells for pulsing of DCs

B16 cells (1x10°/ml PBS) were exposed to UVB light
for 20 min (equal to 200 mJ/cm?) (Gel Doc 2000;
Bio-Rad, Hercules, CA, USA). Cells were washed three
times in PBS. For antibody coating, UVB treated B16
cells were incubated for 30 min with 10 pg/ml anti-
CD44 antibody (Pharmingen, San Diego, CA, USA),
then washed three times. Cells were resuspended in CM
at 6x10°/ml and cultured with 2x10° day 5 DC/ml for
24 h. For some experiments, CD11c + DC were puri-
fied by MACS sorting (Miltenyi Biotech, Auburn, CA,
USA).

Binding assay

B16 cells were labeled with PKH26red according to the
supplier’s instructions (Sigma). After labeling, the cells
were exposed to UVB as above and cultured with day
5 DC at 4 or 37°C. For blocking experiments, DC were
incubated with CD16/CD32 antibody (BD Pharmin-
gen) prior to co-culture with PKH26red labeled B16
cells. After 6-24 h, coexpression of MHC class II (IA®)
and PKH26red was measured by FACS analysis with a
B-D FACScaliber (BD Biosciences, San Jose, CA,
USA).

Cytokine assays

To measure cytokine secretion, day 5 DC were either
unpulsed, cultured with UVB treated B16 cells, or cul-
tured with UVB treated B16 cells coated with anti-
CD44. After 48 h, culture supernatants were harvested
for measurement of cytokine production by standard
ELISA (Pharmingen). For measurement of IFN-gam-
ma, lymph node cells were collected from mice 1 week
after the 3rd DC vaccination.



Primary immunization

C57BL/6 mice (n=5-8 per group) were vaccinated s.c.
three times at 2 week intervals with either PBS,
1x10° DC alone, DC pulsed with UVB treated B16, or
DC pulsed with UVB treated B16 coated with
anti-CD44 antibody. Alternatively, MACS purified
CDll1lc + DC were used for immunizations. Two weeks
after the final vaccination, mice were challenged s.c. on
the opposite flank with 2x10° viable B16 cells. Tumors
were palpated weekly. Mice were humanely euthanized
when tumor measurements reached 500 mm?.

Treatment of lung metastases

C57BL/6 mice were injected i.v. with 2x10° viable B16 or
B16-M cells. One-3 days later, mice were treated i.v.
with 1x10° DC, B16 coated with anti-CD44, or
DC+ B16 coated with anti-CD44. Mice received addi-
tional treatments on days 3 and 5 after tumor challenge.
Lungs were harvested on day 14 and the number of lung
metastases was counted, as described previously [34, 35].
The brains and GI tracts of tumor bearing mice were
observed for metastases.

Treatment of subcutaneous tumor

C57BL/6 mice were challenged s.c. with 2x10° viable
B16 cells. Tumors were allowed to grow for approxi-
mately 10 days or until the tumor size was 25 mm-.
Four treatments were given at 2 day intervals and mice
received intratumoral injections of DC alone, anti-CD44
antibody alone, or a combination of anti-CD44 anti-
body followed by DC injection 4 h later.

Statistical analysis

A Mann-Whitney test (unpaired) or a Student’s paired ¢-
test was used to compare between two treatment groups.
All statistical evaluations of data were performed using
GraphPad Prism software. Statistical significance was
achieved at p<0.05.

Results

Induction of apoptosis and overexpression of CD44
on the surface of B16 cells

Apoptosis of B16 cells was induced by exposure to UVB
light. Figure 1a shows that, after UVB exposure, 56% of
the cells are positive for Annexin V only, indicating
apoptosis, while 40% of the cells are positive for both PI
and Annexin V, indicating necrosis.

B16 cells express high levels of surface CD44 protein
as measured by flow cytometry (Fig. 1b). Due to the fact
that, in these experiments, apoptosis of B16 cells was
induced by UVB exposure, it was important to deter-
mine if expression of CD44 was affected after this
exposure. B16 cells were treated for 20 min of UVB
irradiation and expression of CD44 was measured. Al-
though the mean fluorescent intensity was decreased
overall, CD44 expression was detected on all B16 cells
(Fig. 1b).

B16 melanoma cells coated with anti-CD44
are efficiently endocytosed by DC

To determine if the uptake of B16 cells by DC was en-
hanced by opsonization with anti-CD44 IgG, B16 cells
were labeled with PKH26-red dye and co-cultured with
DC for 24 h. The percentage of DC that contained the
red dye was determined by FACS. As shown is Fig. 2a,
33% of the DC were labeled with the red dye. An in-
crease to 46% was measured after DC were co-cultured
with B16 coated with anti-CD44 (B16-CD44), indicating
that opsonization with anti-CD44 IgG enhanced uptake
by DC. In additional experiments, receptor mediated
endocytosis through FcyR were blocked by pretreating
the DC with anti-CD16/CD32 antibodies (Fc block). As
shown in Fig. 2b, the percentage of phagocytosis of B16-
CD44 was reduced after blocking Fc receptors. No up-
take of B16 cells by DC was measured after co-culture at
4°C.

DC demonstrate maturation after uptake of B16 cells
coated with anti-CD44 antibody

After 24 h of co-culture of DC with UVB treated B16
cells or B16-CD44, expression of maturation markers
was measured by flow cytometry. As indicated in
Fig. 3a, increases in CD86, CD80, and CD40 were
measured after DC were co-cultured with B16-CD44.
DC that had phagocytosed apoptotic B16 cells did not
demonstrate increases (black histograms). To determine
if these matured DC produced pro-inflammatory cyto-
kines, supernatants were collected and IL-12p70 was
measured by ELISA (Fig. 3b). Co-culture of DC with
B16-CD44 led to a significant increase in IL-12p70
production (447410, p <0.01). Supernatants from DC
alone or DC co-cultured with B16 cells displayed little
IL-12 secretion (103 £29 and 113 + 18, respectively). No
IL-10, TNF-(a, or TGF-p secretion was detected in cell
supernatants (data not shown).

Vaccination with DC pulsed with B16-IgG Induces
B16 specific CD8 T cells

To test the induction of B16 specific T cells, mice were
vaccinated three times at 2 week intervals with
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DC + BI16, or DC + B16-CD44. Two weeks after the
final vaccination, lymph node cells were collected. Cells
were restimulated with DC pulsed with B16 cell lysate.
Supernatants were collected after 48 hours and IFN-y
was measured by ELISA. Lymph node cells from naive
mice produced very little IFN-y (147 £20 pg/ml). In
contrast, mice vaccinated with either DC + B16 or
DC + B16-CD44 produced IFN-y in response to B16
lysate (Fig. 4a: 1,629+238 and 1,891 +458 pg/ml,
respectively, p <0.05 compared to naive).

It has been shown that antigen loading through the
Fc gamma receptors leads to enhanced presentation to
CDS8 T cells. To test this hypothesis, splenocytes from
vaccinated mice were restimulated for 48 h with DC
pulsed with the MHC class I restricted melanoma pep-
tide, Trp-2. In Fig. 4b, mice vaccinated with DC + B16
produced IFN-y in response to this peptide (1,293 + 30,
p<0.01 compared to naive). A significant enhancement
in IFN-y secretion was detected in mice vaccinated with
DC + B16-CD44 (2,413+231, p<0.01 compared to
DC + BI16 vaccinated mice).

Vaccination with DC + B16-IgG induces effective
anti-B16 tumor immunity

To determine if vaccination with DC + B16-CD44 in-
duced an enhanced anti-tumor immunity and protec-
tion, mice were challenged s.c. with B16 cells 2 weeks
after the third vaccination with either DC, DC + B16,
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or DC + B16-CD44. While vaccination with PBS
alone, DC alone, or DC + Bl6 was ineffective at
inducing protection against B16 tumor challenge, 60%
of mice vaccinated with DC + B16-CD44 were pro-
tected (Fig. 5a). This protection was long-lasting as mice
were tumor free at 8 months. To exclude the possibility
that B16 cells opsonized with anti-CD44 antibody
were inducing an anti-tumor immune response by
themselves, CD11c + DC were purified after co-culture
with  B16-CD44. Again, mice vaccinated with
CDIl1lc" DC + B16-CD44 were protected to a greater
extent than mice vaccinated with CD11c™ DC + BI16
(Fig. 5b).

Effective treatment of lung metastases
with DC + B16-IgG

Next, we tested the ability of DC + B16-CD44 to in-
duce rejection of lung metastases. One day after i.v.
injection of B16 cells, mice received PBS alone, DC
alone, B16-CD44, or DC+ B16-CD44 with two addi-
tional treatments at 2 day intervals. Fourteen days after
tumor injection, lung metastases were enumerated. As
shown in Fig. 6, PBS treated mice had greater than 250
lung metastases with a similar number in mice that re-
ceived B16-CD44 (197+49). Mice that had received
DC + B16-CD44 displayed a significant decrease in the
overall number of metastases (91 +£59, p<0.01).



Fig. 2 Binding of B16 cells by
DC via Fcy Receptors. a B16
cells were labeled with PKH26
red dye and treated for 20 min
with UVB irradiation. Cells
were coated with normal rat
IgG or anti-CD44 antibodies
prior to a 24 h incubation with
day 5 DC. DC were stained for
MHC class II expression. Two-
color analysis revealed cells that
were positive for both PKH26
red dye and MHC class 11,
indicative of DC that have
taken up tumor cells, b Prior to
co-culture with UVB treated,
PKH26 red labeled B16 cells,
DC were pretreated with anti-
CD16/CD32 antibodies (Fc
block) to block Fcy receptors,
* indicates p <0.05

Using a highly metastatic B16 melanoma clone (B16-
M), the efficacy of DC + B16-CD44 treatment to pre-
vent metastatic disease was also tested. B16-M is a clone

Fig. 3 Maturation of DC after
uptake of B16 cells. DC were
co-cultured for 24 h with UVB
treated B16 cells stained with
normal rat IgG (DC + B16) or
anti-CD44 antibodies

(DC + B16-CD44). a
Expression of CD86, CD80,
and CD40 was measured on the
surface of MHC class 11
positive cells by FACS. Dotted
histogram = negative control,
gray histogram = DC alone,
black histogram = DC + BI16,
filled histogram = DC + B16-
CD44, b Supernatants were
collected and IL-12p70 was
measured by standard ELISA
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that, after i.v. injection, frequently metastasizes to
additional sites. As shown in Table 1, 100% of the mice
treated with PBS alone demonstrated grossly visible,
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Fig. 4 IFN-gamma production in response to B16 lysate and
peptide. Mice were vaccinated three times at 2 week intervals with
DC + Bl16 or DC + B16-CD44. One week after the final
vaccination, lymph node cells were collected and co-cultured for
48 h with a DC + B16 lysate or b Trp-2 peptide. IFN-g
production was measured by standard ELISA. Data are shown
as mean = SEM of two independent experiments. * indicates
»<0.05 and ** indicates p<0.01 compared to naive lymph node
cells

diffuse lung and gastrointestinal (GI) metastases. Half of
these mice also developed grossly visible lesions in the
brain. Mice treated with DC alone demonstrated an
overall decrease in the incidence of lung and GI metas-
tases (75%) with 50% of the mice developing brain
metastases. All mice treated with DC + B16 presented
with both lung and GI metastases with 75% also
developing brain lesions. In contrast, none of the mice
treated with DC + B16-CD44 showed grossly visible
lung metastasis while only 25% of the mice grew tumors
in the GI tract and brain.

Combination therapy with anti-CD44 monoclonal
antibodies and DC

We next examined the efficacy of intratumoral injection
with anti-CD44 antibodies followed by DC immuno-
therapy for the treatment of established s.c. B16 mela-
noma. Ten days after s.c. injection with B16 cells, when
the tumor size was approximately 25 mm? mice were
treated by intratumoral injection of anti-CD44 anti-
bodies alone, DC alone, or a combination of anti-CD44
antibody followed by DC injection. A total of four
treatments were given every 2 days. As shown in Fig. 7a,
mice receiving a combination of both anti-CD44 anti-
bodies and DC displayed a significant delay in tumor

growth (p <0.05 compared to all other groups). While
the mice in all other groups had succumbed to tumor by
day 25, mice receiving the combination therapy survived
to day 40. To examine the contribution of CD8 T cells,
one group received specific monoclonal antibodies to
deplete CD8+ T cells. As shown in Fig. 7b, mice
receiving the combination therapy were unable to delay
tumor growth after CD8+ T cell depletion, indicating
that CD8+ T cells are contributing to the observed
anti-tumor immunity.

Discussion

This study demonstrates the feasibility of loading DC
with apoptotic tumors via cell surface receptors. It has
been previously described that targeting antigen to Fcy
receptors leads to enhanced antigen uptake, upregula-
tion of DC maturation markers and secretion of pro-
inflammatory cytokines[14, 16, 19]. In this study, by
targeting a ubiquitous antigen, CD44, on the surface of
apoptotic B16 melanoma cells, enhanced uptake by
bone-marrow derived DC was demonstrated. This in-
crease was selectively blocked by initial treatment of DC
with antibodies that block the Fcy receptors. In addi-
tion, upregulation of CD80 and CD40 expression were
detectable in DC pulsed with anti-CD44 opsonized B16
cells, but not in DC pulsed with B16 alone. Secretion of
the pro-inflammatory cytokine IL-12p70 was detected in
supernatants from DC pulsed with B16-CD44 but not in
the supernatants of DC alone or DC pulsed with
apoptotic B16 cells. Taken together, our data confirms
enhanced uptake and induction of DC maturation status
after targeting tumor cells to Fcy receptors.

Prior studies utilizing model tumor antigens such as
OVA have demonstrated that receptor mediated endo-
cytosis through Fcy receptors leads to processing and
presentation of antigen to both CD4 and CDS8 T cells
[10, 20]. In our protection model, while we have not
demonstrated directly that T cells are participating in the
observed immunity against B16 tumor in vivo, activa-
tion of CD8+ T cells against B16 tumor rejection
antigens has been measured in vitro. Vaccination with
DC loaded with B16 tumor opsonized with anti-CD44
antibodies led to T cell specific IFN-y production to
both B16 tumor lysates as well as to Trp-2 peptide, a
distinct MHC class I restricted peptide expressed by B16
tumor. Importantly, we have shown a significant
enhancement in the CD8 T cell response to the Trp-2
peptide after vaccination with DC + B16-CD44, indi-
cating that loading the B16 cell through the Fcy recep-
tors has led to enhanced cross-presentation of antigens
by DC and CD8 T cell activity. Reactivity to another
B16 specific peptide, pl5e, was also measured and IFN-
gamma production was only detectable in mice vacci-
nated with DC + B16-CD44 (data not shown).

Kotera et al. demonstrated that vaccination with DC
pulsed with tumor lysates or purified apoptotic tumor
cells induce equal protective and therapeutic efficacy [6].
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Fig. 5 Protection against B16 tumor. a Mice (n=135) were vacci-
nated s.c. three times at 2 week intervals with PBS alone, DC alone,
or DC pulsed for 24 h with UVB treated B16 cells coated with
normal rat IgG (DC + B16) or anti-CD44 antibodies
(DC + B16-CD44). Two weeks after the final vaccination, mice
were challenged with 2x10° B16 cells in the opposite flank. The
results of three experiments were very similar and are therefore
combined in this figure, b Mice (n=6) were vaccinated s.c. three
times at 2 week intervals with PBS alone, or DC pulsed for 24 h
with UVB treated B16 cells coated with normal rat IgG
(DC + B16) or anti-CD44 antibodies (DC + B16-CD44). Prior
to injection, CD11c™ DC were purified by MACS separation. Two
weeks after the final vaccination, mice were challenged with 2x10°
B16 cells in the opposite flank. Tumors were palpated weekly.
* indicates p<0.01

Here, we demonstrate that vaccination with DC pulsed
with UVB treated tumor cells can be enhanced by ops-
onizing the tumor cells first with antibodies to a cell
surface protein. In a melanoma protection model, 60%
of mice vaccinated with DC + B16-CD44 were able to
reject tumor and remain tumor free for 8 months
whereas all mice vaccinated with DC + B16 alone died
within 4 months. In addition, mice treated with
DC + B16-CD44 were able to reject lung metastasis
and prevent the formation of distant metastases.

The treatment of established s.c. B16 tumors with
anti-CD44 antibodies followed by intratumoral injection
of unpulsed DC led to a significant delay in tumor
growth and an increase in the overall survival time. It is
possible that in vivo coating of the tumor with anti-
bodies followed by injection of immature DC led to
uptake of the tumor antigen via Fcy receptors on the DC
in vivo. Others have demonstrated that DC directly
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Fig. 6 Regression of metastatic B16 tumors. Mice (n=10) were
injected with i.v. with 2x10° B16 cells. One day later, mice were
treated with PBS, 1x10° B16 coated with anti-CD44, or
DC + B16-CD44. Mice received additional treatments on days 3
and 5 after tumor challenge. Lungs were harvested on day 14 and
the number of lung metastases was counted. * indicates p <0.05
compared to PBS treated mice. Data shown is the combination of
two independent experiments

administered to a growing tumor mass are capable of
inducing potent anti-tumor responses in the absence of
ex vivo antigen pulsing [36, 37]. Kirk et al. demonstrated
the ability of DC injected directly into tumor masses to
prime anti-tumor specific T cells [38]. Our results further
support the hypothesis that DC are capable of engulfing
necrotic or dying cells within tumors, processing tumor
specific antigens, and presenting these antigens to T
cells. In our study, tumor bearing mice treated with anti-
CD44 antibody followed by DC injections were unable
to delay tumor growth after depletion of CD8 + T cells,
indicating that tumor specific CD8 T cells are intimately
involved in tumor rejection.

For in vivo coating of tumor cells, the antibody must
target a protein that is highly expressed on tumor yet
expressed at low levels by normal tissues. In this study,
CD44 was chosen as the targeted antigen. CD44 is a cell
surface receptor responsible for metabolizing soluble
hyaluronic acid (HA), a major component of extracel-
lular matrix. While it is expressed at low levels on nor-
mal tissues, it is overexpressed on B16 melanoma as well
as many human tumors, including melanoma, lym-
phoma, breast, and lung cancers [24-28]. Eliaz et al.
have demonstrated that anti-cancer drugs could be tar-
geted to CD44 overexpressing tumors, but not cells

Table 1 Treatment of 3 day established B16 lung metastases

Site of metastasis (% positive)

Treatment (n=_8 mice) Lung Gut Brain
PBS 100 100 50
DC 75 75 50
DC+BI16 100 100 75
DC +B16-CD44 0 25 25
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expressing low levels of CD44, via HA containing lipo-
somes, supporting the use of CD44 as a potential target
for anti-tumor therapies [39].

Collectively, our data illustrate the successful induc-
tion of anti-tumor immunity by the administration of
DC loaded with opsonized apoptotic tumor cells, a po-
tential approach to improve current DC immunother-
apy. In tumor-bearing patients, vaccination with DC
pulsed with opsonized tumor cells may enhance the
expansion of low frequency tumor reactive CD8+ T
cells leading to robust and durable anti-tumor immune
responses. The feasibility of combination therapy of
anti-tumor monoclonal antibodies followed by intratu-
moral DC injection was also demonstrated and raises
the potential for such an approach in patients.
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